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RAT PLACENTATION: AN EXPERIMENTAL MODEL FOR
INVESTIGATING THE HEMOCHORIAL MATERNAL-FETAL
INTERFACE

Michael J. Soares1, Damayanti Chakraborty2, M.A. Karim Rumi, Toshihiro Konno3, and
Stephen J. Renaud4

Institute for Reproductive Health and Regenerative Medicine, Department of Pathology &
Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA

Abstract
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and
trophoblast-directed uterine spiral artery remodeling; features shared with human placentation.
Recognition of these similarities spurred the establishment of in vitro and in vivo research
methods using the rat as an animal model to address mechanistic questions regarding development
of the hemochorial placenta. The purpose of this review is to provide the requisite background to
help move the rat to the forefront in placentation research.
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INTRODUCTION
Hemochorial placentation is a strategy involving modification of the maternal-fetal interface
for the purpose of facilitating nutrient and waste exchange and development of healthy
offspring. The hemochorial placenta possesses two elemental functions: i) ensuring the
delivery of maternal nutrients to the placenta; ii) transferring nutrients from the placenta to
the developing fetus. Accomplishment of each task requires execution of vital ancillary
functions (e.g. immunoregulatory, endocrine, etc). A key feature of hemochorial
placentation is the extensive vascular remodeling of maternal uterine spiral arteries, which
facilitates nutrient flow and gas exchange to sustain the growing fetus [1–5]. This
uteroplacental specialization is used by several species, including higher primates, rodents,
lagomorphs, and others [6, 7].
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Building a hemochorial placenta is a dynamic process involving the expansion of stem cell
populations capable of differentiating into distinct trophoblast cell lineages. Mature
trophoblast cells exhibit migratory and invasive properties and possess the capacity to
recognize, modify, and emulate the behaviors of cells within their host environment. These
developmental fates emerge under the direction of an intrinsic genetic program, the
modulatory effects of the maternal environment, and the vitality of the fetus. Plasticity is the
operative process in constructing a robust hemochorial placenta. A successful maternal-fetal
interface is one that adapts most effectively to the stresses and challenges of pregnancy.
Organization of the placentation site is sometimes flawed. Errors within regulatory pathways
controlling placental development or maladaptive responses can negatively impact the
health of the mother, the progression of fetal development, and can also have lasting effects
on postnatal fitness. The intriguing biology and human health relevance make understanding
the regulation of hemochorial placentation a compelling scientific pursuit.

Modern biomedical research has benefitted from the use of accessible model organisms
(especially rodents) to study fundamental physiological and pathological processes. The
benefits of such a research strategy for gaining insights into hemochorial placentation is not
universally agreed upon. There are concerns about ‘evolutionary divergence’. Some
differences in structure and function of rodent versus human hemochorial placentas and the
biology of rodent versus human pregnancies exist [Table 1; 8]. However, there are also
compelling similarities among species utilizing hemochorial placentation. Positive selection
has resulted in the conservation of genes regulating mammalian placentation [9–13]. The
mouse has been a valuable animal model for studying many aspects of placentation [13–15];
however, in contrast to the human, intrauterine trophoblast invasion is shallow and
placentation superficial [16–18]. Organization of rat and human placentation sites exhibit
striking similarities (Fig. 1; Table 1), especially regarding trophoblast-directed remodeling
of the uterine spiral arteries [2, 17, 19–22]. Both species exhibit deep trophoblast invasion
[19]. The rat has many of the advantages of the mouse, including the capacity for genetic
manipulation [23]. Other rodents possess deep trophoblast invasion (e.g. guinea pig and
hamster) [19]; however, experimental tools are not readily available for mechanistic
analyses of placentation in these species. Nonhuman primates are advantageous in
secondary evaluation of pathways established in other models but have practical limitations
in most primary analyses.

The purpose of this review is to extol the merits of the rat as a model system for studying
physiologically relevant mechanisms controlling hemochorial placentation. We describe
aspects of the organization and physiology of the rat placenta and the unique features and
tools available to generate mechanistic insights into the regulation of hemochorial
placentation. The emphasis of the effort is on the invasive trophoblast cell lineage and
uterine spiral artery remodeling.

I. DEVELOPMENT OF THE RAT HEMOCHORIAL PLACENTA
The parenchymal cell of the hemochorial placenta is the trophoblast cell. Trophoblast cells
have a variety of phenotypes, which are generated from a multi-lineage differentiation
pathway [24, 25]. Cellular specializations develop that facilitate trophoblast cell interactions
with two vascular beds. Trophoblast cells associated with the maternal vasculature
specialize in facilitating nutrient flow to the placenta (rat: junctional zone; human:
extravillous trophoblast), whereas trophoblast cells developing in proximity to the fetal
vasculature promote nutrient transfer to the fetus (rat: labyrinth zone; human: villous
trophoblast).
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The rat hemochorial placenta develops from stem cells arising from extraembryonic
ectoderm, a derivative of the outer cellular layer of the blastocyst termed trophectoderm.
Extraembryonic ectoderm differentiates into chorionic ectoderm and the ectoplacental cone,
which subsequently contribute to the labyrinth zone and junctional zone, respectively [25,
26]. The labyrinth zone arises from the interaction of allantoic mesoderm with chorionic
ectoderm, yielding trophoblast cell syncytialization and establishment of the barrier for
maternal-fetal exchange [27]. The junctional zone borders the mesometrial uterine decidua.
This region is also referred to as the ‘trophospongiosum’, ‘spongiotrophoblast’, and ‘spongy
region’. Four trophoblast cell lineages differentiate from trophoblast progenitor cells within
the junctional zone: i) trophoblast giant cells, ii) spongiotrophoblast cells, iii) glycogen cells,
and iv) invasive trophoblast cells (Fig. 2). Trophoblast giant cells are the first trophoblast
cell lineage to develop. They are the main endocrine cell of the placenta and possess some
invasive abilities. Additionally there are subpopulations of trophoblast giant cells with
specific intraplacental locations and functions [28]. Spongiotrophoblast cells are the main
constituents of the junctional zone and also contributors to the endocrine function of the
placenta. Glycogen cells first appear during midgestation, notably accumulate glycogen, and
are probably progenitors for at least a subset of invasive trophoblast cells. Invasive
trophoblast cells first appear at midgestation and consist of trophoblast cells that exit the
junctional zone and enter the mesometrial uterine compartment, where they penetrate and
surround the uterine spiral arteries. Endovascular invasive trophoblast cells replace the
endothelium, while interstitial invasive trophoblast cells are situated between the vasculature
[17, 20–22]. Invasive trophoblast cells are proposed to play key roles in uterine spiral artery
remodeling [5, 29].

Uterine spiral artery remodeling
Placentation sites are fed by uterine spiral arteries. These blood vessels undergo pregnancy-
specific changes that facilitate delivery of nutrients. Specific structural modifications create
conduits for high volume transfer free of maternal regulatory interference. This includes
restructuring all components of the artery, including endothelium, basement membrane, and
smooth muscle. Precise orchestration of this process is critical for ensuring appropriate
nutrient delivery and preventing inappropriate exposure to deleterious reactive oxygen
species [30]. Failures in uterine spiral artery remodeling are linked to pregnancy-associated
diseases such as preeclampsia, intrauterine growth restriction, and premature pregnancy
termination [1–5]. Mechanisms controlling uterine vascular remodeling are poorly
understood. Putative regulators include natural killer (NK) cells and the specialized
invasive/extravillous trophoblast cells [1, 5, 31, 32]. In the rat, NK cells and invasive
trophoblast cells direct two distinct waves of uterine spiral artery remodeling (Fig. 3).

NK cells at the placentation site
Uterine adaptations to pregnancy include regulated intrauterine immune cell trafficking [31–
35]. Following implantation, most maternal leukocytes are excluded from the implantation
site except for uterine NK cells. NK cells are conspicuous cellular constituents of
uteroplacental compartments in primates and rodents [31, 32, 35–37].

After implantation, in the mouse and rat, NK cells increase in number within the uterine
mesometrial compartment [17, 32, 38–40]. This is the site where maternal blood vessels
enter the uterus and is the region overlying the developing chorioallantoic placenta. By
midgestation, NK cells migrate away from the placenta and establish more prominent
relationships with the uterine spiral arteries. The mesometrial vasculature is situated
between the mesometrial decidua and the mesometrial surface of the uterus. This
morphologically distinct region is referred to as the ‘metrial gland’, ‘mesometrial triangle’,
‘mesometrial lymphoid aggregate of pregnancy’, or the ‘decidualized mesometrial triangle’
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[41–45]. As gestation progresses NK cells disappear from the uterine mesometrial
compartment. In the mouse, the disappearance of NK cells is caused by both necrotic and
apoptotic mechanisms, and is possibly mediated by a Fas ligand-Fas-dependent signaling
pathway [46, 47].

NK cells are linked to uterine spiral artery development. NK cell deficiency is associated
with profound alterations in the uterine mesometrial vasculature [32, 48]. Genetic deficiency
of uterine NK cells in the mouse leads to a lack of remodeling of uterine spiral arteries
resulting in hypertrophied vascular media, swollen endothelial cells, and narrow vessel
lumens [32, 49, 50]. NK cell depletion in the rat delays uterine spiral artery development
resulting in a trophoblast cell-dependent compensatory response characterized by enhanced
trophoblast-directed uterine spiral artery remodeling [48]. Experimentation with the mouse
and rat as well as human tissues indicate that NK cell effects on the uterine vasculature may
be achieved through the production of interferon γ (IFNγ) [50], nitric oxide [51], and/or an
assortment of angiogenic growth factors, including vascular endothelial growth factors
(VEGFs) [52–57].

Invasive trophoblast cell lineages
Specializations develop that facilitate trophoblast cell interactions with the maternal uterine
vascular bed. Trophoblast cells connected to the maternal vasculature specialize in
facilitating nutrient flow to the placenta. Intrauterine trophoblast cell invasion is a prominent
feature of rat placentation. Rat invasive trophoblast cells have been characterized by their
epithelial nature (expression of cytokeratin), polyploidy, accumulation of glycogen,
expression of a unique subset of prolactin family cytokines, and their location at the uterine
site of placental attachment [17, 20, 21, 58–61]. The first trophoblast cells penetrating into
the uterine mesometrial compartment take an endovascular route and the depth of their
invasion is generally limited to the mesometrial decidua compartment. Rat endovascular
trophoblast cell invasion is a progressive process commencing at midgestation and migrating
in a countercurrent fashion up the vessels. Endovascular trophoblast cells replace endothelial
cells and become embedded in fibrin [19, 20]. Regulatory mechanisms controlling the
propulsion of endovascular trophoblast cells along the inner lining of the uterine spiral
arteries, their embedding in fibrin, and their replacement of the endothelium have not been
elucidated. A second wave of trophoblast cell invasion begins after gestation day 13.5 and
includes both interstitial and endovascular trophoblast cells [17, 20, 21]. Interstitial
trophoblast cell migration extends throughout the metrial gland [17, 21]. Their expansion is
linked to migration out of the junctional zone and is not associated with proliferation once
they arrive in the metrial gland [21, 62]. Invasive trophoblast cells have been isolated from
the metrial gland and analyzed by flow cytometry and determined to be primarily diploid
[63]. Polyploid trophoblast giant cells arising from the ectoplacental cone do exhibit some
limited penetration into the deciduum [21]. Interestingly, a recent report indicates that the
depth of trophoblast cell invasion at the mouse placentation site is influenced by parity and
extended in multiparous mice [66]. The impact of parity on placentation in the rat has not
been reported.

Following parturition, evacuation of intrauterine trophoblast cells is associated with a return
of uterine vasomotor control and restructuring of the uterus for the next pregnancy [65, 66].
Efficient postpartum demise of invasive trophoblast cells is critical to the health of the
mother and success of subsequent pregnancies. Invasive trophoblast cells are initially
retained in the rat uterus following parturition. Removal of intrauterine invasive trophoblast
cells is complete within a few days following parturition, associated with an influx of
macrophages into the uterine mesometrial compartment, and the return of smooth muscle
cells to the uterine mesometrial vasculature [66]. The trigger for demise of retained
intrauterine trophoblast cells is, at least in part, associated with their separation from the
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chorioallantoic placenta at parturition [66]. This observation implicates the placenta as a
source of trophic factors, which sustain intrauterine invasive trophoblast cells.

NK cell – invasive trophoblast cell interactions
Although NK cells direct the initial wave of uterine spiral artery remodeling, their actions on
the uterine mesometrial compartment are not required for the invasive trophoblast-directed
second wave of uterine spiral artery remodeling [48]. This latter process is actually
accelerated and more robust in the absence of NK cells [17, 48]. We hypothesize that by
promoting spiral artery development, oxygen delivery, and establishing the hemochorial
placenta, NK cells effectively delay endovascular trophoblast invasion. Delaying trophoblast
entry into spiral arteries and the concomitant enhanced flow of maternal resources to the
placenta minimizes the demands on the mother. Rat NK cells also appear to modulate the
pseudo-endothelial phenotype of endovascular trophoblast cells [48]. NK cells from other
species have been proposed to have direct interactions with trophoblast cells [67].

II. THE RAT AS AN EXPERIMENTAL SYSTEM FOR INVESTIGATING
HEMOCHORIAL PLACENTATION

Experimental rat models have been established to investigate the impact of genetics and
environmental challenges on placental development.

Genetics of placentation
The genetics of the rat offers benefits for investigating the biology of hemochorial
placentation. There are striking strain differences in the organization of the rat placentation
site. The Brown Norway (BN) inbred rat strain exhibits a subfertility phenotype and
possesses growth-restricted placentation sites [22]. Litter size in the BN rat is limited to 3–5
pups versus 10–15 pups in more fertile inbred and outbred rat strains [22, 68–70].
Subfertility in the BN rat is associated with ovarian and uterine dysfunction [71]. BN rats
ovulate fewer eggs and their ovaries show disruptions in their organization and in their
abilities to produce steroid hormones. These ovarian anomalies contribute to uterine
dysfunction. The BN rat uterus is less responsive to progesterone, which leads to an
attenuated decidual reaction and a less than optimal maternal milieu for placental/fetal
development [71]. Collectively, these maternal factors and potential intrinsic differences in
BN rat trophoblast development contribute to growth-restricted placentas. The most
prominent deficits in the BN rat placentation site are in the development of the junctional
zone and in the depth of intrauterine invasion of trophoblast cells [22]. The junctional zone
is thin and trophoblast invasion is shallow (Fig. 4). This relationship is probably causal and
reflects the origin of invasive trophoblast within the junctional zone. The BN rat placental
growth deficits are more striking in placentas associated with male fetuses than for placentas
from female fetuses [72]. Whether this observation also extends to the unique features of BN
rat junctional zone development and intrauterine trophoblast invasion remains to be
determined. Some insights about the structural features of BN rat placentation sites have
been obtained from gene expression profiling [72]. In comparison to late gestation Sprague
Dawley rat placentas, BN rat placentas express higher levels of transcripts encoding proteins
contributing to the renin-angiotensin system, and lesser amounts of transcripts encoding
proteins regulating angiogenesis. These features may be responsible for the deficits observed
in BN rat placentation or alternatively they may represent adaptive responses required for a
successful BN rat pregnancy. Late gestation BN rat placentation sites are also unusual in that
they possess abundant numbers of NK cells in close proximity to the mesometrial uterine
vasculature [22]. The retention of NK cells may signify a BN rat adaptation to poor
trophoblast invasion and a requirement to ensure sufficient uterine vascular delivery of
nutrients to the placenta and fetus.
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The quantifiable trait differences in placentation can be exploited to discover regulatory
genes controlling placentation. Genetic control of physiological processes can be
investigated in recombinant and in chromosome-substituted inbred rat strains [73, 74]. Both
strategies have utilized the BN rat representing a normotensive rat and a variety of
hypertensive inbred rat strains. Quantitative trait loci have been identified for litter size as
well as placental and fetal weights using BN rat and Spontaneous Hypertensive rat
recombinant inbred strains [69, 70]. A litter size locus was mapped to rat Chromosome 8
[69], whereas loci affecting placental and fetal weights were mapped to Chromosomes 15
and 1, respectively [70]). Chromosome-substituted rat strains have been generated with BN
rat chromosomes introgressed into Dahl Salt Sensitive (DSS) or Fawn Hooded Hypertensive
inbred rat strains [75, 76]. The strains have been used extensively to elucidate the genetic
control of cardiovascular function [75, 76] and are also proving to be valuable for the
characterization of the genetics of reproduction. These analyses are greatly facilitated
because the BN rat was used for the first rat genome-sequencing project [77]. BN-DSS rat
chromosome-substituted strains were used to identify specific chromosomes linked to
placentation [78]. Chromosomes 14 and 17 were identified as possessing regulatory
information controlling a quantitative trait associated with rat placentation. Once a
quantitative trait is located to a specific chromosome then congenic rats can be generated to
further define the locus. There are strategies for ascribing a gene or regulatory sequence to a
trait, including comparative genomics, deep sequencing, and the use of bacterial artificial
chromosome transgenics for phenotypic rescue [74].

Environmental manipulation of rat placentation
The organization of the rat placenta is sensitive to the maternal milieu. Several experimental
manipulations have been performed that demonstrate the ability of the rat placentation site to
adapt to an environmental challenge. These manipulations include alterations in maternal
nutrition, oxygen delivery, and the induction of various disease states. In the next few
paragraphs we provide some examples of environmental manipulations that impact rat
placentation.

a) Nutritional modulation of the placentation site—Maternal nutrient availability
affects the structure and development of the rat placenta. Maternal under nutrition impacts
the entire placenta resulting in increased cell death in both the junctional and labyrinth
compartments of the rat placenta [79]. Protein restriction leads to an expansion of the
junctional zone, a decrease in the size of the labyrinth zone, and an increase in the surface
area comprising the trophoblast-fetal interface [80]. In contrast, feeding pregnant rats a diet
that promotes obesity is associated with decreased placental size, including reductions in
both junctional and labyrinth zone volumes [81]. Similarly a high fat diet also decreases the
size of the junctional zone but not the placental labyrinth zone [82]. The size of the
junctional zone may be positively linked to circulating insulin-like growth factor (IGF) 2
levels [81]. In summary, it appears that within certain limits the developing placenta can
respond to nutrient availability by adjusting allocation of trophoblast cells to the junctional
zone compartment (uterine-trophoblast interface).

b) Hypoxia activation of the invasive trophoblast lineage—Oxygen is an essential
cellular nutrient and a fundamental regulator of hemochorial placentation. During early
pregnancy oxygen tensions tend to be low and then increase following the establishment of
the hemochorial placenta [30, 83–86]. Insights about the role of oxygen supply as an
intrinsic regulator of placentation have been derived from mutagenesis of genes in the
mouse genome controlling cellular responses to oxygen deprivation [87]. The rat has proven
to be an effective model for elucidating oxygen-dependent mechanisms controlling
placentation. In vivo and in vitro experiments have demonstrated that development of the
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invasive/extravillous trophoblast lineage is activated by hypoxia [48, 64]. Low oxygen
tension at the maternal-fetal interface alters cellular allocation, creating a preference for
trophoblast lineages associated with junctional zone development, including the invasive
trophoblast lineage. A critical period of sensitivity to hypoxia has been identified that
coincides temporally with early stages of the placentation process [64]. In vivo responses to
low oxygen are conserved in rodent and primate placentation [48, 88, 89].

c) Placentation responses to disease
Hypertension: Numerous rat models have been established to investigate pregnancy-
associated hypertension and preeclampsia [90]. However, few of these experimental systems
have examined the impact of the manipulation on placentation. The emphasis with these
models has been examining perturbations in blood pressure regulation and kidney
pathologies. An exception is the ‘renin-angiotensinogen transgenic rat model’. In this model
system, dams possessing the human angiotensinogen transgene exhibit proteinuria, increased
vascular resistance, and hypertension when mated to males expressing the human renin
transgene [91, 92]. Endovascular invasive trophoblast cells invade more deeply into the
uterine spiral arteries in this transgenic rat model [93, 94]. The increased vascular resistance
observed in the renin-angiotensinogen rat transgenic model is linked to the presence of
agonistic autoantibodies to the angiotensin II type 1 receptor and to increased uterine
angiotensin II concentrations [95–97]. Maternal angiotensin II may also promote trophoblast
invasion [98]. The vascular pathologies observed in this rat model may result in a hypoxia-
driven activation of invasive trophoblast and thus an intact adaptive response, which is not
observed in other pregnancy hypertension conditions such as human preeclampsia [1, 4, 5].

Diabetes: Glucose intolerance can be induced in the rat by treatment with various agents
that destroy pancreatic islet cells (source of insulin) leading to a diabetic state [99]. In the
pregnant rat, diabetes is associated with an increase in the glycogen cell contribution of the
junctional zone and sustained trophoblast cell proliferation resulting in placentomegaly
[100–103]. Maternal hyperinsulinemia decreases the number and depth of endovascular
invasive trophoblast cells [104].

Maternal ethanol intake: Excess maternal ethanol consumption leads to a recognizable
disease state referred as fetal alcohol syndrome [105]. This condition is associated with
intrauterine growth restriction and postnatal deficits in brain function. Maternal ethanol
intake also impacts rat placentation, including impairment of trophoblast-directed
remodeling of uterine spiral arteries [106].

Inflammation: Inflammatory conditions are associated with a number of disease states, and
are associated with the development of preeclampsia, intrauterine growth restriction, and
spontaneous pregnancy termination. Experimentally, inflammation can be induced by
systemic exposure to lipopolysaccharide (LPS). In rats, LPS treatment results in deficits in
uteroplacental perfusion and trophoblast-directed uterine spiral artery remodeling [107].
This condition can be blocked by treatment with anti-inflammatory cytokines, such as
interleukin 10, or by interfering with the action of tumor necrosis factor alpha.

Stress: Glucocorticoids are part of a response to physiological stressors that is associated
with a number of disease states. Elevation of systemic glucocorticoids concentrations during
pregnancy in the rat results in placental and fetal growth restriction [108–110]. Increases in
apoptosis are observed in trophoblast cells throughout the placenta. These actions of excess
glucocorticoids on placentation may be mediated through disruption of VEGF, IGF,
peroxisome proliferator-activated receptor gamma, and/or Wnt signaling [110–113].
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Rat experimental system overview
Insights gained from investigating the impact of genetics and environment on trophoblast
cell invasion and spiral artery remodeling in the rat should have considerable relevance to
other species, including the human. Human placental development and function are
profoundly affected by the maternal environment [114]. An experimental animal model,
such as the rat, offers the opportunity to investigate the progression of the diseased state and
mechanisms underlying placental dysfunction. However, an important consideration in
interpreting the impact of an experimental perturbation on pregnancy in the rat versus a
disease state in the human is that the rat is a polytocous species. Consequently, the rat has an
advantage in ensuring at least some offspring survive an environmental challenge or a
disease state. They accomplish this fete by limiting the number of embryos implanting and
by redirecting resources to fewer placentation sites, which are not routine options available
to the human.

III. IN VITRO STRATEGIES FOR INVESTIGATING THE RAT TROPHOBLAST
LINEAGE

Methodologies have been developed for in vitro investigation of rat trophoblast cells. These
include the establishment of trophoblast stem (TS) cell lines, which have been shown to
reflect the behavior of trophoblast cells developing in situ.

Rcho-1 TS cells
Almost three decades ago, Dr. Shinichi Teshima and colleagues at the National Cancer
Institute (Tokyo, Japan) induced a transplantable rat choriocarcinoma with extraordinary
attributes [115]. The tumor contained cells resembling trophoblast giant cells and they
produced placental lactogens [115, 116]. Two research groups established cell lines from the
rat choriocarcinoma termed RCHO [117] and Rcho-1 TS cells [118]. These cells are easy to
expand and when factors that promote proliferation are removed the cells differentiate into
mature trophoblast lineages [118]. Differentiation is directed primarily toward trophoblast
giant cells; however, based on gene expression profiles it is evident that other differentiated
trophoblast cell lineages are also present. Features distinguishing Rcho-1 TS cells from other
established TS cells populations; include their independence of fibroblast growth factor-4
(FGF4) supplementation and their aneuploidy. These transformed rat TS cell lines have been
used to investigate various aspects of trophoblast cell biology [119]. Most recently, the
Rcho-1 TS cells have been utilized to elucidate the involvement of a phosphatidylinositol 3-
kinase/AKT/FOS like antigen 1 signaling pathway controlling the invasive trophoblast
phenotype [120–122].

Rat TS cells
A strategy for the ex vivo propagation of TS cells from mouse blastocysts was reported in
1998 [123]. The technique utilized FGF4, heparin, and mouse embryonic feeder layers as
agents facilitating the establishment of the mouse TS cell cultures. FGF4-dependent rat TS
cell lines have recently been described [124]. The cells were derived from rat blastocysts
under conditions similar to those used for the establishment of mouse TS cells. Rat TS cells
share many properties with mouse TS cells, including their ability to self renew and to
differentiate into trophoblast cell lineages [124]. Similar to mouse TS cells and Rcho-1 TS
cells, rat TS cells preferentially differentiate into trophoblast giant cells. They produce
steroid hormones and a spectrum of peptide hormones, including members of the prolactin
family. However, they also exhibit some differences [124]. Unlike mouse TS cells, rat TS
cells do not express the pluripotency gene, Sox2 [125], in their stem state [124] and they do
not readily contribute to the formation of a placenta following reintroduction into a
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blastocyst and transfer to a pseudopregnant rat [124]. Rat TS cells are also distinguished by
their expression of Ascl2 [124], a gene implicated in regulating mouse placental
morphogenesis [126]. The implication from these observations is that rat TS cells may have
advanced beyond the developmental state of mouse TS cells [124]; potentially analogous to
the relationship between mouse embryonic stem cells and mouse epiblast stem cells [127].
In vitro behavior of rat TS cells mimics trophoblast cell in vivo adaptive responses during
rat placental morphogenesis. For example, low oxygen acutely induces rat TS cells to
differentiate along an invasive lineage consistent with in vivo trophoblast cell responses to
maternal hypoxia [48, 64].

TR-TBT cells
Nakashima and colleagues established immortalized rat labyrinth trophoblast cells (TR-TBT
cells) from gestation day 18 pregnant transgenic rats possessing a temperature-sensitive
SV40 large T antigen [128, 129]. The cells proliferate at 33°C. Growth is slowed at 37°C
and differentiated functions are evident, such as expression of nutrient and waste
transporters. TR-TBT cells have proven useful for studying drug metabolism and transport
[128, 129].

Other rat trophoblast-related cell models
There is an assortment of additional cell models that have been developed from rat embryos
and placentas that share features with trophoblast cells [130–134]. Some of these cell lines
were byproducts of efforts to establish rat embryonic stem cells [132–134]. The mixed
developmental phenotypes of the cultures and their limited capacity for differentiation
toward trophoblast cells have restricted their usefulness for placental research. Pluripotent
rat embryonic stem cells have also been established and could serve as a model for
investigating early signals the derivation of the trophoblast cell lineage [135, 136].
Methodologies for establishing primary rat trophoblast cultures from the junctional and
labyrinth zones have also been established, and have contributed to our understanding of
placental biology [137, 138]. Finally, a precision-cut slice explant culture method has
recently been introduced for ex vivo analysis of rat placental tissue [139].

IV. STRATEGIES FOR IN VIVO INVESTIGATION OF RAT PLACENTATION
Experimental approaches have been adapted for monitoring rat trophoblast cells in situ and
for isolating and manipulating rat trophoblast cells situated at the rat placentation site.

Phenotypic analysis of the rat placenta
Protocols have been described for mating and gestational staging of rat pregnancy,
dissection of placentation sites, and phenotypic characterization of trophoblast cell types
[140, 141]. It is most meaningful to examine individual placentation sites in the context of
the intact uterus and their associated fetuses. Unique gene and protein expression patterns
have been used to distinguish specific rat trophoblast cell lineages developing in situ [140].
Imaging techniques have also been established for quantification of placental development,
including the depth and extent of intrauterine trophoblast cell invasion [21, 22, 64].

Tracking invasive trophoblast cells
A couple of useful transgenic rat models are available for in situ monitoring of the invasive
trophoblast cell lineage [142–144]. In each case, the transgene consists of a ‘constitutive’
promoter (ROSA 26 or chicken β actin, chβA) driving the expression of a reporter (human
placental alkaline phosphatase, hAP or enhanced green fluorescent protein, EGFP).
Intrauterine invasive trophoblast cells can be easily visualized on the wild-type uterine
background by histochemical detection of heat stable alkaline phosphatase [145] or by
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fluorescence [66; Fig. 4]. ROSA 26-hAP invasive trophoblast can be quantified in the
uterine mesometrial compartment by alkaline phosphatase enzymatic activity measurements
[145], while chβA-EGFP positive invasive trophoblast can be recovered, analyzed, and
sorted by flow cytometry [64]. There is an interesting caveat. The so-called ‘constitutive’
promoters are not equally expressed in all differentiated trophoblast lineages [64, 145, 146];
thus necessitating parallel experiments monitoring cell-specific reporter activity using
histological techniques.

Manipulation of the trophoblast lineage
The true value of an animal model is its use for addressing in vivo mechanistic questions.
There are several strategies for manipulating the rat genome [23, 147, 148]. A variety of
approaches have been used to generate ‘gain-of-function’ mutations in the rat, including
pronuclear injection and viral delivery [149–153]. There is also a growing list of techniques
for producing ‘loss-of-function’ mutations, including the use of zinc finger nuclease and
TALEN mutagenesis [154, 155, 156], chemical and transposon-based mutagenesis [157–
159], and gene targeting using rat embryonic stem cells [160–162]. At this juncture, zinc
finger mutagenesis is the most efficient of the techniques for producing knock-out rats [23].
Jacob and colleagues have recently generated ~100 strains of rats with specific mutations in
genes implicated in the regulation of the cardiovascular system
(http://rgd.mcw.edu/wg/physgenknockouts). Some of these mutant rat strains may be of
interest to investigators studying placentation. The limitation with this strategy is that the
generated mutations cannot be conditionally regulated in specific cell types. Gene targeting
with rat embryonic stem cells represents a potential strategy for generating rats possessing
cell-type specific mutations [162]. The latter will also require co-development of suitable
mutant rats with trophoblast cell-specific manipulations capable of driving excision of
relevant DNA sequences. Such tools are not currently available.

Another strategy of considerable promise is trophectoderm-specific lentiviral gene delivery,
which was first developed in the mouse [163, 164]. In this technique, blastocysts are
infected with lentiviral particles containing a gene construct of interest and then transferred
into the uteri of pseudopregnant females. Gene delivery and activation is restricted to
trophectoderm and its derivatives. Placentas can be harvested at various times during
gestation and analyzed. The strategy has been successfully adapted for the rat and allows for
the generation of both ‘gain-of-function’ and ‘loss-of-function’ [146; Fig. 5]. This technique
has been used to investigate regulatory pathways controlling the invasive rat trophoblast cell
lineage [122].

V. CONCLUDING COMMENTS
The use of animal model systems provides an essential tool for dissecting molecular
mechanisms controlling cellular development. The premise of employing any animal model
system is that if the process being studied is fundamental it will likely demonstrate
conservation across species. Historically, the rat has been a valuable model for studying
most aspects of reproduction and in many areas it still remains the preferred model system.
The rat has been the preferred animal model for physiologists because of its size, which
makes it more amenable to experimental manipulation, resulting in considerable
understanding of rat physiology and its relationship to the human [165]. This led to the rat
being the dominant pre-clinical model system used by the pharmaceutical and agro-chemical
industries. Although there are some differences in the organization of the rat versus the
human maternal-fetal interface, as indicated above similarities in the lineages of cells
comprising the placentation site and their function exist. Paramount among the similarities
between these two species is the process of trophoblast cell invasion and uterine spiral artery
remodeling. If we understand biological processes at the maternal-fetal interface in species
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that can be experimentally manipulated, such as the rat, then we can more intelligently study
the development of the human maternal-fetal interface and identify pivotal junctures of
cellular control, facilitating diagnosis and therapeutic intervention. In some instances, cross
species similarities may prevail, while in other cases the differences may be most
compelling. Nonetheless, our appreciation for the biology of pregnancy and hemochorial
placentation increases.
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Fig. 1. Hemochorial placentation
Schematic diagram showing homologous structures within human and rat hemochorial
placentation sites.
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Fig. 2. Trophoblast stem cells and their differentiated lineages
In the rat trophoblast stem cells can be directed toward distinct differentiated trophoblast cell
lineages: trophoblast giant cells, spongiotrophoblast cells, glycogen cells, invasive
trophoblast cells, and syncytial trophoblast.
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Fig. 3. Natural killer cell, uterine spiral artery, and trophoblast cell dynamics within rat
placentation sites throughout gestation
The schematic diagram highlights the two waves of uterine spiral artery remodeling
executed through the actions of natural killer cells (first wave) and invasive trophoblast cells
(second wave).
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Fig. 4. Genetics of rat placentation
Rat strains exhibit striking differences in the depth and extent of intrauterine trophoblast
invasion. Trophoblast cell invasion can be tracked by fluorescence in transgenic placentas
constitutively expressing enhanced green fluorescence protein in a wild type uterus. Panel
A, Holtzman Sprague-Dawley rat control outbred placentation site exhibiting extensive
trophoblast invasion (Adapted from Ref. 81). Panel B, Brown Norway rat placentation site
showing limited intrauterine trophoblast invasion.
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Fig. 5. Genetic manipulation through trophoblast-specific lentiviral delivery
Panel A) Schematic diagram of the procedure. Lentiviral gene constructs are delivered to
zona pellucida free blastocysts, which are then transferred to pseudopregnant recipients, and
placentation sites analyzed during various stages of gestation. Panel B) Rat blastocysts
examined under phase or fluorescence microscopy following incubation with lentiviral
constructs expressing EGFP under the control of the phosphoglycerate kinase promoter.
Panel C) Trophoblast-specific lentiviral gene delivery assessed at gestation d13.5.
Transduced blastocysts were transferred into uteri of pseudopregnant rats and harvested at
gestation d13.5 and examined under bright field or fluorescence microscopy. (Adapted from
Ref. 135).

Soares et al. Page 24

Placenta. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Soares et al. Page 25

Table 1

Comparison of rat and human pregnancy and placentation

Parameter Rat Human

1. Uterine and vascular structure Duplex uterus – bidirectional blood supply from
aortic and internal iliac arteries; externally
located arcuate and radial arteries

Simplex uterus-bidirectional blood supply from
aortic and internal iliac arteries; internally
located arcuate and radial arteries

2. Maternal recognition of pregnancy Mating-activated luteotropin secretion (pituitary
prolactin)/placental-derived luteotropin
(secondary)

Placental-derived luteotropin (chorionic
gonadotropin)

3. Embryo implantation: Eccentric (secondarily interstitial); abembryonic Interstitial; embryonic

 i) Uterine modifications Decidualization (hormonal dependence +
implantation stimulus)

Decidualization (hormonal dependence)

 ii) Immune cell trafficking Abundance of NK cells associated with uterine
spiral arteries

Abundance of NK cells associated with uterine
spiral arteries

4. Placental structure: Hemochorial (discoid-chorioallantoic) Hemochorial (discoid-chorioallantoic)

 i) Placental-fetal interface Labyrinth zone (hemotrichorial – syncytial
barrier)

Villous trophoblast (hemomonochorial –
syncytial barrier)

 ii) Uterine-placental interface Junctional zone and invasive trophoblast cells Extravillous trophoblast cells

 iii) Trophoblast invasion Deep intrauterine – endovascular and interstitial Deep intrauterine – endovascular and interstitial

 iv) Spiral artery remodeling Disappearance of smooth muscle, basement
membrane restructuring, trophoblast cell
replacement of endothelium and acquisition of a
pseudo-endothelial phenotype

Disappearance of smooth muscle, basement
membrane restructuring, trophoblast cell
replacement of endothelium and acquisition of a
pseudo-endothelial phenotype

5. Hormonal maintenance of
pregnancy: (source of sex steroid
hormones)

Corpus luteum (primary)/placenta (secondary –
progesterone and androgens)

Corpus luteum (1st trimester); placenta
(remainder of pregnancy – progesterone and
estrogens)

6. Gestation length Short (~21 days) Long (~9 months)

7. Number of offspring at birth Polytocous Monotocous/ditocous
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