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Protein kinase B (AKT1) is a central node in a signaling path-
way that regulates cell survival. The diverse pathways regulated
by AKT1 are communicated in the cell via the phosphorylation
of perhaps more than 100 cellular substrates. AKT1 is itself acti-
vated by phosphorylation at Thr-308 and Ser-473. Despite the
fact that these phosphorylation sites are biomarkers for cancers
and tumor biology, their individual roles in shaping AKT1 sub-
strate selectivity are unknown. We recently developed a method
to produce AKT1 with programmed phosphorylation at either
or both of its key regulatory sites. Here, we used both defined
and randomized peptide libraries to map the substrate selectiv-
ity of site-specific, singly and doubly phosphorylated AKT1 vari-
ants. To globally quantitate AKT1 substrate preferences, we
synthesized three AKT1 substrate peptide libraries: one based
on 84 “known” substrates and two independent and larger ori-
ented peptide array libraries (OPALSs) of ~10'! peptides each.
We found that each phospho-form of AKT1 has common and
distinct substrate requirements. Compared with pAKT173%,
the addition of Ser-473 phosphorylation increased AKT1 activ-
ities on some, but not all of its substrates. This is the first report
that Ser-473 phosphorylation can positively or negatively regu-
late kinase activity in a substrate-dependent fashion. Bioinfor-
matics analysis indicated that the OPAL-activity data effectively
discriminate known AKT1 substrates from closely related
kinase substrates. Our results also enabled predictions of novel
AKT1 substrates that suggest new and expanded roles for AKT1
signaling in regulating cellular processes.

Protein kinase B (PKB or AKT1) is a central node in the
phosphoinositide 3-kinase (PI3K)/AKT signaling pathway that
regulates cell survival (Fig. 1). There are three AKT isozymes
(AKT1, AKT2, and AKT3) identified in mammalian cells with
both distinct and overlapping roles (1). AKT1 is an oncogenic
kinase that is overactive and hyper-phosphorylated in most
cancers and a prime target in cancer therapy (2). Although
direct AKT1 inhibitors have not been generally successful as
monotherapies (3), AKT1 inhibitors do show promise in com-
bination with, for example, mitogen-activated protein kinase
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inhibitors (4). Activated AKT1 phosphorylates downstream
targets that regulate many cellular processes including cell sur-
vival and apoptosis (5). The diverse cellular functions of AKT1
are mediated by its ability to phosphorylate perhaps as many as
hundreds of cellular substrates, although the precise number is
not known. Based on a large volume of reports from the litera-
ture, a catalogue of ~200 known AKT substrates have been
reported (6).

At present it is unclear if all of these substrates are truly
phosphorylated by AKT1 or to what extent the known sub-
strates are differentially phosphorylated by active AKT1 phos-
phovariants. Because the downstream phosphorylation profile
of active AKT1 determines which cellular programs are turned
on or off by the enzyme, the ability to identify novel AKT1
substrates will have significant impact on target selection and
drug discovery in AKT1-mediated chronic diseases such as
cancers (1) and diabetes (7).

We recently developed an approach to produce AKT1 vari-
ants with site-specific phosphorylation at either or both key
regulatory sites (Thr-308 and Ser-473) (8, 9). Here we show the
method provides an indispensable tool for identifying the role
of AKT1-phosphorylation status in substrate selectivity. The
substrate selectivity associated with specific AKT1 phospho-
forms is challenging to resolve in the complex environment of
cells (10). The phosphorylation status of AKT1 substrates
depends on many factors, including the expression level and
cellular localization of the substrate as well as the off-rate of
phosphate on these substrates as a result of phosphatase activ-
ity (11). There remains a critical lack of understanding regard-
ing how the two key activating phosphorylation sites on AKT1
lead to differences in substrate selection and downstream sub-
strate phosphorylation (10) (Fig. 1).

The canonical AKT substrate recognition motif has been
defined as R_ X ,R_;Z , Z_,(S/T,)¢,,. X represents any
amino acid; Z indicates preference small amino acids expect
Gly; ¢ represents a bulky hydrophobic residue, and the phos-
pho-accepting site at position 0 is a Ser or Thr residue (12). The
AKT target consensus was initially determined using the amino
acid sequences surrounding the phosphorylation site of the first
reported AKT substrate, glycogen synthase kinase 3 (GSK-3)
(12). Substrates with Arg residues at position —5 and —3 were
found to be specific to AKT, whereas other AGC family kinases,
such as the S6 kinase (S6K1), prefer Lys at —3 and —5 positions
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Figure 1.Schematic view of AKT1 activation and activity. AKT1 binds to phosphatidylinositol (3,4,5)-trisphosphate (PIP;) molecules generated in the plasma
membrane (PM) following receptor tyrosine kinase stimulation. AKT1 is activated by phosphorylation at key regulatory sites Thr-308 and Ser-473 by the
upstream kinases PDK1 and mTOR complex 2 (mTORC2), respectively. The result of this activation process in combination with cellular phosphatase activities
leads to a population of different phospho-forms of AKT1 in the cell (59). In cancer cells, these populations are known to change in response to altered
metabolism or drug treatments (44). Active AKT1 phosphorylates many downstream substrates leading to inhibition or activation of cellular pathways linked
to cell death, growth, and survival. These pathways only represent examples as AKT1 is thought to regulate a large number of proteins and specific pathways,
possibly including some (?) that are not yet known. In addition, the role of each phospho-form of AKT1 in regulating these critical cellular processes is unknown.

(10). Using active preparations of AKT1 from Sf9 insect cells
over-expressing PDK1 and human AKT1, the target motif was
further investigated through oriented peptide array library
(OPAL) screens. The results indicated selectivity for Arg resi-
duesat —3, —5,and —7 as well as Thr at —2. AKT1 also showed
moderate preferences for aromatic residues at positions —1 and
+1 and for small residues able to induce tight turns (Gly, Ser,
Asn, or Thr) at the position +2 (13). Because Sf9 produced
AKT1 normally contains a mixture of active AKT1 phospho-
forms (8, 14), these data could not identify substrate prefer-
ences associated with differentially phosphorylated AKT1.
Peptide library screening is a gold standard method that has
been widely used to determine specific amino acid preferences
of the kinase substrate recognition motif. Degenerate peptide
libraries or OPAL screens provide a systematic approach to
identify the important residues surrounding the phosphoryla-
tion site on the substrate (13, 15). Here we designed and syn-
thesized OPALs to define the substrate requirements for differ-
entially phosphorylated AKT1 variants. We discovered that
the phosphorylation status of AKT1 has a significant impact on
substrate selectivity and on the specific residue preferences at
each location in the consensus motif. Kinase activity data
derived from our OPAL experiments was able to differentiate
each AKT1 phospho-form from another. The OPAL data were
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also able to effectively discriminate known AKT1 substrates
from closely related substrates in database searches, which also
suggested high confidence putative AKT1 targets were
enriched in pathways linked to RNA metabolism.

Results

For preparation of active and purified AKT1, the use of phos-
phoinositide-dependent kinase (PDK1) leads to efficient phos-
phorylation of AKT1 at Thr-308. Although in the cell N TORC2
is recognized as the major upstream kinase for Ser-473 (11, 16),
incorporation of phosphate at Ser-473 is challenging in the test
tube. Previous approaches relied on phosphorylation of Ser-473
by MAPKAPK-2, which was pre-activated by p38 in the pres-
ence of phosphatidylinositol (3,4,5)-trisphosphate and lipid
vesicles (17). In contrast, our approach leads to recombinant
and site-specifically phosphorylated AKT1 variants produced
in Escherichia coli without the need to purify or activate addi-
tional kinases. Using a combination of genetic code expansion
to encode phosphoserine at Ser-473 and co-expression of
PDK1, we were able to produce active full-length and PH
domain-truncated AKT1 variants in E. coli with either or both
Thr-308 and Ser-473 sites phosphorylated. We previously
characterized the activity and phosphorylation status of the
enzyme preparations biochemically and with MS (8, 9). In that

J. Biol. Chem. (2020) 295(24) 8120-8134 8121
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work, we discovered that phosphomimetic substitutions are
incapable of replacing or approximating the functionality of
phosphorylated residues at the activation sites of AKT1. We
further found that alanine substitutions at Thr-308 and Ser-473
inactivated the enzyme (8). One strength of our approach,
therefore, is the ability to generate pAKT1 and ppAKT1 vari-
ants without the need to mutate the enzyme, which greatly
alters enzyme function.

Our previous studies on pAKT1 and ppAKT1 variants
focused on their differential activity with a single substrate pep-
tide derived from GSK-3p (8). Here we quantified the substrate
preference for phosphorylated AKT1 variants using a synthetic
peptide library of known AKT1 substrates, and two indepen-
dent oriented peptide arrays. We found that deletion of the PH
domain abolishes its autoinhibitory activity and leads to a more
soluble enzyme (9) appropriate for larger scale screening stud-
ies presented here.

AKT1 phosphorylation status alters activity among known
substrates

A set of “known” AKT1 substrates have been identified
and in some cases validated using multiple experimental
approaches, including in vitro biochemical (18) and cell-based
activity assays (19), proteomic analyses (20), as well as phospho-
specific immunoblotting of AKT1 substrates (21) from cells
(22) and animals (23). Our study allowed the evaluation of these
separately reported substrates using a systematic approach to
quantify AKT1 kinase activity. The doubly phosphorylated
AKT1 was capable of phosphorylating most, but not all, of the
substrate peptides in our peptide library representing known
substrates (Fig. S1). The ppAKT1 enzyme showed significantly
above background activity with 95% of the peptides tested (Fig.
S1C). In our activity assays, the initial reaction velocity varied
over an 80-fold range. We found that ppAKT1 produced
between 0.1 and 8.0 pmol/min of phosphorylated peptide.

Overall, the level of phosphorylation observed was mar-
kedly lower with pAKT1%%"® compared with pAKT173% and
ppAKT113%85473 (Fig S1). Compared with the singly phosphor-
ylated variants (Fig. S1, A and B), ppAKT173%%5%73 (Fig. S1C)
usually displayed the greatest activity over the widest range of
substrate peptides. Indeed, we observed a clear trend in activity
over the library with pAKT15%"® showing the most restricted
substrate range. The pAKT1%%*"® enzyme showed low activity
(<0.1 pmol/min) with more than 50% of the substrates. The
variants phosphorylated at Thr-308 showed activity above this
same relative level with >90% of the library.

Interestingly, some substrates representing interleukin-1
receptor-associated kinase 1 (IRAK1) and B-cell CLL/lym-
phoma protein 10 (BCL10), showed no significant activity with
any of the AKT1 phospho-forms. Although BCL10 was found
in association with AKT according to immunoprecipitation
experiments (24), the ability of AKT1 to directly phosphorylate
BCL10 was not demonstrated. Indeed, further studies in T cells
found that AKT1 is not required to phosphorylate BCL10 (25).
The suggestion of IRAK1 as an AKT1 substrate was based on
work in human embryonic kidney cells showing that over-ex-
pression of calcium/calmodulin-dependent protein kinase
kinase (CaMKKc) or AKT lead to increased phosphorylation at
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Thr-100, but a direct link between AKT and IRAK1 was not
established (26). It is possible that AKT1 is not a direct kinase
for these substrates or that the substrates require the complete
protein structure or other co-incident modification to become
active substrates for AKT1.

AKT1 phosphorylation status re-wires substrate selectivity

The three AKT1 phospho-forms have distinct preferences
for particular peptides. The highest active substrates for the
pAKT15%*”3 variant were completely orthogonal to or distinct
from the most active substrates with pAKT1%3°® or
ppAKT 17398573 (Figs. S1 and S2). To visualize these distinct
substrate preferences, we generated a heat map showing the
relative activity of each AKT1 phospho-form over the library of
84 known substrates (Fig. 2). The substrates were categorized
into groups based on shared biochemical function. Inside each
functional group, the substrates were ranked according to
decreasing ppAKT1 activity, and the functional groups were
also listed in order of decreasing average activity with ppAKT1.

The ppAKT1 enzyme is most active on average with the
Forkhead box O (FOXO) family of transcription factors, which
are well-established substrates of AKT1 (21, 27). Peptides rep-
resenting the FOXO family were among the most active sub-
strates with ppAKT1 and AKT1 phosphorylated only at Thr-
308 (Fig. S1, Band C). Certain substrates, including FOXOs and
TSC2, have more than one AKT1-dependent phosphorylation
site, which we represented with distinct synthetic peptides.
Each AKT1 phospho-variant showed different preferences for
the multiple sites in these substrates. For example, with
pAKT1%%3, Ser-256 and Ser-319 of FOXO1 showed relatively
high activity, but this enzyme showed low activity with a pep-
tide derived from FOXO1 Thr-24. In contrast, for both
pAKT113% and ppAKT139%5%73 FOXO1 Ser-319 was the least
preferred compared with Ser-256 and Thr-24 (Fig. 2).

Impact of Ser-473 phosphorylation on active AKT1

The accepted view that ppAKT1 is more active than singly
phosphorylated AKT1 is not always true at the resolution of
individual substrates. To better understand the impact of Ser-
473 phosphorylation on the activity of the doubly phosphory-
lated AKT1 for our library of known substrates, we plotted
kinase activity data of pAKT173°® and ppAKT173085473
together (Fig. 3). We analyzed these comparative data for sta-
tistically significant differences in activity. Interestingly, we
observed that additional phosphorylation at Ser-473 signifi-
cantly increased AKT1 activity for many (49%, 41 of 84) but not
all AKT1 substrates (Fig. S1, and Fig. 3). In the context of AKT1
phosphorylated at Thr-308, for nearly half of the substrates
(45%, 38 of 84), Ser-473 phosphorylation did not change activ-
ity, and for 6% (5 of 84) of the substrates, phosphorylation at
Ser-473 actually decreased kinase activity (Table 1, Fig. 3).
Phosphorylation at Ser-473 reduced activity for two peptides
derived from distinct sites in the FOXO4 transcription factor
(Thr-32, Ser-262), as well as sites in 14-3-3Z, Grb2-associated
binding protein (Gab2), and TSC complex subunit 2 (TSC2).
Together the data show that both regulatory phosphorylation
sites in AKT1 have a significant and unexpectedly complex
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Figure 2. Relative activity of AKT1 variants across functional clusters of known substrates. The heatmap is colored according to high (red), medium
(white), and low (blue) relative activity for pAKT1°472, pAKT172%8, and ppAKT 173985473 The substrates were categorized into functional categories. Inside each
group, the substrates are ranked according to decreasing ppAKT1 activity, and the functional groups are listed in order of decreasing average activity with

ppAKT1.
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Figure 3. Impact of Ser-473 phosphorylation on active AKT1. Kinase activity of pAKT1"3°® (blue) and ppAKT1 (red) were analyzed for statistically significant
differences (¥, p < 0.05; **, p < 0.001). Error bars represent =1 S.D. based on 3 independent enzyme reactions.

Table 1

Activity of pAKT1™°® and ppAKT1 across known substrate peptides
yof p pp pep

Substrate peptides
AKT1 activity Number/84 %

PPAKT1 > pAKT17%08 41 49%
PPAKTI = pAKT17208 38 45%
ppAKT1 < pAKT13% 5 6%

impact on substrate selectivity over a library of known AKT1
substrates.

Phosphorylation-dependent changes in the AKT1 target motif

Based on the activity data in Fig. S1, we computed sequence
logos for each AKT1 phospho-form. The logos (Fig. S2) repre-
sent the relative importance of residues at each site for AKT1-
dependent phosphorylation based on the activity level recorded
for each substrate peptide (Fig. S1). The sequence alignments
used to generate the logos were, therefore, populated with each
of the 84 peptides such that the number of occurrences of each
peptide in the alignment was linearly related to the enzyme
activity (see “Materials and methods”).

The preference for conserved consensus sequence re-
sidues Arg . and Arg , among known AKT1 substrates
(R_sXR_;XX(S/T)) was observed with all three variants. As
reported previously (12), the presence of a large hydrophobic
residue following the phosphorylation site (+1 position) was
observed among the peptides with all three AKT1 variants. Pro
most frequently occupied the +2 position among highly active
peptides for the pAKT1™3%® and ppAKT1%3®5%73 varjants.
These data are in agreement with the finding that the +2 posi-
tion prefers amino acids that enable tight turns in protein struc-
ture (13). Interestingly, peptide substrates showing high activity
with a pAKT1%*”3 variant were dominated by those peptides
with a Ser rather than a Thr at the phosphorylation site. Con-
versely, for pAKT1"%® and ppAKT1"°®5%73 highly active
peptides were approximately equally likely to have Ser or Thr at
the phosphorylation site.

8124 J Biol. Chem. (2020) 295(24) 8120-8134

Determination of high-resolution AKT1 target specificity

Our analysis of known substrates revealed several new facets
of AKT1 enzymology. These data, however, are biased by our
current and perhaps limited knowledge of AKT1 substrates.
We designed a far larger, unbiased oriented library of peptides
(OPALI) to test the most preferred amino acid residues at each
site of the AKT1 substrate consensus motif. OPAL1 used 17
different amino acids at each of 8 variable positions in the syn-
thetic peptides. We synthesized 136 different pools of peptide
sublibraries to cover the complete library of ~10'° peptides
(see “Materials and methods”). Using each phospho-form of
AKT1, we conducted kinase assays with each of the substrate
sublibraries (Fig. 44, Figs. S4—S7 and Data File S1). In each
sublibrary a single amino acid is held constant at a single posi-
tion in the consensus motif (Fig. 44), whereas all other variable
positions are allowed to cover the complete sequence space
with the exception of Cys, Thr, and Ser. Because Arg_; is nor-
mally required for AKT1 activity (13), we held this position
fixed in OPALL.

The AKT1 activity for singly and doubly phosphorylated
AKT1 variants over each of the peptide sublibrary pools are
shown in terms of absolute activity (Fig. S7) and overlaid as a
heat map indicating relative changes in activity (Fig. 44). To
visualize the amino acid preferences and anti-determinants we
converted the activity data into position-specific score matrices
(PSSMs, see “Materials and methods”). We used the PSSMs to
generate sequence logos (28) representing the OPAL1 data (Fig.
5). The results demonstrate that the substrate selectivity of
pAKT1%*72 is distinct from the profile we observed for the more
similar pAKT1"?°® and ppAKT17%°%5*”3 enzymes. This obser-
vation is confirmed by principle component analysis (PCA) of
the 3 OPAL1 matrices (Fig. 4C). PCA plots the variance
between the OPAL matrices such that the first component
explains most of the variance between the data sets. The prin-
ciple components are linear combinations of the observed vari-
ables, which are the activity values at each location in the ori-
ented array. The magnitude and direction of variance at each
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Figure 4. Oriented peptide array library 1 (OPAL1) and library 2 (OPAL2) activity assays. Row normalized activity data for OPAL1 (A) and OPAL2 (B). The
color scale indicates high (red) and low (blue) relative activity. Each cell in the OPALT matrices (A) represents relative activity with the indicated sublibrary in
reactions catalyzed by pAKT1°473, pAKT173%8, or ppAKT 173985473 The data are based on 3 independent enzyme reactions (Figs. S4-57). The 0 position is the
phosphorylation site, which was fixed to a Ser; the —3 position was fixed to an Arg. B, the analysis of OPAL2 (Fig. S8) also includes data for AKT1 prepared from
Sf9 cells (B, bottom). The OPAL1 (C) and OPAL2 (D) data were analyzed by principle component analysis. The first two principle components are plotted along
with vectors representing the direction of greatest variation of the observed activities at each amino acid and position.

position in the array is shown as a vector. For example, the
preference of pAKT15*”3 for Trp at positions 2 (W) and 3 (W)
most distinguishes this enzyme from the variants phosphory-
lated at Thr-308 (Fig. 4C).

Although consensus patterns are evident (Table 2), specific
amino acids significantly preferred at each position show dis-
tinguishable profiles for each AKT1 phospho-form (Fig. 4, A
and C) in concordance with the unique substrate selective pro-
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Figure 5. Sequence logos generated form the OPAL1 data. Sequence logos of (A) pAKT1473, (B) pAKT1™%, and (C) ppAKT1"%8473 are based on the
conversion of activity values from Fig. S7 into a PSSM. Seg2Logo 2.0 (28) was used to convert the PSSMs to amino acid preferences as represented by sequence
information bits. The average level of activity observed in the OPAL1 data (Fig. S7) was set to 0 bits; positive and negative values in bits refer to activity that is
above or below the average activity over the array, respectively. The data were also statistically analyzed by comparing the overall average enzyme activity
against the enzyme activities of all tested amino acids at each position (i.e. —6 to +3) using pairwise t-tests. Kinase activity that is not significantly different from
the average activity is highlighted in red. The graph thus shows statistically significant amino acids preferences that are either more favored than average

(above the red bar) or less favored than average (below).

files we recoded over the library of known substrates (Fig. S1,
and Fig. 2). By varying the Arg_ position, we found that basic
residues are highly favored and Arg_. is most preferred or
nearly so for the enzymes phosphorylated at Thr-308. The
pAKT1%%® enzyme is active with basic residues at the —5
position yet prefers aromatic residues at this site. Both
ppAKT173%%5%73 and pAKT17"2%® preferred large hydrophobic
residues (Phe and Trp or Tyr) at the +1 position in the target
peptide. In contrast, pAKT1%*”® prefers basic residues (Lys,
Arg, His) at +1. For the pThr-308 containing enzymes, basic
amino acids (Arg, Lys, His) are among the most active residues
at most of the variable positions (—5, =4, —2, —1, +2,and +3);
this same preference is also seen at positions —4, —1, +1 for the
pAKT1%*2 enzyme.

In terms of anti-determinants to kinase activity, Ile at —1 and
+2 positions were disfavored for both pAKT1"°® and
ppAKT172%%5%73 variants; Phe and Pro are least preferred at —1
and +2 positions for pAKT15*”3, ppAKT1 was least selective at
position +2, showing high activity with a large variety of amino
acids. As observed before (12), we found Pro at +1 significantly
inhibited activity in all of our OPAL matrices.

To confirm the generality of these findings, we conducted
independent OPAL2 experiments based on a distinct peptide
design (Fig. 4B, and Fig. S8). In contrast to OPAL1, this library
probed the —3 position, which was fixed as Arg in OPALI,
included phosphorylated Thr and Tyr residues, and varied the
+4 but not the —6 position. OPAL2 used 22 different amino
acids at each of 9 positions leading to a library size of ~10'2.
OPAL?2 used a 15-residue peptide, rather than 13 in OPALI,
and the biotin tag was placed on the C rather than N terminus.
The results confirm the dominant preference of Arg_ for all
AKT1 phospho-forms, yet significant activity is observed with
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Lys_; and to a lesser extent His_5. The OPAL2 data were also
able to clearly discriminate each phospho-form of AKT1 from
the other (Fig. 4D). We observed that the relative differences
between the OPAL2 matrices were not as great as that observed
in OPALL1 (Fig. 4), suggesting the OPAL1 peptide design may
discriminate between the phospho-forms more effectively.
OPAL2 also confirmed that the pThr-308 containing
enzymes, including AKT1 produced in insect cells (Sf9), were
all far more active than pAKT1%*”3, The finding is consistent
with the data here (Figs. S1, S7, and S8) as well as our previous
findings (8, 9). The Sf9 prepared AKT1 showed many common-
alities with the AKT1 variants prepared in E. coli, however, the
PCA indicates the Sf9 enzyme was distinguishable from the
others with the majority of the variance explained by prefer-
ences for Ser/Thr_,, Asn_,, Ser/Thr,, and Pros;. Overall, the
PCA indicates that although the Sf9 AKT1 is most similar to
ppAKT], it is a distinct AKT1 enzyme and not a linear combi-
nation of the pSer-473 or pThr-308 containing enzymes.
Together the data further support our hypothesis that each
AKT1 phospho-form has distinct substrate preferences.
Despite these differences, similarities among the OPAL data
are also apparent. We summarized the consensus residues that
are most or least favorable at each position across experiments
and AKT1 variants (Table 2). His_; is among the most pre-
ferred for all phospho-forms, whereas Val and Ile are least pre-
ferred for all variants at —1. The addition of a basic residue,
normally Arg or Lys but also His, at nearly any position will lead
to increased activity with any AKT1 variant. The only clear
exception to this rule is at +1 where Phe is commonly favored.
Conversely, introduction of a negatively charged amino acid
(Asp, Glu, as well as pTyr and pThr, Fig. 4B) at any position will
lead to significantly reduced AKT1 activity (Fig. 5). The intro-
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Table 2

Consensus of positive (+) and negative (—) AKT1 activity determinants from OPAL data
The table is based on sequence logo analysis in Fig. 5 (OPAL1)* and Fig. S9 (OPAL2)®. Bold residues indicate residue identities that are a consensus between AKT1

phospho-forms and experiments. Positive (black) and negative (red) activity determinants are listed in order of decreasing entropy. Data not determined (-).
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position pPAKT13473 pAKT1T308 pPPAKT1 AKT1 Sf9 Consensus
+ . + - + . + " + .
-62 w KGR FAV H QFR H -- -
D - - - - - - - -
-52 F VP RKH Y HRK DYV - --
> RK IDE
-5° RK NED RKSH IDE RK EID RK DEV
-42 QK AGP RKH FYW KRH DILF - - RK D
-4 RK IDE RK EID RK DFI RK DVI
.38 - - - - - - - -
-3° R NDE RK IVDE RK VFEDI RK DEVLI RK DEV
-28 LYFVW PN KLV WPDE HVR WPDE - -
RK | PWDE
-2b RK PWNED RK WPDE RKST PWDE | RSTK | WEID
-12 DHLK F H | KH v - --
- KH | VIE
-1 YMHN VIE KRN VEI NRGKYH v NPK Vi
1@ HRKF PQND | FYMW | EDPG FYMW GEDP - - EM PDE
18 MFI PDE FMIV PDE MF PDE SFM ED
28 WI EP HKR | GMH KR El - -- RHK | DPE
28 SRH DE STRHK PDE RHK DEI STG MLI
32 w EPD IHR DEYA KRH DPE - -- RK EPD
3k RKH PDE RSKH LVED KR DE SPG LVI
4a - - - - - - - -
4b RKP VDE KRP FYE KR EFD KH LIV K E

duction of Pro or small hydrophobic residues (Ile, Val) is disfa-
vored at the majority of positions for all AKT1 variants.

Identifying known and putative AKT1 substrates

We derived PSSMs from the OPAL1 data according to an
approach established previously (29) and detailed under “Mate-
rials and methods.” To begin to estimate the predictive value of
these PSSMs, we plotted the activity data we generated for the
84 known substrates (Fig. S1) against the PSSM score that
results from that particular peptide according to the OPALI-
derived PSSMs for each AKT1 phospho-form (Fig. S10). Inter-

SASBMB

estingly, these data show statistically significant correlations
(p ~ 107°) for the pAKT1"3°® and ppAKT172°%5*”3 enzymes,
suggesting PSSMs derived from the OPALI data can be used to
identify known and predict novel targets. The data, however,
did not correlate for the pSer-473 enzyme (Fig. S10A). For this
enzyme only, our data suggests that either the OPAL1-derived
PSSM is not a good predictor, or the 84 known substrates are
not true substrates for pAKT 15472, The latter conclusion is sup-
ported by our data showing low activity of the pAKT1%*"?
enzyme (Figs. S1, S4, S7 and S8) as well as our previous work
showing that AKT1 phosphorylated at Ser-473 alone was not
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Figure 6. ROC plot of phospho-AKT1 PSSMs. The phosphoELM database was searched to determine the extent to which the OPAL1-derived PSSM
could discriminate known AKT1 substrates (true positives) from the indicated groups. The PSSMs achieve discrimination against groups that include
false-positives (e.g. peptides lacking a basic residue at —3 (blue); peptides that are not known as AKT1 (Not_PKB) substrates (green); substrates of PKC
(purple dashed line)). As expected, if the indicated groups contained true positive AKT1 substrates (e.g. SGK group, R_; group, basic at —3) the PSSM

could not discriminate.

sufficient to propagate AKT1-dependent signaling in cells (8).
The OPALI data (Fig. 4A) also suggests that the pAKT1%*"3
enzyme may prefer rather different substrates (Fig. 5A) than
those included in the library of known substrates (Fig. S2).

We then used PSSMSearch (30) to rank potential AKT1 sub-
strates across the entire human proteome with PSSMs derived
from OPALI (Data File S2). We refined these data to include
only hits with experimental evidence for phosphorylation at the
predicted S,/T|, site (Data File S2). Collectively, the search iden-
tified both known and potentially novel AKT1 substrates. The
known hits were significantly enriched in GO biological pro-
cesses related to cell signaling and apoptosis, whereas the top
novel hits among all AKT1 variants were enriched in processes
linked to RNA processing and metabolism (Fig. S11).

To gauge the reliability of the PSSMs, we performed speci-
ficity and selectivity analysis (Table S1, Fig. 6, Fig. S12). The
PSSMs were used with PSSMSearch over a database of known
AKT]1 substrates with a specified outgroup of kinase substrates
as defined by PhosphoELM (31). Several outgroups were tested,
including those lacking known AKT1 substrates (such as
Not_PKB or Not Basic_5) and other groups that do contain
AKT1 (S6K, Arg_,) or AKT1-like substrates (PKA, PKC). In all
cases, the PSSMs scored known AKT1 substrates higher than
other groups (Fig. S12), however, greater discrimination
between known AKT1 substrates and other groups is evident in
the enzymes phosphorylated at Thr-308.

Despite phospho-form differences in the OPAL data, noted
above, activity data derived from each phospho-form per-
formed well in identifying known AKT1 substrates (Fig. 6). We
plotted the data in receiver operator characteristics (ROC)
plots (Fig. 6). In a search including known AKT1 substrates
along with all those lacking a basic residue at —3, nearly all of
the true AKT substrates are found before the search hits “false-
positives” that are from the Non-Basic_ 5 group. The degree of
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discrimination between known AKT1 substrates and the spe-
cific outgroup is characterized by the area under the curve
(AUC), which has an inverse correlation with the PSSM score of
the outgroup (Table S1). The ROC plot shows the OPALI data
are effective in discriminating known AKT substrates (true pos-
itives) from groups that do not contain AKT substrates. As
expected, there is less discrimination and reduced AUC values
for outgroups that contain known AKT1 substrates, e.g. Arg_,
group. We observe better discrimination using OPAL data for
the pThr-308 containing enzymes compared with pAKT1%%72,
In all cases, the OPAL data also provide discrimination
against closely related protein kinase C (PKC) substrates and
to alesser extent protein kinase A (PKA) as well. The OPAL2
data performed similarly well in database searches (Fig. S13).
Although according to the AUC values, we observed a mar-
ginally decreased ability of the OPAL2 data to discriminate
known AKT substrates.

Next, we used an alternate and independent approach to
score the known human phospho-proteome to identify poten-
tial new AKT1 substrates. We converted the OPAL1 AKT1
activity data into PSSMs based on calculating Z-scores (see
“Materials and methods”) as before (15). The known human
phospho-proteome was scored based on the amino acid prefer-
ences at each position in the Z-score PSSM (Data File S3). The
scoring of peptides was performed for data based on each phos-
pho-form of AKT1. We then selected the top scoring substrates
with a normalized sum of Z-scores >3. We included all of these
high confidence hits in a Search Tool for Retrieval of Interact-
ing Genes/Protein (STRING) (32) diagram to identify potential
protein interactions and functional clusters among the known
and predicted substrates (Fig. 7).

The searches identified both known and unknown AKT1
substrates among the high confidence hits. Interestingly, the
prediction suggested the presence of substrates not previously
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Figure 7. Identifying optimal phosphospecific AKT1 substrates. A, STRING diagram shows functional interactions of known (indicated by nodes with blue
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known to be regulated by AKT1. These include clusters of pro- (NCAPG2), borealin (CDCAS), opa protein 5 (OIP5), and cen-
teins that participate in translation, transcription, cell division, tromere protein O (CENPO) were the identified strong candi-
cytoskeletal organization, and lipid signaling (Fig. 7A). The dates for activity with each phospho-form of AKT1. Another
putative AKT1 substrates are significantly enriched in gene novel cluster of putative AKT1 targets includes nucleolar pro-
ontology (GO) (33) molecular functions related to protein teinsinvolved in rRNA processing. RNA-binding motif protein
kinases, cytoskeletal organization, and RNA binding (Fig. 7B). 34 (RBM34), nucleolar protein 10 (NOL10), RB-binding pro-
Putative AKT1 substrates include centromeric proteins in- tein 6 ubiquitin ligase (RBBP6), and a DEAD box RNA helicase
volved in cellular mitosis. Chromosome-associated protein G = (DDX27) are also included in this functional cluster. Similar to
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the results from our independent PSSMSearch (Fig. S11A4), the
top putative AKT1 substrate hits are strongly enriched in bio-
logical processes associated with RNA metabolism.

Discussion

We recently developed a new method to produce AKT1 with
programmed phosphorylation at either or both key regulatory
sites (8). This breakthrough enabled resolution of the contribu-
tion of each phospho-site to the activation (8) or inhibition (9)
of AKT1. Because this approach was only recently developed,
there are still very few studies that report on the function or
impact of each phosphorylation site on AKT1 substrates (34).
This situation occurs despite the fact that both phospho-sites
are current and routine clinical markers for multiple cancers,
e.g. see Refs. 35-37.

Prior investigations into the substrate specificity of AKT
have focused on characterizing the isozyme-specific substrate
preferences that differ between AKT1, AKT2, and AKT3 (1,
38). Indeed, the previous lack of tools to isolate the function of
each AKT1 phospho-form inhibited studies to characterize the
impact of each phosphorylation site on substrate specificity.

Phosphorylation-dependent substrate specificity of AKT1

In our previous work (8), we found that phosphorylation at
Thr-308 was necessary and sufficient for maximal AKT1 activ-
ity in mammalian cells. The addition of Ser-473 phosphoryla-
tion increased kinase in the test tube, but did not influence
phosphorylation of AKT-specific live cell fluorescent reporter
in COS-7 cells (8). These observations led to our hypothesis
that phosphorylation of Ser-473 may function to tune rather
than activate the AKT1. Using peptide library approaches here,
we mapped the substrate preferences for each key phospho-
form of AKT1. The data presented revealed that Ser-473 phos-
phorylation does indeed impact substrate specificity. More
generally, we found that the phosphorylation status of AKT1
has a global impact on substrate preference as determined by
kinase activity assays with multiple independent peptide
libraries.

A multitude of studies (39, 40), including our own (Figs. S1,
S4.-S6 and S8) (8), have presented evidence indicating that AKT1
activity increases monotonically with pAKT1%*7% < pAKT173%® <
ppAKT1. Based on all of our assays, it remains clear that the
pAKT1%*”? enzyme is far less active than the other two. Of the 84
known substrates we tested, this rule only holds completely true
for half of the peptides (49%). When comparing pAKT 173 with
ppAKT1T39%5%73 we found that many substrates (45%) show the
same level of activity with pAKT173%® and ppAKT1, whereas a
minority (6%) are actually more active with the singly phosphory-
lated pAKT1™%® compared with the doubly phosphorylated
enzyme.

Our current study further revealed that when only Ser-473 is
phosphorylated, the substrate preference profile is distinct
compared with that observed for AKT1 with Thr-308 phosphor-
ylation. This observation was supported by data generated from
known substrates as well as the much larger data set generated
using the OPAL approach. Interestingly, several of the most
active known substrates for pAKT**”?, including MDM2 (Ser-
188), MDM4, EP300, and eNOS (Ser-1177), are members of the
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p53-mediated apoptotic pathway (41) (Fig. 2, Fig. S1A). In the
cell, phosphorylation of MDM family members and EP300 by
AKT1 leads to ubiquitination and degradation of p53, thus pro-
moting cell survival (41).

The significance of Ser-473 phosphorylation in differential
substrate phosphorylation had been highlighted anecdotally.
Jacinto et al. (34) found disruption of Ser-473 phosphorylation
resulted from genetic ablation of sinI in mice. SIN1 is a com-
ponent of the TORC2 complex, which phosphorylates Ser-473.
In mice and mammalian cells, downstream AKT1 substrate
phosphorylation events were subsequently down-regulated for
only a subset of AKT1 substrates, which included FOXO1 and
FOXO3. In agreement with these findings, all of the FOXO
peptides except the N-terminal phosphorylation sites Thr-24
and Thr-32 of FOXO1 and FOXO3, showed reduced activity in
the absence of Ser-473 phosphorylation (Fig. 3).

Additional studies have revealed correlation between AKT1
phosphorylation status and substrate selectivity in conditions
of endoplasmic reticulum (ER) stress. Upon ER stress, the ER
chaperone protein GRP78 is down-regulated and this leads to
increased phosphorylation of AKT1 at Ser-473 but not Thr-308
in human cells (JEG3). As a result, increased AKT1-dependent
phosphorylation of MDM2 (at Ser-166), FOXO1 (at Ser-319),
and GSK3-p (at Ser-9) were observed by Western blotting (42).
In our study, we found the additional of pSer-473 significantly
increases activity with the GSK-38 peptide (Fig. 3). The FOXO1
319 site is one of the most active with pAKT15*"? (Fig. S1).

Our data clearly indicate that ppAKT1 is normally (but
not always) more active and has a broader substrate profile than
either of the singly phosphorylated enzymes. In alignment with
the essentiality of pThr-308 in the activation of AKT1 in vitro
and in cells (8, 40), we found that the two variants phosphory-
lated at Thr-308 showed greatest similarities in substrate
preferences compared with the pAKT1%*” enzyme. Previous
work (10) found that Ser-473 was not essential for phosphory-
lating the non-N-terminal phosphosites of the FOXO tran-
scription factors, TSC2 or GSK-3. These observations are in
close agreement with and supportive of our findings. The
ppAKT173%%5%73 enzyme showed high activity with FOXO1
C-terminal phosphorylation sites (Ser-319, Ser-256), TSC2 and
GSK-3p (Fig. S1, Fig. 3). For pAKT172, all three FOXO1 phos-
phosites ranked among the highest active substrates, suggesting
that Ser-473 is not a critical factor in FOXO1 phosphorylation.
In the clinic, phosphorylation of Thr-308 was associated with
poor cell survival with nonsmall cell lung cancer (43) and acute
myeloid leukemia (44). According to our data here and previ-
ously (8), we suggest that phosphorylation of Thr-308 alone
may be capable of switching-on downstream and disease-
linked signaling to promote cell survival by inhibiting the
FOXO group of transcription factors.

Phosphorylation dependent changes in the AKT1 substrate
motif

As observed for AKT (13) and many other kinases (45-47),
the molecular basis for kinase substrate selectivity can depend
critically on the residues neighboring the phosphorylation site.
Yet it is important to understand that not all substrates identi-
fied for AKT isozymes include the same exact consensus motif
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(10). In the context of the cell, even with an optimal substrate
according to the consensus motif requirements, phosphoryla-
tion by AKT1 will depend on multiple factors, including acces-
sibility, cellular localization, substrate expression level, scaf-
folding interactions, and phosphatase activity (11). The binding
affinity between AKT1 and full-length protein substrates may
also contribute to the degree of substrate phosphorylation.
Our data obtained from the OPALL study for ppAKT1"2%%5473
are in accord with but extended beyond previously reported
results (12, 13). According to our results, all AKT1 phospho-forms
showed a preference for Arg at position —5. ppAKT173085473
and pAKT1"%% showed a preference for hydrophobic amino
acids for position +1. These amino acid preferences are
shared by other AGC family kinases including protein kinase
C. Obata et al. (13) used degenerative peptide library studies
to determine the most relevant substrate motif for active
AKT1. In this previous work, active AKT1 was derived from
Sf9 insect cells and the impact of AKT1 phosphorylation status
on substrate selectivity could not be probed. The authors
reported the amino acid preferences derived from a set of
known substrates and a degenerative peptide library. Because
the peptide design was identical between Obata et al. (13)
and our OPAL2 library, the results are similar. We also
observed a strong correlation with the previous results and
the OPALI at the positions —5 and +1 with pAKT173°® and
ppAKT17398573 In Obata et al. (13), the most preferred
amino acid at the —5 position was Arg and preferred amino
acids at +1 were large hydrophobic residues. Also, both
pAKT17%%% and ppAKT172%%573 enzyme variants showed
preference for Phe at position —6 in agreement with the
previous study (13). At the +2 position, as before (13), we
also observed a preference for amino acids that enable tight
turns, especially for pThr-308 containing enzymes: Gly, in
OPALL, and Ser, or Thr, in OPAL2. In addition, Ser and Thr
at +2 were the favorable amino acids according to our
known library data (Figs. S1 and S2). Finally, in previous
work, Pro at +1 inhibited AKT1 activity similarly to p70 S6
kinase (12). We also observed significantly reduced activity
in all OPAL experiments for Pro at +1. The +1 position
provides some level of orthogonality between AKT1 and
proline-directed kinases, such as MAP kinases and cyclin-
dependent kinases that select substrates with Pro at +1 (48).

Expanding the AKT1-dependent phospho-proteome

Validation of predictions based on our biochemical data
using cellular or ultimately animal models is warranted in
future studies beyond the scope of this work. Our initial inves-
tigations, based on independent database searches, found that
AKT1 may be involved in regulating RNA metabolism (Fig. 7B,
Fig. S11). In a recent report published with our collaborators,
we validated one of these predicted AKT1 targets, the terminal
nucleotidyltransferase GId2 (49). Our data suggests the
pAKT1"%% enzyme would phosphorylate Gld2 at Ser-116 (p
value ~10~*) (Data File S2). Gld2 has been implicated in the
stabilization and maturation of the tumor suppressor
microRNAs miR-122 and let-7 (50, 51). We found GId2 was
indeed specifically phosphorylated by AKT1 at Ser-116, which
abolished Gld2 activity in 3'-terminal addition of adenine to

SASBMB

miRNA and mRNA substrates (49). As hyperactivity of AKT1 is
common in many cancers (52), our results suggest that phos-
phorylation of Gld2 by AKT1 would be beneficial for cancer
cells by decreasing the levels of miRNAs that act as tumor sup-
pressors (49). Our data, thus, suggest a novel link between RNA
regulation and oncogenic signaling by AKT1.

Conclusion

The phosphorylation status of AKT1 is a commonly used
biomarker for human cancer (43). Here we found that AKT1
phosphorylation status has a global impact on substrate selec-
tivity. Fascinatingly, ppAKT173°®5%"3 showed higher activity
with less than half of the known substrates we tested. We deter-
mined that the addition of Ser-473 phosphorylation did not
lead to a significant change in activity for nearly half of the
substrates tested, and a minority of substrates was signifi-
cantly more active with pAKT1"3%® than with ppAKT1. The
pAKT15% variant had a distinct substrate preference profile
compared with AKT1 variants phosphorylated at Thr-308.
Because our data show the impact of Ser-473 phosphorylation
on AKT1 activity is substrate-dependent, we conclude pSer-
473 may tune substrate selectivity rather than truly activate the
kinase. Indeed, whether AKT1 with only Ser-473 phosphorylat-
ed is active in the cell or what its true substrates might be
remains unknown (8, 40). Our findings have major implications
for the use of AKT1 phosphorylation status as a clinical diag-
nostic (43, 53) or a marker for cancer biology (52).

Materials and methods
Bacterial strains and plasmids

A codon optimized human AKTI gene lacking the PH
domain (residues 109 — 480, 45 kDa) was synthesized at ATUM
(Newark, CA, United States) previously (9) and subcloned, as
follows: (Ncol/Notl) into an isopropyl B-p-1-thiogalactopyra-
noside (IPTG) inducible T7lac promoter driven pCDF-Duet
vector with CloDF13-derived replicon and streptomycin/spec-
tinomycin resistance (pCDF-Duetl-APHAKT1). The human
PDPK1 gene, which was acquired from the Harvard PlasmidID
repository service (HsCD00001584, Boston, MA, United
States), was subcloned (Kpnl/Ndel) into the second multiple
cloning site of pPCDFDuet-1. The codon for the residue in AKT1
at position Ser-473 was mutated to the amber (TAG) codon in
the synthetic gene from ATUM. Successful cloning was verified
by DNA sequencing (London Regional Genomics Centre, Lon-
don, ON, Canada, and Genewiz, Cambridge, MA, United
States).

Protein and phosphoprotein production

Phosphorylated forms of AKT1 (pAKT1%%73, pAKT173%,
and ppAKT173%%5%73) were produced according to previously
described methods (8, 9).

Library of known AKT1 substrate peptides

Based on reports from the literature collated at the Phospho-
site database (6), we selected 84 different peptides to generate a
library of known AKT1 substrates (Data File S1). The substrate
motifs derived from these AKT1 substrates were synthesized in
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the following form: biotin-AX X X ,X .X ,X ,-S,/T,-
X, X5 X5X, X5 X YRR. For this library, X does not indicate ran-
domization, rather the nature of the X residues is defined by the
known sequence of AKT1 substrates. The phosphorylation site
(Ser or Thr) is located at the 0 position. Each individual in-so-
lution peptide was synthesized according to previously
reported methods (54). For Fig. S1, multiple statistical tests
were used to identify a group of peptide substrates that were not
significantly different from the background measurements
determined in experiments containing only kinase enzyme and
buffer but lacking substrate. The statistical significance be-
tween enzyme activities was calculated using one-way anal-
ysis of variance in Minitab statistical analysis software. The
level of significance was adjusted based on Bonferroni
correction.

OPAL AKTT1 activity screen

An oriented peptide array library (OPAL1) was designed as a
series of soluble sublibrary pools according to previously
reported methods (15). The known consensus sequence for
AKT1 phosphorylation was used as the design for library syn-
thesis: biotin-AGGX _ (X _ X _,R_;X_,X_,;S.X,X,X;. In each
of the 136 sublibraries, one of the X positions is held fixed to a
specific amino acid. X represents any amino acid other than Ser,
Thr, or Cys. The phosphorylatable residues Ser and Thr were
excluded from the screen to avoid false-positive signals when
probing position S, Each of the 17 other canonical amino acids
were tested in the X positions. The —3 and 0 positions were
fixed to Arg and Ser, respectively, where the 0 position is the
phosphorylation siteand Arg_ 5 is important for substrate phos-
phorylation by AKT1 (12). The total library contains ~10'°
different peptides. Accurate synthesis of the library was con-
firmed (Fig. S3) using a series of test peptides analyzed by
MALDI-TOF MS as before (55).

The independent OPAL2 was based on a peptide design of
YAX X, X_.X_,X_1-So/To-X,X,X;X,GKK-biotin and was
synthesized and spotted exactly as described previously (56).
AKT1 protein was produced from Sf9 cells and kinase activity
assays were performed and processed as before (56); reaction
products were spotted onto avidin-coated filter sheets (Pro-
mega SAM? biotin capture membrane) and visualized by phos-
phorimaging. PCA analysis was conducted to compare the
OPAL matrices for each AKT1-phosphform. These were com-
puted in Matlab (MathWorks, Natick, MA, United States)
using custom scripts and default settings.

Kinase assays with peptides and libraries

Kinase assays with peptides or OPAL1 sublibraries were con-
ducted using radiolabeled [y->’P]ATP according to previously
reported methods (8) with modifications as following: AKT1
activity was determined using 400 uMm substrate peptide for
each peptide in the known substrate library. Peptides sublibrar-
ies were dissolved in 10 ul of dimethyl sulfoxide (DMSO) to a
final total peptide concentration of 1 mm. Each reaction was
conducted in kinase assay buffer (25 mm MOPS, pH 7.0), 12.5
mM f3-glycerolphosphate, 25 mm MgCl,, 5 mm EGTA, pH 8.0, 2
mM EDTA, 20 um ATP, and 0.4 uCi of (33 nm) [y->>P]ATP).
The indicated AKT1 variant was added to a final concentration
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of 6.5 nM to initiate the reaction. Each condition was assayed
using 3 independent enzyme reaction replicates. Reactions
were spotted and quantified as before (8).

Sequence logos and database searching

Sequence logos corresponding to substrate preferences for
each AKT1 variant were generated using WebLogo version
2.8.2 (57) or Seq2Logo 2.0 (28) as indicated. Using the activity
data over our known substrate library (Fig. S1), we generated an
alignment of peptides in which the population of each peptide
was linearly related to its activity level. The resulting peptide
alignment was, thus, most populated by the highest active pep-
tides and least populated by the low active peptides. This
allowed us to convert the activity data over known peptides into
a sequence logo using WebLogo (Fig. S2). The sequence logos
based on the OPAL data were statistically analyzed by compar-
ing the overall average enzyme activity against the enzyme
activities of all tested amino acids at each position (i.e. —6 to
+3) using pairwise ¢ test analysis. Thus, activity that is not sig-
nificantly different from the average activity is highlighted in
red (Fig. 5).

Using the OPALL and OPAL2 data we generated PSSMs
according to a similar method used in Scansite (29). For each
data set, a selectivity matrix was calculated by dividing all activ-
ity values by the average value for the complete array, i.e. a
selectivity factor. A scoring matrix was computed as the natural
log of the selectivity matrix. Finally, the raw scoring matrices
were scaled by a factor of 10 multiplied by the selectivity factor
for each data set. The resulting PSSMs based on each OPAL
data set were used to produce sequence logos with the program
Seg2Logo 2.0 (28), where the PSSM-Logos were computed
using default values. We then used the program PSSMSearch
(30) to identify potential AKT1 substrates based on PSSMs cre-
ated with the OPALI data.

As an alternate approach to generate a PSSM, we also
converted the OPAL1 activity data to a set of Z-score matri-
ces as before (58). Z-scores were calculated with the formula
Z,; = (x,; — w)/s, i refers to the ith peptide sublibrary, and j
refers to the jth randomized position in the target sequence.
There is then a Z-score (Z, ;) associated with each amino acid
at each position in the consensus motif. The score is calcu-
lated by subtracting the average (u) kinase activity over the
library from the activity observed (x,;) normalized by the
standard deviation (s) of activity values over the entire
library. The preference rank of any potential substrate can
then be calculated as a score based on the sum of Z-scores at
each position in the test peptide. The known human phos-
pho-proteome was scored based on the amino acid prefer-
ences at each position in the Z-score PSSM (Data File S3).

Data availability

All of the data described in Figs. 1-7 and Tables 1 and 2 as well as
in supporting information Figs. S1-S13, Table S1, and Data Files
S1-S3 are available on-line.
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