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RESEARCH Open Access

The role of CCL21/CCR7 chemokine axis in breast
cancer-induced lymphangiogenesis
Elena Tutunea-Fatan1, Mousumi Majumder1, Xiping Xin1 and Peeyush K Lala1,2,3*

Abstract

Background: Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic
vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence
suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node
metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated
lymphangiogenesis.

Methods: The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer
specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated
breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through
quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic
potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting
to mimic different stages of the lymphangiogenic process.

Results: We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the
expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C
(VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote
tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and
secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation
of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular
mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells.

Conclusions: These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the
CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis.

Keywords: CCL21 chemokine, CCR7 chemokine receptor, Vascular endothelial growth factor-C, Protein kinase B,
Lymphangiogenesis, Breast cancer

Background
Chemokines and their receptors play essential roles in
tumor biology including leukocyte recruitment, tumor
cell growth and survival, angiogenesis, and metastasis
[1-7]. Among them, C-C chemokine ligand 21/chemokine
receptor 7 (CCL21/CCR7) pair promotes growth and me-
tastasis of many tumor types including melanomas, breast,

thyroid, colon, head, and neck cancers [8-14]. CCR7 has
emerged as an important marker in the prediction of ax-
illary lymph node metastasis in breast carcinomas, par-
ticularly since CCR7 over-expression correlates with
larger primary tumors, deeper lymphatic invasion and
poorer survival rates [10,13,15]. In vivo studies revealed
that metastatic tumor formation is decreased when
CCL21 expression is knocked down in secondary lymph-
oid organs, since this diminishes both the chemotactic
and antiapoptotic effects of CCR7-expressing tumor cells
[14]. Similarly, CCL21/CCR7 pair seems to play an im-
portant role in the lymphangiogenesis associated with
pancreatic cancer [16,17] and – due to its chemotactic
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properties – this chemokine axis is involved in the lymph-
atic spread of melanoma cells [18]. However, while the
complete picture on the role and involvement of CCL21/
CCR7 pair in breast cancer is still undergoing develop-
ment, there are at least two areas in which this axis has
shown to be actively involved, often through vascular
endothelial growth factor C (VEGF-C) mediated signaling,
namely: lymph nodes metastasis, and immune response
modulation [18-23].
VEGF-C production by tumor cells is recognized as

the chief promoter of tumor-associated lymphangiogen-
esis by stimulating growth and differentiation of lymph-
atic endothelial cell precursors [24-26]. Tumor-derived
VEGF-C can also mediate lymphangiogenesis-independent
actions that promote breast cancer invasiveness and
metastasis [27,28]. We had earlier reported that overex-
pression of cyclooxygenase-2 (COX-2) in breast cancer
cells – resulting in increased prostaglandin E2 (PGE2)
levels in the tumor milieu – promotes metastasis by
multiple mechanisms including stimulation of tumor
cell migration [29,30], invasiveness [31], tumor-associated
angiogenesis [29], and lymphangiogenesis [32-34] caused
by an upregulation of VEGF-C secretion via prostaglandin
EP1/EP4 receptors [27,32,33]. Along the same lines, EP2
receptor has been shown to be involved in COX-2 medi-
ated lymphangiogenesis [35]. However, neither COX-2 in-
hibitors nor EP4 antagonists could completely abrogate
VEGF-C production by highly metastatic breast cancer
cells indicating that additional mechanisms are involved
in VEGF-C secretion. While prior studies have established
that COX-2 secretion by breast cancer cells can upregu-
late CCR7 expression via activation of EP2/EP4 receptors
[20,36] to enhance their invasive capacity, a possible link
between CCR7 signaling and VEGF-C expression/secre-
tion has remained untested so far. Therefore, the objective
of the present study was to investigate whether CCL21/
CCR7 signaling promotes breast cancer-associated lym-
phangiogenesis through CCR7-dependent stimulation of
VEGF-C secretion followed by LECs activation towards
the development of new lymphatic vessels. This objective
was achieved by a combination of in situ, in vivo, and
in vitro approaches.
Here, we have established that CCR7 correlates with

the expression of lymphatic endothelial cell markers in a
panel of human breast cancer tissues as well as with the
expression of the lymphangiogenic factor VEGF-C. By
utilizing CCR7 or CCL21 gene manipulated breast can-
cer cell implants in vivo we have shown that the ana-
lyzed chemokine pair promotes host lymphatic vessel
recruitment and growth. Moreover, CCL21/CCR7 che-
mokine axis has the ability to promote lymphatic endo-
thelial cells proliferation, migration, as well as tube
formation in vitro, and this axis also regulates the ex-
pression of lymphangiogenic factor VEGF-C by breast

cancer cells. Finally, the phosphorylation of AKT path-
way constitutes the intracellular mechanism underlying
CCR7-mediated VEGF-C synthesis. Our study adds new
elements to the multifaceted role of CCL21/CCR7 che-
mokine pair in mammary malignancy by revealing a
novel role of this chemokine axis in breast cancer-
associated lymphangiogenesis that might be relevant to
future therapies.

Results
Role of CCL21/CCR7 pair in mediation of VEGF-C secretion
by breast cancer cells
Prior to the investigation of the role of CCL21/CCR7
pair in VEGF-C production, we have screened the consti-
tutive expression of CCR7, CCL21, and VEGF-C in two
well differentiated, luminal type (T47D, MCF-7) and two
poorly differentiated basal type (Hs578t, MDA-MB-231)
breast cancer cell lines (Additional file 1: Figure S1A and
B). Based on these preliminary results, MDA-MB-231
breast carcinoma cell line – that is characterized by an in-
vasive phenotype – was selected for its ability to express/
secrete high levels of VEGF-C, which makes it adequate
for use in a loss-of-function model. Conversely, for the
gain-of-function approach, MCF-7 cell line was selected
since expresses/secretes relatively low levels of VEGF-C.
In this regard, CCR7 expression in MDA-MB-231 cells
was knocked down with shRNA targeting CCR7 gene and
the effectiveness of transfection was assessed by means of
Western blot, real-time PCR, and quantitative real-time
PCR (Figure 1A to C). Of note, low levels of CCR7 expres-
sion correlates with significant downregulations in VEGF-
C protein and mRNA expressions (Figure 1D to F). To
determine whether CCL21/CCR7 interaction regulates
the secretion of lymphangiogenic factor VEGF-C, CCR7
shRNA and parental MDA-MB-231 cells were incubated
with and without human CCL21/6Ckine (350 ng/ml) for
24 hours. While exogenous CCL21 has stimulated VEGF-
C production by parental cells, the secretion level of
VEGF-C from CCR7 shRNA transfected tumor cells has
decreased significantly. The level was significantly lower
compared to CCL21 treated or untreated parental cells
or scrambled shRNA transfected cells (Figure 1G).
Moreover, the proposed molecular mechanism respon-
sible for the regulation of VEGF-C was analyzed in
MCF-7 mock and MCF-7-CCL21-knocked in (KI)
breast cancer cells and the efficacy of nucleotransfection
is presented in Figure 1H and I. Quantitative PCR,
Western blot, and ELISA confirmed that CCL21/CCR7
pair has the ability to regulate the expression of the lym-
phangiogenic factor VEGF-C in the analyzed MCF-7
breast cancer cells (Figure 1H - L). Overall, these find-
ings suggest that CCL21/CCR7 pair has the potential to
regulate VEGF-C expression/secretion in the analyzed
breast cancer cell line models.
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Figure 1 (See legend on next page.)
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Signaling mechanisms of CCR7-mediated VEGF-C
secretion
Prior studies have documented the role of phos-
phatidylinositol 3-kinase (PI3K) and its downstream
mediator protein kinase B (AKT) in the survival and
invasiveness of head and neck carcinoma cells through
CCL21/CCR7 interaction [37,38]. Furthermore, extra-
cellular signal-regulated kinase (ERK1/2) pathway is
involved in cell cycle progression and survival of non-
small cell lung carcinoma cells resulting from CCR7
activation [39,40].
To investigate whether AKT and ERK1/2 pathways are

downstream activated by CCL21-CCR7 binding, the
phosphorylation status of both pathways was assessed in
MDA-MB-231 breast cancer cells. As expected, an in-
crease in phosphorylation of AKT and ERK1/2 was ob-
served for the entire duration of stimulation with
CCL21/6Ckine (Figure 2A, B). To assess whether the
phosphorylation of both proteins was dependent on the
activation of CCR7, MDA-MB-231 cells were treated
with various concentrations of CCR7 antibody (0, 5, 10,
20 μg/ml) before stimulation with CCL21/6Ckine. When
CCR7 was blocked by its neutralizing antibody, the
phosphorylation status of AKT and ERK1/2 was signifi-
cantly decreased (Figure 2C, D). Similarly, the addition
of PI3K/AKT and ERK1/2 specific inhibitors significantly
reduced the effect of CCL21 on activation of both path-
ways (Figure 2E - G).
Finally, to test the functional roles of PI3K/AKT and/or

ERK1/2 pathways in CCL21-induced VEGF-C secretion,
MDA-MB-231 cells were pre-treated with various concen-
trations of PI3K inhibitor (LY294002 at 25, 50, and
75 μM), Akt-1/2 inhibitor (at 2.5, 5, and 10 μM), and
ERK1/2 inhibitor (U0126 at 5, 10, and 15 μM) and then
treated with CCL21/6Ckine (350 ng/ml) for 24 hours.
Following that, the supernatants were collected and sub-
jected to a VEGF-C ELISA. Both PI3K and AKT inhibitors
yielded a significantly reduced VEGF-C secretion when
compared with CCL21 treatment alone (Figure 2H, I),
whereas no significant difference was observed for U0126
treatment (Figure 2J). As such, it can be affirmed that the
activation of PI3K/AKT, but not ERK1/2 signaling path-
way downstream of CCR7 is involved in the regulation of
VEGF-C secretion.

CCL21/CCR7 pair has lymphangiogenic potential in vitro
Lymphatic vessel formation is a complex biological
process that can be approached in vitro through separate
assays, each attempting to mimic a different stage of the
lymphangiogenic process such as: proliferation, migra-
tion, and formation of capillary-like tubes [41]. Within
the limited scope of the current study, primary
HMVECs-dLy were employed as an in vitro model of
LECs and their CCR7 and CCL21 expressions were
verified at the mRNA and protein levels. Agarose gel
electrophoresis of real-time PCR products from HMVEC-
dLy cells showed that both the chemokine receptor and
ligand are expressed at the mRNA level (Figure 3A). On
the other hand, lysates from cultured HMVEC-dLy cells
were assayed by Western blot and CCR7 protein expres-
sion was detected at 45 kDa while only traces of CCL21
were observed (Figure 3B). Moreover, CCL21 protein
secretion by HMVEC-dLy cells was quantified in 2D and
2D-matrix conditions (Matrigel was used because CCL21
is strongly matrix-binding). One important aspect to be
emphasized is that CCL21 chemokine ligand is secreted as
a small molecular weight protein that is readily immobi-
lized within the extracellular matrix by binding to sulfated
proteoglycans [42]. As such, there was no surprise that the
determined bound CCL21 protein fraction was about two-
fold higher than the soluble fraction, but the overall CCL21
secretion by HMVEC-dLy was constitutively present at very
low levels (Figure 3C). Therefore, serum-starved LECs
were treated with various concentrations of exogenous
CCL21/6Ckine (100–350 ng/ml) and their proliferation
rates (BrdU uptake) increased significantly (Figure 3D).
Conversely, when CCR7 activation was blocked with
CCR7-neutralizing antibody (10 μg/ml), LECs prolifera-
tion significantly decreased to serum-free level (Figure 3E).
LECs also responded to the chemotactic effect of CCL21
by increased migration (Figure 3F, G). Conversely, in
the presence of various concentrations of CCR7-
neutralizing antibody (5, 10, 20 μg/ml), CCL21-
mediated LECs migration was significantly inhibited
(Figure 3H). Finally, the extent of tube-like structures
formed by LECs increased significantly with increasing
concentrations of CCL21/6Ckine (100–350 ng/ml)
(Figure 3I, J). By contrast, CCL21 mediated tubulogen-
esis was blocked by CCR7 neutralizing antibody

(See figure on previous page.)
Figure 1 CCR7 promotes expression and secretion of lymphangiogenic factor VEGF-C. (A) Western blots (B) real-time PCR and (C) quantitative
real-time PCR validating CCR7 knockdown in MDA-MB-231 cells versus control shRNA. (D) Western blot, (E) real time PCR and (F) quantitative real-time
PCR analysis outlining decreased VEGF-C expression in MDA-MB-231 CCR7 shRNA cells versus control shRNA. (G) ELISA demonstrates that VEGF-C
protein concentration in conditioned media from CCL21 treated/untreated CCR7-KD cells decreased significantly compared to parental or scrambled
MDA-MB-231 cells. (H) Western blot and (I) quantitative real-time PCR validating CCL21 overexpression in MCF-7 cells. (J) Western blot, (K) quantitative
PCR outlining increased VEGF-C expression in MCF-7 CCL21 cells versus control mock. (L) VEGF-C protein concentration in conditioned media from
MCF-7 CCL21 and control cells as measured by ELISA. In (A-K) data are represented as mean ± SD (n = 4), except (G) and (L) where data are
represented as mean ± SD (n = 3). (*) indicates statistical significant differences (p < 0.005).
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(Figure 3K, L). To determine whether CCL21/CCR7 acts
through the regulation of VEGFR-3 ligand, LECs were
treated with CCL21 in the presence and absence of
VEGFR-3 neutralizing antibody (1, 2.5, 5 μg/ml). Blocking
VEGFR-3 significantly has reduced CCL21-induced LECs
proliferation, migration, and tube formation (Figure 3M).
Based on these results, it can be inferred that within the
framework of the investigated in vitro model, CCL21/
CCR7 pair has a direct lymphangiogenic potential through
stimulation of the lymphangiogenic traits of LECs.
Additionally, CCL21/CCR7 pair interacts in a ligand-
independent manner with VEGFR-3 expressed by LECs
to drive their lymphangiogenic response.

CCL21/CCR7 pair promotes lymph-vascular recruitment
in vivo
To validate our in vitro observations, Directed In Vivo
Lymphangiogenic Assay (DIVLA) was conducted, as re-
ported in the past [43]. In brief, the angioreactors con-
taining basement membrane extract and breast cancer
cells were implanted subcutaneously into the dorsal
flanks of nude mice and lymphatic vessel formation was
assessed through multiple approaches. Host lymphatic
endothelial cells that invaded the angioreactors associ-
ated with different conditions were quantified with an
immunofluorescence assay for LYVE1 and Prox1. The
results revealed that the recruitment of LYVE1 and
Prox1 labelled lymphatic endothelial cells was signifi-
cantly higher in the angioreactors containing MCF-7-
CCL21-KI cells when compared with their controls.
Similarly, this recruitment was impaired when CCR7
was knocked down, as observed in the MDA-MB-231-
CCR7-KD angioreactors compared to control, MDA-
MB-231-mock angioreactors (Figure 4B). Relative LECs
recruitment measured with quantitative real-time PCR
for LYVE1 mRNA expression in cellular contents of the
angioreactors also revealed a similar phenomenon: a sig-
nificantly higher recruitment with MCF-7-CCL21-KI
than with MCF-7-mock cells; and a significantly lower
recruitment with MDA-MB-231-CCR7-KD than with
MDA-MB-231 mock cells (Figure 4C). For a direct quanti-
fication of MVD and LVD, serial cryosections of angior-
eactors were performed and dual immunostaining was
subsequently used to visualize lymphatics (LYVE1/Prox1/

Podoplanin) and blood vessels (CD31) by means of “hot
spot” method [34,43]. Higher MVD and LVD were ob-
served in MCF-7-CCL21-KI sections when compared to
control (MCF-7 mock). Similarly, lower densities were
observed in MDA-MB-231-CCR7-KD sections than in
MDA-MB-231 mock (Figure 4D – G, quantification 4I).
Finally, the addition of recombinant VEGF-C to the
angioreactors containing MDA-MB-231-CCR7-KD cells
has rescued lymphatic vessel formation to the same level
observed with control MDA-MB-231 (Figure 4H). To ver-
ify the in vivo expression of CCR7 by LECs, angioreactors
containing only lymphangiogenic growth factors were im-
planted into nude mice and quantitative real-time PCR
analysis was performed to analyze the content of the tubes
(Additional file 2: Figure S2B). Thus, according to our
in vivo results, CCL21/CCR7 pair is a positive regulator of
lymphangiogenesis.

CCR7 expression correlates with lymphangiogenic
markers in breast cancer samples
To characterize the role of CCL21/CCR7 in situ, we
used a panel of breast cancer tissues (n = 105) collected
from the primary tumor site. The demographic and clin-
ical characterization of the samples is summarized in
Additional file 3: Table S1. In brief, the majority of the
tissues were classified as invasive mammary carcinomas
characterized by various grades of differentiations: grade
III (62%) and grade II (24%). At first, quantitative real-
time PCR was employed to compare the expression pro-
file of CCR7, CCL21, and VEGF-C in primary tumor
and adjacent breast tissues (control). The stability in ex-
pression levels of two common housekeeping genes
(GAPDH and ACTB) was verified across the entire panel
of tissues. Of note, the level of CCR7 mRNA in tumor
tissues was significantly higher than that in the control
samples. A trend similar to CCR7 was observed for
VEGF-C. However, CCL21 mRNA expression in tumors
was not significantly different when compared to con-
trols (Figure 5A). Moreover, it was found that CCR7
mRNA expression is positively correlated with lymph-
vascular markers (LYVE1, podoplanin) and VEGF-C in
breast cancer specimens while no correlation with endothe-
lial marker CD31 was observed (Figure 5B – E). As for
CCL21 expression, a weak correlation with lymph-vascular

(See figure on previous page.)
Figure 2 CCR7 activation by CCL21 regulates VEGF-C secretion via the PI3K/AKT signaling pathway. (A) Western blot time course analysis
of AKT and ERK1/2 activation in MDA-MB-231 cells following treatment with CCL21 for a total of 60 minutes. Phosphorylation of AKT at Ser 473
and ERK1/2 is observed over the entire duration of stimulation compared to control, untreated cells. (B) Densitometric analysis revealed that
phosphorylation of both pathways is significantly induced after 5 min of CCL21 treatment. (C) Western blot and (D) Densitometric analysis
indicating that CCL21-induced phosphorylation is dependent on CCR7 activation. Western blot demonstrating that PI3K/AKT inhibitors LY 294002
(E) Akt-1/2 (F), and ERK1/2 inhibitor U0126 (G) can block CCL21/CCR7-mediated phosphorylation in an inhibitor dose-dependent manner. For all
experiments, total AKT and total ERK1/2 confirmed the equivalent loading of lanes. (H-J) PI3K/AKT but not ERK1/2 specific inhibitors significantly
block CCL21 mediated VEGF-C secretion measured with ELISA. Data are represented as means ± SD (n = 3). Different superscripts indicate statistically
significant differences (p < 0.05).
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markers was observed (data not included). These results
suggest a clinical association between CCR7 expression and
lymph-vascular recruitment in primary breast tumor.

Discussion
Lymphangiogenesis, the growth of new lymphatic ves-
sels, has an important role in the complex pathology of
tumoral processes in general, and in that of breast can-
cer in particular [24,25,44,45]. Furthermore, lymphatics
have started to be reclassified as active, rather than pas-
sive conduits in cancer, since they are able to fine tune
the balance between peripheral tolerance and immunity
that facilitates host immune tolerance to tumor invasion
[46,47]. The newly cited roles of lymphatics include the
indirect suppression of T-cell function, the inhibition of
dendritic cell (DC) maturation, as well as a direct effect
on T-cell tolerance [48].
Within the immunological context, the two major

leukocyte subsets whose surfaces express CCR7 are den-
dritic and T cells such that CCR7 is known to have
strong implications on both central and peripheral toler-
ance [49]. On the other hand, CCL21 is constitutively
expressed by the lymphatic endothelium of multiple or-
gans, high endothelial venules of lymph nodes and
Peyer’s patches, as well as stromal cells in T cell rich
areas of lymph nodes, and spleen [50]. The wide physio-
logical distribution, combined with the complex and
multifaceted roles in lymph node trafficking could be
one of the reasons for which CCL21/CCR7 axis has been
identified as a viable candidate for the fast dissemination
of breast cancer cells developed in the immediate prox-
imity of the lymphatics. Furthermore, the lymphangio-
genic factor VEGF-C is one of the known promoters of
intra- and peritumoral lymphatic development and a fa-
cilitator of tumor cell dissemination [26,33,51]. However,
molecular regulation of lymphangiogenesis extends to
many other types of interactions that are often placed
outside of the conventional VEGF family of pro-
lymphangiogenic factors [17,52-54].

The involvement of CCL21/CCR7 pair in migration
and guidance of the cells detached from the primary
tumor towards draining lymphatics is believed to play a
significant role in the subsequent metastatic evolution of
the disease [18,19]. Present results, combined with our
earlier report of pro-migratory functions of VEGF-C
[27], and reported VEGF-C mediated stimulation of
CCL21 secretion by LECs [21], endorses the idea that
the interplay/crosstalk between CCL21 chemokine and
VEGF-C promotes breast cancer progression through
several distinct, but complementary mechanisms. Our
present results prompt for the first time that a closed
loop/circular communication exists between CCL21/
CCR7 and VEGF-C/VEGFR-3 axes, in a sense that not
only VEGF-C promotes CCL21 secretion by LECs [21],
but also that CCR7 activation stimulates VEGF-C syn-
thesis by tumor cells and thus drives lymphangiogenesis.
Indeed, our results show that inhibition of CCR7 gene
translates into significant decreases of VEGF-C expres-
sion in the analyzed breast cancer cells. In addition, our
study reports a significant inducible VEGF-C secretion
in MDA-MB-231 cells in response to CCR7 activation
(Figures 1, 2, and 4). Moreover, CCL21 has been found
to regulate lymphangiogenesis in a LEC-dependent man-
ner (Figure 3): 1) directly, through the stimulation of the
lymphangiogenic traits of LECs (e.g. proliferation, migra-
tion and tubular network formation); and 2) indirectly,
through the modulation of VEGFR-3 signaling pathway.
An overall summary of these findings is depicted in the
schematic of Figure 6. Furthermore, these results cor-
roborate well with our in situ findings outlining a strong
correlation between CCR7 and VEGF-C expression in
human breast cancer tissues. However, CCR7 may acti-
vate other lymphangiogenic factors to mediate lymphatic
vascularisation, such that a full analysis of its pro-
lymphangiogenic profile/signature represents an avenue
that to be explored in the future.
Previous studies indicate that CCR7-mediated signal-

ing required for invasive and pro-survival functions in

(See figure on previous page.)
Figure 3 CCL21/CCR7 axis has lymphangiogenic potential in vitro. (A) Real-time PCR of CCR7 and CCL21 mRNA expression in HMVEC-dLy.
(B) Western blot of CCR7 and CCL21 protein expression in HMVEC-dLy. GAPDH was used as an internal control. (C) CCL21 protein secretion by
HMVEC-dLy as measured by ELISA. Data are represented as mean ± SD (n = 3). (*) indicates significant difference (p < 0.05). (D) HMVEC-dLy proliferation
in response to CCL21/6Ckine (0, 100, 200, 350 ng/ml) performed by the measurement of BrdU. Data are presented as mean ± SD (n = 4, p < 0.001).
(E) HMVEC-dLy proliferation in response to CCR7 neutralizing antibody (0, 5, 10, 20 μg/ml). Data are presented as mean ± SD (n = 4, p < 0.0003). (F)
Representative images of HMVEC-dLy migration (40× magnification). (G) Quantification of HMVEC-dLy cellular migration in response to CCL21/6Ckine
(0, 100, 200, and 350 ng/ml). (H) Quantification of HMVEC-dLy migration in response to CCR7 neutralizing antibody (0, 5, 10, 20 μg/ml). Bars in (G, H)
represent mean number of migrated cells ± SD (n = 4, p < 0.005). (I) Representative micrographs of HMVEC-dLy tubular network formation in response
to CCL21/6Ckine (0, 100, 200, 350 ng/ml). Bar equals 100 μm. (J) Quantification of total length of tubular structures formed by HMVEC-dLy
corresponding to (I) as determined by ImageJ. (K) Representative images of inhibition of HMVEC-dLy tubular network formation. Bar equals 100
μm. (L) Quantified HMVEC-dLy tube formation corresponding to images shown in (K). In (J and L) data are presented as mean ± SD (n = 4,
p < 0.0001). (M) Quantified HMVEC-dly proliferation, migration, and tube formation in response to treatment with VEGFR-3 neutralizing antibody
(0, 1, 2.5, 5 μg/ml). Data are presented as mean ± SD. Different superscripts represent a statistical significant difference.

Tutunea-Fatan et al. Molecular Cancer  (2015) 14:35 Page 8 of 16



(A)

(D) (E)

(F) (G)

(H)
(I)

(B) (C)

Figure 4 (See legend on next page.)

Tutunea-Fatan et al. Molecular Cancer  (2015) 14:35 Page 9 of 16



head and neck cancer cells is mediated by PI3K/AKT
pathway [14], whereas CCR7-mediated cell cycle pro-
gression in lung cancer cells utilizes ERK1/2 pathway
[39]. We demonstrate here that CCR7 activation by
CCL21 binding can induce a significant increase in both
AKT and ERK1/2 phosphorylation in breast cancer cells;
however, only the former pathway is required for VEGF-
C up-regulation and secretion. While this result consti-
tutes a new finding in the context of CCR7 chemokine
receptor, a similar molecular mechanism was confirmed
for insulin-like growth factor-I receptor-mediated VEGF-
C secretion in lung carcinoma cells [55].
Another important finding in our study is that CCL21/

CCR7 axis has a significant effect on LECs proliferation,
migration, and tubular network formation and this effect
seems to be regulated by means of VEGFR-3 signaling
pathway. However, the precise molecular mechanisms
involved in LEC-dependent/tumor-independent lym-
phangiogenesis remain to be elucidated. Interestingly,
neither CCL21 stimulation nor CCR7 receptor blocking
induced dose-dependent effects on HMVEC-dLy prolif-
eration and migration, a phenomenon that could be ex-
plained perhaps through chemokine receptor saturation
followed by its desensitization and internalization [56].
Another important aspect to be emphasized here is that
by contrast with the surveyed literature [57,58] reporting
that lymphatic cells are capable of secreting CCL21,
HMVEC-dLy cells used in the present study were found
as weak producers of CCL21 chemokine. One possible
explanation of this result could be the substantial
changes in gene expression induced by culture in pri-
mary cells that might be the cause of the loss of CCL21
production [59]. Cell culture might therefore alter some
of the core features of HMVEC-dLy cells.
Our in vivo findings indicate that CCR7 is expressed

by LECs and therefore promotes LECs recruitment and
lymphangiogenesis through the regulation of the expres-
sion/secretion of VEGF-C by human breast cancer cells.
To recapitulate, we have created a directed in vivo lym-
phangiogenic assay (DIVLA) wherein in as a loss-of-

function model the CCR7 expression was knockdown and
a significant decrease in lymphatic vessel density was
remarked, a phenomenon that was rescued by the
addition of lymphangiogenic factor VEGF-C. These results
reiterate the effects which we have observed in our com-
parable gain-of-function model, in which an increase in
CCL21 expression associates well with an increase in
lymphatic vessel density.
Since our in vitro and in vivo studies have established

the roles of CCR7/CCL21 and VEGFR3/VEGF-C axes in
breast cancer induced lymphangiogenesis, we have pos-
tulated that CCR7 and VEGF-C expressions will be no-
ticeably different in tumor tissues when compared to
their non-tumor counterparts. Herein our study provides
evidence that the expressions of both CCR7 and VEGF-
C were significantly upregulated in the analyzed breast
carcinoma samples when compared with control non-
tumor tissues. Interestingly, no significant difference in
CCL21 expression was noted between tumor and non-
tumor regions. Similar variation patterns were also ob-
served for CCR7 and CCL21 in pancreatic cancer [16],
for CCL21 in squamous cell carcinoma [60] or for
CCR7 and VEGF-C in pancreatic ductal adenocarcin-
oma [17]. In addition, we have identified positive cor-
relations between the CCR7 expression and lymphatic
endothelial markers in the analyzed panel of breast
cancer tissues.

Conclusions
Collectively, these results add newer insights into the
multifaceted role played by the CCL21/CCR7 chemo-
kine pair in mammary malignancy, prompting for the
first time towards the involvement of this chemokine
axis in the complex mechanics of breast cancer-induced
lymphangiogenesis The proven therapeutic effectiveness
of blocking CCR7-mediated CCL21 signaling [61]
combined with the promising outlook [62] of phase
1 DC-CCL21 trial in lung cancer and melanoma patients
[63], suggests that the inherent value of the present study
is more than apparent.

(See figure on previous page.)
Figure 4 CCL21/CCR7 axis has lymphangiogenic potential in vivo. (A) Macroscopic digital images of angioreactors collected with
surrounding tissues. (B) Fluorescence assay analysis of LYVE1, Prox1, and CD31 markers as expressed by mouse lymphatic endothelial cells and
blood vascular endothelial cells recruited into the angioreactors. Data are presented as mean relative fluorescent units ± SEM. (*) indicates
significant difference (p < 0.005). (C) Quantitative real-time PCR analysis of LYVE1 and CD31 mRNA expression in the cellular contents of angioreactors.
Expression levels are normalized to actin (ACTB). (*) indicates significant difference (p < 0.05) (n = 4). (D to G). Representative images of
immunofluorescence localization of CD31 (red), LYVE1 (green), Podoplanin (green), and Prox1 (green) in serial sections of angioreactors
containing MCF-7 mock vs. CCL21 KI MCF-7 cells (D), (E) and MDA-MB-231 mock vs. CCR7 KD MDA-MB-231 cells (F), (G). Nuclei are stained
with DAPI (blue). Scale bar equals 50 μm. (H) Representative images of immunofluorescence localization of CD31 (red), LYVE1 (green),
Podoplanin (green), and Prox1 (green) in serial sections of angioreactors containing CCR7 KD MDA-MB-231 cells and recombinant human
VEGF-C (30 ng/μl). Nuclei are stained with DAPI (blue). Scale bar equals 50 μm. (I) Quantification of MVD and LVD. “Hot spot” scores for
CD31-LYVE1, CD31-Podoplanin, and CD31-Prox1 were calculated by means of Image J (40× magnification). Data are presented as mean of
“hot spot” ± SEM.
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Methods
Ethics statements
Human breast cancer specimens and the adjacent non-
tumor tissues used in this study were obtained from the

Ontario Institute for Cancer Research (OICR) repository
(Ontario Tumor Bank) following approval by their
Ethics Board. The experimental protocol involving ani-
mals was approved by the Animal Use Subcommittee of

Figure 5 CCL21/CCR7 pair correlates with lymphangiogenic markers in a panel of breast cancer tissues. (A) Quantitative real-time PCR
analysis of CCL21, CCR7 and VEGF-C mRNA expression in control (adjacent non-tumor) and tumoral tissues. Data are represented as a mean ± SD.
(*) indicates significant differences (p < 0.05). (B), (C), (D) mRNA expression level of CCR7 is positively correlated with the expression of lymphatic
vascular markers (LYVE1, Podoplanin, VEGF-C) in primary breast cancer samples; Pearson’s coefficient indicates strong correlations. (E) mRNA
expression level of CCR7 and blood vessel marker CD31 in primary breast cancer samples. Pearson’s coefficient suggests little to no correlation
between the two variables. Data represent mean values from three independent experiments.
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Western University, according to the guidelines of the
Canadian Council on Animal Care.

Human tissue samples
Frozen human breast cancer tissues (n = 105) were col-
lected from the primary tumor site with a majority being
classified as invasive mammary carcinomas. Control tis-
sues (n = 20) were obtained from adjacent non-tumor
tissue from unrelated patients and subjected to histo-
pathological analysis to confirm their status. Analyzed
samples included variable amounts of duct, stroma and
adipose tissue. A summary of demographic, estrogen re-
ceptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor receptor-2 (HER-2) status for
patient and control populations is presented in Additional
file 3: Table S1. The majority of the cancer patients (>80%,
data not provided) had a history of some unspecified can-
cer in the family. Of the tumor tissues, 76% were ER

positive, 62.9% PR positive, 20% HER2 positive, and 9.5%
triple (ER/PR/HER2) negative.

Cell lines and culture
Primary Adult Human Dermal Lymphatic Microvascular
Endothelial Cells (HMVEC-dLyAd) were obtained from
Clonetics®/Lonza (Walkersville, MD, USA). The initial
expansion and subsequent passages (maximum of 5)
were performed according to the manufacturer’s instruc-
tions. Human MDA-MB-231 and MCF-7 breast cancer
cell lines from American Type Culture Collection
(ATCC) (Rockville, MD, USA) were grown in a humidified
incubator at 37°C with 5% CO2 and maintained as per
instructions.

Gene knockdown/knockin and stable transfection
MDA-MB-231 cells (106 cells/ml), were transfected with
either silencer small hairpin interfering RNA (shRNA)

Figure 6 Schematic diagram of the proposed role of CCL21/CCR7 axis in lymphangiogenesis. (A, B) Molecular crosstalk between tumor
cells and LECs. 1) Tumor cells enhance the expression of VEGF-C in response to CCL21/CCR7 signaling and promote sprouting of new lymphatics.
2) CCR7-expressing LECs have a direct lymphangiogenic potential by stimulating the pro-lymphangiogenic traits of LECs. 3) LECs respond to
CCL21/CCR7 axis through the modulation of VEGFR-3 signaling pathway.
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targeting CCR7 (Gene ID: 1236, TF314124, OriGene
Technologies, Rockville, MD, USA) or silencer negative
control shRNA (TR30015, OriGene Technologies) con-
structs using the Amaxa Cell Line Nucleofector Kit
(Lonza, Walkersville, MD, USA). MCF-7 cells (3×106

cells/ml) were transfected with either GFP-tagged ORF
clone of CCL21 (Gene ID: NM_002989, RC206579,
OriGene Technologies) or control plasmid vector
(pCMV6-C) (PS100010, OriGene Technologies). For
stable selection, Puromycin (300 ng/ml) and Geneticin
(400 ng/ml) were used on MDA-MB-231 and MCF7
cells, respectively. The nucleofection efficiency was de-
termined with quantitative real-time PCR and Western
blot.

RNA extraction, cDNA synthesis, and reverse transcriptase
polymerase chain reaction (RT-PCR)
Total RNA was extracted using the RNeasy Minikit
(Qiagen, Valencia, MD, USA) following manufacturer’s
instructions. cDNA was synthesized with a High Capacity
cDNA Reverse Transcription kit (Applied Biosystems,
Carlsbad, CA, USA) using up to 2 μg of RNA. Primers for
the human CCR7, CCL21, VEGF-C, and housekeeping
gene (GAPDH) were synthesised at the Oligo Factory
(London, ON, Canada) (Additional file 4: Table S2). PCR
was performed with Platinum PCR SuperMix High Fidel-
ity (Invitrogen, Burlington, ON, Canada). Real-time PCR
products were visualized by GelRed Nucleic Acid Gel
Stain (Biotium, Hayward, CA, USA) using a gel imaging
system (Gel Doc™ XR System, Bio-Rad, Mississauga, ON,
Canada).

RNA extraction from human breast tissue
In order to obtain optimal RNA yield and purity, tissues
were initially cut with sterile surgical blades to remove
the surrounding fat. Following fat removal, the product
was weighted to not exceed 30 mg and further subjected
to disruption and uniformization with rotor-stator
homogenizer (flash sonication for 5 seconds × 5 times)
to ensure the appropriate release of RNA as well as the
reduction of lysate viscosity. Then, samples were sub-
jected to RNeasy Minikit protocol (Qiagen).

Quantitative real-time PCR
Reaction was performed in single micro capillary tubes
on a LightCycler (Roche Diagnostic, Laval, QC, Canada)
with TaqMan® Universal PCR Master Mix (Applied Bio-
systems, Foster City, CA, USA) for control and target gene
expression primer probes (TaqMan® Gene Expression
Assay, Applied Biosystems) (Additional file 5: Table S3).
Delta-delta Ct (ΔΔCt) method was employed to determine
the fold difference (2 –ΔΔCt) (Applied Biosystems).

Western blot
To prepare protein lysates, cells were treated with M-PER®
Mammalian Protein Extraction Reagent (Thermo Scientific,
Rockford, IL, USA) supplemented with HALT Protease
Inhibitor Cocktail (Thermo Scientific) and Phosphatase
Inhibitor Cocktail (Thermo Scientific). Fifteen micrograms
of total protein were electrophoresed per well on a SDS-
polyacrylamide gel and transferred onto Immobilon-FL
PVDF membranes (Millipore, Billerica, MA, USA).
Membranes were then incubated with primary anti-
bodies (Additional file 6: Table S4) and probed with a
mixture of IRDye polyclonal secondary antibodies (LI-
COR Biosciences, Lincoln, NE, USA). Images were read
with an Odyssey infrared imaging system (LI-COR Biosci-
ences) and the average density of each band was measured
with ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

Enzyme-linked immunosorbent assay (ELISA)
Control and CCR7 shRNA MDA-MB-231 cells were
cultured in serum-free media and treated with or with-
out human CCL21/6Ckine (350 ng/ml, R&D Systems,
Minneapolis, MN, USA) for 24 hours before superna-
tants were collected. Then, VEGF-C concentration in
conditioned media was measured by ELISA (Quantikine
Human VEGF-C Immunoassay, R&D Systems). For sig-
naling studies, cells were pretreated with various concen-
trations of PI3 kinase inhibitor (LY294002) (Cell Signalling
Technology, Danvers, MA, USA), AKT inhibitor (Akti-1/2)
(Abcam, Cambridge, MA, USA), and MEK 1/2 inhibitor
(U0126) (Cell Signalling). Tumor cells were then treated
with CCL21/6Ckine for 24 hours and the level of VEGF-C
secretion was determined. In order to quantify CCL21 pro-
tein secretion, MDA-MB-231 and HMVEC-dLy cells were
maintained in 2D and 2D-matrix culture conditions and
subjected to Quantikine Human 6Ckine Immunoassay
(R&D Systems).

Functional assays
Proliferation
Serum-starved HMVEC-dLy cells were seeded onto
96-well tissue-culture microplates, treated with various
concentrations of CCL21/6Ckine (0, 100, 200, and
350 ng/ml) for 24 hours, and a cell proliferation ELISA
BrdU (colorimetric) assay (Roche Applied Science,
Indianapolis, IN, USA) was performed.

Migration
Cellular migration was assessed with Boyden chambers
using Transwell® inserts (Corning Life Sciences, Oneonta,
NY, USA) separated by a polycarbonate membrane
with 8 μm pore opening placed within 24-well plates.
A two hundred microliter suspension of serum-starved
HMVEC-dLy cells at a concentration of 2×105/ml were
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seeded in the upper chamber while various concentra-
tions of CCL21/6Ckine (0, 100, 200, and 350 ng/ml)
were added to serum-free media in the lower chamber.
The assembled chambers were then incubated for
24 hours. After incubation, the cells from the top of
the membrane were wiped off with cotton swabs
whereas the migrated cells (from the bottom of the
membrane) were fixed with cold methanol, stained
with eosin/thiazine, and washed with distilled water.
The membranes were then dried, cut with surgical
blade, and fixed with mounting medium on a glass
slide. Direct microscopic counting at 40 × magnifica-
tion (Leica DFC 295, Leica Microsystems, Germany) of
cells that have migrated to the lower side of the mem-
brane was performed and a mean value for each sample
was calculated.

Tube formation
HMVEC-dLy grown up in T75 flasks to near confluence
(80%) were trypsinized and resuspended in endothelial
basal media (EBM) (without any growth supplements) to
a final concentration of 2×105 cells/ml. Growth Factor
Reduced Matrigel (BD Biosciences, Mississauga, ON,
Canada) was thawed overnight at 4°C, diluted with cold
EBM (1:1 dilution) and then a volume of 300 μl Matrigel
solution/well was placed in six-well plates to solidify for
2 hours. After that, HMVEC-dLy cells (2 ml of cell sus-
pension) were seeded on the solidified Matrigel under
various concentrations of CCL21/6Ckine (0, 100, 200,
and 350 ng/ml) for 24 hours. Tube formation was exam-
ined on an inverted microscope (100× magnification) at
different time intervals. Images were randomly taken
with Leica EC3 camera (Leica Microsystems) in different
areas of the wells by selecting fields of view that were
distinct and distant enough to not overlap with each
other. The total length of the interconnected cells form-
ing tubular structures was measured with ImageJ.

Directed in vivo lymphangiogenesis assay
To study the loss of function, the highly aggressive
MDA-MB-231 breast cancer cell line that expresses
high endogenous levels of VEGF-C was used after
CCR7 knockdown. To study the gain-of-function, the
poorly aggressive MCF-7 breast cancer cell line that ex-
presses low endogenous VEGF-C was used after CCL21
knockin. Four angioreactors (Trevigen, Gaithersburg,
MD, USA) with identical conditions/mouse (4×104

cells/angioreactor) were implanted into the dorsal flank
of 6-to 8-week-old female nude mice (4 mice/condition)
(Hsd.Athymic Nude-Foxn1nu/Foxn1+, Indianapolis, IN,
USA) and the assay was carried out as previously de-
scribed [43]. Three different approaches were employed
for this purpose:

Spectrofluorimetry
To quantify lymphatic ingrowths, angioreactors were re-
moved from surrounding tissues and cellular contents
were retrieved. The fluorescence signal of Lyve-1, Prox-1,
and CD31 markers (Additional file 6: Table S4) was mea-
sured with a FLUOstar Omega (Fisher Scientific, San Jose,
CA, USA) spectrofluorimeter (excitation 584 nm, emis-
sion 620 nm).

Quantitative real-time PCR
To assess the expression of lymphangiogenic markers in
the cellular contents of angioreactors, total mRNA was
extracted and quantitative PCR was performed with spe-
cific murine probes (Additional file 5: Table S3).

Immunofluorescence staining
It was carried out in serial frozen sections of angioreac-
tors as previously described [34,43] using appropriate
antibodies (Additional file 6: Table S4). Representative
images were taken with a LSM 510 META confocal
microscope (Carl Zeiss Microscopy, Jena, Germany) and
micro (blood) and lymphatic vessel densities (MVD/
LVD) were assessed in dual immunostained sections as
reported in the past [34].

Statistical analysis
Statistical calculations were performed using GraphPad
Prism software version 5 (GraphPad Software, La Jolla,
CA, USA). All parametric data were analyzed with one-way
ANOVA followed by Tukey-Kramer or Dunnett post-hoc
comparisons. Student’s t-test was used when comparing
two datasets and Pearson’s coefficient was employed to as-
sess statistical correlations. Statistically relevant differences
between means were accepted at p < 0.05.

Additional files

Additional file 1: Figure S1. (A) Western blot and (B) real-time PCR
analysis of CCR7, CCL21, and VEGF-C expression in T47D, MCF-7, Hs578t,
and MDA-MB-231 breast cancer cell lines. GAPDH was used as an internal
control. (C) CCL21 protein secretion by MDA-MB-231 as measured by
ELISA in 2D and 2D-matrix conditions. Data are represented as mean ± SD
(n = 3). (*) indicates statistical significant differences (p < 0.005).

Additional file 2: Figure S2. (A) Immunofluorescence staining depicts
the expression of CCR7. Green (Alexa fluor labeling) represents CCR7
protein expression and blue (DAPI) represents nuclei. Images were taken
under 40× magnification. (B) Quantitative PCR of CCR7 mRNA expression
in LECs obtained from angioreactors subject to different treatment conditions.
Data is presented relative to growth factor-reduced basement membrane
extract (BME) alone. Data are represented as mean ± SD (n = 3). (*) indicates
statistical significant differences (p < 0.005). (C) Immunofluorescence staining
of the lymphangiogenic marker Prox-1 showing its nuclear localization in
LECs. Image was taken under 40× magnification.

Additional file 3: Table S1. Demographic details and tumor
characterization.

Additional file 4: Table S2. Primers information for real-time PCR.
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Additional file 5: Table S3. Primer probe information for quantitative
real-time PCR.

Additional file 6: Table S4. Antibodies for Western blot,
immunofluorescence and immunohistochemical analyses.
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