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Abstract
This study examined whether the interaction between the serotonin transporter promoter region (5-
HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms was associated
with hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. A community sample of 144
preschool-aged children was genotyped and exposed to stress-inducing laboratory tasks. Salivary
cortisol was obtained at four time points during a standardized laboratory assessment before and after
stressors involving separation from a parent and frustrating tasks. Children homozygous for the
short-5-HTTLPR allele and carrying the Met-BDNF allele evidenced a significantly lower initial
level of cortisol, followed by a positive increase in cortisol in response to the laboratory stressors.
In contrast, children who were homozygous for the short-5-HTTLPR and the Val-BDNF alleles
evidenced a greater decline in cortisol in response to the laboratory stressors. Findings indicated that
the BDNF gene moderated the association between 5-HTTLPR and children’s biological stress
responses, suggesting that epistatic effects play a role in individual differences in stress regulation,
and possibly genetic vulnerability to stress-related disorders.
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Despite the evidence for a significant genetic contribution to psychiatric diseases, attempts at
identifying candidate genes have been largely unsuccessful (e.g., Munafo, Durrant, Lewis, &
Flint, 2009; Risch et al., 2009). However, more consistent findings have emerged from studies
examining genes associated with intermediate phenotypes of psychiatric diseases (Gottesman
& Gould, 2003), such as increased amygdala activation in response to aversive stimuli
(Munafo, Brown, & Hariri, 2008) and anxiety-related personality traits (Lesch et al.,1996;
Munafo, Clark & Flint, 2005). Likewise, the hypothalamic-pituitary-adrenal (HPA) axis, one
of the body’s main biological systems mediating the neuroendocrine response to stress, has
been hypothesized as an intermediate phenotype for stress-related disorders (Flint & Munafo,
2007; Hasler, Drevets, Manji, & Charney, 2004).

Abnormalities in HPA axis responses to stress have been documented in numerous stress-
related disorders (Ehlert, Gaab, Heinrichs, 2001; McEwen, 2008), including depression
(Burke, Davis, Otte, & Mohr, 2005; Lopez-Duran, Kovacs, & George, 2009), anxiety disorders
(Bremner et al., 2003; Leyton et al., 1996), schizophrenia (Jansen et al., 1998), substance use
disorders (Lovallo, Dickensheets, Myers, Thomas, & Nixon, 2000) and a number of negative
health outcomes (McEwen, 2008). During acute stress, there is an increase in the secretion of
cortisol, an adrenocortical steroid hormone, and in secretions from the corticotropin-releasing
factor. However, chronic HPA axis activation, referred to as allostatic load, has been shown
to lead to disruptions in the regulation and negative feedback of the HPA axis, resulting in
adverse biological and health consequences, including immune system dysfunction, neuronal
damage in the hippocampus, diabetes, hypertension and psychiatric diseases (McEwen,
2008; Meyer, Chrousos, & Gold, 2001).

Twin studies examining the heritability of HPA axis function have demonstrated a significant
hereditary component in basal free cortisol levels (Bartels, de Geus, Kirschbaum, Sluyter, &
Boomsma, 2003) and in response to a laboratory stressor (Federenko, Nagamine, Hellhammer,
Wadhwa, & Wust, 2004). Only recently have studies begun to investigate the influence of
genetic polymorphisms on HPA axis function. One gene that has received considerable
attention in studies examining the genetic vulnerability to life stress, and that has been
hypothesized to influence HPA axis function, is the serotonin transporter (5-HTT) gene,
specifically a polymorphism in the promoter region of this gene (5-HTTLPR) (Caspi et al.,
2003; Uher & McGuffin, 2008). Animal studies have provided evidence that 5-HTT impacts
HPA activity (Li et al., 1999; Barr et al., 2004; Jiang, Wang, Luo, & Li, 2008). In addition,
recent studies in humans have found that the short allele of 5-HTTLPR, which leads to reduced
transcription of 5-HTT relative to the long allele (Lesch et al., 1995), is associated with higher
basal cortisol levels (Chen, Joormann, Hallmayer, & Gotlib, 2009; O’Hara et al, 2007; Wust
et al., 2009) and greater cortisol reactivity (Alexander et al., 2009; Gotlib, Joormann, Minor,
& Hallmayer, 2008; Jabbi et al., 2007). Some findings suggest that this relation differs by
gender and/or specific features of neuroendocrine function (Jabbi et al., 2007; Wust et al.,
2009); however, this remains unclear given the limited data.

In addition to 5-HTT, brain-derived neurotrophic factor (BDNF), a member of the neurotrophin
family of growth factors, is hypothesized to influence the body’s neuroendocrine response to
stress, and is central to models that view neurobiological responses to stress as playing a key
role in understanding the pathophysiology of stress-related disorders (Duman & Monteggia,
2006). BDNF is involved in the development of the central nervous system (CNS) and the
regulation of basic neuronal function (Bath & Lee, 2006), and also protects neurons from the
damaging effects of stress (Bergstrom, Jayatissa, Mork, & Wiborg, 2008). Animal research
has shown that BDNF influences HPA axis activity in rats (Givalois et al., 2004; Naert, Ixart,
Tapia-Arancibia, & Givalois, 2006). These findings suggest that BDNF may be involved in
mechanisms underlying HPA axis function in humans.
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Most attention has focused on a valine (Val) to methionine (Met) substitution at codon 66
(Val66Met) in the BDNF gene. The Met-BDNF allele is associated with reduced BDNF activity
(Chen et al., 2004) and reduced hippocampal volumes (Frodl et al., 2007), and has been linked
to stress-related symptoms in animals (Chen et al., 2006) and humans (Kim et al., 2007;
Wichers et al., 2008) [for conflicting findings, see Lang et al., 2005; Sen et al., 2003]. In
addition, two recent studies in humans have reported an association between the BDNF
Val66Met polymorphism and HPA axis activity in adults. Schule et al. (2006) found that
homozygous Met-BDNF carriers evidenced greater HPA axis activity. Similarly, Shalev et al.
(2009) found that females with a Met-BDNF allele evidenced a greater rise in cortisol is
response to a laboratory challenge than Val-BDNF homozygotes, whereas the opposite was
found for males. Taken together, both 5-HTTLPR and BDNF appear to be possible candidate
genes underlying stress reactivity.

Importantly, 5-HTT and BDNF interact at intracellular and intercellular levels (Duman,
Heninger, & Nestler, 1997). Evidence suggests that these genes have a synergistic influence
on HPA axis functioning. For example, 5-HTT knockout mice bred with BDNF heterozygous
mice evidence increased stress hormones compared to mice with knockouts in only one system
(Ren-Patterson et al., 2005). In addition, two studies found that the combination of the short-5-
HTTLPR allele and the Met-BDNF allele predicted depressive symptomatology in the presence
of environmental adversity in children and adults (Kaufman et al., 2006; Kim et al., 2007);
however, conflicting findings suggest that the Met-BDNF allele has a protective effect on the
impact of the short-5-HTTLPR allele on brain morphology (Pezawas et al., 2008).
Nevertheless, these findings raise the possibility that BDNF may interact with 5-HTTLPR to
influence HPA axis reactivity to stress, thereby rendering certain individuals more vulnerable
to life stress. However, no studies have directly examined this gene-gene interaction on HPA
axis function.

This study aimed to add to the limited research examining the effects of 5-HTTLPR and
BDNF genes on HPA axis reactivity. We were interested in advancing the understanding of
epistasis as it relates to HPA axis functioning, particularly during early childhood, which
appears to be a critical period in the development of the HPA axis system (Gunnar & Vazquez,
2006). We hypothesized that the interaction between 5-HTTLPR and BDNF Val66Met would
be associated with individual differences in children’s cortisol responses to laboratory
stressors. Specifically, we hypothesized that children homozygous for the short-5-HTTLPR
allele and carrying the Met-BDNF allele would exhibit a greater increase in cortisol reactivity
to laboratory stressors than other genotype groups, consistent with findings from animal (Ren-
Patterson et al., 2005) and human studies (Kaufman et al., 2006; Kim et al., 2007).

No prior research has examined the influence of genetic polymorphisms on HPA axis
functioning in young children. Understanding the genetic factors involved in the early
regulation and development of the HPA axis is particularly important as the stress system
affects the development, organization, and plasticity of many neural systems (Gunnar &
Quevedo, 2007), and provides a means to understanding early-emerging developmental
trajectories of adjustment and maladjustment.

Method
Participants

The sample was obtained from a consecutive series of 166 children who were recruited from
a larger community sample participating in a study on temperament and risk for depression (N
= 559). Of the 166 children asked to participate in the cortisol and genetic assessment, 156
children completed both the laboratory salivary cortisol samplings and provided buccal swabs
for genetic analysis. Of the 156 children, 12 children were excluded, yielding a final sample
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of 144 children (50% female): one child whose BDNF genotyping yielded discrepant results
(described below) and 11 children of non-Caucasian or unknown ethnicity were excluded. We
chose to restrict our sample to an ethnically homogenous sample (i.e., Caucasian only) because
ethnicity-related differences in allelic frequencies have been reported for these genes (Kim et
al., 2007; Shimizu, Hashimoto, & Iyo, 2004). Given that the optimal approach to addressing
the effects of ethnicity-related or other population-related genetic differences are controversial,
we chose a conservative approach to limit sources of bias (Hutchison, Stallings, McGeary, &
Bryan, 2004; Wacholder, Rothman, & Caporaso, 2002).1

The sample was recruited using a commercial mailing list. Children between the ages of 3 and
4 years, with no significant medical or developmental disabilities, and who lived with at least
one biological parent were eligible. The mean age of the children from the subsample was 43.2
months (SD = 2.4). Most of the participants came from middle class, two-parent (98.1%)
families. Children were of average cognitive ability as indexed by the Peabody Picture
Vocabulary Test (Dunn & Dunn, 1997; M = 105.04, SD = 14.08) and the Expressive One-Word
Picture Vocabulary Test (Brownell, 2000; M = 100.48, SD = 12.47). The Committees on
Research Involving Human Subjects at Stony Brook University approved and oversaw the
study. Families were compensated financially.

Procedures
The child and one parent attended an initial laboratory session that started at either 1000h
(69.4%) or 1400h. During the initial laboratory visit, children participated with a female
experimenter in 12 standardized tasks selected from the Laboratory Temperament Assessment
Battery (Lab-TAB; Goldsmith, Reilly, Lemery, Longley, & Prescott, 1995), which includes
tasks designed to elicit a range of behavioral and emotional expressions from the child. Parents
were asked to refrain from feeding their child for one hour prior to coming to the laboratory,
and from giving their child caffeinated products for two hours prior, and dairy products 15
minutes prior, to the session, as these factors are known to alter cortisol values (Gunnar &
Talge, 2008).

The timing of the salivary cortisol samples was determined based on findings that salivary
cortisol levels reflect the level of stress experienced in the prior 20–40 minutes (Dickerson &
Kemeny, 2004; Gunnar & Talge, 2008) and on previous studies using similar stress-inducing
paradigms, which have been shown to be sensitive to individual differences in cortisol
reactivity in preschool-age children (Luby et al., 2003; Talge, Donzella, & Gunner, 2008). In
order to obtain a baseline sample, the first sample was collected 20 minutes following
adaptation to the laboratory during which time the child played quietly with the experimenter.
This period of adaptation was based on previous developmental neuroendocrine research in
young children (Gunnar & Talge, 2008; Talge et al., 2008). The second sample was collected
30 minutes following the Stranger Approach task of the Lab-TAB, during which the child was
separated from his/her parent and a stranger entered the room. The third salivary cortisol sample
was taken 60 minutes after the Stranger Approach task, which was 30 minutes after a
qualitatively different frustration-inducing laboratory stressor (i.e., the child not being able to
unlock a transparent box with a desirable toy inside). The final sample was collected 20 minutes
after the final Lab-TAB task, which was another frustration-inducing laboratory stressor.
During this task, the child was left alone with a wrapped empty box to open, under the pretense
that an appealing toy was inside. After two minutes, the experimenter returned and explained
that she forgot to put the child’s gifts in the box and presented the gifts to the child. Lastly,
during a scheduled break in between tasks, the child’s buccal cells were collected for genetic
analysis.

1Findings were similar when non-Caucasian children or children of unknown ethnicity were included in all analyses.
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Measures
Salivary cortisol—Saliva for cortisol determination was obtained by having children dip 2
in. long cotton dental rolls into .025g of cherry Kool-Aid® mix. Children then placed the cotton
in their mouths until saturated. These procedures are known to have little-to-no effect on
cortisol concentrations given the assay procedures used (Talge, Donzella, Kryzer, Gierens, &
Gunnar, 2005). The wet cotton was collected and then expressed into vials for storage at −20
C until assayed. Samples were later shipped to the Biochemistry Laboratory at the University
of Trier, Germany. Samples were assayed in duplicate, using a time-resolved fluorescence
immunoassay with flourometric end point detection (DELFIA). Inter- and intra-assay
coefficients of variation are 7.1% – 9.0% and 4.0% – 6.7%, respectively.

As indicated above, four samples were taken in the laboratory and the timing of the cortisol
samples was based on the presumed stress-inducing qualities of the tasks. The initial sample
was taken after consent and acclimation to the laboratory (0 min), 30 minutes after the Stranger
Approach task (+60 min after the initial sample), 60 minutes after Stranger Approach (+90
min), and 20 minutes after the final Lab-TAB task (+130 min).

Genotyping—Children’s buccal cells were collected for genetic analysis by rubbing the
inside of each participant’s cheek with two swabs (Epicentre Biotechnologies MasterAmp™
Buccal Swab Kits, Madison, WI). Genomic DNA was successfully extracted for all 156
children. For the purposes of another study, two laboratories independently genotyped 92.3%
of the sample. There was 100% agreement for the 5-HTTLPR polymorphism and 1 discrepant
genotype for BDNF Val66Met. This subject was excluded, as were 11 children of non-White
or unknown ethnicity, leaving a sample of 144 children for the present study.

The genotypes for 5-HTTLPR and BDNF were obtained following previously published
protocols (Hunnerkopf, Strobel, Gutknecht, Brocket, & Lesch, 2007; Lesch et al., 1996).
Briefly, for 5-HTTLPR, the polymorphic region was amplified by polymerase chain reaction
(PCR) with oligonucleotide primers: forward-5’-GAG GGA CTG AGC TGG ACA AC-3’;
reverse-5’-GCA GCA GAC AAC TGT GTT CAT C-3’. PCR started with an initial
denaturation at 95° C for 3 minutes, followed by 45 seconds at 95° C, 45 seconds at 61.2° C,
45 seconds at 72° C for 30 cycles, and a final extension at 72° C for 3 minutes. PCR products
were separated on a 3% agarose gel containing ethidium bromide, and bands were visualized
under UV light. For the 5-HTTLPR genotype, the resulting product with 585 bp carries the
short allele (s), whereas the resulting product with the 629 bp carries the long allele (l). Of the
144 children, 28 (19.4%) were homozygous for the short allele (s/s), 71 (49.3%) were
heterozygous (s/l), and 45 (31.2%) were homozygous for the long allele (l/l). The distribution
of genotypes is in Hardy-Weinberg equilibrium. Our primary 5-HTTLPR genotype analyses
compared children who were homozygous for the short allele to those with at least one copy
of the long allele (s/s vs. s/l or l/l), given previous findings that youth homozygous for the s
allele exhibited heightened cortisol reactivity (Gotlib et al., 2008; Jabbi et al., 2007). However,
following Lesch et al. (1996), we also compared participants with at least one short allele to
those who were homozygous for the long allele on HPA axis reactivity (s/s or s/l vs. l/l).

For BDNF, the polymorphic region was first amplified by PCR with oligonucleotide primers:
forward-5’-AAA GAA GCA AAC ATC CGA GGA CAA-3’; reverse-5’-ATT CCT CCA GCA
GAA AGA GAA GAG G-3’. PCR started with an initial denaturation at 95° C for 3 minutes,
followed by 45 seconds at 95° C, 45 seconds at 62° C, 45 seconds at 72° C for 35 cycles, and
a final extension at 72° C for 3 minutes. The resulting 274 bp fragment was incubated for three
hours with the restriction enzyme NlaIII (New England Biolabs, Ipswich, MA). The resulting
digested PCR products were separated on a 5% agarose gel containing ethidium bromide, and
bands were visualized under UV light and designated as Met or Val. In our sample, 94 children
(65.3%) were homozygous for the Val/Val genotype, 41 (28.5%) were heterozygous, and 9
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(6.2%) were homozygous for the Met/Met genotype, which is consistent with reports of the
allelic distribution in White samples (Shimizu et al., 2004); the distribution of genotypes is in
Hardy-Weinberg equilibrium. Analyses contrasted children with at least one Met allele with
those with the Val/Val genotype, as the Met variant is associated with alterations in brain
anatomy, memory, and reduced neuronal BDNF secretory activity than the Val/Val genotype
(Bath & Lee, 2006; Chen et al., 2006).

Potential confounds—Several factors were assessed as potential confounds on children’s
cortisol levels: age, gender, time of laboratory visit, hours of sleep the night prior to the
laboratory sampling, observer-rated activity level during the laboratory visit, and parent-
reported internalizing (α = .84) and externalizing problems (α = .90) as assessed using the Child
Behavior Checklist/1½–5 (CBCL/1½ –5; Achenbach & Rescorla, 2000). Child activity level
(the vigor, energy, and the extent of the child’s physical movements) was coded on a single
scale for each episode of the Lab-TAB and averaged across episodes to examine the influence
of activity level on children’s cortisol levels. Both the internal consistency across episodes
(α = .73) and interrater reliability (intraclass correlation coefficient [ICC] = .85, assessed on a
subsample of 28 cases) were acceptable.

Data analysis strategy
Cortisol data were log10 transformed prior to analysis to correct for positive skew (Gunnar &
Talge, 2008) and treated as the dependent variable. Three cortisol outliers (>44 nmol/L) were
removed from the data: one from the initial sample and two from the final sample.

Estimates of children’s cortisol reactivity based on each child’s four cortisol samples over the
course of the laboratory session were obtained using multilevel growth curve modeling. A two-
level multilevel analysis (Singer & Willet, 2003) was performed to model children’s cortisol
activity in response to the laboratory stressors and to examine associations between genetic
polymorphisms and the components of the growth curve defining individual differences in
cortisol reactivity (i.e., intercept, linear slope, and quadratic curvature). Multilevel or mixed
effects modeling was selected as it accounts for the nested data structure (cortisol levels nested
within individuals) and adjusts for correlated error within each level. The multilevel model
was estimated using the Hierarchical Linear Modeling (HLM) statistical program version 6
(SSI Inc., Lincolnwood, IL).

Two levels of analysis were estimated. Level 1 estimates individual-level change in cortisol
over time. Specifically, we estimated each child’s cortisol levels at arrival to the laboratory
(i.e., intercepts) and his/her change in cortisol in response to the laboratory stressors (i.e., linear
slope and quadratic curvature). Both linear and quadratic growth models were used to examine
a within-subjects regression of an individual’s cortisol reactivity onto the time of each
assessment. Level 2 examines person-level differences in change. On the second level, we
examined person-level genetic predictors and their interaction on cortisol activity, along with
several covariates that may influence cortisol levels. The person-level covariates included: time
of visit, hours of sleep the night prior to the assessment, activity level, and internalizing and
externalizing problems. Any significant covariates were included in the final model to test
whether they account for the relation between genetic polymorphisms and cortisol activity.

Three adjustments were made to the data to ease interpretation of the results. First, time was
anchored at the first cortisol sample (time = 0) so that the cortisol intercepts would reflect the
average individual’s cortisol level at arrival to the laboratory. Second, all Level 2 between-
person variables were centered at their grand mean. Third, we used a pairwise missing data
procedure to handle any missing data at Level 1 so the sample size varied slightly by analysis.
N’s are reported for each analysis.
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Results
Descriptive analyses

Table 1 shows the means, standard deviations, and N’s for the covariates and cortisol levels in
nanomoles per liter (nmol/L) for the total sample and by 5-HTTLPR×BDNF genotypes. We
examined whether the 5-HTTLPR (ss, sl, ll), BDNF (met/met, met/val, val/val), and 5-
HTTLPR×BDNF genotypes differed on any confounding variable listed in Table 1. No
significant differences between genotypes were observed.

Multilevel analyses examining differences in cortisol response activity
As seen in Table 2, the baseline trajectory model demonstrated that there was a significant
linear decrease in cortisol values from arrival to the laboratory to children’s cortisol levels
following the separation stressor (sample 2). Following the separation stressor, children’s
cortisol levels began to rise for sample 3 (30 minutes after a frustrating task) and sample 4 (20
minutes after the last Lab-TAB task), as indicated by a significant positive quadratic effect
(i.e., concave up). The growth curve measuring children’s cortisol reactivity and the salivary
cortisol values, obtained in this investigation, were similar to other studies of preschoolers
using analogous stress-inducing laboratory tasks conducted at similar times of the day (Luby
et al., 2003;Talge et al., 2008), and similar decreases in response to stressors have been
observed in other studies (e.g., Gotlib et al., 2008;Gunnar, Frenn, Wewerka, & Van Ryzin,
2009; for a review, see Gunnar, Talge, & Herrera, 2009).

As seen in Table 2, the random error terms associated with the intercept, linear, and quadratic
components were significant, demonstrating variability among children’s cortisol activity
across the visit, which supports the examination of between-person predictors of each of these
components.

Potential confounds in children’s cortisol activity
Prior to examining the genetic predictors of the growth curve, we examined potential
confounds. As seen in Table 2, time of laboratory visit, age, and hours of sleep were
significantly associated with components of the growth curve, whereas gender, children’s
internalizing and externalizing symptoms and activity level were not significantly associated
with the growth curve. The significant association between time of visit (1000h vs. 1400h) and
the intercept of the growth curve reflects the diurnal rhythm in cortisol levels across the day
(i.e., higher levels after awakening and lower levels later in the day).

Genetic polymorphisms and cortisol reactivity
For each analysis, we included the following Level 2 covariates: time of visit, age, gender, and
hours of sleep. We did not observe any significant interactions with gender. Results were
similar whether hours of sleep were included as a covariate or not; therefore, we removed it
from analyses as it limited the sample size as a result of missing data for that variable. We
examined the main effects of 5-HTTLPR and BDNF on children’s cortisol reactivity. Along
with time of visit, age, and gender, both 5-HTTLPR and BDNF were included at each Level 2
parameter (i.e., intercept, linear slope, quadratic curvature). BDNF was not significantly
associated with any component of the growth curve, and 5-HTTLPR s/s alleles were
significantly associated with a greater positive increase in curvature.

The main effect for 5-HTTLPR was qualified by the interaction between 5-HTTLPR and
BDNF. As seen in Table 3, the interaction between 5-HTTLPR and BDNF was significantly
associated with the intercept, slope and curvature of the growth curve. In order to probe the
interaction, we created four Level 2 dummy variables to capture the following genotypes: (1)
5-HTTLPR s/s and BDNF Val/Met or Met/Met (N=9); (2) 5-HTTLPR s/s and BDNF Val/Val
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(N=19); (3) 5-HTTLPR s/l or l/l and BDNF Val/Met or Met/Met (N=41); (4) 5-HTTLPR s/l or
l/l and BDNF Val/Val (N=75).

As seen in Figure 1, children homozygous for the short-5-HTTLPR allele and carrying the
Met-BDNF allele had significantly lower cortisol levels at arrival compared to children
homozygous for both the short-5-HTTLPR and the Val-BDNF alleles (β = −.169, SE = .081, t
(25) = −2.089, p = .047); children carrying the long-5-HTTLPR and the Met-BDNF alleles (β
= −.261, SE = .078, t(47) = −3.331, p = .002); and children carrying the long-5-HTTLPR and
who were homozygous for the Val-BDNF alleles (β = −.181, SE = .061, t(81) = −2.990, p = .
004);. In addition, children homozygous for the short-5-HTTLPR allele and carrying the Met-
BDNF allele demonstrated continuously increasing cortisol levels across the lab visit as
indicated by significant associations with the slope (β = .238, SE = .092, t(25) = 2.586, p = .
016) and curvature (β = −.053, SE = .019, t(103) = −2.696, p = .009) compared to children
homozygous for both the short-5-HTTLPR and the Val-BDNF alleles.

In contrast, children homozygous for both the short-5-HTTLPR and the Val-BDNF alleles had
greater initially declining cortisol levels followed by an attenuated rise in cortisol compared
to children who were homozygous for the short-5-HTTLPR allele and carrying the Met-
BDNF allele; children carrying the long-5-HTTLPR allele and the Met-BDNF allele; and
children carrying the long-5-HTTLPR allele and who were homozygous for the Val-BDNF
allele. Specifically, children homozygous for the short-5-HTTLPR and the Val-BDNF alleles
had a greater decline in cortisol levels compared to children carrying the long-5-HTTLPR allele
and the Met-BDNF allele, as evidenced by significant associations with the slope (β = −.102,
SE = .085, t(57) = −2.106, p = .039) and curvature (β = .032, SE = .010, t(57) = 3.115, p = .
003) of the growth curve. Likewise, children homozygous for the short-5-HTTLPR and the
Val-BDNF alleles also had a greater decline in cortisol levels compared to children carrying
the long-5-HTTLPR allele and who were homozygous for the Val-BDNF allele, as evidenced
by significant associations with the slope (β = −.125, SE = .043, t(91) = −2.928, p = .005) and
curvature (β = .035, SE = .010, t(91) = 3.943, p = .000) of the growth curve.

No other genotypes significantly differed from one another. The 5-HTTLPR-BDNF interaction
was not observed when the s/s and s/l groups were combined and compared to the l/l group.
Lastly, given that the time of the laboratory session was a significant confound, we repeated
our analyses with participants who attended the 1000h laboratory session only (~ 70% of
sample), and results were similar.

Discussion
This study is the first to demonstrate the epistatic effects of 5-HTTLPR and BDNF on HPA
axis activity. In a community sample of preschoolers, we found that the homozygous short-5-
HTTLPR genotype was associated with different patterns of stress reactivity as a function of
BDNF. Children homozygous for the short-5-HTTLPR and carrying the Met-BDNF allele
evidenced a lower initial cortisol level followed by a positive increase in cortisol from the
laboratory stressors. In contrast, children who were homozygous for both the short-5-
HTTLPR allele and the Val-BDNF allele exhibited a greater decline in cortisol in response to
the laboratory stressor. Children carrying the long-5-HTTLPR genotype did not significantly
differ from one another as a function of BDNF and exhibited flat growth curves, with non-
significant effects. Our findings demonstrated that genetic polymorphisms influenced
individual differences in reactivity and/or regulation of the HPA axis in response to a laboratory
stressor.

In order to understand the differential cortisol response patterns we observed, we need to
address issues that arise when assessing cortisol reactivity in young children (Gunnar & Talge,
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2008; Gunnar, Talge, et al., 2009). In developmental neuroendocrine research, studies have
typically failed to show a mean positive increase in cortisol responses to laboratory stressors
from late infancy throughout middle childhood (Gunnar, Talge, et al., 2009). It has been
hypothesized that this may reflect a stress-hyporesponsive period in the development of the
HPA system. Alternatively, it may be a function of the inadequacy of laboratory stress-inducing
paradigms employed with young children, which are confined by ethical and developmental
constraints (Gunnar, Talge, et al., 2009). Additionally, obtaining pre-stress baseline cortisol
samples in developmental research is particularly difficult as the time required to achieve a
valid baseline in young children remains unclear and young children typically cannot tolerate
long laboratory sessions that incorporate extended adaptation periods (Gunnar & Talge,
2008). We chose to incorporate a developmentally appropriate adaptation period (Talge et al.,
2008); however, it is possible that it was not sufficient and may reflect cortisol responses to
coming to the lab or other unknown factors present prior to the laboratory visit; therefore,
consistent with recent developmental neuroendocrine research, we interpret the initial sample,
along with the subsequent cortisol samples, as part of the continuous reactivity of the HPA
axis (Gunnar & Talge, 2008).

In spite of these methodological issues present in developmental neuroendocrine studies,
researchers have sought to delineate individual differences in children’s cortisol reactivity in
order to identify individuals who may be more vulnerable to heightened or prolonged HPA
activation (Gunnar & Quevedo, 2007; Gunnar & Vazquez, 2006). Specifically, a large body
of research has established the influence of social-environmental factors (parenting, peers,
maltreatment) and within-person factors (i.e., emotions and behaviors) on individual
differences in children’s HPA axis reactivity (Gunnar & Donzella, 2002; Gunnar & Quevedo,
2007). However, none of the prior research has investigated the role of genetic polymorphisms
on children’s HPA axis reactivity, which is particularly important given the significant
heritability of the HPA axis (Bartels et al., 2003; Frederenko et al., 2004), and as both genetic
and environmental factors likely play a role in HPA axis reactivity (e.g., Alexander et al.,
2009).

The study provided some support for our hypothesis that children homozygous for the
short-5-HTTLPR and carrying the Met-BDNF allele would demonstrate greater cortisol
reactivity than other children. This genotype group exhibited a positive cortisol increase in
response to the laboratory stressors, whereas the other genotype groups evidenced decline in
cortisol or were unresponsive to the laboratory stressors. These findings are consistent with
the hypothesis that the HPA axis is a mechanism through which these genes influence stress
sensitivity at the behavioral level (Kaufman et al., 2006; Kim et al., 2007). Interestingly, this
same subgroup of children demonstrated a similar pattern of cortisol responses found in
depressed preschoolers (Luby et al., 2003), which suggests that these responses coincide with
increasing risk. These genes were also related to lower initial cortisol levels during the pre-
stress sampling. While this finding is contrary to our hypothesis, a similar finding has been
reported in animals. Peer-raised 5-HTTLPR heterozygous macaques evidenced blunted pre-
stress HPA-axis activity, as well as increased stress reactivity (Barr et al., 2004). On the one
hand, this may be indicative of abnormalities of the HPA system (Gunnar & Vazquez, 2001).
On the other hand, this differential responsivity may indicate that these genes have greater
plasticity or susceptibility to context. In other words, the ss-5-HTTLPR/Met-BDNF genotype
is less reactive under low stress conditions and more reactive under high stress conditions
(Belsky et al., 2009; Ellis & Boyce, 2008).

We also found that children homozygous for the short-5-HTTLPR and the Val-BDNF allele
evidenced greater decreases in cortisol in response to the stressors. When our findings are put
in the context of gene X environment interactions involving 5-HTTLPR and BDNF (Kaufman
et al., 2006; Kim et al., 2007), it appears that this subgroup may be more resilient to
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environmental adversity. Likewise, a recent study by Gunnar, Frenn, and colleagues (2009)
found that children who were able to maintain normal growth patterns despite exposure to early
life stress evidenced reduced cortisol responsiveness to a laboratory stressor, which they
interpret as a reflection of resiliency. Lastly, children carrying a long5-HTTLPR allele,
regardless of BDNF genotype, were unresponsive to the laboratory stressors, which
complements findings that the long allele is associated with less brain activation to
environmental threat (Munafo et al., 2008).

In this study, the relation of 5-HTTLPR and BDNF genotypes with HPA axis activity in
preschoolers did not differ by gender, as has been previously reported in some adult populations
(Jabbi et al., 2007; Shalev et al., 2009; Wust et al., 2009). Nevertheless, our findings are
consistent with research demonstrating that gender differences in HPA axis function typically
do not emerge until later in development, usually coinciding with puberty (Gunnar & Vazquez,
2006; Gunnar, Wewerka, Frenn, Long, & Griggs, 2009; Kirschbaum, Wust, & Hellhammer,
1992; Knutsson et al., 1997; Kudielka, Buske-Kirschbaum, Hellhammer, & Kirschbaum,
2004). Therefore, it is possible that the influence of genes on HPA axis function may vary
across development, particularly around puberty, and differ by gender.

This study had several limitations. First, our sample was small, which is problematic as our
findings were based on groups stratified by gene-gene interactions. We cannot rule out the
possibility that the results are due to chance; therefore, our findings require replication. The
limited sample size also precluded any examination of three-way interactions with gender or
environmental factors. Third, we did not analyze recently reported subtypes of the 5-
HTTLPR long alleles that may have functional significance for stress reactivity (Wendland,
Martin, Kruse, Lesch, & Murphy, 2006). Fourth, our sample was ethnically homogenous. We
cannot generalize results to economically disadvantaged groups or other racial/ethnic groups.
Fifth, salivary cortisol response to stress was our only measure of HPA axis regulation. Future
research should assess multiple aspects of HPA axis function, including basal cortisol secretion
(e.g., the cortisol awakening response), adrenocorticotropic hormone (ACTH) levels, and
dexamethasone nonsuppression. Lastly, the study was cross-sectional. Long-term follow-up
is necessary to test the hypothesis that these factors contribute to stress sensitivity or resiliency
at the behavioral level and in the development of stress-related disorders.

In sum, a large body of research has demonstrated that stress and the HPA axis play a critical
role in numerous psychiatric and medical diseases (McEwen, 2008); therefore, understanding
factors that influence HPA axis function, specifically stress sensitivity, is of critical importance.
This study is the first to demonstrate the epistatic effects of 5-HTTLPR and BDNF on HPA
axis reactivity to stress and is also the first to investigate the genetics of HPA axis functioning
in very young children. The presence of these associations during early childhood is particularly
noteworthy, as exposure to adversity during early development appears to contribute to lasting
neurobiological changes that increase risk for psychopathology in adulthood (Brown & Harris,
2008; Heim, Newport, Mletzko, Miller, & Nemeroff, 2008). At the same time, other early
environmental factors, such as nurturing care-giving environments, may protect developing
neurobiological systems, even in those at high genetic risk (Kaufman et al., 2006). Future
research should work to identify both genetic and environmental factors contributing to the
development of stress regulation across the lifespan, which may help delineate how stress
increases disease susceptibility in certain individuals.
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Figure 1.
Multilevel regression coefficients indicating children’s log10 transformed cortisol levels in
nanomoles/Liter (nmol/L) as a function of serotonin transporter gene polymorphism (5-
HTTLPR) and brain-derived neurotrophic factor (BDNF) genotypes (s indicates short allele
and l indicates long allele; Val indicates valine and Met indicates methionine). Regression
coefficients were adjusted to account for time of cortisol data collection. Bars reflect standard
error of measurement.
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Table 3

Multilevel model of associations between 5-HTTLPR and BDNF genotypes and children’s cortisol activity

Fixed effect β SE T P

Cortisol intercept .466 .024 19.297 .000

   Time of visit −.081 .050 −1.622 .125

   Age −.014 .008 −1.638 .103

   Gender −.078 .051 −1.541 .125

   5-HTTLPR .004 .071 .063 .951

   BDNF .087 .066 1.326 .187

   5-HTTLPR×BDNF −.301 .113 −2.656 .009

Cortisol linear slope −.087 .016 −5.580 .000

   Time of visit .038 .035 1.085 .280

   Age .007 .005 1.365 .175

   Gender .040 .033 1.210 .229

   5-HTTLPR −.140 .043 −3.259 .002

   BDNF −.025 .038 −.642 .521

   5-HTTLPR×BDNF .272 .102 2.670 .009

Cortisol quadratic curvature .030 .004 8.630 .000

   Time of visit −.010 .007 −1.416 .159

   Age −.001 .001 −.838 .404

   Gender −.010 .007 −1.332 .185

   5-HTTLPR .038 .009 4.226 .000

   BDNF .006 .009 .649 .517

   5-HTTLPR×BDNF −.060 .023 −2.641 .010

Random effect of unconditional
growth curve

Variance
Component

SD χ2 P

   Level 1 intercept .076 .275 985.294 .000

   Linear slope .023 .152 377.517 .000

   Quadratic curvature .001 .034 360.028 .000

Note. N = 144; for t tests, df = 137. All fixed effects are with robust standard errors. All Level 1 predictors are uncentered; Level 2 variables are grand
mean centered. SE = standard error; SD = standard deviation; Time of visit: 1000h = 0 and 1400h = 1; Gender: Males = 0 and Females = 1; 5-
HTTLPR = serotonin transporter promotor region polymorphism: s/l and l/l = 0 and s/s = 1; BDNF = brain-derived neurotrophic factor Val66Met
polymorphism: Val/Val = 0 and Val/Met and Met/Met = 1.
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