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Abstract

Iron is an essential mineral that participates in oxygen transport, DNA synthesis and repair, and as a cofactor for various cellular 
processes. Iron deficiency is the most common nutritional deficiency worldwide. Due to blood volume expansion and demands from 
the fetal–placental unit, pregnant women are one of the populations most at risk of developing iron deficiency. Iron deficiency during 
pregnancy poses major health concerns for offspring, including intrauterine growth restriction and long-term health complications. 
Although the underlying mechanisms remain unclear, maternal iron deficiency may indirectly impair fetal growth through changes in 
the structure and function of the placenta. Since the placenta forms the interface between mother and baby, understanding how the 
placenta changes in iron deficiency may yield new diagnostic indices of fetal stress in affected pregnancies, thereby leading to earlier 
interventions and improved fetal outcomes. In this review, we compile current data on the changes in placental development and 
function that occur under conditions of maternal iron deficiency, and discuss challenges and perspectives on managing the high 
incidence of iron deficiency in pregnant women.
Reproduction (2020) 160 R65–R78

Introduction

Iron is an essential mineral that participates in many 
cellular processes, including oxygen transport, DNA 
synthesis and repair, and as an essential cofactor for 
various enzymes. Iron deficiency (ID) is the most 
common nutrient deficiency worldwide (McLean 
et al. 2009). It occurs when iron demands chronically 
exceed intake, leading to progressive depletion of 
tissue iron stores, and eventually, functional iron. Since 
iron is required for hemoglobin (Hb) synthesis, ID can 
result in anemia – a condition in which the quantity of 
circulating Hb, and thus oxygen-carrying capacity, falls 
below clinical thresholds and begins to impact cellular 
function (Maria de Regil 2010). One of the populations 
most at risk for ID anemia is pregnant women, due 
to the increased iron requirements of pregnancy. Iron 
is essential to support placental and fetal growth and 
maintain increased maternal red blood cell mass. An 
estimated 38% of women develop anemia during 
pregnancy, including 22% in high-income countries, 
with most cases attributed to ID (Stevens et  al. 2013, 
Lopez et al. 2016).

ID during pregnancy can detrimentally affect fetal 
health. ID increases the risk of fetal death, preterm 
birth, and intrauterine growth restriction, and is 

associated with altered growth trajectories and long-
term cognitive, cardiovascular, metabolic, and immune 
system complications in affected offspring (Krantman 
et  al. 1982, Doom & Georgieff 2014, Alwan et  al. 
2015, Grandone et  al. 2015). Despite repletion of 
iron stores in children through iron supplementation, 
health complications persist in children whose mothers 
exhibited ID during pregnancy, underscoring the 
importance of sufficient iron being supplied in utero 
for long-term health (Pasricha et al. 2013). Mechanisms 
through which maternal ID impairs fetal growth and 
results in long-term sequelae remain to be elucidated; 
however, the placenta may play a key role.

The placenta forms the interface between mother and 
fetus and supports fetal growth and development by 
facilitating respiratory gas, nutrient, and waste transport 
between maternal and fetal circulations, producing 
hormones, and providing immunological support. As an 
adaptive organ, the placenta can respond to environmental 
signals through alterations in structure and function, 
which in turn influence blood flow, nutrient transport, 
and hormone metabolism to optimize the intrauterine 
environment. While these adaptations may convey short-
term benefits, in some circumstances, they may impair 
long-term function and have profound impacts on a fetus’ 
ability to cope in the intrauterine environment. Placental 
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dysfunction may, therefore, connect adverse maternal 
nutrition and offspring health, and potentially be used as 
an ‘early warning system’ for fetal complications. In this 
review, we will briefly introduce placental development 
and discuss iron requirements during pregnancy. We will 
then summarize current knowledge detailing how ID 
affects placental development and function, and discuss 
new challenges and opportunities to address the impact 
of ID on placental development and pregnancy outcome.

The placenta

The human placenta is discoid-shaped, hemochorial 
(maternal blood directly contacts fetal chorion), and 
is composed of tissues derived from both mother and 

fetus. The maternal aspect of the placenta is the decidua 
basalis, which contains stromal cells, glands, leukocytes, 
and blood vessels (e.g. spiral arteries). The fetal aspect 
of the placenta is arranged in chorionic villi, which 
are highly branched structures consisting of an outer 
layer of syncytialized trophoblast and mononuclear 
cytotrophoblasts surrounding an inner core containing 
fibroblasts, macrophages, and blood vessels (Fig. 1). 
The syncytialized trophoblast layer is the major source 
of hormones necessary for pregnancy establishment 
and maintenance. At the tips of large anchoring 
villi, cytotrophoblasts differentiate into extravillous 
trophoblasts. Extravillous trophoblasts proliferate into 
stratified cell columns and then invade into the uterine 

Figure 1 Schematic illustration of placental iron transport. Top: illustration of a human placenta. Bottom: diagram showing iron transport from 
the maternal circulation to the fetal circulation. BCRP, breast cancer resistance protein; CP, ceruloplasmin; DMT, divalent metal transporter-1; 
FLVCR1/2, feline leukemia subgroup C receptor 1/2; FPN, ferroportin; HO, heme oxygenases; Hp, hemopexin; LRP1, low-density lipoprotein 
receptor-related protein-1; PCBP, poly(rC)-binding protein; PCFT, proton-coupled folate transporter; STEAP, six-transmembrane epithelial antigen 
of prostate; Tf, transferrin; TfR1, transferrin receptor 1; ZIP, ZRT/IRT-like protein; ZP, zyklopen.

Downloaded from Bioscientifica.com at 07/04/2022 03:40:00PM
via free access

https://rep.bioscientifica.com


https://rep.bioscientifica.com

Iron deficiency and placental development R67

 Reproduction (2020) 160 R65–R78

wall to modify spiral arteries and promote consistent, 
low-velocity maternal blood flow toward the space 
surrounding chorionic villi. Blood vessels in the villous 
core bring deoxygenated, nutrient-poor blood from the 
fetus. Oxygen and nutrients dissolved in maternal blood 
pass across the trophoblast layer into blood vessels within 
the villous core, where they are carried to the fetus. 
Carbon dioxide and wastes pass from fetal blood into 
the intervillous space to be carried away via endometrial 
veins. Substances can move across the placenta by 
simple diffusion (e.g. oxygen), facilitated diffusion (e.g. 
glucose), or active transport (e.g. iron). Placental nutrient 
transfer capacity can be influenced by a wide variety of 
factors, including villous surface area and thickness, the 
abundance and activity of transporters, concentration 
gradients between maternal and fetal blood, placental 
metabolism, and uteroplacental blood flow, all of which 
are sensitive to environmental stimuli (Tarrade et  al. 
2015).

A discoid-shaped, hemochorial placenta also features 
in many rodent species, including those commonly 
used in laboratory settings: mice and rats (referred to as 
‘laboratory rodents’ unless specified otherwise) (Soares 
et al. 2012). Although there are inherent differences in 
placentation between humans and laboratory rodents 
(e.g. length of gestation, number of conceptuses, 
and organization of trophoblast subtypes within the 
placenta), there are also anatomical and functional 
similarities (Soncin et al. 2018). For instance, placentas 
of laboratory rodents are composed of both maternal 
and fetal compartments. The maternal compartment 
includes the decidua basalis and mesometrial triangle, 
and contains spiral arteries and a similar composition 
of cells to that found in humans. In laboratory 
rodents, the site at which nutrients are exchanged 
between maternal and fetal blood, referred to as the 
labyrinth zone because of its maze-like resemblance 
in cross-section, is compositionally similar to the 
chorionic villi in humans. Nutrients dissolved in 
maternal blood pass across three trophoblast layers 
(including two syncytialized layers) to access the 
fetal circulation. The junctional zone is a transitional 
region sandwiched between the labyrinth zone and 
decidua basalis. It is composed of stratified layers of 
trophoblasts, a subset of which invade into the maternal 
compartment and, particularly in rats, contribute to 
spiral artery transformation. Thus, the junctional zone 
is functionally analogous to extravillous trophoblasts 
in human placenta. The junctional zone also has 
an important endocrine function, which is a major 
difference between placentas of humans and laboratory 
rodents (Malassiné et al. 2003). Nevertheless, given the 
anatomical and functional similarities between human 
and laboratory rodent placentas and the capacity for 
experimental manipulation in the latter (Renaud et al. 
2011), many studies have used mice and rats to deduce 
the impact of iron homeostasis on pregnancy outcome. 

Consequently, although this review will emphasize 
the impact of iron homeostasis on human placental 
development, we will also discuss findings using mice, 
rats, and other species where appropriate.

Iron requirements and regulation in pregnancy

The maternal requirement for iron changes considerably 
during pregnancy to facilitate maternal blood volume 
expansion, placental development, and fetal growth 
(reviewed in Fisher & Nemeth 2017). Most of this 
demand occurs in the third trimester, reaching an 
average daily iron requirement of approximately 4.4 
mg/day (Milman 2006a). To accommodate the increased 
iron requirements, women entering pregnancy should 
have approximately 500 mg of stored iron (Milman et al. 
1999), yet only 20–35% of women of reproductive age 
are estimated to meet this threshold (Milman 2006b, 
Means 2020). It is, therefore, apparent why many 
women experience ID during pregnancy.

Several mechanisms enhance iron availability in the 
maternal circulation throughout pregnancy, including 
increased intestinal absorption of iron and mobilization 
of maternal iron reserves. Dietary iron exists in two 
forms: nonheme (predominantly from plant sources) and 
heme (from animal sources). As pregnancy progresses, 
maternal absorption of nonheme iron increases and 
heme absorption likely follows a similar trend (Barrett 
et  al. 1994, Young et  al. 2012). Maternal iron stores 
become mobilized during pregnancy from depots 
such as liver and spleen, as shown by studies using 
pregnant rodents (Hubbard et  al. 2013, Gao et  al. 
2015). Additionally, iron-binding capacity of transferrin 
(Tf), which transports nonheme iron in blood, increases 
throughout gestation (Choi et al. 2000). Together, these 
processes facilitate maternal hematologic adaptation, 
and increase iron availability for the placenta and fetus.

The regulation of iron availability during pregnancy 
is dependent on hepcidin, a hormone produced mainly 
by hepatocytes that controls levels of circulating iron 
(Nemeth & Ganz 2006). Multiple factors influence 
hepcidin production, including circulating and 
stored iron, erythropoietic activity, and inflammation 
(Sangkhae & Nemeth 2017). Hepcidin binds to the 
iron export protein, ferroportin (FPN), and promotes its 
degradation, thereby triggering iron sequestration and 
decreased efflux into plasma from key sites, including 
intestine and liver (Fisher & Nemeth 2017). In second 
and third trimesters, maternal hepcidin concentrations 
are decreased, presumably to increase iron availability 
and uptake by the placenta, which constitutes an 
important period of iron accretion for the fetus (van 
Santen et  al. 2013, Bah et  al. 2017). In a study of 19 
pregnant women who ingested stable iron isotopes, net 
dietary nonheme and heme iron transferred to the fetus 
was inversely correlated with maternal serum hepcidin 
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(Young et al. 2012). Not surprisingly, maternal hepcidin 
is lowest in pregnant women with ID (Rehu et al. 2010).

Placental iron transport and regulation

Fetal growth and development are dependent on active 
iron transport across the placenta, therefore this organ 
plays a crucial role in iron flux throughout pregnancy. 
Placental iron transport is controlled mainly by the 
syncytiotrophoblast. A detailed description of placental 
iron transport mechanisms has recently been reviewed 
(Sangkhae & Nemeth 2019).

Placental nonheme iron transport

Nonheme iron is bound to Tf in maternal circulation. The 
iron-bound Tf binds to the Tf receptor (TfR) and undergoes 
unidirectional transport. Both TfR1 and TfR2 are expressed 
on the apical surface of the syncytiotrophoblast; however, 
the role of TfR2 remains undefined (McArdle et al. 2011). 
The iron-Tf-TfR1 complex is internalized via clathrin-
mediated endocytosis. Acidification of the vesicle causes 
iron to dissociate from Tf as Fe3+ and becomes reduced by 
ferrireductases to Fe2+. Potential ferrireductases include 
six-transmembrane epithelial antigen of prostate-3 
(STEAP3) and STEAP4, which are highly expressed in the 
placenta (Ohgami et al. 2006). TfR and Tf return to the 
apical surface of syncytiotrophoblast, where Tf is recycled 
back into the maternal circulation. Fe2+ is transported 
from endosomes into the cytoplasm, possibly via divalent 
metal transporter-1 (DMT1), which has been implicated 
in maternal-fetal iron transfer (Chong et  al. 2005). 
Interestingly, studies in mice suggest the likelihood of an 
alternative DMT1-independent iron-uptake pathway in 
the placenta, which may involve ZRT/IRT-like protein-14 
(ZIP14), and ZIP8 (Gunshin et al. 2005).

Once in the cytosol, iron may be chaperoned by 
poly(rC)-binding protein (PCBP) to either be used for 
cellular processes, stored in ferritin, or transported to the 
basolateral surface of syncytiotrophoblast, where it is 
exported into the villous core via FPN. As ferritin levels 
are low in syncytiotrophoblast, most iron entering the 
placenta is likely used for cellular processes or transported 
to the fetus (Bastin et al. 2006). Once exported from the 
syncytiotrophoblast via FPN, iron may be delivered to 
fetal Tf via oxidation by placental ferroxidases which 
may include ceruloplasmin, hephaestin, and zyklopen 
(Danzeisen et al. 2000, Chen et al. 2010). Alternatively, 
non-Tf-bound iron is present in the fetal circulation, 
indicating that it may be transported directly across fetal 
endothelial cells, although this mechanism is unknown 
(Evans et al. 2011).

Placental heme iron transport

Placental expression of putative heme influx transporters 
includes proton-coupled folate transporter (PCFT)/

heme carrier protein-1 (HCP1), breast cancer resistance 
protein (BCRP), and feline leukemia subgroup C 
receptor-2 (FLVCR2) (Maliepaard et  al. 2001, Qiu 
et al. 2006, Duffy et al. 2010). Low-density lipoprotein 
receptor-related protein-1 (LRP1) is highly expressed 
in placenta and may also facilitate heme uptake by 
recognizing heme complexed to a high-affinity heme-
binding plasma protein, hemopexin (Hvidberg et  al. 
2005). Once imported, heme iron can be processed 
by heme oxygenases, releasing iron into the cytosol, or 
may be directly exported by FLVCR1, which may serve 
to prevent heme toxicity (Jaacks et  al. 2011, Levytska 
et  al. 2013). The functional significance of heme iron 
transport across the placenta is largely unknown. 
However, following maternal ingestion of 57Fe-heme 
and 58Fe-nonheme iron, a greater proportion of 57Fe was 
detected in neonates, suggesting that heme-based iron 
is more efficiently transferred compared to nonheme 
iron (Young et  al. 2012). Although there are multiple 
factors that may account for increased enrichment 
of heme versus nonheme iron in neonatal blood, it is 
nevertheless apparent that heme is an important source 
of iron for the fetus.

Regulation of placental iron transport

Several factors influence transport of nutrients (including 
iron) across the placenta, including uteroplacental 
and umbilical hemodynamics, placental surface area, 
metabolism, and expression/activity of transporters. 
In response to changes in cytosolic iron status, iron 
regulatory proteins bind to untranslated regions (UTRs) 
of transcripts encoding transporters and storage proteins 
(e.g. TfR1, DMT1, ferritin, and FPN), as reviewed 
in (Lipiński et  al. 2013). In general, binding of iron 
regulatory proteins to the 3′-UTR increases mRNA 
stability (e.g. for TfR1 and DMT1), whereas binding 
to the 5′-UTR prevents translation (e.g. for ferritin and 
FPN). Thus, when cytosolic iron levels are plentiful, 
iron storage and export are stimulated and import is 
inhibited.

Maternal and fetal hepcidin levels influence 
placental iron trafficking. Hepcidin may interact 
with FPN to facilitate its internalization from the 
basolateral membrane of syncytiotrophoblast, and 
also downregulates TfR1 expression in mouse placenta 
(Martin et  al. 2004, Nemeth et  al. 2004). Notably, in 
mouse embryos that overexpress hepcidin, either as a 
consequence of transgenic hepcidin overexpression 
or mutations in the hepcidin regulator matriptase-2, 
placental FPN is downregulated resulting in severe 
fetal ID (Nicolas et  al. 2002, Willemetz et  al. 2014). 
Additionally, mouse embryos lacking hereditary 
hemochromatosis protein (HFE), a protein that promotes 
hepcidin production, exhibit increased placental 
expression of TfR1, DMT1, and FPN (Balesaria et  al. 
2012). HFE is also expressed on the apical surface of 
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syncytiotrophoblast. In addition to stimulating hepcidin 
production, it may negatively regulate iron uptake by 
blocking TfR1 binding to Tf, as it does in hepatocytes 
(Parkkila et al. 1997, Gruper et al. 2005). In rats, fetal 
hepcidin levels tightly correlate with maternal liver 
iron levels, more so even than the association between 
maternal hepcidin and maternal iron status (Gambling 
et al. 2009). This may help to ensure fetal iron demands 
are met during pregnancy. Fetal hepcidin is also 
upregulated during maternal inflammation, possibly 
as a protective mechanism to limit iron availability 
to pathogenic bacteria (Fisher et  al. 2020). Notably, 
hepcidin is also expressed by the placenta at low levels, 
but its role is unclear (Evans et al. 2011). No correlation 
exists between placental hepcidin expression and either 
maternal or neonatal iron status, nor with placental 
iron transporter expression (Rehu et al. 2010, Best et al. 
2016). Similarly, placental hepcidin in pregnant rats 
is not associated with iron content of maternal diet, 
or with maternal or fetal liver iron content; in mice, 
placental hepcidin does not correlate with fetal iron 
endowment in normal pregnancy or in iron-deficient 
states (Gambling et al. 2009, Sangkhae et al. 2020a,b).

Maternal ID: effect on the placenta

Transplacental iron and nutrient transport

In maternal ID, placental iron transfer is a balancing act 
to ensure that sufficient iron is available to support its 
own functions and delivered to the fetus despite low 
levels in maternal blood. Table 1 summarizes alterations 
in placental expression of proteins involved in iron 
transport and metabolism in relation to iron status. 
The placental protein that is most frequently reported 
to exhibit altered levels relative to iron status is TfR1. 
Increased TfR1 expression is frequently reported in 
placentas from ID pregnancies, and is recapitulated in 
human trophoblast cells and cell-lines cultured in the 
presence of the iron chelator, desferoxamine (Kroos 
et al. 1996, Georgieff et al. 1999, Gambling et al. 2001, 
Li et al. 2008, 2012, Young et al. 2010, Garcia-Valdes 
et  al. 2015, Best et  al. 2016, Sangkhae et  al. 2020a). 
Likewise, increased placental TfR1 expression is evident 
in pregnant rodents fed ID diets (Gambling et al. 2009, 
Balesaria et  al. 2012, Cornock et  al. 2013), whereas 
rodents fed an iron-replete diet or given parenteral 
iron supplementation exhibit decreased placental TfR1 
expression (Martin et  al. 2004, Balesaria et  al. 2012). 
Thus, dynamic expression of TfR1 by the placenta is 
potentially a key adaptation to guarantee appropriate 
uptake of iron from maternal blood.

Expression of other proteins involved in iron transport 
or metabolism has also been measured in maternal ID, 
although patterns are less clear. Placental expression 
of DMT1 is reported to be increased in some studies 
using rodent models of maternal ID, which may 
facilitate intracellular iron trafficking (Gambling et  al. 

2001, Cornock et al. 2013); although in other studies, 
no change in DMT1 was detected (Sangkhae et  al. 
2020a). In placentas collected from mothers with mild-
to-moderate anemia, no change in FPN expression 
is evident (Li et  al. 2008, Best et  al. 2016, Sangkhae 
et  al. 2020a). However, in placentas collected from 
mice exposed to severe iron deficiency, or primary 
human trophoblasts treated with chelating agents, FPN 
expression is paradoxically reduced, suggesting that 
the placenta may sequester iron to preserve its own 
metabolic function rather than ensure fetal sustenance 
(Sangkhae et al. 2020a).

Maternal ID may also affect the expression of putative 
heme transporters. In pregnant adolescents, maternal 
anemia is associated with decreased expression of 
the placental heme export protein FLVCR1 (Jaacks 
et al. 2011). Fetal iron status more closely reflects the 
expression of the placental heme transporters FLVCR1 
and PCFT than with nonheme transporters (Best et  al. 
2016), suggesting that heme transporters may respond to 
fetal iron demand rather than maternal iron availability. 
Given that the placenta efficiently uptakes heme iron, a 
better understanding of placental heme transport during 
normal and ID pregnancies is warranted.

In addition to increased expression of placental 
iron transporters, maternal adaptations also occur that 
facilitate iron availability for the placenta (Cao & Fleming 
2016). In rat models of ID, anemic dams exhibit increased 
intestinal absorption of iron, reduced liver iron content, 
and decreased maternal hepcidin expression compared 
to controls (Gambling et al. 2004, 2009, Cornock et al. 
2013). Despite various adaptive changes in maternal 
metabolism and placental transport to optimize iron 
transfer to the fetus, babies born from severely anemic 
women have lower cord Hb levels compared to controls 
(Kumar et al. 2008, El-Farrash et al. 2012). Thus, under 
conditions of moderate iron deficiency, placental iron 
transport may be accelerated in favor of fetal demands. 
However, there appears to be a threshold of maternal 
iron status when a sufficient supply of iron cannot 
be delivered to the fetus, at which point the placenta 
establishes a new hierarchy in which iron is prioritized 
for its own function rather than delivered to the fetus.

Appropriate fetal growth and development also 
depend on the availability of nutrients, including 
glucose, amino acids, and fatty acids. Dysfunction in the 
transplacental transport of these nutrients may contribute 
to intrauterine growth restriction and other complications 
observed in maternal ID. In rats, maternal ID causes 
reduced fetal growth, correlating with decreased fetal 
plasma levels of triacylglycerol, cholesterol, and several 
amino acids, including taurine, phenylalanine, and 
tyrosine. Maternal plasma levels of these nutrients are 
unaffected, suggesting impaired placental transport 
(Lewis et al. 2001a). However, no studies to date have 
directly assessed placental expression or activity of 
nutrient transporters in the context of maternal ID.
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Placental hypoxia, oxidative stress, and inflammation

Hypoxia is a condition in which oxygen availability 
is reduced in cells or tissues. Since ID restricts Hb 
synthesis and oxygen transport, hypoxia is a potential 
consequence. Cells adapt to hypoxic conditions in part 
through stabilization of hypoxia-inducible factor alpha 
(HIFA) subunits, which interact with HIFA subunits to 
alter transcription of numerous genes that alter cell 
growth, metabolism, and survival. Stabilization of HIFA 
subunits is facilitated by reduced activity of prolyl 
hydroxylases, which are enzymes that hydroxylate HIFA 
when oxygen is replete, leading to its ubiquitination 
and degradation. Expression of HIF1A in the placenta 

is high in early pregnancy due to the low oxygen 
environment in which the placenta develops, and in 
normal circumstances expression declines by the end of 
the first trimester as oxygen tension increases (Ietta et al. 
2006). However, in ID pregnancies, term placentae 
exhibit increased expression of HIF1A (Michalitsi et al. 
2015). Likewise, in rat models of ID anemia, no change 
in mRNA expression of Hif1a in placenta is evident, but 
higher HIF1A protein expression is detected (Lewis et al. 
2001b, Toblli et al. 2012). Whether the increased HIF1A 
expression is attributed to hypoxia per se is unclear, 
because iron is a critical cofactor for prolyl hydroxylase 
activity (Bishop & Ratcliffe 2015), and therefore HIF1A 
expression may be increased irrespective of oxygen 

Table 1 Expression of factors implicated in placental iron trafficking during ID.

Name Gene
Changes in mRNA and protein expression

Human Studies References Animal studies References
Iron influx 
 TfR1 TFRC ↑ expression in human 

placentas
↑ expression in BeWo cells 

and primary trophoblasts 
exposed to DFO

Kroos et al. (1996), Georgieff 
et al. (1999), Gambling et al. 
(2001), Li et al. (2008, 2012), 
Young et al. (2010), Garcia-
Valdes et al. (2015), Best et al. 
(2016), Sangkhae et al. (2020a)

↑ expression in rat 
placentas 

Gambling et al. 
(2009), Balesaria 
et al. (2012), 
Cornock et al. 
(2013)

 HFE HFE ↔ mRNA 
expression in rat 
and mouse 
placentas

Gambling et al. 
(2009), Sangkhae 
et al. (2020a)

 BCRP BCRP ↔ protein expression in 
human placentas

Jaacks et al. (2011)

Intracellular iron trafficking and storage
 DMT1 SLC11A2 ↑ expression in human 

placentas
↑ expression in BeWo cells 

exposed to DFO

Gambling et al. (2001), Venkata 
Surekha et al. (2020)

↔ mRNA 
expression in 
mouse placentas

↑ mRNA expression 
in rat placentas 

Cornock et al. 
(2013), Sangkhae 
et al. (2020a)

 Ferritin FTH1 (heavy 
chain), FTL 
(light chain)

↓ mRNA expression in 
human placentas

Li et al. (2008) ↔ in expression in 
rat placentas

Gambling et al. 
(2009) 

Iron efflux 
 FPN SLC40A1 ↔ or ↑ protein expression in 

human placentas
↑ expression in BeWo cells 

exposed to DFO
↓ protein expression in 

trophoblast cells exposed to 
DFO

Li et al. (2008, 2012), Best et al. 
(2016), Sangkhae et al. (2020a), 
Venkata Surekha et al. (2020)

↔ in mRNA 
expression in rat 
and mouse 
placentas

↓ protein expression 
in mouse 
placentas 

Gambling et al. 
(2001), Cornock 
et al. (2013), 
Sangkhae et al. 
(2020a)

 Ceruloplasmin CP ↔ in mRNA expression in 
human placentas

↔ in mRNA expression in 
BeWo cells exposed to 
DFO

↑ protein expression in BeWo 
cells exposed to DFO

Danzeisen et al. (2000), Li et al. 
(2008), Best et al. (2016)

↔ in mRNA 
expression in rat 
placentas 

Fleming and Gitlin 
(1990)

 Hephaestin HEPH ↑ expression in BeWo cells 
exposed to DFO

Li et al. (2012)

 Zyklopen ZP ↑ expression in human 
placentas

Venkata Surekha et al. (2020) ↔ in mRNA 
expression in 
mouse placentas 

Sangkhae et al. 
(2020a)

 FLVCR1 FLVCR1 ↓ protein expression in 
human placentas

Jaacks et al. (2011) ↔ in mRNA 
expression in 
mouse placentas 

Sangkhae et al. 
(2020a)

↑ = Increased; ↔= No change; ↓ = Decreased; BCRP, breast cancer resistance protein; DMT1, divalent metal transporter 1; FLVCR1, feline 
leukemia virus subgroup C receptor 1; FPN, ferroportin; HFE, human hemochromatosis protein; TfR1, transferrin receptor 1.
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levels (Woo et al. 2006). Indeed, using pimonidazole, 
which forms stable adducts with thiol groups of proteins 
in hypoxic cells, Woodman et al. found no evidence of 
placental hypoxia with maternal ID in pregnant rats, 
despite robust signals in various fetal organs (Woodman 
et  al. 2017). Notwithstanding, the increased placental 
HIF1A may contribute to dysregulated expression of 
genes, such as those encoding inflammatory cytokines, 
which affect placental function and contribute to 
pregnancy complications (Gambling et al. 2002).

Oxidative stress is characterized by amplified 
production of reactive oxygen species beyond the 
capacity of antioxidant defense mechanisms, and is a 
normal occurrence throughout pregnancy (Mannaerts 
et al. 2018). As gestation advances, antioxidant defenses 
are enhanced to prevent oxidative damage to the 
placenta and fetus (Furukawa et al. 2016). In pregnant 
rat models of ID anemia, increased oxidative stress, lipid 
peroxidation, mitochondrial damage, and inflammatory 
cytokine production (e.g. tumor necrosis factor (TNF) 
and interleukin-6) is evident (Gambling et  al. 2002, 
Walter et al. 2002, Toblli et al. 2012). Like the case with 
prolyl hydroxylases described above, iron is an essential 
cofactor for several antioxidant enzymes, including 
catalase. ID may thus impair the function of antioxidant 
defenses, exacerbating generation of reactive oxygen 
species and contributing to placental damage and 
dysfunction.

Placental structure

Since the placenta forms the interface between mother 
and fetus, its structure is a key determinant for oxygen 
and nutrient delivery to the fetus. The efficiency 
of nutrient and oxygen transfer to the fetus can be 
affected by changes in the total surface area available 
for exchange, thickness of the placental exchange 
surface, proportion of specialized placental regions, and 
vascularization. Therefore, the impact of maternal ID on 
placental structure is an important consideration.

When compared to fetal/neonatal weight, placental 
weight can be used as a proxy for placental efficiency, 
and an indication of how placental development and 
function has adapted to sustain fetal requirements 
(Fowden et  al. 2009). Studies in both humans (Table 
2) and animals (Table 3) show that maternal ID has 
an effect on placental weight and placental:fetal birth 
weight ratios. For example, several studies suggest 
that placental weight and placental:fetal weight 
ratios increase with maternal anemia (Beischer et  al. 
1970, Godfrey et al. 1991, Lao & Wong 1997, Lao & 
Tam 2000, Huang et  al. 2001, Baptiste-Roberts et  al. 
2008, Lelic et  al. 2014, Larsen et  al. 2016). Among 
these studies, two were conducted using large cohorts 
of 8648 (Godfrey et  al. 1991), and 57,062 (Larsen 
et  al. 2016) human pregnancies, in which a negative 
correlation between placental weight and maternal Hb 

concentration was reported. It is possible that decreased 
iron and/or Hb evokes compensatory placental 
hypertrophy that increases surface area and enhances 
oxygen and nutrient exchange. Conversely, some 
studies have found no correlation between low Hb and 
placental weight (Reshetnikova et al. 1995) or decreased 
placental weights in anemic mothers (Rusia et al. 1988, 
Mongia et al. 2011, Kiran et al. 2015). Multiple factors 
may account for these discrepancies, including severity 
of anemia, timing of anemia onset, number of samples 
analyzed, ethnic populations, and possibility of maternal 
malnutrition or other nutritional deficits. In some cases, 
gestational age was not controlled, which confounds 
the interpretation of placental size and its relationship 
to fetal weight.

Rodents fed iron-deficient diets have been used to 
study the impact of ID anemia on pregnancy outcome. 
In these models, diets lacking iron are invariably 
associated with reduced fetal size (Lewis et al. 2001a, 
Gambling et al. 2002, Toblli et al. 2012, Woodman et al. 
2017, 2018). However, conflicting effects of maternal 
anemia on placental weight have been reported, with 
many studies showing an increase in placental weight 
(Lewis et al. 2001a,b, Gambling et al. 2009, Woodman 
et al. 2017, 2018), and others reporting a decrease in 
placental weight (Toblli et al. 2012). As in the clinical 
studies, the differing effects may relate to the duration 
and severity of anemia. Low maternal iron and/or Hb 
may result in a compensatory hypertrophic response by 
the placenta to offset reduced oxygen or iron supply to 
the fetus. However, there may be a critical threshold of 
maternal iron and Hb, below which placental oxidative 
stress, inflammation, and damage occur, hindering the 
capacity of the placenta to adapt.

Maternal ID is also associated with altered placental 
composition and morphology. In placentas exposed 
to ID, increased placental vascularization, capillary 
density, and dilation of villous sinusoids is observed 
(Reshetnikova et al. 1995, Burton et al. 1996, Kadyrov 
et al. 1998, Mongia et al. 2011, Lelic et al. 2014, Lelić 
et  al. 2014). Such changes are a principal adaptation 
of the placenta to hypoxia or result from differences 
in hemodynamic forces during fetal development 
(Stanek 2013). Indeed, fetal cardiovascular adaptations 
have been associated with maternal anemia in 
sheep, including increased heart weight and cardiac 
output, which may explain altered placental capillary 
vascularization (Davis & Hohimer 1991). Placentas 
exposed to maternal ID have smaller placental villous 
trees and thinner chorionic villous membranes, the 
latter possibly an adaptation to maintain the diffusion 
capacity of the exchange surface (Reshetnikova et  al. 
1995). Similar results are observed in rat models of 
maternal ID, in which the labyrinth zone (the region 
of rodent placentas where nutrients and gases are 
exchanged between maternal and fetal blood) is 
reduced in thickness (Awad et al. 2017).
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Another feature of placentas exposed to maternal ID 
is an increased number of placental infarcts, syncytial 
knots, and fibrinoid necrosis, which could affect 
functional villous mass (Begum et al. 1970, Huang et al. 
2001, Mongia et  al. 2011, Nausheen Rumana 2012, 
Kiran et al. 2015). These features are typically associated 
with maternal vascular malperfusion resulting from 
insufficient or pulsatile uteroplacental blood flow and 
reduced oxygen supply, which may contribute to the 
increased incidence of adverse pregnancy outcomes 
in maternal ID. Women with maternal ID also exhibit 
increased cytotrophoblast proliferation, possibly to 
facilitate syncytiotrophoblast repair in response to 
ischemia (Kosanke et  al. 1998, Biswas et  al. 2014). 
Together, these studies demonstrate that maternal ID 
impacts several aspects of placental structure.

Challenges and opportunities

Although screening for ID is recommended for all 
pregnant women (Abdulrehman et  al. 2019), a study 
commissioned by the United States Preventive Services 
Task Force reported that the evidence is inconclusive 
about the efficacy of supplementation for improving 
maternal and infant health outcomes despite improving 
maternal hematological indices (Cantor et  al. 2015, 
Achebe & Gafter-Gvili 2017). Routine screening for 
ID and iron supplementation is only recommended 
in women of reproductive age if anemia is diagnosed. 
Consequently, many women enter pregnancy with 
marginal iron stores and do not receive treatment until 

they exhibit symptoms of severe anemia. Treatment 
recommendations for maternal ID anemia include 
increased dietary intake of iron-rich foods and oral 
iron supplementation, most commonly with ferrous 
sulfate. Although inexpensive and readily available in 
many developed countries, oral iron supplementation 
causes gastrointestinal discomfort in more than 70% of 
those to whom it is prescribed, including metallic taste, 
gastric irritation, and worsening constipation, resulting 
in poor adherence (Tolkien et  al. 2015). Furthermore, 
serum hepcidin levels are increased for approximately 
48 h after ingestion of iron supplements, restricting 
iron absorption from the intestine (Moretti et al. 2015). 
Prolonged-release preparations of oral iron supplements 
may offer solutions to these issues while conferring similar 
bioavailability (Santiago 2012). Other formulations 
are available that purport enhanced efficacy and 
tolerability (iron-polysaccharide complexes, heme iron 
polypeptide), though these claims have been questioned 
in light of several clinical trial outcomes (Santiago 2012, 
Moe et al. 2019). Although more expensive, intravenous 
iron has lower toxicity and is more effective than orally-
administered iron (Auerbach et  al. 2017); although it 
has not been rigorously tested in pregnant women and 
it is uncertain how well it is tolerated by the mother, 
placenta, and fetus.

Given the high incidence of maternal ID and its 
potential impacts on placental and fetal health, there 
is urgent need to better understand placental iron 
metabolism and develop strategies to prevent, detect, 
and treat maternal ID during pregnancy. Early detection 

Figure 2 Schematic depicting the potential impact of maternal iron deficiency on the placenta.
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of ID can be improved by implementing routine prenatal 
screening, irrespective of Hb level. Public health strategies 
to prevent ID include improvements in dietary diversity, 
food fortification with iron and other micronutrients, and 
distribution of iron-containing supplements; although 
indiscriminate iron supplementation may be problematic 
due to gastric irritation and potential toxicity described 
previously, and may be deleterious in regions where 
certain infectious diseases are prevalent. Other public 
health strategies include better control of infections like 
malaria that compromise red blood cell integrity, and 
access to education for reproductive health and family 
planning. Additionally, a better understanding of how 
ID affects placental and fetal development may lead 
to identification of biomarkers that better reflect fetal/
placental distress in ID (e.g. ratio of placental FPN/TfR1 
(Sangkhae et al. 2020a)), and provide opportunities to 
intervene in utero, thereby reducing the risk of long-
term health complications. Accessible and cost-effective 
interventions will help to reduce the burden of maternal 
ID and long-term consequences on offspring health.

Conclusions

Iron is a crucial mineral for many cellular and physiological 
processes. ID during pregnancy remains a global problem 
with significant health implications for both mothers and 
offspring. Depending on the severity and duration, low 
levels of maternal iron and Hb may result in decreased 
oxygenation that progress to hypoxic and inflammatory 
conditions in the placenta. This may stimulate placental 
hypertrophy, increased vascularization, structural 
changes at the fetal-maternal exchange surface, and 
altered expression or activity of nutrient transporters (Fig. 
2). Future studies are needed to clarify structural and 
functional modifications in the placenta during maternal 
ID, and determine whether these modifications are 
adaptive responses striving to maintain iron sustenance 
and support fetal growth and development, or pathological 
changes contributing to maternal and fetal adversity. 
Since the placenta forms the interface between mother 
and baby, understanding how the placenta changes in ID 
may yield new diagnostic indices of fetal stress in affected 
pregnancies, thereby leading to earlier interventions and 
improved fetal outcomes.
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