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More than 100 attendees from Australia, Austria, Belgium, Canada, China, Germany, 
Hong Kong, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Republic 
of Korea, Singapore, Sweden, Switzerland, the United Kingdom, and the United 
States convened in Singapore for the 2019 ISMRM-sponsored workshop on MRI 
of Obesity and Metabolic Disorders. The scientific program brought together a mul-
tidisciplinary group of researchers, trainees, and clinicians and included sessions 
in diabetes and insulin resistance; an update on recent advances in water–fat MRI 
acquisition and reconstruction methods; with applications in skeletal muscle, bone 
marrow, and adipose tissue quantification; a summary of recent findings in brown 
adipose tissue; new developments in imaging fat in the fetus, placenta, and neo-
nates; the utility of liver elastography in obesity studies; and the emerging role of 
radiomics in population-based “big data” studies. The workshop featured keynote 
presentations on nutrition, epidemiology, genetics, and exercise physiology. Forty-
four proffered scientific abstracts were also presented, covering the topics of brown 
adipose tissue, quantitative liver analysis from multiparametric data, disease preva-
lence and population health, technical and methodological developments in data ac-
quisition and reconstruction, newfound applications of machine learning and neural 
networks, standardization of proton density fat fraction measurements, and X-nuclei 
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1 |  INTRODUCTION

Research in obesity and metabolic disorders using MRI and 
MRS has increased significantly in recent years.1 Magnetic 
resonance imaging/spectroscopy are used widely to achieve 
quantitative endpoints such as fat accumulation in subcutane-
ous adipose tissue (SAT) and visceral adipose tissue (VAT) 
depots, organs, and muscles.2,3 This ISMRM-sponsored 
workshop (https ://www.ismrm.org/works hops/2019/ObMet/ ) 
was held in Singapore from July 21-24, 2019, and followed the 
first event in 2012.4 More than 100 participants attended the 
workshop (Supporting Information Table S1). Over 40 prof-
fered abstracts were presented, focusing on population find-
ings, developments in the proton density fat fraction (PDFF) 
imaging biomarker, methodological and technical advances 
in pulse sequences and machine learning, liver physiology, 
and brown adipose tissue (BAT). This article summarizes the 
scientific highlights and insights toward future directions of 
research from the workshop’s invited lectures (see Supporting 
Information Table S2 for the list of speakers). This overview 
groups each speaker’s contributions into several themes, in-
cluding precision medicine, big data, and “imaging-omics” 
in large population studies; nutrition, metabolism, diabetes, 
and insulin resistance in Asian and Latino cohorts; advances 
in chemical shift–encoded (CSE) water–fat imaging; BAT 
imaging; fetal and placenta imaging; liver elastography; and 
muscle and bone marrow imaging. The reader is referred to 
online complementary Supporting Information for additional 
excerpts from speakers.

1.1 | Prelude

Fritz Schick, Christiani Jeyakumar Henry, and Jürgen 
Machann provided outlines of the obesity and type 2 diabe-
tes (T2D) epidemic worldwide and the existing role of MRI/
MRS in research and clinical medicine.5 Dr. Schick noted 
that according to statistics from the United States Center for 
Disease Control, the prevalence of obesity and diabetes con-
tinues to rise, and on average a person in the United States 
now consumes 400 more calories daily than 5 decades ago.6 
Additionally, the time spent on physical activity and energy 
expenditure has markedly decreased, with sedentary behav-
ior becoming dominant. Recent World Health Organization 

2014 data show that more than 1.4 billion adults worldwide 
were overweight (body mass index [BMI] ≥ 25 kg/m2) and 
obese, whereas 1.2 billion were undernourished, marking the 
first time in history of this imbalance.

In the context of energy expenditure, the concept of un-
dernutrition and overnutrition and basal metabolic rate was 
the topic of focus for Dr. Henry. Basal metabolic rate is the 
minimal energy requirement needed to sustain life at resting 
state and to maintain basic organ functions. It was shown that 
the liver, brain, heart, and kidney expend the most energy. 
Humans consume on average 1 ton of food per year, yet most 
of us fluctuate less than ± 2 kg in body weight per year and 
do not become obese. Basal metabolic rate is therefore the 
fundamental mechanism that enables us to maintain relative 
weight constancy.

Dr. Machann described in detail MRI/MRS-based 
body composition phenotyping and ectopic fat distribu-
tion in subjects with increased risk for T2D. Conventional 
T1-weighted  imaging remains a robust approach to assess 
lean and adipose tissue distributions.7,8 While manual his-
togram-based threshold segmentation of such whole-body 
data remains time-consuming, advanced fuzzy clustering and 
deep learning algorithms can perform such tasks quickly.9,10 
Cross-sectional gender differences from German studies 
were shown, in which men and women exhibit dissimilar pat-
terns in SAT and VAT despite similar age and BMI, as well 
as differential findings of fatty acid composition (FAC) in the 
superficial SAT, deep SAT, and VAT depots.11 Unsaturated 
fatty acid levels are highest in SAT of the lower legs, followed 
by abdominal superficial SAT, abdominal deep SAT, VAT, 
and bone marrow. Through such data, Dr. Machann identi-
fied a specific phenotype, dubbed “metabolically healthy 
obesity.” This group represents subjects with BMI over 
30 kg/m2, but exhibits adequate insulin sensitivity. In contrast 
to metabolic healthy obesity, there is also a metabolically 
unhealthy obesity phenotype, in which subjects have similar 
BMI but low insulin sensitivity and excess VAT.

1.2 | Big data and “imaging-omics”

To better understand disease processes, data from geno-
types, phenotypic variations, lifestyles, and quantitative 
imaging biomarkers need to be analyzed in an integrated 

applications. The purpose of this article is to summarize the scientific highlights from 
the workshop and identify future directions of work.

K E Y W O R D S

adipose tissue and fat quantification, diabetes and insulin resistance, liver elastography, obesity and 
metabolic disorders, proton density fat fraction, skeletal muscle, bone marrow
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fashion. Neerja Karnani reviewed recent “big data” machine- 
learning efforts in Singapore aimed to promote an integrative 
approach in providing precision medicine from multi-omics 
data. Molecular data (genetics, epigenetics,  lipidomics), en-
vironment and microbiome data,12-14 and imaging data are 
being integrated to predict health risks and provide a deeper 
understanding of metabolic adversities. It is important to im-
plement large population-based studies to assess genetic and 
lifestyle effects on disease processes, to stratify groups for 
risk, and to assess differential responses to therapeutic inter-
vention. While it is important to have large quantities of data 
in any epidemiology study, having an integrative data analy-
sis provides stronger insights into the developmental origins 
of metabolic health adversities, identifies human variations, 
and facilitates timing of optimal intervention therapies. 
 Dr. Karnani highlighted 2 Singapore studies, in which 
ethnic differences in the genotypes of the cohort exist.15,16

Magnus Borga discussed radiomics in the context of MRI-
based quantitative body composition analysis. There are 
4 key steps: image acquisition (i.e., pulse sequence, proto-
col), tissue segmentation (i.e., organ, structure, region of 
interest), feature extraction (i.e., size, shape, area, volume, 
quantitative imaging biomarkers), and data analytics (i.e., 
data mining, hypothesis testing, cluster and pattern analysis). 
Dr. Borga reiterated the importance of quantitative MRI and 
the need for strict reproducibility criteria throughout the 
processing chain, such that generalized thresholds and ref-
erence values can be had.17 While scanner-to-scanner repro-
ducibility in multicenter trials is critical, so is within-scanner 
repeatability. Likewise, standardized protocols and postpro-
cessing pipelines that allow flexibility in protocol parame-
ters is paramount. Representative data from the UK Biobank 
study, which encompasses nearly 500,000 subjects (100,000 
of whom will receive brain, cardiac, and whole-body MRI 
exams), were shown. To date, over 40,000 participants have 
been scanned,18 encompassing 6 distinct propensity clusters 
that show different risks for metabolic disease depending on 
their whole-body composition analysis profile.19

1.3 | Diabetes and insulin resistance in 
Asian and Latino cohorts

Tai E. Shyong and Gabriel Shaibi examined T2D and insu-
lin resistance in Asian and Latino populations, respectively. 
While  the positive association between BMI and T2D risk 
is well-known, paradoxically, Singaporean Chinese sub-
jects whose BMI values are considered normal by Western 
standards also exhibit increased risk and incidence of T2D.20  
Furthermore, although the general inverse trend between 
percent body fat and insulin sensitivity is maintained (high-
est slope  in Malays, followed by Chinese, and lowest in 
South Asians), body fat partitioning itself is not adequate 

in explaining the differences in insulin sensitivity between 
the three groups.21 Differences also exist in abdominal and 
visceral adiposity and skeletal muscle intramyocellular li-
pids (IMCL) among Chinese, Malay, and South Asian co-
horts. Interestingly, present data raise the possibility that the 
Chinese may exhibit a phenotype of mild lipodystrophy and 
limited adipose tissue expansibility (i.e., hypertrophy [in-
crease in cell size]),22,23 which can predipose them to insulin 
resistance. Human genetic studies to date suggest that most 
of the pathways leading to T2D are shared among ethnic 
groups, and that while the pathophysiology of T2D can be 
heterogenous, there remains no clear phenotype of T2D that 
is truly unique to Asia.24

Gabriel Shaibi presented on body adiposity and T2D 
risk in Latino youth, focusing on the confounding ef-
fects of gender, race/ethnicity, and the impact of interven-
tions.25  According to 2018 statistics,26 the prevalence of 
childhood obesity in the United States is approximately 18%, 
as defined by a BMI greater than 95th percentile for age and 
gender. Approximately 6% have severe obesity, as defined 
by a BMI greater than 120% of 95th percentile. Although 
the prevalence does not significantly differ between boys 
and girls, there are clear disparities across race/ethnicity. 
Native American, Latino, and African American children 
are disproportionately affected by obesity in comparison to 
non-Hispanic whites, and girls experience a disproportionate 
burden compared with boys when it comes to T2D risk.27 
Gender differences in the incidence of T2D may, in part, be 
associated with higher levels of body adiposity among mi-
nority girls. Ryder and colleagues have shown that percent 
body fat continues to increase in girls from age 8-20 years, 
whereas males exhibit a decline in percent fat after about the 
age of 12 years.28 For a given BMI and age, non-Hispanic 
whites and African Americans exhibit similar SAT volumes, 
whereas the latter have smaller amounts of VAT.29 Latino 
youths tend to exhibit the most amount of VAT, leading to 
the TOFI (thin-outside-fat-inside) phenotype,30,31 similar to 
the metabolically unhealthy obesity phenotype described by 
Dr. Machann. Lifestyle intervention was also discussed, and 
differences between boys and girls in whom adipose tissue 
volumes are lost and gained were shown. Boys in general 
lose more VAT and gain more lean mass than girls.32-34 In 
preventing childhood obesity and lowering T2D risk at an 
early stage, Dr. Shaibi alluded to the need for individualized 
precision medicine and easier access to quantitative imaging, 
as tremendous heterogeneities exist in response to lifestyle 
intervention.35

1.4 | Advances in water–fat MRI

Holden Wu, Pernilla Peterson, Stefan Ruschke, and 
Michael Middleton provided updates on methodological 
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advances in chemical shift–encoded (CSE) water–fat MRI. 
The group focused collectively on developments aimed to 
improve and expand the application of quantitative PDFF 
measurements in research and clinical trials.36 CSE MRI 
methods fundamentally rely on the resonance frequency 
difference between water and fat protons and continued 
research from the original 2-point method has led to mod-
ern implementations with multi-echo acquisitions and ad-
vanced signal modeling.37,38 Chemical shift–encoded MRI 
is an established mainstream method for fat quantifica-
tion, in which voxel-wise PDFF is estimated by acquiring 
and reconstructing multi-echo spoiled gradient-echo data 
using low flip angles to avoid T1 bias between water and 
fat signals, multipeak fat spectral modeling, and R∗

2
 correc-

tion. Additionally, B0 field map estimation and phase-error 
correction due to concomitant field gradients need to be con-
sidered.39,40 Although multi-echo CSE MRI increases scan 
time and often requires breath-holds in body applications, 
advanced techniques such as parallel imaging,41,42 com-
pressed sensing,43,44 MR fingerprinting,45 and deep/machine 
learning46 have improved CSE-MRI scan-time efficiency, 
making them applicable in children and in patients who 
cannot hold their breath. Emerging respiratory-navigated 
and motion-robust sequences47,48 and non-Cartesian 
“stack-of-radial” techniques49,50 have comparable accuracy 
and precision in PDFF estimation in comparison to con-
ventional breath-hold techniques.

Existing CSE-MRI methods, unlike MRS, are not yet 
sensitive enough to characterize and detect subtle intra- 
individual or interindividual variations in FAC. Nonetheless, 
imaging approaches for FAC estimation are attractive in 
their ability to provide a spatial map of FAC distributions. 
Significant validation and assessment of reproducibility 
and repeatability are still needed to make FAC estimation 
a “push button” technique that provides insights into obe-
sity and health.51-53 Preliminary results from oil phantoms, 
in which gas chromatography was used as reference, and 
more recently in vivo data, are promising.54-56 Dr. Peterson 
showed that the classic CSE water–fat signal model can be 
logically expanded to include 3 descriptive features of FAC: 
the number of double bonds, the number of methylene-in-
terrupted double bonds, and the chain length, from which 
unsaturation can be computed. Unlike PDFF estimation 
that typically uses 6 echoes, FAC estimation uses longer 
echo trains (i.e., 12-32 echoes), and the selection of echo 
spacing requires careful consideration to optimize noise 
performance. Although the well-known T1 bias of water 
and fat affects PDFF quantification, interestingly, it appears 
less important in FAC estimation. However, differences in 
the T2 of water and fat should be considered, especially in 
water–fat mixtures.57 The FAC estimation may be limited 
to pure adipose tissue and other areas of intermediate to 

high-fat fraction, whereas robust performance in water–fat 
mixtures of low PDFFs is difficult to achieve.

1.5 | Brown/beige/brite adipose tissue

Barbara Cannon, Shigeki Sugii, and Rosa Tamara Branca 
spoke on BAT, beige, and brite adipose tissue.58 It has been 
over 50 years since the physiological function of BAT, 
which produces heat through activation of the sympa-
thetic nervous system by the hypothalamus, was realized. 
The tissue uses its dense mitochondrial population and a 
unique uncoupling protein, termed UCP1. The role of BAT 
in adaptive nonshivering thermogenesis has also gained 
general acceptance across multiple disciplines.59 The trend 
of assessing BAT in diet-induced, rather than cold-in-
duced, thermogenesis has also emerged in popularity.60,61 
Similarly, the process of characterizing the transition of an 
adipose-derived stem cell to a beige/brite/brown adipocyte 
by imaging is actively being pursued. In Singapore, sig-
nificant efforts in developing optical imaging62 and diffuse 
reflectance spectroscopy63,64 to capture cellular “brown-
ing” ex vivo and in vivo have been undertaken, exploiting 
differences in cell surface markers.64-67

Human BAT research has, however, been elevated to a 
“panacea”-like status in recent years, in which the poten-
tial of BAT to counteract metabolic syndrome and obesity 
is sought. Brown adipose tissue in the supraclavicular re-
gion of humans is most like classical BAT found in mice, 
rather than inguinal beige adipocytes. Supraclavicular BAT 
depots become more white adipose tissue (WAT)–like with 
age, high-fat diet, and thermoneutrality.68 Although the 
CSE-based PDFF approach remains popular in BAT char-
acterization,69-72 it nonetheless remains not specific enough 
to differentiate BAT and WAT in adult humans. Brown ad-
ipose tissue in humans often mimics WAT, confounding 
identification and quantification. Although 18F-FDG-PET/
CT also remains popular, some concerns over test–retest re-
liability have been raised.72 Additionally, glucose uptake in 
BAT reflects the tissue’s insulin sensitivity and blood flow 
rather than cold-induced or diet-induced thermogenesis.73,74 
Hyperpolarized 13C MRI has the potential to provide richer 
metabolic information than 18F-FDG-PET beyond conven-
tional glucose uptake, but applications in human BAT re-
main unexplored. Magnetic resonance–based thermometry 
for BAT has emerged as an active area of research. Water ex-
hibits a proton resonance frequency shift of −0.01 ppm/°C. 
However, at 3 T, B0 inhomogeneity and motion can induce 
significantly larger frequency offsets that render the tem-
perature effect ambiguous. Local hemodynamic changes 
can also lead to apparent frequency shifts that cannot be de-
coupled from temperature effect.75 The precision of proton 
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thermometry is also limited to 1-2ºC. Because BAT tempera-
ture changes are expected to be small, proton thermometry 
may therefore lack the sensitivity for applications in humans. 
Conversely, 129Xe-based thermometry is a promising alterna-
tive. It is highly soluble in adipose tissue and exhibits higher 
temperature sensitivity (−0.21 ppm/°C).76

1.6 | Imaging the developing young and the 
Barker hypothesis

Charles McKenzie, Penny Gowland, and Yung Seng Lee 
highlighted the importance of imaging research during 
fetal, neonatal, and childhood periods. Placenta anatomy 
and physiology was first reviewed. It is the primary organ 
responsible for delivering nutrients and oxygen to the fetus, 
removing waste product and excessive heat, producing hor-
mones, and providing an immune response.77 Fetal growth 
restrictions, preeclampsia, and diabetes were discussed as 
examples of placental pathology. For fetal growth restriction, 
in which birth weight is in the lowest 10th percentile, there 
exists a 10-fold increase in risk of perinatal mortality and a 
60%-90% chance of developing cerebral palsy. In this con-
text, the Barker hypothesis, also known as the developmental 
origins of adult   disease  hypothesis, was introduced.78,79 It 
posits that adverse events in early developmental life, par-
ticularly in intrauterine life, can result in permanent changes 
to physiology and metabolism during adulthood and increase 
one’s risk of adult disease. For example, maternal smoking 
affects fetal organ growth, resulting in reduced brain, kidney, 
placenta, and total fetal volume.80 The Dutch famine cohort 
from World War II was used as an example, in which an as-
sociation exists between maternal starvation during gestation 
and increased risk for cardiovascular and metabolic diseases 
in the offspring.81 Exposure to famine during the first half 
of pregnancy resulted in higher obesity rates compared with 
exposure during the last trimester of pregnancy.82

For preeclampsia, a condition in which the pregnant 
woman experiences markedly high blood pressure, abnor-
mal immunological response, proteinuria, and reduced blood 
flow in uterine arteries, can be observed, in addition to fetal 
growth restriction.83,84 Finally, for diabetes, macrosomia 
(increased fetal growth) can sometimes be observed, ac-
companied by maternal and fetal hyperglycemia, along with 
increased stimulation of pancreatic islet cells, which can fur-
ther lead to elevated adipose tissue and fat synthesis and ac-
cumulation in the fetus and newborn. Downstream risks can 
include shoulder dystocia, fetal death, premature delivery, 
respiratory distress, and T2D.85

Magnetic resonance imaging methods to assess placental 
perfusion were reviewed.86-88 Differences in placental perfu-
sion have been reported between fetuses appropriate for ges-
tational age versus those who were small for gestational age. 

Safety remains paramount for the pregnant mother receiving 
an MRI.89 Fetal motion remains the biggest hindrance in 
MRI, and while single-shot sequences remain the workhorse 
protocols in conjunction with motion-compensated recon-
struction algorithms to better visualize fetal anatomy,90 addi-
tional efforts are needed for widespread adoption.

To further exemplify the Barker hypothesis, the Growing 
Up in Singapore Toward Healthy Outcomes study,13,91 which 
aims to demonstrate how conditions during pregnancy, in-
fancy, and early childhood influence subsequent health and 
disease later in life in Asian populations, was highlighted. 
Of note, maternal fasting glucose exhibited an association 
with neonatal body fat, and the BMI trajectories from birth 
to 3 years of age showed that the children of mothers with 
higher fasting glucose had greater BMIs later in life. In a 
related Singapore Adult Metabolism Study, Indian men had 
the highest amounts of abdominal SAT and IMCL compared 
with Chinese and Malays. These ethnic differences mani-
fested as early as 4-5 years of age, but were not observed in 
the neonatal period. Studies like Growing Up in Singapore 
Toward Healthy Outcomes and Singapore Adult Metabolism 
can potentially provide insights into the evolution of meta-
bolic diseases from fetus to adolescence. The implication is 
to aid in the prevention of obesity and diabetes by targeting 
a collection of modifiable risk factors such as prepregnancy 
obesity, maternal diet, gestational weight gain, and gesta-
tional diabetes mellitus, age at weaning and diet, and physi-
cal activity.92 The challenge is to translate such findings into 
effective public health policies and strategies, embedding ef-
fective intervention components within education and health-
care systems to achieve long-term sustainable improvements.

1.7 | Liver elastography

Claude Sirlin, Meng Yin, and Takeshi Yokoo reviewed state-
of-the-art ultrasound and MR-based elastography technology 
in assessing liver disease and obesity. Obesity can both cause 
liver disease and worsen preexisting liver disease by accelerat-
ing the progression to cirrhosis and cancer.93-96 It is estimated 
that 5%-10% of adults worldwide have both liver disease and 
obesity. The liver can be affected by excessive iron and fat, as 
well as cell injury, inflammation, and fibrosis. Among these 
abnormalities, fibrosis is the single most important prognostic 
factor. Fibrosis can be staged histologically (mild, moderate, 
severe, cirrhosis), and higher fibrosis stage is associated with 
incrementally higher mortality.97,98 As fibrosis worsens, the 
liver becomes stiffer, and the difference in stiffness becomes 
more apparent and separated in later stages.99 Liver stiffness 
measurements by magnetic resonance elastography is an es-
tablished quantitative imaging biomarker of fibrosis. A recent 
meta-analysis suggested that a measured change in stiffness 
of 19% or larger reflects a true change in liver stiffness with 
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95% confidence.100 In populations at risk for having fibrosis, 
low liver stiffness measurements provide strong negative pre-
dictive value and are clinically useful for excluding patients 
with advanced fibrosis who may otherwise need treatment. 
Magnetic resonance elastography can therefore identify pa-
tients who can be managed without biopsy. Magnetic reso-
nance elastography currently plays a critical role in cohort 
screening, selection, enrichment, stratification, response pre-
diction, treatment monitoring, and response detection in liver 
clinical trials, and provides complementary information in 
epidemiology and radiomics analysis.101

1.8 | Skeletal muscle adipose tissue

Chris Boesch reviewed 1H MRS of intramuscular, extramy-
ocellular, and intramyocellular  lipids in skeletal muscles 
and the metabolic aspects of IMCL as an essential part of 
metabolism in health and disease.102,103 The number, size, 
location, and composition of lipid droplets in IMCL play an 
important role in determining an individual’s insulin sensi-
tivity.104-107 Furthermore, diet and exercise can affect IMCL 
levels individually. The differences in IMCL between obese 
and diabetic populations versus trained athletes108,109 were 
highlighted. In the former, high levels of IMCL is positively 
correlated with insulin resistance. In the latter, IMCL is 
uniquely stored as an energy reservoir for use during intense 
exercise. Quantitative MRS remains the only approach to 
measure IMCL noninvasively, whereas extramyocellular 
lipids can and should be quantified by conventional MRI. 
Magnetic field shimming, careful placement of voxels to 
avoid major muscle adipose tissue depots (i.e., dominant 
extramyocellular lipid signal), fasciae and blood vessels, 
and control over leg motion and rotation are critical in 
IMCL assessments.110 Additionally, variable spectral data 
fitting constraints (e.g., peak line widths, parts-per-million 
chemical-shift ranges) used in analysis software can affect 
metabolite quantification and lead to systematic bias and er-
rors. A consensus statement for best practices of measuring 
skeletal muscle IMCL and extramyocellular lipids will ap-
pear imminently in the NMR in Biomedicine journal.

Hermien Kan discussed in-depth quantitative fat imag-
ing applications in neuromuscular diseases. Unlike muscle 
biopsy, qualitative scoring, and laboratory muscle function 
tests, quantitative MRI/MRS offers an objective and less 
subject-motivation-dependent  approach to assess muscle 
groups. It is therefore suitable in providing  outcome mea-
sures  for clinical trials   to follow disease progression  and 
to  characterize disease pathophysiology. Muscle functional 
loads, muscle cross-sectional area, fat content, T2 relax-
ometry, diffusion, and metabolism are commonly used 
imaging  biomarkers  in research studies of  neuromuscular 
diseases.111-122 Dr. Kan specifically discussed the concept of 

muscle contractile cross-sectional area, defined as the con-
tractile proportion and the noncontractile proportion of the 
muscle due to the fat replacement. The amount of force that 
can be generated per contractile cross-sectional area is often 
lower in neuromuscular disease.123,124 Standardized imaging 
landmarks are needed for longitudinal multisite neuromuscu-
lar disease imaging studies, as a shift in a single slice location 
between time points can lead to apparent changes in PDFF. 
Along a single muscle, the amount of fat content can differ sig-
nificantly. Recently, several consensus statements and interna-
tional efforts to harmonize efforts and protocols for optimal 
outcome measures in clinical trials have been published.125-127

1.9 | Bone and bone marrow adipose tissue

Dimitrios Karampinos, Stefan Ruschke, and Roland Krug sum-
marized recent work in bone marrow adipose tissue (BMAT), 
bone mineral density, bone quality, and implications in health. 
Bone marrow is composed of white adipocytes, hematopoietic 
cells, and trabeculae. Red marrow has its characteristic color 
due to hemoglobin and high levels of vascularization, and is 
active in hematopoiesis. Yellow marrow has its characteristic 
color due to carotenoids, is minimally involved in hematopoie-
sis, and is largely composed of triglycerides. The BMAT is 
absent at birth, expands during skeletal development, and its 
volume increases with age and menopause. With age, there 
is also a constant conversion of red to yellow marrow and 
bone mass. Differences in BMAT between males and females 
exist.128-130 Before the age of 50, men exhibit higher BMAT 
PDFF in the vertebral bone marrow than women. However, 
this trend reverses with aging and in postmenopausal women.

The BMAT cells originate from the same mesenchy-
mal stem cells as osteoblasts. Therefore, BMAT plays 
an important role in growth, development, and healthy 
aging.131,132 Although originally thought to simply fill the 
space in bone marrow cavities occupied previously by he-
matopoietic cells, BMAT cells are now considered to be in-
volved in bone remodeling and hematopoiesis through their 
effects on neighboring osteoblasts and hematopoietic cells. 
Thus, a balance exists between adipogenesis and osteoblas-
togenesis.133,134 The BMAT and its high PDFF content have 
also been implicated in osteoporosis (deterioration of the 
trabecular bone matrix), spondyloarthritis,135 lower back 
pain, obesity, diabetes and (paradoxically) anorexia ner-
vosa,136-138 and skeletal health (i.e., fragility, fracture pre-
diction). Interventions that increase bone mass have been 
shown to coincide with a decrease in BMAT. The BMAT 
is positively associated with vertebral fracture in men139 
and is negatively associated with failure load and bone 
mineral density.140 Furthermore, the FAC of BMAT, spe-
cifically unsaturation, decreases with osteoporosis141 and 
is negatively associated with the prevalence of fractures.142 
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Notable differential results of BMAT in subjects with glu-
cocorticoid-induced osteoporosis,69 in postmenopausal 
women with and without diabetes,143 and in patients with 
lower back pain as characterized by Modic changes, and 
Pfirrman grading144 have been reported.

2 |  CONCLUSIONS

The imaging community focusing on obesity and metabolic 
disorders is strong and active. This workshop was success-
ful in fostering collaborations and dialog uniting internation-
ally recognized scientists and clinicians who are developing 
and applying advanced MRI/MRS techniques to investigate 
obesity and metabolic dysfunctions with the end-users of 
imaging, including nutritionists, exercise physiologists, and 
epidemiologists. At the conclusion of the workshop, attend-
ees were asked to work as a group to identify and prioritize 
challenges and opportunities for future directions of work. 
Consensus points are summarized in Table 1 as “take home” 
messages from the discussion. The workshop organizers 
would like to also recognize and congratulate the following 
travel stipend recipients: Timothy Bray, Yeshe Kway, Sara 
Saunders, Chuanli Cheng, Hao Peng, Manuel Schneider, 
Chileka Chiyanika, Naomi Sakai, Lena Trinh, Daniela Franz, 
Aashley Sardjoe Mishre, and Dominik Weidlich.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

TABLE S1 List of countries of origin of the workshop 
attendees
TABLE S2 List of workshop speakers and their professions
Supporting Text Additional excerpts from speakers
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