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Abstract 

Pluripotent stem cells provide the opportunity to study human cardiogenesis in vitro, and are a 

renewable source of tissue for drug testing and disease models, including replacement 

cardiomyocytes that may be a useful treatment for heart failure.  Typically, differentiation is 

initiated by forming spherical cell aggregates wherein an extraembryonic endoderm (ExE) layer 

develops on the surface.  Given that interactions between endoderm and mesoderm influence 

embryonic cardiogenesis, we examined the impact of human embryonic stem cell (hESC) 

aggregate size on endoderm and cardiac development.  We first demonstrated aggregate size 

control by micropatterning hESC colonies at defined diameters and transferring the colonies to 

suspension.  The ratio of endoderm (GATA-6) to neural (PAX6) gene and protein expression 

increased with decreasing colony size.  Subsequently, maximum mesoderm and cardiac 

induction occurred in larger aggregates when initiated with endoderm-biased hESCs (high 

GATA-6:PAX6), and in smaller aggregates when initiated with neural-biased hESCs (low 

GATA-6:PAX6).  Additionally, incorporating micropatterned aggregates in a stirred suspension 

bioreactor increased cell yields and contracting aggregate frequency.  We next interrogated the 

relationship between aggregate size and endoderm and cardiac differentiation efficiency in size-

controlled aggregates, generated using forced aggregation, in defined cardiogenic medium.  An 
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inverse relationship between endoderm cell frequency (FoxA2+ and GATA6+) and aggregate size 

was observed, and cardiogenesis was maximized in mid-size aggregates (1000 cells) based on 

frequency of cardiac progenitors (~50% KDRlow/C-KITneg) on day 5 and cardiomyocytes (~24% 

cTnT+) on day 16.  To elucidate a relationship between endoderm frequency and cardiac 

differentiation efficiency, aggregates were initiated with varying frequencies of ExE progenitors 

(SOX7-overexpressing hESCs).  Maximum cardiomyocyte frequencies (~27%) occurred in 

aggregates formed with 10 to 25% ExE progenitors.  These findings suggest a geometric 

relationship between aggregate size and ExE differentiation efficiency subsequently impacts 

cardiomyocyte yield, elucidating a mechanism for endogenous control of cell fate through cell-

cell interactions in the aggregate.  
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THE MOTIVATION FOR STUDYING CARDIAC INDUCTION OF HUMAN 
PLURIPOTENT STEM CELLS 

The excitement surrounding research on human pluripotent stem cells (hPSCs) is largely based 

on the expectation that these cells may one day provide a renewable source of human tissue for 

cell-based therapies and for testing disease models.  Equally as important, however, is the 

opportunity these cells present for studying human embryonic development in vitro, which for 

ethical reasons would not otherwise be possible in the human system.  Insight into stem cell 

differentiation to cells belonging to the cardiovascular system is of particular interest because 

currently the only effective treatment for heart failure is organ transplantation.  The regenerative 

capacity of the heart is limited, and heart failure is associated with massive irreversible loss of 

cardiomyocytes.  Consequently, cell transplantation is emerging as a potential alternative to 

organ transplantation (Dimmeler, Zeiher et al. 2005; Laflamme and Murry 2005; Rubart and 

Field 2006; Zhu, Hauch et al. 2009).  A number of cell types have been under investigation for 

their potential to integrate into the heart and improve function following a myocardial infarction 

including stem cell-derived cardiomyocytes (Caspi, Huber et al. 2007; Laflamme, Chen et al. 

2007; Leor, Gerecht et al. 2007; van Laake, Passier et al. 2007), skeletal myoblasts (Menasche 

2003; Menasche 2004), and bone marrow-derived cells (Orlic, Kajstura et al. 2001).  The ideal 

donor cell type must have the capacity to replace the lost tissue function of the damaged heart 

either by integrating and contracting synchronously with host cardiomyocytes or by promoting 

the healing of the injured host tissue by paracrine factors (Laflamme, Zbinden et al. 2007).  

Given that skeletal myoblasts and bone marrow–derived cells are relatively easy to obtain, 

especially autologously, they have been the most extensively investigated in humans but the 

results of these clinical trials have been inconclusive (Meyer, Wollert et al. 2006; Abdel-Latif, 

Bolli et al. 2007; Menasche 2008) and initial assertions about the cardiomyogenic potential of 

these cell types have recently been challenged (Reinecke, Poppa et al. 2002; Balsam, Wagers et 

al. 2004; Murry, Soonpaa et al. 2004; Nygren, Jovinge et al. 2004).  HPSCs are a promising 

candidate cell source because differentiation to cardiomyocytes has been widely demonstrated as 

well as differentiation to other non-cardiac cell-types present in the heart (Kehat, Kenyagin-

Karsenti et al. 2001; Xu, Police et al. 2002; Mummery, Ward-van Oostwaard et al. 2003).  

Additionally, undifferentiated hPSCs expand indefinitely and hPSC-derived cardiomyoyctes 

have a high proliferative capacity (Xu, Police et al. 2002; McDevitt, Laflamme et al. 2005).  
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Finally, a number of reports have demonstrated stable integration of hPSC-derived 

cardiomyocytes following transplantation into infarcted rodent hearts, resulting in preserved 

contractile function (Caspi, Huber et al. 2007; Laflamme, Chen et al. 2007; van Laake, Passier et 

al. 2007).   

Despite the potential of hPSCs, a number of challenges must still be addressed before cell 

transplantation is a viable approach to treating heart failure.  While human embryonic stem cell 

(hESCs) differentiation has been demonstrated in scalable culture systems (Gerecht-Nir, Cohen 

et al. 2004; Cameron, Hu et al. 2006), no reports have been made showing significant cardiac 

yields and robust protocols for large scale production of relatively pure hPSC-derived 

cardiomyocytes are still in development.  A second challenge that remains is poor cell survival 

and integration following cell transplantation into the non-vascularized, pro-inflammatory 

environment of the infarcted region (Caspi, Huber et al. 2007; Laflamme, Chen et al. 2007; van 

Laake, Passier et al. 2007).  To resolve this issue a number of approaches are being explored 

including the incorporation of pro-survival factors during cell injection (Laflamme, Chen et al. 

2007), and tissue engineering strategies such as transplanting biodegradable scaffolds seeded 

with cardiomyocytes (McDevitt, Woodhouse et al. 2003), using biocompatible hydrogels as 

vehicles for cell delivery (Christman, Vardanian et al. 2004; Martens, Godier et al. 2009), or 

producing functional cardiac grafts (Iyer, Radisic et al. 2007; Khademhosseini, Eng et al. 2007; 

Radisic, Park et al. 2007).   

Efficient hPSC differentiation towards cardiomyocytes at the purity and scale required for 

therapeutic applications remains elusive.  In attempting to realize the potential for stem cell 

based therapy to treat heart failure, research to date has focused on improving cardiac induction 

efficiency during hPSC differentiation largely by exploiting what is known about cardiac 

development during embryogenesis in other animal systems.  However, progress made over the 

last 5 years in the development of robust systems for hESC maintenance and cardiac 

differentiation has established a framework from which it becomes possible to assay a wide 

range of concepts specific to human cardiogenesis.    
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PLURIPOTENT STEM CELLS 

HESC maintenance 

Traditionally, the term pluripotent stem cell referred to embryonic stem cells (ESCs), but in 2006 

it was demonstrated that adult cells could also be genetically manipulated to take on a pluripotent 

state (Takahashi and Yamanaka 2006).  By definition, pluripotent stem cells are able to self-

renew while maintaining the capacity to develop into cells of the three primary germ layers - 

ectoderm, mesoderm, and endoderm – from which all somatic tissues develop.  Consequently, 

pluripotent stem cells are both a promising donor source for cell therapy, potentially providing 

sufficient cell numbers for transplantation into a variety of organs, as well as a useful tool to 

study developmental biology. 

Human (h)ESCs are derived by isolating cells from the inner cell mass (ICM) of an embryo at 

the pre-implantation blastocyst stage and plating the isolated cells onto a feeder layer of cells that 

support pluripotency, typically mouse embryonic fibroblast (MEF) feeder cells (Thomson, 

Itskovitz-Eldor et al. 1998; Reubinoff, Pera et al. 2000).  Human ESCs express the transcription 

factor Oct4 and form colonies that are relatively flat and circular with a distinct border 

(Reubinoff, Pera et al. 2000).  Continuous growth of hESCs requires the presence of a feeder 

layer, or coating the dishes with MatrigelTM, an extracellular matrix (ECM) preparation, and 

growing the cells in medium that is either feeder-conditioned (Xu, Inokuma et al. 2001), or 

supplemented with cytokines including fibroblast growth factor (FGF)-2 and transforming 

growth factor (TGF)-β (Amit, Shariki et al. 2004; Wang, Zhang et al. 2005; Wang, Li et al. 

2005; Xu, Peck et al. 2005).  

Human ESC colonies typically have to be passaged every 4 to 7 days to maintain pluripotency.  

One characteristic of hESCs is that they require cell-cell contact and paracrine and autocrine 

signaling for survival (Pyle, Lock et al. 2006), and as a result exhibit poor viability upon 

dissociation to single cells.  Consequently, hESC passaging has routinely been performed by 

partial dissociation of hESC colonies using a combination of mechanical and enzymatic 

dissociation (Thomson, Itskovitz-Eldor et al. 1998; Amit, Carpenter et al. 2000; Reubinoff, Pera 

et al. 2000).  This passaging method produces hESC maintenance cultures containing colonies in 

a wide range of sizes, and is also a source of variability between passages, as it affects the local 
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cellular microenvironment.  It has been demonstrated that hESC pluripotency is influenced by 

endogenous signaling which takes place within colonies and can be modulated by varying colony 

size (Peerani, Rao et al. 2007).  In the absence of exogenous cytokines used to maintain 

pluripotency, hESCs in regions of high localized cell density (defined as the number of cells per 

300 μm radius) retain Oct4 expression.  It was shown that maintenance of pluripotency in hESC 

colonies is dictated by the interplay of signals secreted by undifferentiated hESCs and their 

differentiated progeny, which express markers characteristic of extra-embryonic endoderm 

(ExE).  Enzyme linked immunosorbent assay (ELISA) analysis of ExE- and hESC-conditioned 

medium (CM) revealed that ExE cells secrete bone morphogenetic protein (BMP)-2 at levels six 

times higher than hESCs, and that growth differentiation factor-3 (GDF-3), a BMP antagonist, is 

secreted by hESCs but was not detected in ExE-CM.  ExE secretion of BMP-2 inhibits hESC 

self-renewal via Sma mothers against decapentaplegic (Smad1) signaling.  In larger colonies, 

there is a higher local cell density of hESCs which translates to increased BMP antagonist (GDF-

3) activity, thereby promoting pluripotency.   

Developments have been made to minimize or eliminate this source of variability.  In one 

approach micro-contact printing is used to pattern ECM onto tissue culture substrates, thereby 

specifying hESC colony size and geometry (Peerani, Rao et al. 2007; Lee, Peerani et al. 2009).  

In this method, hESCs are enzymatically dissociated to single cells and plated on the ECM-

micropatterned surface at extremely high cell densities so that cells reaggregate and adhere to the 

ECM islands at a high density.  Another method employing microscale technology involves 

patterning surfaces with microwells in which hESCs can be maintained as 3-dimensional (3-D) 

aggregates (Khademhosseini, Ferreira et al. 2006).  The aggregates grow to a maximum size, 

defined by the dimensions of the microwells.  However, these systems have been strictly used to 

demonstrate the capability to control colony size and to examine the effects of controlling colony 

size, and for technical reasons have not been used for long term maintenance of hESC cultures.  

Some of the more recently derived cell lines, such as the CA1, CA2, and HES2 cell lines, have 

been adapted for single cell enzymatic dissociation and therefore, in these lines, passage to 

passage variability arising from partial colony dissociation has been reduced. 
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Differentiation of hESCs 

In vitro ESC differentiation is routinely carried out by forming embryoid bodies (EBs) which are 

three dimensional aggregates of hESCs in suspension.  Aspects of embryonic development are 

recapitulated within the EB, wherein cells of the three embryonic germ layers - endoderm, 

ectoderm and mesoderm - develop (Doetschman, Eistetter et al. 1985; Itskovitz-Eldor, 

Schuldiner et al. 2000; Xu, Inokuma et al. 2001) and subsequently differentiate into committed 

cell types including neurons, glia, skeletal and cardiac muscle cells, hematopoietic cells, hepatic 

cells and insulin-secreting (pancreatic) cells (Itskovitz-Eldor, Schuldiner et al. 2000; Xu, 

Inokuma et al. 2001).   

Controlling aggregate size has been one of the major challenges in EB-mediated hESC 

differentiation.  As previously discussed single cell dissociation of hESCs is avoided and 

therefore human EBs have typically been initiated by partial enzymatic digestion of hESC 

colonies, similar to the technique used to passage hESC colonies (Kehat, Kenyagin-Karsenti et 

al. 2001; Xu, Police et al. 2002).  This method of EB formation leads to variability in EB size 

within cultures as well as average EB size between cultures (Itskovitz-Eldor, Schuldiner et al. 

2000; Weitzer 2006) and consequently makes it difficult to achieve reproducible, consistent, and 

efficient hESC differentiation.  Attempts to control human EB size have involved either forced 

aggregation of defined cell numbers (Ng, Davis et al. 2005; Burridge, Anderson et al. 2007; 

Ungrin, Joshi et al. 2008) or the use of microwells to form 3-D hESC aggregates of specified 

dimensions which can then be transferred to suspension to form mono-disperse EBs 

(Khademhosseini, Ferreira et al. 2006; Mohr, de Pablo et al. 2006; Mohr, Zhang et al. 2009). 

In the first published report on EBs formed by forced aggregation of defined numbers of hESCs, 

it was observed that EB size influenced hematopoietic differentiation, with a minimum of 500 

cells required for efficient blood formation and 1000 cells for optimum erythropoiesis (Ng, Davis 

et al. 2005).  Building on this EB formation strategy, subsequent studies examined the effect of 

input hESC status and medium components on the efficiency of forced cell aggregation EB 

formation (Ungrin, Joshi et al. 2008).  It was observed that aggregate formation efficiency was 

inefficient when initiated with hESC input populations highly expressing Oct4 protein, a marker 

of pluripotency.  Incorporating a “pre-differentiation” step, in which maintenance medium is 

removed from hESC colonies and replaced with serum-containing medium 72 hours prior to EB 
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formation, led to a significant improvement in aggregation efficiency approaching 100%.  This 

observation highlighted a separate issue that affects all differentiations studies.  Variable input 

populations, with respect to expression levels of pluripotency markers as well as differentiation-

associated markers, are a result of variability of hESC colony size, which is in large part a result 

of passaging hESC colonies as cell clumps (Peerani, Rao et al. 2007).  It was observed that the 

“pre-differentiation” step could be eliminated and efficient aggregation of hESCs could still be 

achieved in the presence of p160-Rho associated coiled-coil kinase (ROCK) inhibitor Y-27632.  

EBs formed via forced aggregation are not only size-specified but also display consistent shape, 

allowing for the reproducible observation of tissue specific spatial organization within the EB.  

EBs formed by forced aggregation develop two distinct regions, an inner core that expresses 

Oct4, and a disordered outer layer that expresses a number of markers associated with primitive 

endoderm (Ungrin, Joshi et al. 2008). 

An alternate means to control EB size uses microwell patterned surfaces.  This method involves 

passaging hESC colonies as small clumps into size-specified microwells that have been either 

coated with Matrigel (Mohr, de Pablo et al. 2006; Mohr, Zhang et al. 2009) or MEFs 

(Khademhosseini, Ferreira et al. 2006) and maintaining undifferentiated hESCs as 3-D colonies.  

The colonies reach a maximum size defined by the volume of the microwell used, and can then 

be transferred to suspension in differentiation medium to develop as size-specified EBs.  EBs 

cultured in this system have been proven to contain cells expressing proteins associated with 

each of the embryonic germ layers (Mohr, de Pablo et al. 2006), and have also been used to 

examine the effect of EB size on cardiac lineage induction from hESCs (Mohr, Zhang et al. 

2009). 

EARLY EVENTS IN EB DEVELOPMENT PARALLEL GASTRULATION DURING 
EMBRYOGENESIS 

In the eight-cell morula-stage embryo, a process called compaction - in which inner blastomeres 

form a tight ball - produces the ICM (Figure 1.1A).  Meanwhile blastomeres located on the 

exterior of the morula flatten and form the trophoblast.  Following compaction, a fluid-filled 

cavity called the blastocoele develops inside the embryo (blastocyst stage), and ICM in contact 

with the blastocoele differentiates to primitive endoderm (PE) which then either differentiates to 

visceral endoderm where it is in contact with the ICM or parietal endoderm where it is in contact 
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with the trophoblast.  At this stage, the remaining cells within the ICM begin to differentiate into 

an epithelial layer that is referred to as the epiblast or primitive ectoderm (Johnson and Ziomek 

1981; O'Shea 2004).  Development of the three primary germ layers occurs in the epiblast by a 

process called gastrulation (Figure 1.1B).  Gastrulation is initiated in the posterior epiblast by 

movement of cells through the primitive streak (PS) where cells undergo an epithelial to 

mesenchymal transition, exiting the PS as mesoderm in the proximal-anterior region of the 

epiblast and as definitive endoderm in the distal-anterior region (Gadue, Huber et al. 2005; Rust, 

Sadasivam et al. 2006; Murry and Keller 2008).   

ICM

B
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B
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B

ZP
T

PE

morula early blastocyst

late blastocyst

E

VE
ParE

Post-implantation 
embryo (d5.5)
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B

Adapted from O’Shea. Biol Reprod. 2004 
Dec;71(6):1755-65. 

Murry & Keller. Cell. 2008 Feb 
22;132(4):661-80 

 
Figure 1.1:  Development of the early mouse embryo.  (A)  In the morula, the inner (blue) cells will form ICM 
and the outer (pink) cells will form trophoblast.  In the early blastocyst, a cavity (the blastocoele, B) forms between 
the inner cell mass and the trophoblast; the embryo is still enclosed in the zona pellucida (ZP).  By the late 
blastocyst stage, the ICM cells in contact with the blastocoele differentiate into the primitive endoderm (PE), which 
later forms visceral endoderm on the epiblast side and parietal endoderm on the trophoblast side. At implantation the 
proamniotic cavity begins to form within the ICM.  Cells of the ICM differentiate into an epithelial layer, the 
epiblast, (E).  (B)  Gastrulation in the mouse embryo.  Shown are the posterior region of the primitive streak that 
expresses the marker Brachyury (blue), and the anterior region of the primitive streak that coexpresses both 
Brachyury and Foxa2 (red). At the top of the embryo, epiblast cells are shown entering the primitive streak (thick 
black arrows). The yellow/orange region depicts newly formed mesoderm, and migration of these cells from the 
primitive streak is indicated by thin black arrows. Also depicted is the movement of the earliest definitive endoderm 
cells (red arrow at bottom). 
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EBs are thought to mimic the environment of the peri-implantation embryo where interactions 

between various cell types facilitate inductive events.  Similar to the embryo where an epithelial 

layer of PE forms and contacts the epiblast, one of the earliest events during EB development is 

the organization of the cells into an epithelial layer of PE surrounding an inner core of epiblast-

like pluripotent cells (Coucouvanis and Martin 1995; Abe, Niwa et al. 1996; Coucouvanis and 

Martin 1999), followed by the expression of gene and protein markers that are associated with 

the PS such as Brachyury (Kispert and Herrmann 1994) and Mixl1 (Hart, Hartley et al. 2002).  

Many proteins involved in commitment to the endoderm and mesoderm lineage in the PS, such 

as TGF-β, Nodal and Wingless Int (Wnt) (Conlon, Lyons et al. 1994; Hogan 1996; Yamaguchi 

2001), are the same and it is different levels of activation and inhibition of pathways associated 

with these proteins that regulate germ layer induction (Gadue, Huber et al. 2005).  In terms of 

timing, the expression of genes associated with the PS and germ layer commitment in the EB 

recapitulates gastrulation in the embryo (St-Jacques and McMahon 1996; Dvash and Benvenisty 

2004; Keller 2005; Murry and Keller 2008).  However, while gastrulation occurs in a precise, 

spatially organized manner during embryogenesis, differentiation of PS-like cells in the EB is 

spatially chaotic.  It is believed that in the embryo distinct signaling environments exist that are 

defined by location in relation to extraembryonic and embryonic tissues which secrete signals 

that direct lineage commitment (Rust, Sadasivam et al. 2006; Murry and Keller 2008).  However, 

in contrast to the epiblast, EBs lack polarity and as a result spatially disorganized germ layer 

induction may be due to the lack of position-specific cues.  

PARALLELS BETWEEN CARDIOGENESIS IN THE EMBRYO AND IN THE EB 

During embryogenesis, the heart is the first organ to fully form after gastrulation (Menard, Grey 

et al. 2004), when oxygen delivery by diffusion is no longer sufficient in the growing embryo.  

Forming the anatomical structure of the heart involves the precise spatiotemporal coordination of 

signals from neighboring tissues that promote or inhibit cardiac specification, proliferation and 

migration of uncommitted precardiac mesoderm.  Inductive cues originate from the anterior 

primitive endoderm (Sugi and Lough 1994; Schultheiss, Xydas et al. 1995; Schultheiss, Burch et 

al. 1997; Schultheiss and Lassar 1997) and lateral regions of the embryo (Schultheiss, Xydas et 

al. 1995; Schultheiss, Burch et al. 1997; Schultheiss and Lassar 1997), while cardiogenesis is 

suppressed in the adjacent mesoderm by factors secreted by the neuronal tube (Climent, Sarasa et 

al. 1995; Schultheiss, Burch et al. 1997; Raffin, Leong et al. 2000).  Members of the TGF-β 
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superfamily (TGF-β, nodal, activin and BMP) and the FGF family are known cardiogenic 

morphogens that activate cardiac transcription factors (Menard, Grey et al. 2004).  Wnt-related 

signals and members of the Wnt family are also important for cardiac induction (Sachinidis, 

Fleischmann et al. 2003), by playing both a repressive role, via the canonical Wnt/β-catenin 

pathway, and an inductive role via the non-canonical Wnt/Ca2+ and c-Jun N-terminal kinase 

pathways (Povelones and Nusse 2002). 

Inductive signals from the anteriolateral(embryogenesis)/primitive(EB) endoderm 

During embryonic development, precardiac mesoderm is in close contact with endoderm.  A 

number of studies across various species have demonstrated that interactions between endoderm 

and overlying mesoderm are involved in cardiac differentiation (Orts Llorca 1963; Jacobson and 

Duncan 1968; Sugi and Lough 1994; Nascone and Mercola 1995; Schultheiss, Xydas et al. 1995) 

and, more specifically, play an inductive role as evidenced by the generation of beating cardiac 

tissue in cocultures of non-cardiogenic embryonic tissue explants and endodermal tissue 

(Schultheiss, Xydas et al. 1995).  The inductive characteristic of the endoderm can be attributed 

to TGF-β superfamily and FGF family growth factors, expressed by anterior lateral endoderm, 

that have been reported to be involved in cardiac differentiation.   

The TGF-β superfamily, involved in a wide range of developmental processes, includes TGF-βs, 

activins, nodals and BMPs.  Binding of TGF-β family proteins to their receptors leads to 

activation of intracellular mediators of the Smad family.  Smad2 and Smad3 transduce signals 

for TGF-β-like ligands, such as TGF-β, activin and nodal while Smad1, 5 and 8 transduce 

signals for BMP-like ligands (Lagna, Hata et al. 1996; Candia, Watabe et al. 1997; Shi, Hata et 

al. 1997).  Upon phosphorylation, these receptor-regulated (R)-Smads form complexes with 

Smad4, which are subsequently translocated to the nucleus to regulate activation of transcription 

factors, such as cardiac transcription factors Nkx-2.5, GATA-4, and Tbx factors (Massague and 

Chen 2000; Schlange, Andree et al. 2000; Moustakas, Souchelnytskyi et al. 2001; Attisano and 

Wrana 2002; Harvey 2002; Wakefield and Roberts 2002; Attisano and Labbe 2004; Menard, 

Grey et al. 2004).  FGF family proteins (FGF-2 and FGF-4) have been shown to support 

cardiomyocyte induction during embryonic development mainly by stimulating proliferation of 

mesodermal cells in vitro (Mima, Ueno et al. 1995; Lough, Barron et al. 1996; Schultheiss and 

Lassar 1997; Ladd, Yatskievych et al. 1998; Barron, Gao et al. 2000; Kawai, Takahashi et al. 
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2004).  During embryogenesis, these growth factors, originating from the anterior and lateral 

endoderm, synergize in a precise spatial and temporal program to support and induce 

cardiogenesis in neighboring precardiac mesoderm (Figure 1.2). 

Studies performed using avian embryo explants demonstrated the coordinated timing of signals 

from the endoderm that direct heart formation during embryogenesis (Ladd, Yatskievych et al. 

1998).  TGF-β1 and activin appear to have a similar effect in inducing cardiomyocyte 

differentiation in posterior epiblast tissue (including regions not fated to form heart) 

(Yatskievych, Ladd et al. 1997; Ladd, Yatskievych et al. 1998), but not in non-cardiogenic 

mesoderm (Schultheiss, Burch et al. 1997; Ladd, Yatskievych et al. 1998).  Conversely, BMP-2 

and -4, in combination with FGF-4, induce cardiac differentiation of non-cardiogenic mesoderm 

(Lough, Barron et al. 1996; Schultheiss and Lassar 1997; Ladd, Yatskievych et al. 1998; Barron, 

Gao et al. 2000), but fail to support cardiogenesis in posterior epiblast.  FGF-2 is expressed in 

both endoderm as well as myocardial cells of the developing embryo (Parlow, Bolender et al. 

1991; Sugi, Sasse et al. 1993).  Studies indicate that FGF is necessary for proliferation of 

precardiac mesoderm given that hybridization of FGF-2 mRNA to a complementary 

oligodeoxynucleotide, on day 4 of explant cultures, results in a dramatic reduction of 

proliferating myocardial cells, but not when exogenous FGF-2 was added with the 

oligodeoxynucleotide (Mima, Ueno et al. 1995).  From these findings, it appears that directing 

pre-gastrula epiblast to terminally differentiated cardiomyocytes consists of TGF-β or activin 

signaling during early embryonic development to specify the mesendoderm lineage, followed by 

BMP signaling to induce terminal cardiomyocyte differentiation in precardiac mesoderm, which 

is supported by FGF’s role in precardiac mesoderm proliferation. 

Observations on the cardiogenic effects of these growth factors in the embryo have been 

reinforced in the ESC differentiation system.  EB cultures initiated with ESCs that have been 

primed with BMP-2 or TGF-β for 24 hours express higher levels of mRNA for brachyury 

(mesodermal marker) and cardiac transcription factors Nkx-2.5 and myocyte enhancer factor 2C 

(Mef2c), and exhibit larger beating areas and increased α-actinin staining (Behfar, Zingman et 

al. 2002).  It has also been shown that a combination of FGF-2 and BMP-2 can efficiently 

enhance cardiac induction of ESC differentiation cultures (Kawai, Takahashi et al. 2004).  
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Similar to cardiogenesis in the developing embryo, it is expected that the order and timing of 

signals is critical during ESC differentiation to cardiomyocytes.   

Nodal, a TGF-β protein that signals by binding activin receptors via membrane-bound Cripto 

protein (Reissmann, Jornvall et al. 2001; Yeo and Whitman 2001), appears to play a role in 

cardiac specification during early differentiation.  Timing of Nodal signaling is important, as 

endogenous expression of its cofactor Cripto is detected at the earliest stages of ESC 

differentiation and is no longer present at stages where EB contractions are observed (Parisi, 

D'Andrea et al. 2003).  In kinetic studies using Cripto-/- ESCs it was demonstrated that addition 

of recombinant Cripto during the first 2 days of culture restored the differentiation ability of 

Cripto-/- ESCs, whereas addition at later time-points led to dramatically reduced cardiomyocyte 

differentiation (Xu, Liguori et al. 1998; Parisi, D'Andrea et al. 2003).  Impaired cardiac induction 

and differentiation of ESCs upon addition of Nodal antagonist demonstrates that Cripto signaling 

is Nodal-dependent.  It should be noted that specification of the cardiac fate seems to occur at the 

expense of the neural fate, given that addition of Cripto protein to Cripto-/- ESCs during the first 

2 days restores cardiomyocyte differentiation and results in a dramatic inhibition of neural 

differentiation, while Cripto addition from day 3 and on results in progressive impairment of 

cardiac differentiation and increases differentiation to a neural phenotype (Parisi, D'Andrea et al. 

2003).  

BMP signaling impacts cardiac differentiation in EBs in a temporal manner.  In a time course 

study investigating different time windows of noggin (a BMP inhibitor) exposure on incidence of 

EB beating, it was observed that depending on the developmental stage of the differentiation 

culture BMP signaling can have both a positive and negative effect on the efficiency of cardiac 

induction (Yuasa, Itabashi et al. 2005).  Inhibiting BMP from 3 days prior to EB formation until 

day 3 of differentiation yielded a 95% incidence of beating EBs, whereas initiating BMP 

inhibition upon EB formation or later reduced beating incidence to less than 40%.  This 

observation is consistent with what has been determined in posterior epiblast and precardiac 

mesoderm explants, where it has been established that BMP signaling is required for terminal 

cardiomyocyte differentiation but appears to inhibit mesoderm specification during early 

differentiation. 
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An assessment of the data indicates that precardiac cells interpret BMP signals in a cell-type 

specific manner.  As has been outlined previously, TGF-β/activin/Nodal proteins signal via 

different Smad mediators than BMP proteins.  BMP inhibition of TGF-β/activin/Nodal activity 

during early cardiac differentiation may be due to competition for Smad4 by Smad2/3 (BMP 

downstream transducers) and Smad1/5/8 (TGF-β, activin and Nodal downstream transducers).  

Smad4 has been shown to be essential during cardiogenesis.  In mouse embryos, disruption of 

Smad4 specifically in the myocardium leads to reduced proliferation and increased apoptosis of 

cardiomyocytes, heart defects and eventually embryonic lethality (Qi, Yang et al. 2007; Song, 

Yan et al. 2007).  Therefore cells at different stages of differentiation may be exhibiting different 

responses to BMP signaling as a result of Smad4 sequestering by the TGF-β/activin/Nodal 

pathways. 
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Figure 1.2: Signals known to be involved in directing cardiogenesis and the markers expressed at each stage 
of development.   

 

Inductive/Inhibitory signals from the neuronal tube 

Wnt signaling proteins play both a repressive and supportive role in heart morphogenesis.  

Canonical Wnt signaling suppresses cardiac differentiation by degradation of β-catenin.  Wnts’ 

repressive activity is inhibited by antagonists Crescent and dickkopf homolog 1 (DKK1) 

(expressed in anterior endoderm during gastrulation), which subsequently results in the induction 

of beating muscle.  Inhibition of Wnt signaling promotes heart formation in the anterior lateral 

mesoderm, whereas active Wnt signaling in the posterior lateral mesoderm promotes blood 

development (Marvin, Di Rocco et al. 2001).  In the non-canonical pathway Wnt11 prevents 

signaling of other Wnts, amplifying the cardiogenic signal (Menard, Grey et al. 2004).  This 
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pathway promotes heart induction by upregulating Nkx-2.5 and GATA-4 in xenopus embryos 

and the P19 pluripotent cell line (Pandur, Lasche et al. 2002).  It has been shown, through loss- 

and gain-of-function experiments that Wnt11 is required for heart formation in xenopus embryos 

and is sufficient to induce a contractile phenotype in embryonic explants.  Treating P19 cells 

with murine Wnt-11 conditioned medium triggers cardiogenesis, which indicates that the 

function of Wnt-11 in heart development has been conserved in higher vertebrates (Pandur, 

Lasche et al. 2002).  In mESCs, a positive correlation has been observed between Wnt and Nkx-

2.5 expression.  Furthermore, in the same mouse (m)ESC study, treatment of EBs with medium 

containing Wnt11 increased expression of Nkx2.5 in a dose-dependent manner. 

Transcription factors: GATA proteins, Nkx-2.5, Smads, T-box proteins 

Activation of cardiac gene promoters cannot be carried out by one transcription factor alone, but 

results from the coordinated activity of multiple transcription factors.  Cardiac transcription 

factors include, among others, Nkx-2.5, GATA-4, 5, 6, Tbx5 and Tbx20, and several Smad 

proteins (Menard, Grey et al. 2004). 

The activity of GATA proteins is modulated by their interactions with other transcriptional 

coactivators and repressors.  GATA-4 promotes cardiac muscle development and regulates 

expression of several cardiac specific genes including myosin heavy chain (MHC), cardiac 

troponin T and cardiac troponin C (cTnT/C), and Atrial Natriuretic Protein (ANP) (Svensson, 

Tufts et al. 1999).  Nkx-2.5 is an important coactivator of GATA-4 in initiating transcription of 

cardiac specific genes.  T-box gene family transcription factors appear to contribute to several 

aspects of cardiac development including cardiac lineage determination, chamber specification 

and specialization of the conduction system.  T-box genes act in conjunction with other families 

of transcription factors (Nkx and GATA) to regulate cardiac gene expression (Bruneau, Nemer et 

al. 2001; Hiroi, Kudoh et al. 2001; Takeuchi and Bruneau 2009).   

Smad proteins mediate BMP signaling.  BMPs phosphorylate cytoplasmic R-Smads1, 5, or 8 

which interact with Smad4.  This Smad complex is then translocated to the nucleus where it 

associates with other transcription factors to activate BMP-responsive genes (Attisano and 

Wrana 2000).  Precardiac cells interpret the BMP signals in a cell-type specific manner.  A 

possible molecular basis linking cardiac gene regulation and the BMP signaling pathway has 

been proposed from experiments that link Smad4 activation of Nkx-2.5 transcription with 
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GATA-4 acting as a cofactor.  Mesodermal cells recognize and interpret the BMP-cardiac-

promoting signal because the activating region of the mouse Nkx-2.5 gene contains binding sites 

for Smad adjacent to two essential GATA sites (Lien, McAnally et al. 2002). 

HUMAN EMBRYONIC STEM CELL DIFFERENTIATION TO CARDIOMYOCYTES. 

Cardiac induction in serum-containing medium 

The first published study demonstrating cardiomyocyte differentiation from hESCs employed 

EB-based induction (Kehat, Kenyagin-Karsenti et al. 2001).  EBs were formed by dissociating 

hESC colonies into clumps containing 3 to 20 cells and culturing these clumps in suspension in 

serum-containing medium.  After 7 to 10 days in suspension, EBs were plated onto culture 

dishes and spontaneously contracting areas were observed in 8.1% of the EBs after 20 days.  

Electron microscopy and electrophysiologic recordings displayed characteristic cardiomyocyte 

morphology and action potentials, respectively.  Cells dissected from these contracting areas 

stained positive for several cardiac specific antibodies including α-myosin heavy chain (MHC), 

α-actinin, desmin, troponin I and ANP.  In a subsequent report on EB-based hESC 

differentiation to cardiomyocytes, beating was observed in 70% of EBs (Xu, Police et al. 2002).  

It was suggested that the increased efficiency could have been due to differences in culture 

conditions during hESC maintenance, in methods of EB formation, and in the quality of serum 

used for differentiation.  In the same study, using Percoll density centrifugation the population 

was enriched to a concentration of approximately 70% cardiomyocytes (Xu, Police et al. 2002).  

A third study reported 10 to 25% of EBs were spontaneously contracting after EB-based hESC 

differentiation (He, Ma et al. 2003).  A number of potential sources of variability may account 

for the different cardiac induction efficiencies achieved between different researchers.  Using the 

number of contracting EBs as a measure of cardiac induction efficiency is one possible source of 

variability given that detection of beating may vary between individuals and that frequency of 

beating EBs does not accurately reflect the efficiency of cardiomyocytes generated per input 

hESC.  Another source of variability is that in each of these studies the method of EB formation 

from hESCs was carried out by enzymatic dissociation of hESC colonies into cell clumps.  It is 

likely that the average EB size, as well as variability of EB sizes fluctuated significantly between 

labs.  Additionally these EBs were cultured in the presence of fetal bovine serum (FBS), a 

mixture of undefined components known to exhibit lot-to-lot variability.   
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Cardiac induction in endoderm co-cultures 

An alternate approach to EB based differentiation has been to induce cardiac induction of hESC 

colonies by coculturing them with endoderm cells, perhaps mimicking the observation in the 

embryo where endodermal tissues appear to promote and/or support mesoderm and cardiac 

induction during embryogenesis.  Cardiogenesis was observed in hESC aggregates cultured on a 

visceral endoderm feeder layer (END-2 cell line), as evidenced by the appearance of beating 

areas in 35% of aggregates, and the emergence of cells expressing α-actinin, tropomyosin, and 

ryadonine receptors (Mummery, Ward-van Oostwaard et al. 2003; Passier, Oostwaard et al. 

2005).  In EBs cultured in END-2-conditioned, serum-free medium (Xu, Graichen et al. 2008), 

beating was observed in 60 to 70% of EBs after 12 days of differentiation.  The positive effect 

that END-2-conditioned medium (END2-CM) exerted on cardiac induction of hESCs was 

associated with an absence of insulin in the serum free medium.  An ELISA analysis on END2-

CM revealed a significant drop in insulin concentration to negligible levels after 3 to 4 days of 

exposure to END-2 cells, and beating activity and the expression of cardiac genes decreased with 

increasing concentrations of exogenously added insulin to END2-CM.  A subsequent report 

examining the mechanism by which insulin leads to reduced cardiogenesis during hESC 

differentiation found that the presence of insulin did not prevent differentiation of any specific 

lineage but favored neurectoderm differentiation at the expense of the mesendodermal lineages 

(Freund, Ward-van Oostwaard et al. 2008). 

Cardiac induction in serum-free, defined conditions 

Recently it has been demonstrated that it is possible to efficiently generate hESC-derived 

cardiomyocytes in the absence of serum or mouse cell conditioned medium and without co-

culturing hESCs with animal-derived inductive cell types (Yang, Soonpaa et al. 2008).  The 

protocol, based on signaling that occurs during embryonic heart formation, consists of adding 

combinations of growth factors to the EBs in stages temporally associated with the appropriate 

period of development.  The first stage (EB days 1 to 4) is associated with the induction of a PS-

like cell population.  Activin A and BMP4, growth factors which have been shown to upregulate 

PS markers brachyury and Wnt3A (Kispert and Herrmann 1994; Liu, Wakamiya et al. 1999), are 

added to the EBs.  In the next stage (EB days 4 to 8), the cardiac mesoderm commitment stage, 

DKK1 and vascular endothelial growth factor (VEGF) are added.  VEGF promotes expansion 
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and maturation of mesoderm cells (population expressing kinase insert domain protein receptor, 

KDR, known as fetal liver kinase-1, FLK1, in the mouse system), while DKK1 inhibits Wnt 

activity.  Although Wnt signaling is required at the onset of differentiation for PS induction 

(Lindsley, Gill et al. 2006; Naito, Shiojima et al. 2006; Ueno, Weidinger et al. 2007) at this stage 

endogenous Wnt signaling promotes induction of the definitive endoderm at the expense of 

cardiac mesoderm (Gadue, Huber et al. 2006).  In the final stage (starting on EB day 12), the 

cardiac cell expansion stage, DKK1 and VEGF continue to be present in the medium and FGF-2 

is added to support expansion of the cardiac population.  Human ESCs differentiated under these 

conditions yielded a population of cardiac progenitors on EB day 6, identified by expression of 

KDR at low levels and absence of CKIT expression, and ultimately yielded a population with 

30% of cells expressing cTnT by EB day 14.  Plating EBs on day 4 routinely resulted in 

contracting sheets of cardiomyocytes after 7 to 10 days.  

A 2-D system for directed cardiac differentiation of hESCs has also been developed (Laflamme, 

Chen et al. 2007).  In this technique, first hESC colonies are seeded onto MatrigelTM-coated 

plates and cultured in the presence of MEF-CM for 6 days to reach confluence.  Cardiac 

induction is initiated by replacing MEF-CM with serum-free medium containing Activin A for 

24 hours, followed by 4 days of treatment with BMP4.  Following day 5, the cells are cultured in 

the complete absence of cytokines.  Twelve days following Activin A treatment, widespread 

spontaneous contractions are observed, and typically 30% of cells express the cardiac contractile 

protein marker α-actinin.  It was demonstrated that by employing Percoll gradient centrifugation 

cardiomyocytes could be enriched in these cultures to a frequency of 82.6 ± 6.6%. 

SCALABLE PRODUCTION OF HPSC-DERIVED CARDIOMYOCYTES 

While hPSCs provide a unique opportunity to study human embryonic development that would 

not otherwise be possible in vivo, these cells are also an exciting source of renewable tissue for 

novel clinical applications and cell transplantation strategies to treat disease.  The ability to 

generate large numbers of HPS cell-derived differentiated cells is critical to developing these 

strategies.  Stirred suspension cultures are a popular approach to scale-up static dish-based cell 

cultures because they improve culture homogeneity, permit online monitoring and control of pH 

and dissolved oxygen concentration, and continuous medium perfusion can be easily enabled 

(Collins, Miller et al. 1998; Madlambayan, Rogers et al. 2001; Cabrita, Ferreira et al. 2003; 
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Kwon, Kim et al. 2003; Zandstra, Bauwens et al. 2003; Dang, Gerecht-Nir et al. 2004; Bauwens, 

Yin et al. 2005). 

Scalable stirred suspension bioprocesses for the generation of mESC-derived cardiomyocytes 

have been well developed (Zandstra, Bauwens et al. 2003; Bauwens, Yin et al. 2005; Schroeder, 

Niebruegge et al. 2005).  The first major challenge to implementing stirred suspension 

bioreactors for EB-based differentiation was that EBs tend to agglomerate during the first 4 days 

of differentiation due to the expression of surface markers on ESCs that promote cell-cell 

aggregation (Dang, Kyba et al. 2002).  Initial attempts to prevent EB agglomeration focused on 

hydrogel encapsulation (Magyar, Nemir et al. 2001; Dang, Gerecht-Nir et al. 2004; Bauwens, 

Yin et al. 2005; Dang and Zandstra 2005) of ESC aggregates to provide a barrier between EBs.  

It was subsequently demonstrated that aggregate formation could be controlled by optimizing 

stirring conditions, specifically examining impeller type and stirring speed (Schroeder, 

Niebruegge et al. 2005; Niebruegge, Nehring et al. 2008).  To purify the heterogeneous 

differentiating cultures for cardiomyocytes and to deplete undifferentiated cells, a genetic 

selection technique was used (Klug, Soonpaa et al. 1996; Li, Pevny et al. 1998; Marchetti, 

Gimond et al. 2002; Zandstra, Bauwens et al. 2003), whereby ESCs were genetically engineered 

to be neomycin resistant upon expression of myosin heavy chain (MHC).  This technique has 

been demonstrated to efficiently enrich mESC-derived cardiomyoyctes to greater than 70% in 

the stirred suspension system (Zandstra, Bauwens et al. 2003).  Improved culture homogeneity 

has not only been achieved via stirring, but also by incorporating a settling tube to separate EBs 

from the culture medium which permitted continuous medium perfusion thereby preventing wide 

variations in medium component concentrations including glucose and lactate (Bauwens, Yin et 

al. 2005; Niebruegge, Nehring et al. 2008).  Additionally, by implementing direct control of 

dissolved oxygen concentration in a bioreactor system, improved cardiomyocyte yields per input 

ESC have been observed under hypoxic conditions (Bauwens, Yin et al. 2005). 

The central challenge in generating large numbers of hESC-derived differentiated cell types has 

been the poor proliferation that has been observed during hESC differentiation.  In contrast to 

what has been observed during mESC differentiation, during EB-based hESC differentiation in 

static culture cell expansion is typically not observed (Gerecht-Nir, Cohen et al. 2004; Cameron, 

Hu et al. 2006).  Stirred suspension culture of human EBs has generally consisted of an initial 24 

hour static EB formation step to prevent hESC aggregates from breaking apart under dynamic 
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conditions (Cameron, Hu et al. 2006).  Interestingly, when human EBs are cultured in dynamic 

systems, such as stirred suspension bioreactors, proliferation does occur, however cell-fold 

expansion is still far lower (less than 20-fold) (Gerecht-Nir, Cohen et al. 2004; Cameron, Hu et 

al. 2006) than what has been observed during mESC differentiation (greater than 60-fold) 

(Zandstra, Bauwens et al. 2003; Dang, Gerecht-Nir et al. 2004; Bauwens, Yin et al. 2005).  

While the improved cell expansions may be attributed to the obvious benefits of stirred 

suspension such as medium homogeneity and reduced variations in metabolic byproducts, the 

observation that under dynamic conditions human EB concentrations are maintained, while 

under static conditions EB concentrations sharply decrease in the first 4 days of culture indicate 

that cell expansion is largely due to the prevention of EB agglomeration in stirred suspension 

(Cameron, Hu et al. 2006).  Further confirmation of reduced EB agglomeration under dynamic 

conditions is the visual observation that EBs grown in spinner flasks are more homogenous in 

size and shape than those cultured statically (Cameron, Hu et al. 2006).  Importantly, it was 

demonstrated that representative tissues from the three germ layers are produced in human EBs 

cultured in stirred suspension (Cameron, Hu et al. 2006) and that differentiation efficiency to the 

hematopoietic (Cameron, Hu et al. 2006) and cardiac lineages (Niebruegge, Bauwens et al. 2009) 

are at least comparable to what is achieved under static conditions. 

Other dynamic cell culture systems have also been explored for hESC differentiation (Gerecht-

Nir, Cohen et al. 2004).  Massive cell death and EB agglomeration was observed in human EBs 

cultured in high aspect rotating vessels.  EB agglomeration was prevented in slow turning lateral 

vessels, and differentiation to cells representing the three germ layers was observed.  These 

observations suggest that while mixing is crucial for cell expansion during human EB 

differentiation, it is also essential to ensure that stirring is mild enough to prevent EB 

agglomeration and cell death. 

Oxygen concentration has been shown to influence mouse pluripotent stem cell differentiation 

towards the hematopoietic and cardiac lineages (Gassmann, Fandrey et al. 1996; Sauer, Rahimi 

et al. 2000; Dang, Gerecht-Nir et al. 2004; Bauwens, Yin et al. 2005).  Under hypoxic conditions 

cardiac induction is enhanced, paralleling embryogenesis, wherein the development of the 

cardiovascular system takes place as diffusion of oxygen becomes limited by the growth of the 

embryo (Ramirez-Bergeron and Simon 2001).  It is believed that the mechanism for the effect 

that hypoxia exerts on cardiomyocyte differentiation involves the activation of hypoxia inducible 
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factor 1 (HIF-1) which activates a number of growth factors that are associated with 

cardiogenesis including VEGF and FGF-2 (Gassmann, Fandrey et al. 1996; Ramirez-Bergeron 

and Simon 2001; Dang, Gerecht-Nir et al. 2004).  

Improving the yield of specific differentiated cell populations can be achieved by applying the 

developments that have been made to define cytokine and growth factor conditions that promote 

commitment of specific cell lineages from hESCs, optimizing hESC aggregate size, improving 

feeding strategies, controlling oxygen concentration, and incorporating specific cell line 

enrichment strategies such as antibiotic selection in a scalable dynamic culture system.   

THE CELL AGGREGATE AS A SYSTEM TO EXAMINE THE EFFECT OF 
ENDOGENOUS SIGNALING ON CARDIAC INDUCTION 

Differentiation can be skewed in hPSC aggregates to favor cardiac induction 

As a differentiation system, the EB has often been viewed as a simple technique to demonstrate 

the capacity of pluripotent stem cells to differentiate to a number of different cell types, but a 

poor technique as far as controlling differentiation of stem cells to one specific cell fate.  A 

defining characteristic of the EB is that it gives rise to a heterogeneous population representing 

all the somatic tissue types.  However, given that during embryogenesis spatial and temporal 

cues from neighboring tissues guide development, it is likely that the heterogeneity within the 

EB produces an environment with the necessary complexity of signals, regulated by the timing 

and proportion of emerging inductive tissue-associated cells, to produce all the cell types in the 

developing embryo.  For this reason, the aggregate-based differentiation system is a valuable tool 

for studying the effect of endogenous signaling on induction efficiency of specific cell fates 

during pluripotent stem cell differentiation.   

The term embryoid body, or EB, is widely used to refer to uncontrolled differentiation induced 

by culturing aggregates of pluripotent stem cells in suspension, and should be clearly 

distinguished from aggregate-based differentiation cultures wherein culture parameters are 

strictly controlled to promote differentiation of a specific cell type.  Although the EB cannot give 

rise to a pure population of any specific cell fate, it is known that the proportions of cells 

belonging to the mesoderm lineage can be modulated in hPSC aggregates by manipulating the 

culture system in a variety of ways including addition of exogenous factors (Yang, Soonpaa et al. 
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2008) and controlling oxygen concentration (Bauwens, Yin et al. 2005) as previously discussed, 

as well as by genetically modifying input stem cells (Holtzinger, Rosenfeld et al. 2010), and 

optimizing aggregate size (Burridge, Anderson et al. 2007; Mohr, Zhang et al. 2009).   

Aggregate size influences cardiac induction efficiency 

As has been previously discussed, a variety of methods have been developed to control hESC 

aggregate size and this parameter has been shown to influence cardiac induction efficiency 

(Burridge, Anderson et al. 2007; Mohr, Zhang et al. 2009).  In one study using forced 

aggregation to form hESC aggregates starting with 1000, 3000 and 10000 cells per aggregate, the 

frequency of spontaneously contracting aggregates was analyzed with respect to input cell 

number (Burridge, Anderson et al. 2007).  It was observed that the frequency of beating 

outgrowths arising from size-controlled aggregates of all sizes (approximately 10-25%) was 

always higher than the frequency of beating outgrowths arising from non-size controlled EBs 

formed in mass culture (approximately 2%).  The highest frequency of beating aggregates and 

highest levels of cardiac gene expression occurred in cultures initiated with the highest aggregate 

size (10000 cells/aggregate).  Another report demonstrated differentiating hESC aggregate size 

control by maintaining undifferentiated hESC colonies in microwells (ranging in diameter from 

100 to 500 μm) and subsequently transferring these 3-D colonies to suspension in serum to 

induce differentiation .  While the maximum frequencies of contracting aggregates 

(approximately 20%) were observed in cultures initiated from 300 μm microwells, the maximum 

frequency of cardiac marker myosin light chain (MLC)2A-expressing cells (approximately 

3.25%) were detected in cultures initiated from 100 μm microwells.  The apparently 

contradictory findings in these two studies can probably be attributed to differences in methods 

of aggregate formation (forced aggregation versus microwell) as well as criteria for evaluating 

aggregate size (cell number versus diameter) and cardiac differentiation (contracting aggregates, 

gene expression versus protein expression of cardiac markers).  Furthermore, these studies were 

performed using serum-based induction of differentiation which typically results in very poor 

cardiomyocyte yields (< 5%) making it difficult to interpret the small differences in 

differentiation efficiency between conditions.  However, while significant progress still remains 

to be made in developing robust methods for directing cardiac differentiation in size-controlled 
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hESC aggregates, these studies do demonstrate that aggregate size influences cardiac induction 

of pluripotent stem cells. 

The mechanism behind the influence of aggregate size on cardiac induction is still unclear.  In 

size-controlled mESC aggregates generated from microwells ranging from 150 to 450 μm in 

diameter, it has been observed that the effect of aggregate size on cardiac induction corresponds 

to differential gene expression levels of Wnt5A and Wnt11 (Hwang, Chung et al. 2009).  

Specifically, higher levels of beating and cardiac gene expression in larger aggregates (450 μm 

diameter) corresponded with Wnt11 gene expression and reduced Wnt5A gene expression, 

whereas smaller aggregates (150 μm diameter) expressed high levels of Wnt5A and Wnt11 

expression was undetectable.  The mode by which aggregate size influences the expression level 

of these molecules is unclear, although the authors suggest it may be due to higher levels of 

endoderm cells present in the largest aggregate size condition (450 μm diameter).  It has been 

recently demonstrated that varying the ratio of endoderm cells in the aggregate influences 

cardiac differentiation of mESCs (Holtzinger, Rosenfeld et al. 2010).  In this study, aggregates 

were formed by mixing different ratios of mESCs that were transfected with a vector for 

Doxycycline (Dox)-inducible overexpression of GATA-4 and the parental untransfected cell 

line.  In the case where GATA-4 was induced in 2-day old aggregates, enhanced cardiac 

differentiation was observed with 50% GATA-4 inducible mESCs (0%, 50% and 100% GATA-

4-containing aggregates were examined).  The cells that developed into cardiac cells were the 

non-GATA-4-induced cells.  GATA-4-overexpressing cells went on to express Sry-related HMG 

box (SOX)17 and terminally differentiated to liver.  It was concluded that the presence of these 

SOX17+ cells promoted cardiac induction of the non-GATA-4 induced cells.   

A number of parameters are affected by varying aggregate size.  Diffusion of oxygen and 

medium components becomes more limited as aggregate size increases.  Observations made in 

studies examining the effect of hESC colony size on pluripotency, in which larger colonies 

maintained high levels of Oct4 expression while differentiation to the extra-embryonic lineage 

was promoted in smaller colonies (Peerani, Rao et al. 2007), are likely relevant in a 3-D system.  

The expectation being that larger aggregates would differentiate more slowly and ExE induction 

would occur at a higher frequency in smaller aggregates.  Geometric relationships also vary with 

aggregate size, given that the ratio of the surface area to volume of a sphere decreases with 
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increasing sphere size.  It has been widely published in reports examining spatial organization 

during EB development that one of the first events involves the organization of an outer layer of 

ExE cells surrounding a pluripotent epiblast-like core (Coucouvanis and Martin 1995; Abe, Niwa 

et al. 1996; Coucouvanis and Martin 1999; Rula, Cai et al. 2007; Ungrin, Joshi et al. 2008; 

Moore, Cai et al. 2009).  Given that as aggregate size increases, there are fewer cells on the 

surface relative to interior cells, and that the outer layer of cells consists of ExE cells, it may be 

that the frequency of ExE cells that develop in an aggregate decreases with increasing aggregate 

size.  As has been previously discussed, it has been observed during both embryogenesis and 

ESC differentiation that ExE associated tissues and cell lines promote cardiac induction.  

Therefore, the influence that varying aggregate size exerts on cardiac induction efficiency may 

be due to directly modulating the frequency of ExE cells present.   

An approach to elucidate a mechanism for the effect of hESC aggregate size on 
cardiac induction efficiency 

A number of studies are needed to establish whether the effect of aggregate size on cardiac 

differentiation efficiency is determined by the ExE differentiation capacity of the aggregate 

being related to the geometric relationship between the volume of cells on the surface of the 

aggregate and the total volume of the aggregate.  First, an inverse relationship between aggregate 

size and endoderm frequency has to be observed during the early stages of differentiation prior to 

cardiac induction.  Concurrently, cardiac induction and differentiation must also be tracked with 

respect to aggregate size and related to an optimal endoderm frequency during early aggregate 

differentiation.  The observation of a trend between aggregate size, endoderm cell frequency and 

cardiac induction efficiency that is consistent with our hypothesis is, however, insufficient to 

prove the hypothesis.  To confirm that cardiac induction efficiency can be modulated by 

controlling aggregate size via a mechanism in which aggregate size directly influences ExE cell 

frequency requires an experiment in which aggregate size and ExE cell frequency is specified 

independently.  This may be accomplished by generating hESC aggregates with varying ratios of 

ExE cells to hESCs as well as varying ratios of hESCs with impaired ability to differentiate 

towards ExE to unmanipulated hESCs.  To date studies exploring aggregate size control on 

cardiac differentiation of hESCs have been performed in serum-containing conditions leading to 

poor cardiac yields wherein small differences in differentiation efficiency between conditions are 

difficult to meaningfully interpret (Burridge, Anderson et al. 2007; Mohr, Zhang et al. 2009).  
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Ideally, these studies would be carried out under defined conditions that direct cardiac 

differentiation (Yang, Soonpaa et al. 2008).   

Inhibiting ExE differentiation of hESCs can be accomplished by knocking down genes that are 

required for ExE development.  In F9 embryonal carcinoma cells induced to differentiate with 

retinoic acid (RA) and dibutyryl cyclic AMP (Bt2cAMP), silencing of transcription factors 

GATA-4 and GATA-6 combined or SOX7 alone led to reduced expression of ExE-associated 

markers SOX17 and FoxA2 and impaired development of the morphology that is characteristic 

of ExE differentiation (Futaki, Hayashi et al. 2004).  It appears that SOX7 activity is required 

upstream of GATA-4 and GATA-6, given that SOX7 silencing led to reduced mRNA and 

protein expression levels of GATA-4 and GATA-6, while GATA-4/6 silencing had little effect 

on SOX7 mRNA and protein expression levels.  Furthermore, exogenous expression of either 

GATA-4 and GATA-6 or SOX7 in F9 clones in which SOX7 was stably silenced rescued 

parietal endoderm differentiation.  These observations indicated that SOX7 induces GATA-4/6 

expression which is necessary for primitive endoderm development.  Based on these data, one 

method to impair ExE development in hESCs is to inhibit SOX7 expression.  Ribonucleic Acid 

(RNA) interference, used in the F9 embryonal carcinoma studies, can efficiently block 

expression of the SOX7 transcription factor.  The mechanism of RNA interference involves 

introducing into the cell short double-stranded fragments called short interfering RNAs (siRNAs) 

which are processed by an enzyme called Dicer resulting in double stranded (ds)RNA with two 

to three nucleotide long overhangs on the 3’ ends.  These siRNAs are then separated into single 

strands and the antisense strand along with Dicer gets incorporated into the RNA induced 

silencing complex (RISC).  After integration into the RISC, the guide strand now guides the 

entire RISC to target complementary messenger (m)RNA and induce cleavage of the mRNA, 

thereby preventing it from being used as a translation template (Ahlquist 2002; Shrey, Suchit et 

al. 2009).  

In the studies that will be presented herein, ExE-inducible cells were obtained using SOX7-

overexpressing (O/E) hESCs (Seguin, Draper et al. 2008).  It has recently been demonstrated that 

constitutive expression of SOX7 in hESCs produces ExE progenitors (Seguin, Draper et al. 

2008).  SOX7 complementary (c) deoxynucleic acid (DNA) was introduced to CA1 hESCs via a 

Cre-inducible expression vector.  The vector consists of a CAG promoter driving expression of a 

floxed bGeo-polyA followed by SOX7-puromycin (puro).  Therefore, stably transfected clones 
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are neomycin resistant and can be selected via treatment with geneticin (G418).  Cre-transfection 

of stably selected clones leads to the excision of the floxed bGeo-polyA, resulting in CAG-

driven expression of SOX7 cDNA.  SOX7-expressing cells can then be selected with puromycin 

treatment.  Within one passage of SOX7 overexpression (O/E), hESCs exhibit a flattened, 

epithilial morphology and express endoderm-associated proteins GATA-4, SOX17 and alpha 

fetoprotein (AFP) as well as pluripotency markers Oct4 and Nanog.  Microarray-based 

expression profiling revealed that, respective to No Cre controls, SOX7 O/E hESCs upregulated 

ExE markers laminin subunit beta-1 (LAMB1), heparin sulfate proteoglycan (HSPG)2, and 

secreted protein acidic and rich in cystein (SPARC) (Hogan, Cooper et al. 1980; Semoff, Hogan 

et al. 1982; Mason, Taylor et al. 1986).  Additionally, SOX7 O/E hESCs exhibited a 

characteristic ExE gene expression profile which included GATA-4, GATA-6, HNF4A, FoxA2, 

AFP, LAMB1, vHNF1 and SOX7, and lacked expression of definitive endoderm (DE)-

associated markers (CXC chemokine receptor) CXCR4, (Homeobox protein goosecoid) GSC, 

and distal-less homeobox (DLX)5 and FoxQ1.  Gene expression analysis suggested these cells 

represent progenitors with predisposition to the ExE lineage.  In an ExE differentiation assay, 

using BMP4-mediated induction, relative gene expression of AFP, LAMB1, vHNF1 and SOX7 

was significantly higher in SOX7 O/E hESCs compared to No Cre control hESCs.  Additionally, 

after 5 days of exposure to BMP4, immunoblot assays showed that SOX7 protein levels were 

detected in control hESCs and were further upregulated in SOX7 O/E hESC.  Flow cytometry 

revealed that 87.73% of the BMP4-treated control hESC population expresses AFP.  Meanwhile 

in SOX7 O/E hESCs 89.13% of the cells express AFP and BMP4-treatment raises expression 

frequency to 92.62%.  Interestingly, while maintenance cultures of SOX7 O/E hESCs retain 

expression of Oct4 and Nanog, the expression of these pluripotency markers decreases following 

BMP-mediated differentiation.  It has been suggested that expression of these pluripotency 

markers in SOX7 O/E hESCs is involved in maintaining the precursor phenotype of these cells 

by preventing terminal differentiation. 

To examine the effects of controlling ExE frequency independently of aggregate size on cardiac 

induction during hESC differentiation, forced aggregation of single cell suspensions in 

AggrewellsTM is a system that can be easily enabled to generate aggregates with varying ratios of 

SOX7 siRNA-transfected hESCs or SOX7 O/E hESCs.   
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HYPOTHESIS 

There is an optimal aggregate size for cardiac induction during hESC differentiation that 

corresponds to the optimal frequency of extraembryonic endoderm (ExE) cells (located on the 

aggregate surface) in early stage differentiating hESC aggregates.  

PROJECT OBJECTIVES AND SPECIFIC AIMS 

Overall goal 

To develop a method to generate uniform hESC aggregates of controlled size, and further to use 

this system to study the viable range of aggregate sizes for cardiac induction as well as to 

elucidate a mechanism for the effect of aggregate size on cardiac induction.  

Specific aim 1:  Establish a technique for robust generation of uniform hESC aggregates of 

controlled size. 

a) Develop a technique employing micropatterning to generate uniform hESC aggregates 

and control aggregate size 

b) Demonstrate cardiac differentiation in micropatterned hESC aggregates 

c) Examine differentiation trajectory in size-controlled hESC aggregates with respect to 

MP-hESC colony and aggregate size 

Specific aim 2:  Enable large-scale differentiation of cardiomyocytes from MP-hESC aggregates 

a) Evaluate cardiac induction in MP-hESC aggregates in a stirred suspension, oxygen-

controlled bioreactor. 

Specific aim 3:  Reveal the effect of aggregate size on endoderm composition in early-stage 

hESC aggregates and subsequently demonstrate that cardiac induction is modulated by the 

endoderm composition during early hESC differentiation 

a) Establish a serum-free forced aggregation based system for cardiac induction in size 

controlled hESC aggregates 

b) Quantitatively track ExE composition in early-stage differentiating hESC aggregates 

c) Examine the effect of inhibiting ExE differentiation on the efficiency of cardiac induction 

independently of hESC aggregate size. 
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SUMMARY 

Studies have demonstrated that aggregate size influences cardiac differentiation efficiency during 

hESC differentiation.  Furthermore, it has been widely observed that an ExE layer develops on 

the surface of the aggregate shortly after aggregate formation.  Given the inverse relationship 

between aggregate size and the frequency of surface cells on the aggregate, we examined the 

relationship between endoderm cell frequency and cardiac induction efficiency as a possible 

mechanism behind the influence of aggregate size on cardiogenesis during hESC differentiation. 

Methods were developed to control hESC aggregate size in order to investigate the hypothesis 

that hESC aggregate size influenced cardiac induction by modulating the ratio of endoderm cells 

during early differentiation.  First, differentiation was examined in aggregates generated by 

micropatterning hESC colonies at defined diameters and transferring intact colonies to 

suspension in differentiation medium (Chapter 2).  In this system, it was revealed that hESC 

colony size affects the ratio of endoderm- to neural- associated cells in the starting population 

and this ratio subsequently influences cardiac induction efficiency upon differentiation as 

aggregates.  Normalizing differentiation efficiency results to the ratio of endoderm to neural gene 

expression in the input hESC population revealed that aggregate size does influence cardiac 

induction, whereby cardiac induction is optimized in smaller aggregates when the input 

population expresses higher levels of endoderm-associated genes and in larger aggregates when 

the input population expresses lower endoderm gene expression levels.  Furthermore, when 

micropatterned aggregates (generated from 400 μm and 800 μm diameter hESC colonies) were 

cultured in stirred suspension, enhanced cell yields and cardiac differentiation were achieved 

compared to stirred suspension differentiation of non-size controlled EBs (Chapter 3). 

Given that hESC colony size affected the input population status which influenced cardiac 

induction in subsequently generated hESC aggregates, forced aggregation was implemented to 

generate aggregates at different sizes from one consistent hESC population (Chapter 4).  In these 

studies, a clear trend emerged in which endoderm differentiation decreased with increasing 

aggregate size, and cardiac induction and differentiation could be optimized by varying 

aggregate size.  A direct relationship between ExE frequency and cardiac differentiation was 

established by generating aggregates from varying ratios of ExE progenitor cells and hESCs. 
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From these studies, it was established that the influence of aggregate size on cardiac induction is 

related to the frequency of endoderm cells that develop on the surface of the aggregate.  

Aggregate size appears to dictate endoderm differentiation frequency in an inverse relationship 

whereby the endoderm composition decreases with increasing aggregate size.  We theorized that 

this relationship is related to the ratio of the surface area to volume of a sphere, given that an 

ExE cell layer develops on the EB surface during differentiation.  Specifically, the frequency of 

endoderm cells that will develop during early aggregate-based differentiation will be lower in 

larger-sized aggregates.  The findings in this work are significant not only towards gaining a 

deeper understanding of the mechanism that guide cardiac development but also towards 

improving cardiac induction efficiency during hESC differentiation and the methods developed 

herein can contribute towards large scale culture of relatively enriched hESC-derived 

cardiomyocytes.   
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Chapter 2  
Control of Human Embryonic Stem Cell Colony and 

Aggregate Size Heterogeneity Influences Differentiation 
Trajectories 
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ABSTRACT 

To better understand endogenous parameters that influence pluripotent cell differentiation we 

used human embryonic stem cells (hESC) as a model system.  We demonstrate that 

differentiation trajectories in aggregate [embryoid body (EB)]-induced differentiation, a common 

approach to mimic some of the spatial and temporal aspects of in vivo development, are affected 

by three factors; input hESC composition, input hESC colony size, and EB size.  Using a micro-

contact printing approach, size-specified hESC colonies were formed by plating single cell 

suspensions onto micropatterned (MP) extracellular matrix islands.  Subsequently, size-

controlled EBs were formed by transferring entire colonies into suspension culture enabling the 

independent investigation of colony and aggregate size effects on differentiation induction.  

Gene and protein expression analysis of MP-hESC populations revealed that the ratio of GATA-

6 (endoderm-associated marker) to paired box (PAX)6 (neural-associated marker) expression 

increased with decreasing colony size.  Moreover, upon forming EBs from these MP-hESCs, we 

observed that differentiation trajectories were affected by both colony and EB size influenced 

parameters.  In MP-EBs generated from endoderm-biased (high GATA-6:PAX6) input hESC, 

higher mesoderm and cardiac induction was observed at larger EB sizes.  Conversely, neural-

biased (low GATA-6:PAX6) input hESC generated MP-EBs exhibited higher cardiac induction 

in smaller EBs.  Our analysis demonstrates that heterogeneity in hESC colony and aggregate 

size, typical in most differentiation strategies, produces subsets of appropriate conditions for 

differentiation into specific cell types.  Moreover, our findings suggest that the local 

microenvironment modulates endogenous parameters that can be used to influence pluripotent 

cell differentiation trajectories. 

INTRODUCTION 

The promise of human pluripotent cells as a renewable source of specialized cells has been 

limited by progress in the development of robust differentiation protocols.  Since the first reports 

of successful human embryonic stem cell (hESC) derivation and maintenance (Thomson, 

Itskovitz-Eldor et al. 1998; Reubinoff, Pera et al. 2000), significant efforts have been made to 

develop methods to control their differentiation into functional cells and tissues.  The generation 

of induced pluripotent stem (iPS) cells from human cells (Takahashi and Yamanaka 2006; 

Takahashi, Tanabe et al. 2007; Yu, Vodyanik et al. 2007) further motivates our need to design 
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controlled and reproducible mature cell production strategies.  Initiating hESC differentiation 

either in attached colonies or by forming embryoid bodies (EBs) has demonstrated in vitro 

lineage potential in each of the three germ layers (endoderm, ectoderm, and mesoderm), 

including pancreatic β-cells, neural cells, cardiomyocytes and blood cells (Thomson, Itskovitz-

Eldor et al. 1998; Itskovitz-Eldor, Schuldiner et al. 2000; Schuldiner, Eiges et al. 2001; Xu, 

Inokuma et al. 2001).  Differentiation in EBs recapitulates many aspects of embryonic 

development (Keller 1995).  However, although it has been recognized that the developmentally 

relevant emergence of specialized tissues and their subsequent differentiation to mature 

functional cell types can be influenced by local inductive cues, few studies have used 

microenvironmental control to prospectively regulate endogenous parameters that influence 

pluripotent cell differentiation trajectories.   

In the embryo it is recognized that cardiogenesis is directed via the coordination of inductive 

cues from the anterior primitive endoderm (Sugi and Lough 1994; Schultheiss, Xydas et al. 

1995; Sugi and Lough 1995; Schultheiss, Burch et al. 1997; Schultheiss and Lassar 1997) and 

inhibitory cues originating from neurogenic tissue (Climent, Sarasa et al. 1995; Schultheiss, 

Burch et al. 1997; Raffin, Leong et al. 2000).  Accordingly, methods to drive mesoderm and 

cardiac induction during hESC differentiation have included co-culturing hESCs with the 

visceral endoderm-like cell line END-2 (Mummery, Ward-van Oostwaard et al. 2003) or the 

addition of Transforming Growth Factor Beta (TGF-β) family proteins (most commonly activin 

A and Bone Morphogenetic Protein (BMP)-2 or BMP-4) that are known to be secreted by 

primitive endoderm (Burridge, Anderson et al. 2007; Laflamme, Chen et al. 2007).  These 

studies aim to exploit observations made in the embryo to direct cardiogenesis through 

exogenous factor-mediated control.  We hypothesize that, in addition to these exogenous factors, 

endogenous parameters such as local cellularity and organization can impact in vitro hESC 

differentiation.  These endogenous parameters may play a role in tissue development during 

embryogenesis.  In this report we explore some of these parameters and document their effect on 

hESC differentiation trajectories. 

Many parameters can influence hESC differentiation outcome, including the handling and status 

of the input hESC population, media composition, and the method of inducing differentiation 

(Kitsberg 2007).  Human ESC propagation typically requires paracrine and autocrine signals as 

well as physical cell-cell contact (Schatten, Smith et al. 2005; Pyle, Lock et al. 2006).  As a 
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result, single cell dissociation is usually avoided during hESC passaging (Thomson, Itskovitz-

Eldor et al. 1998; Amit, Carpenter et al. 2000) and hEB formation (Kehat, Kenyagin-Karsenti et 

al. 2001; Xu, Police et al. 2002).  Partial dissociation of hESC colonies results in a wide range of 

colony and aggregate (EB) sizes.  This yields a potential source of variability in subsequent 

differentiation experiments (Peerani, Rao et al. 2007).  Recently, control of human EB size has 

been reported by a number of groups using either forced aggregation of defined cell numbers 

(Ng, Davis et al. 2005; Burridge, Anderson et al. 2007; Ungrin, Joshi et al. 2008) or microwells 

to form 3-D hESC aggregates of specified dimensions which can then be transferred to 

suspension to form mono-disperse EBs (Khademhosseini, Ferreira et al. 2006; Mohr, de Pablo et 

al. 2006).  EB size may not only be an important parameter to improve reproducibility of hESC 

differentiation experiments but also a potentially important parameter to regulate endogenously 

influenced cell type-specific differentiation, as has been recently reported (Burridge, Anderson et 

al. 2007).  However, the interaction between controlling EB size and endogenously-driven cell 

type-specific differentiation bias, has not been explored. 

Here we detail the development of a multi-stage EB-based differentiation method to control 

colony and EB size that takes advantage of the microcontact printing technique we have 

previously described (Peerani, Rao et al. 2007).  Using this system we demonstrate that the ratio 

of endoderm- to neural-associated gene and protein expression can be manipulated as a function 

of colony size, and that this ratio varies between passages in conventionally propagated hESC 

cultures.  Furthermore, by generating homogeneously-sized colonies and EBs we revealed that 

optimizing this ratio is important for maximizing endogenous mesoderm and cardiac induction 

during hESC differentiation.  These data suggest that improved reproducibility and efficiency of 

cell type-specific differentiation will not only require controlling colony and EB size, but also 

new technologies to control and characterize the status of the hESC population prior to initiating 

differentiation.
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MATERIALS AND METHODS 

hESC maintenance 

The H9 and H2B cell lines used in these experiments were obtained from the Israel Institute of 

Technology; the use of the cells in this project has been approved by the Canadian Stem Cell 

Oversight Committee.  Human ESC (passages 40 to 50) colonies were maintained on irradiated 

MEFs in knockout Dulbecco’s Modified Eagle’s Medium (ko-DMEM, Invitrogen) supplemented 

with 20% knockout Serum Replacement (ko-SR, Invitrogen) and 4 ng/mL Fibroblast Growth 

Factor (FGF)-2 (PeproTech).  Passaging was performed every 4 days by dissociating the cells 

into small clumps using Collagenase type IV (2 mg/mL, Invitrogen) and replating on a mouse 

embryonic fibroblast (MEF) feeder layer at a subculture ratio of 1:6. 

MatrigelTM Patterning 

Micro-contact printing was employed to pattern MatrigelTM (BD Biosciences) onto tissue culture 

surfaces.  The protocol used (Figure 2.1A) to print the patterns has been adapted from a 

published technique(Tan, Liu et al. 2004).  Briefly, a variety of stamps, made out of 

poly(dimethylsiloxane) (PDMS) using soft lithography(Younan 1998), were used for printing 

different specified pattern geometries.  The PDMS stamps were sterilized in 70% ethanol 

overnight, inked with an aqueous solution of pH 5 1:30 growth factor reduced MatrigelTM (GFR-

MG) for 1 hour, rinsed with sterile ddH2O and dried with sterile N2.  After rinsing and drying, a 

monolayer of protein remains on the surface. This layer is transferred to the substrate by placing 

the stamp in conformal contact with the substrate for more than 10 seconds.  The substrates used 

were tissue culture treated 60 mm dishes (Falcon).  This substrate is optimal for both protein 

adsorption and passivation by 5%w/v Pluronic F-127 (MW=12600Da) (Sigma) which is used to 

prevent protein adsorption and cell attachment to unpatterned regions of the substrate(Tan, Liu et 

al. 2004).  Using this protocol, cells can be seeded on the substrate with little non-specific 

binding to the passivated regions and no migration of cells between features. 
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Seeding hESCs on a GFR-MGTM-patterned surface 

GFR-MG was micropatterned at three feature diameters: 200, 400, and 800 μm (referred to as 

200MP, 400MP, and 800MP respectively).  Human ESC colonies were dissociated to single cells 

using TrypLETM (Invitrogen).  TrypLETM is a dissociation enzyme reagent that effectively 

dissociates hESC colonies/aggregates to single cells with high viability (see Figure S1-1).  Single 

cell suspensions of hESC were resuspended in completely defined X-VIVO10™ medium 

(Cambrex)(XV medium) with 2 mM L-Glutamine (Invitrogen), 1x nonessential amino acids 

(NEAA) (Invitrogen), 0.1 M β-mercaptoethanol (Sigma) and supplemented with 40 ng/ml FGF-2 

and 0.1 ng/ml TGFβ-1 (R&D Systems), and subsequently plated on the patterns at a 

concentration of 1.5×106 cells/mL.  Twelve hours post-seeding, the patterned cells were washed 

three times with XV medium to prevent cell attachment on unpatterned areas (Figure 2.1A). 

Formation and differentiation of EB aggregates from hESC colonies 

To form EBs, 2 or 3 day old confluent micropatterned (MP)-hESC colonies were scraped off the 

dishes gently (to preserve intact colonies), and resuspended in hESC differentiation medium 

containing ko-DMEM, 20% FBS (Gibco), 1x NEAA, 2 mM L-Glutamine (Invitrogen), 0.1 M β-

mercaptoethanol (Sigma), and 50U/mL penicillin/streptomycin (Gibco).  Cell number in hESC 

colonies and suspension aggregates were measured by staining cells with a fluorescent DNA 

binding dye (Cyquant, Invitrogen) and measuring average fluorescence intensity with a 

fluorescence microplate reader (Spectramax Gemini).  Aggregates were transferred to suspension 

on ultra-low attachment non-tissue culture treated plates (Corning) for 4 days and then plated 

onto 0.5% gelatin coated tissue culture treated dishes to induce cardiac differentiation in EB 

outgrowths.  Cultures were carried out for 16 days following EB formation.  EBs formed using 

published EB formation protocols served as controls (Xu, Police et al. 2002). 

Quantitative analysis of EB size distribution 

The number of aggregates formed was determined by manual counting on a microscope 1 day 

after transferring colonies to suspension culture.  To measure aggregate size distribution under 

the different aggregate formation conditions, image analysis was performed with Image-Pro1 

Plus software (Media Cybernetic).  The number of cells per EB was determined by dissociating a 

known number of EBs to single cells and counting cells. 
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Flow cytometry 

Pluripotency of the starting (input) hESC population was evaluated by flow cytometric analysis 

of Oct4 protein expression.  Human ESC colonies were enzymatically dissociated to single cells 

and fixed and permeabilized with the IntraPrep fixation and permeabilization kit (Immunotech).  

Fixed and permeabilized cells were incubated at a 1:100 dilution of Oct-4 antibody (Santa Cruz 

Biotechnology) for 20 min at room temperature, followed by an incubation with secondary 

fluorescein isothiocyanate (FITC)-conjugated IgG antibody (Molecular Probes) at a 1:100 

dilution for 20 min at room temperature.  Viability was assessed using 7-aminoactinomycin D 

(7-AAD) (Invitrogen).  Cells were analyzed with a flow cytometer (XL; Beckman-Coulter), 

using EXpoADCXL4 software (Beckman-Coulter).  Positive staining was defined as the 

emission of a level of fluorescence that exceeded levels obtained by 99.5% of cells from the 

control population stained with only the secondary antibody. 

Quantitative RT-PCR analysis 

Cells were digested in Trizol Reagent (Invitrogen), followed by chloroform extraction and 

precipitation with iso-propyl alcohol.  The RNA was then purified using RNAEasy columns 

(Qiagen) with an on-column DNaseI digestion step. cDNA was generated from purified RNA by 

using Superscript-III reverse transcriptase (Invitrogen) as per the manufacturer’s instructions. 10 

ng of cDNA was used per PCR reaction using iQ-SYBR-green master mix (BioRad) in triplicate.  

Relative expression was determined by delta-delta Ct method with the expression of beta-actin as 

internal housekeeping reference (expression of GAPDH was used as a second internal 

housekeeping reference).  Total RNA from human fetal heart, human fetal liver, and human fetal 

brain were used as positive controls (Stratagene).  Primer sequences, derived from the MGH 

Primerbank (Wang and Seed 2003), were as follows: Oct4 (5’ primer), 

CTTGAATCCCGAATGGAAAGGG, and (3’ primer), CCTTCCCAAATAGAACCCCCA, 

GATA-6 (5’ primer), AGGGCTCGGTGAGTCCAAT, and (3’ primer), 

CGCTGCTGGTGAATAAAAAGGA, PAX6 (5’ primer), AAGAGCAACGTCACCAGTTTC, 

and (3’ primer), GGAGCCCGGTTGATACCAG, Brachyury (5’ primer), 

TGCTTCCCTGAGACCCAGTT, and (3’ primer), GATCACTTCTTTCCTTTGCATCAAG, 

Mixl1 (5’ primer), CCGAGTCCAGGATCCAGGTA, and (3’ primer), 

CTCTGACGCCGAGACTTGG, α-Actinin (5’ primer), GGGTCCGTTTGCCAGTCAG, and (3’ 
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primer), GGCTTTCCTTAGGTGGGAGTT, Nanog (5’ primer), 

CAAAGGCAAACAACCCACTT, and (3’ primer), TCTGCTGGAGGCTGAGGTAT, CXCR4 

(5’ primer), CACCGCATCTGGAGAACCA, and (3’ primer), 

GCCCATTTCCTCGGTGTAGTT, Sox3 (5’ primer), GCCGACTGGAAACTGCTGA, and (3’ 

primer), CGTAGCGGTGCATCTGAGG, TroponinT (5’ primer), 

GGACGAAGACGAGCAGGAG, and (3’ primer), CTTCCGGTGGATGTCATCAAA, β-actin 

(5’ primer), CATGTACGTTGCTATCCAGGC, and (3’ primer), 

CTCCTTAATGTCACGCACGAT, GAPDH (5’ primer), CTCCACGACGTACTCAGCG, and 

(3’ primer), TGTTGCCATCAATGACCCCTT. Specificity of amplification was assured with 

analysis of dissociation curves of all reactions. For all samples a control was performed without 

reverse transcriptase and no amplification was detected in these controls. 

Immunostaining analysis 

Fluorescent images of α-Actinin (EA-53, 1:800, Sigma), Connexin-43 (1:25, Molecular Probes), 

GATA-6 (1:20, R&D Systems) and Oct4 (1:200, Santa Cruz Biotechnology) protein expression 

were obtained and quantitatively analyzed using the Compartmental Analysis or Target 

Activation assay algorithms available with the Cellomics Arrayscan VTI platform (Cellomics). 

Statistics 

To evaluate differences in gene expression level between conditions, statistics were manually 

computed using the Wilcoxon signed rank test for a paired difference experiment at a 

significance level of P < 0.05.  To evaluate differences in EB size between conditions, statistics 

were computed in Origin 7.5 using the paired t-test at a significance level of P < 0.05.  Error bars 

on plots represent the standard deviation of the mean of three or more replicates (n>3).  

RESULTS 

An approach for generating size-controlled hESC colonies and EBs 

Typically, EB-based hESC differentiation involves partial enzymatic dissociation of hESC 

colonies resulting in a suspension of cell clumps of varying sizes (Figure 2.1B).  We have 

developed a process, illustrated in Figure 2.1A, for generating uniform EBs of controlled size 

based on micropatterning hESC colonies at defined diameters.  Briefly, hESC colonies are 
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dissociated to single cells and replated at high density onto micropatterned MatrigelTM islands.  

Upon confluence, MP-hESC colonies are transferred to suspension culture by detaching them 

intact with a cell scraper and resuspending the colonies in hESC differentiation medium.  Figure 

2.1C depicts the overall approach, outlining three aspects of this system which could affect 

endogenous control of differentiation trajectory: 1) Status of the input hESC population; 2) 

Micropatterned (MP)-hESC colony size; and 3) MP-EB size.   

Even under maintenance conditions, hESC cultures do not consist of a homogeneous pluripotent 

population but contain hESC-derived differentiated cells (Henderson, Draper et al. 2002; 

Furusawa, Ohkoshi et al. 2004).  Therefore the composition of the input hESC population varies 

between passages and could impact cell fate trajectory during differentiation.  Colony size is also 

an important parameter in determining self-renewal and differentiation fate, as hESC 

maintenance relies on paracrine signaling from neighboring undifferentiated cells to antagonize 

pro-differentiation signals (Peerani, Rao et al. 2007).  Finally, EB size could affect 

differentiation as control of this parameter may modulate spatial signaling within the aggregate. 
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Figure 2.1:  Overview of conventional and micropatterned (MP) hESC colony and EB formation.  (A) Outline 
of the process for micropatterning MatrigelTM (MG) on a cell culture substrate, and subsequently seeding cells onto 
MG-patterned substrate.  (B) In conventional EB formation, hESC colonies (input hESC) are enzymatically 
dissociated to cell clumps and transferred to ultra-low attachment tissue culture plates in hESC differentiation 
medium.  (C)  To generate size-controlled colonies, hESCs are dissociated to single cells and plated at high density 
(1×106 cells/mL) onto patterned MatrigelTM islands and cultured to confluence (2-3 days) in serum-free maintenance 
medium.  To form MP-EBs, intact colonies are detached using a cell scraper and transferred to suspension in 
differentiation medium. Scale bar = 250 μm 

 

The influence of colony size on differentiation trajectory in MP-hESC colonies  

To evaluate the effect of colony size on differentiation trajectory, hESC colonies were patterned 

at three diameters (Figure 2.2A): 200, 400 and 800 μm (200MP, 400MP, and 800MP 

respectively).  Additionally, non-patterned (non-MP) conventional hESC colonies were cultured 

in parallel for comparison.  A flow cytometry analysis of six separate input hESC populations 

demonstrates that in each run the majority of cells express the pluripotency protein Oct4 with 

expression frequencies ranging from 57% to 78.4% in six independent input populations (Figure 

2.2B).  To determine the effect of colony size on differentiation trajectory, quantitative 



 

 

39

(q)RTPCR was performed to compare gene expression levels between input hESC populations 

and their corresponding day 2 or 3 colony size-controlled, micropatterned (MP)-hESC 

derivatives.  Oct4, GATA-6, and PAX6 gene expression levels were tested as a surrogate 

measure for undifferentiated cells, endodermal and neural differentiation/commitment 

respectively.  Importantly, these trends were reproduced with a second gene set [Nanog for 

undifferentiated cells, CXCR4 for endoderm, and Sox3 for neural (Figure S1-2)].  As 

demonstrated in the three representative runs shown in Figure 2.2C, variability in lineage-

specific gene expression in the input-hESC population led to variability in gene expression in the 

MP-hESC populations.  Despite variations between runs, similar trends were observed in each 

run in terms of the effect of colony size on gene expression level (see Table 2-I for statistical 

validation of these trends).  Non-MP hESCs expressed similar levels of expression for all three 

genes as the input hESC populations, thus demonstrating that the process of passaging onto 

MatrigelTM in serum-free medium itself does not skew the population.  Non-MP and 200MP 

colonies maintained the Oct4 gene expression level of their input hESC, whereas a significant 

increase in Oct4 gene expression levels was observed in the larger colonies (400MP and 

800MP).  It should be noted that our gene expression analysis detects the Oct4A and Oct4B 

isoforms.  It has recently been reported that expression of the Oct4B isoform is not exclusive to 

undifferentiated ESCs and is predominantly expressed in the cytoplasm (Lee, Kim et al. 2006).  

Using immunofluorescence, we have demonstrated that Oct4 protein expression in the input 

hESC population is localized in the nucleus (Figure S1-3), suggesting that we are measuring 

Oct4A isoform expression.  Compared to input hESCs, the GATA-6 gene expression level was 

maintained in non-MP hESCs.  In MP-hESCs, expression of this endoderm marker rose 

significantly in small colonies (200MP), with gene expression level decreasing as colony size 

increased.  Conversely, PAX6 gene expression levels suggest that markers of neural 

differentiation rise significantly in larger colonies (400MP and 800MP) than in smaller colonies 

(200MP) (Table 2-I).  We followed the gene expression analysis with an examination of protein 

expression of these markers in our MP-hESC colonies.  The frequency of Oct4 protein-

expressing cells was similar at each colony size (Figure 2.2E), ranging between 80 to 85%, 

despite increasing Oct4 gene expression with increasing colony size.  Conversely, GATA-6 

protein expression frequency, consistent with the GATA-6 gene expression data, was 

significantly higher in the small 200MP colony condition (55 to 60%).  PAX6 protein expression 

was not detectable at this stage of differentiation.  Interestingly, while GATA-6 and Oct4 co-
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expression was observed in the small 200MP colonies (Figure 2.2D-i), in the larger 400MP and 

800MP hESC colonies  co-expression was generally not observed (Figure 2.2D-ii and 2.2D-iii).  

These data suggest that controlling colony size can impact changes in gene expression in cells 

that still express pluripotency markers to skew the probability of the cells taking one 

differentiation trajectory over another. 

Next, we employed an analysis of the ratio of endoderm-to-neural gene expression levels 

(GATA-6:PAX6) in the input hESC and output MP-hESC populations to investigate 

relationships between colony size and differentiation trajectory with respect to the input hESC 

composition (Figure 2.3A).  In runs initiated with intermediate input GATA-6:PAX6 ratios 

between 0.35 and 0.55 (i.e. a “balanced” population), it was observed that the output MP-hESC 

ratio of endoderm (GATA-6) to neural (PAX6) gene expression was always higher than the input 

hESC ratio, and that GATA-6:PAX6 decreased with increasing colony size.  Input hESC 

populations with GATA-6:PAX6 ratios that were at high (> 0.55) and low (< 0.35) extremes 

resulted in almost no change in GATA-6:PAX6 ratio in the non-MP, 400MP and 800MP 

conditions, possibly indicating that these ratios represent cell populations that are not easily 

manipulated.  The smallest colony condition (200MP) displayed an increase in the GATA-

6:PAX6 ratio post-MP regardless of the input hESC ratio.  The increase in endoderm gene 

expression post-MP in the 200MP condition may be attributed to the rapid differentiation of 

hESCs occurring at low localized cell densities (localized cell density refers to the number of 

cells per unit radius; in this case the number of cells per 500 µm radius).  Not surprisingly, non-

MP colonies showed no changes in ratios after a conventional passage was performed in parallel 

with the patterned conditions.  As illustrated in Figure 2.3B, these results reveal two important 

parameters that affect differentiation trajectory in this system, input hESC composition and MP-

hESC colony size.  Schematically, input hESCs typically display a range of GATA-6 and PAX6 

expressions levels (Figure 2.3B-i), which subsequently shift upon micropatterning according to 

colony size.  In these studies it was observed that larger colonies support enrichment of neural-

fated cells while smaller colonies support the enrichment of endoderm-fated cells (Figure 2.3B-

ii).    
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Figure 2.2:  Analysis of size controlled MP-hESC colonies reveals the influence of colony size on 
differentiation trajectory.  (A)  Bright field images, at high (top panel) and low (bottom panel) magnification, of 
non-patterned (non-MP) hESC colonies and colonies patterned at 200, 400 and 800 µm diameters (200MP, 400MP, 
and 800MP respectively).  Scale bars = 250 μm.  (B)  Representative flow cytometry results of input hESC Oct4 
protein expression from six independent runs.  Blue: Oct4-stained population.  Percentages indicate frequency of 
positive-staining cells compared to secondary antibody control (red).  (C)  Representative qRTPCR analysis for 3 
out of 7 trials for expression of Oct4, Gata6, and Pax6 (Collective results of all trials found in Table 2-I).  (D)  
Immunofluorescence images displaying Oct4 (red) and Gata6 (green) protein expression in 200MP (i), 400MP (ii) 
and 800MP (iii) colonies.  Hoechst was used as a nuclear stain.  Scale bars represent 175 μm. (E)  Gata6 and Oct4 
protein expression frequencies in 200MP, 400MP, and 800MP hESC colonies. 
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TABLE 2-I. Gene expression level ranges of pre-patterned (Input hESC) and post-

patterned (Non-MP and MP-hESC) hESC cultures (n=7) 

  Mean (Range) Gene Expression Levela 

 Oct4 Gata6 Pax6 

Input hESC 0.33 (0.16-0.71) 0.27 (0.20-0.43) 0.77 (0.36-0.98) 

Non-MP 0.32 (0.11-0.58) 0.24 (0.11-0.48) 0.77 (0.66-0.94) 

200MP 0.37 (0.25-0.61) 1.11 (0.54-1.78)b, c 0.42 (0.32-0.51)b, c 

400MP 0.65 (0.26-1)b, c, d 0.42 (0.03-1.00)d 0.68 (0.44-0.99)d 

800MP 0.66 (0.21-0.97) b, c, d 0.19 (0.0045-0.48)d, e 0.66 (0.36-0.92)d 

aWhen significant differences exist they are displayed for each condition with conditions in previous row 
bdiffers significantly from input hESC 
cdiffers significantly from non-MP 
ddiffers significantly from 200MP 
ediffers significantly from 400MP 
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Figure 2.3:  Gata6 to Pax6 gene expression ratios in MP-hESC cultures are influenced by input hESC 
composition and colony size.  (A)The effect of (output) MP-hESC colony size on the gene expression ratio 
Gata6:Pax6 with respect to the corresponding input hESC Gata6:Pax6.  (B)  Schematics illustrating (i) variations in 
distribution of Gata6:Pax6 gene expression ratios between each input hESC populations (I), and (ii) the relationship 
between the Gata6:Pax6 gene expression ratio of any given Input hESC population (I, dotted line) and its 
corresponding MP-hESC Gata6:Pax6 ratios at each colony size (200MP, 400MP, and 800MP, solid lines). 

 

The influence of colony size on differentiation trajectories in hESC-derived EBs 

To evaluate our ability to control EB size using our patterning method, image analysis was 

performed on light microscopy images of day 1 EBs (Figure 2.4A) to calculate size distributions 

based on EB diameter.  Narrower size distributions were observed in MP-EB cultures compared 
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to non-MP EB cultures.  Furthermore, significantly different EB size distributions were observed 

between EB cultures generated from each hESC colony size examined (200MP, 400MP, and 

800MP) (Figure 2.4B-i).  In addition to EB diameter, colony and aggregate size control was also 

evaluated using a fluorescent DNA method (Cyquant, Invitrogen) to measure cell number 

(Figure 2.4B-ii).  This analysis demonstrated that the number of cells in each colony is 

comparable to the number of cells in each aggregate upon EB formation.  Furthermore, based on 

cell number, significant differences in EB size were observed between 200MP and 800MP, and 

400MP and 800MP (Figure 2.4B-ii).  

Within the EB, differentiation is guided by spatial cues and interactions between various cell 

types.  Accordingly, it is probable that the specific composition (or gene expression status) of the 

hESC population used to initiate EBs is an influential factor in determining cell fate during EB 

development.  Given that mesoderm commitment and cardiogenesis in the embryo is thought to 

be regulated through coordinated inductive and inhibitory signals from neighboring endoderm 

(Schultheiss, Xydas et al. 1995; Sugi and Lough 1995; Zhu, Sasse et al. 1999) and neural tissue 

respectively (Marvin, Di Rocco et al. 2001; Tzahor and Lassar 2001), and that the ratio of 

neural- and endoderm-associated gene expression in hESC cultures can be manipulated by 

varying colony size, we next examined if this ratio influenced mesoderm and cardiac induction 

in size-controlled EBs.  Using qRTPCR, mesoderm- (Brachyury (Bry) and Mixl1) and cardiac- 

(α-Actinin) associated gene expression levels were measured in EB outgrowths eight days (day 

8) after EB formation.   Brachyury is transiently expressed in early mesoderm (Hakuno, 

Takahashi et al. 2005), and has been shown to be expressed at elevated levels between day 4 and 

day 10 of EB differentiation (Bettiol, Sartiani et al. 2007; Kolodziejska, Ashraf et al. 2008).  

Mixl1 is expressed in the primitive streak (Pearce and Evans 1999; Robb, Hartley et al. 2000), 

and in hESC-derived EBs from day 3 to day 10 (Pick, Azzola et al. 2007).  α-Actinin is a cardiac 

contractile protein gene that has also been detected in differentiating hESC-derived EBs by day 

12 (Passier, Oostwaard et al. 2005; Beqqali, Kloots et al. 2006).  Plotting gene expression levels 

of day 8 EB outgrowths with respect to the neural and endoderm composition of their starting 

MP-hESC populations (Figure 2.5A) revealed similar expression profiles for both mesoderm and 

cardiac markers.  It was observed that gene expression levels of all mesoderm and cardiac 

markers examined were maximized in 400MP and 800MP EBs generated from MP-hESC 

populations with GATA-6:PAX6 expression level ratios above 0.1 (Figure 2.5A), whereas gene 
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expression was virtually undetectable in EBs generated from neural-enriched MP-hESCs 

(GATA-6:PAX6 < 0.01, mostly 800MP) and endoderm-enriched MP-hESCs (GATA-6:PAX6 > 

1, 200MP colonies).  Non-MP cultures gave rise to starting population compositions across the 

range observed for cardiac gene induction in MP-hESC cultures (0.1 to 1); however resulted in 

notably lower gene expression levels for all mesoderm and cardiac differentiation markers, likely 

due to heterogeneity in responsiveness.  Given that non-MP EBs were generated from non size-

controlled hESC colonies (Figure 2.2A) the measured GATA-6 and PAX6 gene expression 

levels for non-MP hESCs represent an average of different colony (Figure 2.4B) sizes with 

varying ratios of endoderm-fated and neural-fated cells.  While the average GATA-6:PAX6 ratio 

for the non-MP condition falls within the optimum range for cardiac induction, it includes high 

ratios for small GATA-6-expressing colonies and low ratios for large PAX6-expressing colonies 

which were observed to result in poor cardiac induction (Figure 2.5B). 

 
Figure 2.4:  Formation of size-controlled MP-EBs.  (A)  Bright filed images of EBs generated under the 4 
conditions tested: non-patterned colonies (non-MP) and colonies patterned at 200, 400 and 800 µm diameters 
(200MP, 400MP, and 800MP respectively).  Scale bars = 250 μm.  (B)  Quantitative demonstration of EB size 
control in EBs generated from size-controlled hESC colonies by (i) EB diameter, and (ii) by comparing cell number 
in colonies to cell number in subsequently generated aggregates using fluorescent DNA staining. 
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Figure 2.5:  The interactive effect of MP-hESC colony size and cell composition on mesoderm and cardiac 
induction in MP-EBs.  (A)  Gene expression levels measured for mesoderm markers Brachyury (Bry) and Mixl1, 
and cardiac marker α-Actinin in day 8 (d8) EBs plotted with respect to the Gata6:Pax6 gene expression ratio in the 
corresponding MP-hESC starting population, and as a function of MP-hESC colony size.  Neural-enriched and 
endoderm-enriched starting MP-hESCs generate MP-EBs that display poor mesoderm and cardiac induction, as 
indicated by the marked regions on the plots.  (B) A schematic summarizing the observed effect of controlling 
colony size on MP-hESC composition, and the consequence of MP-hESC composition on cardiac induction. 

 

Mature cell differentiation in MP-EBs and the effect of input hESC composition 
and colony/EB size on cardiac induction  

Starting at day 8 of EB culture, contracting areas appeared in MP-EB outgrowths suggesting that 

these cells exhibit spontaneous electrical activity.  Optical mapping with di-4-ANEPPS 

demonstrated that changes in membrane potential corresponded visually with contractions (data 

not shown).  Immunostaining revealed positive expression of contractile protein markers α-

sarcomeric actin (α-SR-1) and α-Actinin (EA-53), as well as the gap junction protein Connexin-

43 (Cx-43) (Figure 2.6A).  Staining day 20 EB outgrowths with α-SR-1 demonstrated a cluster of 

cardiac cells, whereas EA-53 expression in day 20 replated single cells exhibited the clear 

cardiac morphology of striated, highly organized fibers.  Immunofluorescence analysis of Cx-43 
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expression on day 22 from dissociated MP-EBs that had been replated at high density displayed 

a web-like pattern of staining highly concentrated between cell membranes, indicating functional 

cell coupling. 

To quantitatively evaluate mature differentiation from MP-EB induced differentiation cultures, 

day 16 MP-EB outgrowths were dissociated to single cells and cultured for 2 days as a 

monolayer on fibronectin-gelatin coated plates and then immunostained with EA-53 to detect 

cardiac differentiation.  Quantitative immunofluorescence was used to image the cells and detect 

positive protein expression, revealing the presence of EA-53+ cardiomyocytes (Figure 2.6B).  

The effect of MP-EB size and MP-hESC composition (level of GATA-6 and PAX6 gene 

expression) on cardiomyocyte frequency was analyzed.  In runs initiated from neural-enriched 

MP-hESC populations (high-PAX6/low-GATA-6 gene expression), higher frequencies of EA-53 

expression were observed in smaller MP-EBs (Figure 2.6C-i).  Conversely, in runs initiated from 

endoderm-enriched MP-hESC populations (low-PAX6/high-GATA-6 gene expression), the 

frequency of EA-53 expression was higher in larger MP-EBs (Figure 2.6C-ii).  Additionally, 

tracking the appearance of beating areas and neural rosettes in the MP-EB cultures (Figure 

2.6D), it was observed that within individual runs, neural rosettes were always present in larger 

EB sizes than those in which beating areas were detected.  But between runs, the specific MP-EB 

size that gave rise to the appearance of neural rosettes or beating areas shifted.  A proposed 

mechanism for our observations is summarized in Figure 2.6E, wherein, mirroring what happens 

upon manipulating hESC colony size, the endoderm composition is higher in smaller MP-EBs 

and is lower in larger MP-EBs, however the specific MP-EB size that optimizes cardiac 

induction shifts based on the cell composition of the input hESC population. 
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Figure 2.6:  MP EBs can be used to form mature cell types and the output is dependent on colony and EB 
size. (A) Immunostaining on a replated monolayer demonstrated expression of (i) alpha sarcomeric actin (α-SR-1) in 
day 21 (d21) EB outgrowths, (ii) α-actinin (EA-53) at day 20, and (iii) gap junction protein Cx-43 at day 22.  (B) 
Representative α-Actinin immunofluorescence images from Cellomics analysis i) demonstrating the algorithm used 
to detect positive α-Actinin, and (ii) the corresponding overlay image.  (C)  A comparison of α-Actinin-expression 
frequency at two EB sizes (400MP and 800MP) from independent runs initiated with either a neural-enriched 
(Gata6-low/Pax6-high) or an endoderm-enriched (Gata6-high/Pax6-low) MP-hESC population.  (D)  Tracking 
neural rosettes and spontaneously contracting areas in day 8 EBs (3 representative trials).  (E)  The observed effect 
of differences in endoderm and neural cell composition in the input hESC population that are further modulated in 
MP-hESC by controlling colony size, and ultimately impact MP-EB-based cardiac induction. 
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DISCUSSION 

EB-based differentiation is a powerful system because it can mimic in vivo embryonic 

development and provides a platform to study the effects of cell-cell interactions and spatial 

organization on cell type-specific commitment.  During embryogenesis, factors secreted by 

anterior lateral endoderm are thought to direct cardiac differentiation of neighboring mesoderm, 

as well as to promote cell survival and proliferation (Schultheiss, Xydas et al. 1995; Sugi and 

Lough 1995; Antin, Yatskievych et al. 1996; Zhu, Sasse et al. 1999), while parietal endoderm 

(Stary, Schneider et al. 2006) and visceral endoderm (Hogan, Taylor et al. 1981; Mummery, 

Ward-van Oostwaard et al. 2003; Bin, Sheng et al. 2006) have been shown to enhance ESC 

differentiation to cardiomyocytes.  Given that one of the first events in EB development is the 

formation of an endoderm layer surrounding a pluripotent epiblast core (Keller 1995; Grabel, 

Becker et al. 1998), we hypothesized that controlling EB size would modulate the ratio of 

cardiac-inducing visceral endoderm cells to pluripotent hESCs within the EB proportionally to 

the surface area (endoderm) to volume (hESC) ratio of the EB.  In other words, we expected that 

the endoderm:hESC ratio would decrease with increasing EB size.  Accordingly, there would be 

an ideal EB size corresponding to the ideal ratio of endoderm cells to hESCs to optimize cardiac 

induction.   

A number of groups are targeting EB size control to improve hESC differentiation (Ng, Davis et 

al. 2005; Khademhosseini, Ferreira et al. 2006; Mohr, de Pablo et al. 2006; Burridge, Anderson 

et al. 2007).  One limitation of our system is that EBs are formed from 2-dimensional colonies 

prior to transferring them to suspension.  Ultimately, it would be advantageous if the cell 

trajectory control we have in our 2-D system can be translated to direct methods for 3-

dimensional cell patterning (Khademhosseini, Ferreira et al. 2006; Mohr, de Pablo et al. 2006).  

We observed that controlling EB size (Rosenthal, Macdonald et al. 2007) alone was insufficient 

to achieve reproducible cardiac induction.  In fact, comparing cardiac induction in separate EB 

size-controlled runs with respect to EB size alone yielded more variability than in parallel non 

size-controlled runs, with no clear pattern between EB size and cardiac induction efficiency.  It 

became apparent that EB size-controlled cultures were more sensitive to differences in the 

starting population, which is typically comprised of cells expressing pluripotent hESC markers 

and markers of early hESC derivatives.  We thus concluded that analyzing the expression of 
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pluripotency markers (Oct4, Nanog) was inadequate for assessing the input population, and that 

the composition of cell types expressing markers associated with lineage commitment are useful 

indicators for differentiation trajectory biases.  Interestingly, using quantitative image analysis, 

we have observed both the co-expression and unique expression of pluripotency markers and 

differentiation associated markers at the protein level.  This data suggest that both cell-cell 

interactions and endogenous parameters influence cell differentiation trajectories. In our system 

the effect of EB size on mesoderm/cardiac induction was dependent on the ratio of endoderm-

gene expressing to neural-gene expressing cells.  Importantly, this ratio could exist at a wide 

range of values within an input hESC population expressing robust levels of typical 

pluripotency-associated markers.  While signals from neighboring endoderm promote cardiac 

induction, we did not observe an increase in cardiac induction in endoderm marker expression 

enriched starting populations, which demonstrates the necessity to balance the ratio of 

undifferentiated cells and endoderm/endoderm precursor cells in differentiating EBs.  Input 

populations exhibiting high endoderm-associated marker expression produced differentiation 

cultures with increased mesoderm/cardiac induction in larger EBs, while neural-marker enriched 

input populations resulted in increased mesoderm/cardiac induction in smaller EBs.  This 

observation corresponds with our previously stated hypothesis that you can modulate the ratio of 

outer endoderm cells and inner hESCs by controlling EB size; however this ratio is also a 

function of the initial ratio of endoderm-associated and neural-associated cells in the hESC 

population prior to initiating micropatterned colonies.   

Controlling the EB size revealed that hESC differentiation studies are hampered by variations in 

the gene expression profiles of hESC input populations.  Our data suggests that colony size can 

be manipulated to generate the appropriate input cell composition for increased 

mesoderm/cardiac induction efficiency during EB-mediated hESC differentiation.  The ratio of 

endoderm to neural precursors may be an indicator of an input population’s mesoderm/cardiac 

induction efficiency because, as previously discussed, endoderm is believed to secrete pro-

cardiogenic factors while signals (such as Wnts) from the neural tube have been shown to block 

heart formation in the embryo (Marvin, Di Rocco et al. 2001; Tzahor and Lassar 2001).  By 

micropatterning hESC colonies of defined diameters, we demonstrated that the level of 

pluripotency gene expression as well as the ratio of endoderm-associated to neural-associated 

cells is a function of colony size (Figure 2.3).  Larger colonies exhibit higher levels of expression 
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of pluripotency genes (Oct4 and Nanog) and lower ratios of endoderm-associated to neural-

associated cells, while smaller colonies exhibit lower expression levels of pluripotency-

associated genes and higher ratios of endoderm-associated to neural-associated cells.  These 

observations are consistent with the literature including our previous report that enhanced 

maintenance of the hESC phenotype in larger colonies was attributable to an antagonistic 

interaction between secreted factors from pluripotent and extra-embryonic endoderm cells that 

regulates Small mothers against Decapentaplegic (Smad)1 activation (Peerani, Rao et al. 2007).  

In a larger colony, the higher local cell density (cell number per unit radius) leads to higher 

levels of BMP antagonists (such as GDF3), which are secreted by hESCs, thereby supporting self 

renewal by suppressing Smad1 activation.  Meanwhile in smaller colonies, with lower local 

hESC densities, the secretion of BMP2 by extra-embryonic endoderm activates Smad1 thus 

suppressing self renewal.  Further, it has been demonstrated that strong interference of 

endogenous BMP-2 signaling in hESC cultures leads to the induction of cells expressing the 

characteristic neuroectoderm markers Pax-6 and nestin (Pera, Andrade et al. 2004).  Therefore, 

in smaller colonies (low local cell densities) lower levels of BMP-2 antagonist factor promote 

endoderm differentiation (higher GATA-6:PAX6), while in larger colonies (higher local cell 

densities) higher levels of BMP-antagonist suppress endoderm differentiation leading to higher 

levels of Oct4 and PAX6 expression.   

In conclusion, our findings here have revealed three critical parameters currently neglected in 

most hESC differentiation experiments: (1) the status of the input hESC composition, (2) hESC 

colony size, and (3) EB size.  Specifically, reproducible, efficient (endogenous) 

mesoderm/cardiac induction is dependent on (1) the ratio of endoderm to neural precursors in the 

input hESC population, which (2) can be modulated by controlling hESC colony size, as well as 

on (3) EB size possibly through a mechanism in which size modulates the ratio of endoderm 

cells to hESCs during EB development prior to the mesoderm/cardiac induction phase.  In 

combination with future approaches aimed at selecting input hESC populations with more 

permissive gene expression profiles for specific differentiation trajectories, we posit that micro-

patterning will enable more rigorous optimization of other tissue environment factors that depend 

on colony- and EB- size. 
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Chapter 3  
Generation of Human Embryonic Stem Cell-Derived Mesoderm 

and Cardiac Cells Using Size-Specified Aggregates in an 
Oxygen-Controlled Bioreactor 
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ABSTRACT 

The ability to generate human pluripotent stem cell-derived cell types at sufficiently high 

numbers and in a reproducible manner is fundamental for clinical and biopharmaceutical 

applications.  Current experimental methods for the differentiation of pluripotent cells such as 

human embryonic stem cells (hESC) rely on the generation of heterogeneous aggregates of cells, 

also called “embryoid bodies” (EBs), in small scale static culture.  These protocols are typically 

(1) not scalable, (2) result in a wide range of EB sizes and (3) expose cells to fluctuations in 

physicochemical parameters.  With the goal of establishing a robust bioprocess we first screened 

different scalable suspension systems for their ability to support the growth and differentiation of 

hESCs.  Next homogeneity of initial cell aggregates was improved by employing a micro-

printing strategy to generate large numbers of size-specified hESC aggregates.  Finally, these 

technologies were integrated into a fully controlled bioreactor system and the impact of oxygen 

concentration was investigated.  Our results demonstrate the beneficial effects of stirred 

bioreactor culture, aggregate size-control and hypoxia (4% oxygen tension) on both cell growth 

and cell differentiation towards cardiomyocytes.  QRT-PCR data for markers such as brachyury, 

LIM domain homeobox gene Isl-1, Troponin T and Myosin Light Chain 2v, as well as 

immunohistochemistry and functional analysis by response to chronotropic agents, documented 

the impact of these parameters on cardiac differentiation. This study provides an important 

foundation towards the robust generation of clinically relevant numbers of hESC derived cells. 

INTRODUCTION 

Embryonic and pluripotent stem cells are capable of self renewal and multilineage differentiation 

(Evans and Kaufman 1981; Thomson, Itskovitz-Eldor et al. 1998).  The ability of human 

embryonic stem cells (hESC) to differentiate to specialized cells including neural progenitor 

cells, cardiomyocytes and insulin producing cells (Carpenter, Inokuma et al. 2001; Gerecht-Nir, 

Fishman et al. 2004; Segev, Fishman et al. 2004) underpins excitement in the use of these cells 

for accelerating drug discovery and developing new cellular therapeutics.  Cardiomyocytes and 

cardiac progenitors, generated either through embryoid body (EB) formation (Kehat, Kenyagin-

Karsenti et al. 2001; Xu, Police et al. 2002; Huber, Itzhaki et al. 2007; Leor, Gerecht et al. 2007), 

coculture (Mummery, Ward-van Oostwaard et al. 2003; Passier, Oostwaard et al. 2005; Bin, 

Sheng et al. 2006) or serum-free cytokine induction (Li, Powell et al. 2005; McDevitt, Laflamme 
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et al. 2005; Passier, Oostwaard et al. 2005; Kattman, Huber et al. 2006; Ludwig, Bergendahl et 

al. 2006; Xu, He et al. 2006; Kattman, Adler et al. 2007; Laflamme, Chen et al. 2007; Yang, 

Soonpaa et al. 2008; Zhang, Li et al. 2008), have been successfully derived from hESC.  These 

cells exhibit many of the properties of native cardiac cells including electrophysiological 

responsiveness (Kehat, Gepstein et al. 2002; He, Ma et al. 2003; Satin, Kehat et al. 2004; Xue, 

Cho et al. 2005; Binah, Dolnikov et al. 2007) and in vivo function (Kehat, Khimovich et al. 

2004; Xue, Cho et al. 2005; Moon, Park et al. 2006).  Recent animal models with ESC-derived 

cardiomyocytes of mouse and human origin support the potential of this cell source for heart 

repair (Kehat, Khimovich et al. 2004; Laflamme, Gold et al. 2005; Menard, Hagege et al. 2005; 

Kolossov, Bostani et al. 2006; Caspi, Huber et al. 2007; Dai, Field et al. 2007; Ebelt, Jungblut et 

al. 2007; Leor, Gerecht et al. 2007).  This promising technology, however, is limited by the 

number of cells that will be required to manufacture a cardiac cell patch, or to replace damaged 

tissues.  It is estimated that in a typical cardiac infarct as many as one billion cardiac cells die 

(Murry, Reinecke et al. 2006); their replacement may enable the structural and functional healing 

of an adult heart.   

Although bioprocesses for mouse (m)ESC propagation and differentiation have been well 

established (Keller 1995; Kurosawa, Imamura et al. 2003; Bauwens, Yin et al. 2005; Fok and 

Zandstra 2005; Schroeder, Niebruegge et al. 2005), the translation of these technologies to 

hESCs has been challenging, principally because hESC growth rates have been slower, and 

heterogeneity in culture and media formulations have limited optimization of differentiation 

efficiencies and population expansions.  Progress has been made in the development of 

engineered systems to generate hESC-derived cells, including stirred and rotating cultures for 

hESC differentiation (Gerecht-Nir, Cohen et al. 2004; Cameron, Hu et al. 2006) and hESC 

growth in microbioreactors or matrices (Figallo, Cannizzaro et al. 2007; Gerecht, Burdick et al. 

2007).  However these systems typically do not control the microenvironment that the cells are 

exposed to or regulate heterogeneity in cellular parameters such as aggregate size.  In recent 

studies we have demonstrated that the rate and trajectories of hESC differentiation can be 

controlled by engineering hESC niche properties using a robust micropatterning-technology 

(Peerani, Rao et al. 2007; Bauwens, Peerani et al. 2008).  This technique provides an important 

strategy towards micro-environmental regulation and directed differentiation, which we have 

utilized here for the formation of size-controlled aggregates of hESCs. 



 

 

55

Cell fate decisions can also be influenced by cell extrinsic factors such as cell-cell interactions, 

soluble factors and physicochemical parameters.  Low oxygen tension (2-5%) has been shown to 

enhance mouse and human ESC proliferation (Forsyth, Musio et al. 2006; Gibbons, Hewitt et al. 

2006), and we have previously used this parameter to enhance cardiac differentiation from 

mESCs (Zandstra, Bauwens et al. 2003; Bauwens, Yin et al. 2005).  It is further noteworthy that, 

during embryogenesis and particularly during the development of the cardiovascular system, 

many cues and processes are influenced by hypoxia (Ramirez-Bergeron and Simon 2001; 

Ramirez-Bergeron, Runge et al. 2004; Buggisch, Ateghang et al. 2007).  

By combining both tools, engineering the cellular microenvironment using micropatterning-

based aggregate control and physicochemical (oxygen) control using bioreactors, we here report 

a novel two-step bioprocess for the generation of human pluripotent cell-derived mesoderm and 

cardiac cells in a stirred suspension system. Quantitative RT-PCR, immunohistochemistry and 

functional analysis using optical mapping demonstrated the capacity of this system to generate 

ESC-derived cells including cardiomyocytes. This approach forms an important foundation for 

the development of scalable and controllable bioprocesses for pluripotent cell expansion and 

differentiation.  

METHODS 

hESC maintenance 

Human ESC (H9, passages 37 to 52; HES2, passages 24 to 26) were routinely maintained on 

irradiated feeder-layers of mouse embryonic fibroblasts (mEFs) in KnockOut (ko)-Dulbecco’s 

Modified Eagle Medium (DMEM, Invitrogen) with 20% ko-Serum Replacement (SR) 

(Invitrogen) and supplemented with 4 ng/mL FGF-2 (PeproTech).  Cells were dissociated into 

small clumps using 0.1 % collagenase IV (Invitrogen) and passaged every 7 days. For passaging, 

plates were incubated with Collagenase type IV (2 mg/mL, Invitrogen) for 10 min.  After 

aspirating, the collagenase was replaced with hESC maintenance medium.  The colonies were 

then scraped-off the dish and gently pipetted to generate small cell clumps that were replated on 

a mEF feeder layer at a subculture ratio of 1:6.  Karyotype results for H9 cells are provided in 

Supplementary Figure 1. 
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Formation of EBs  

Before forming EBs from hESC maintained on mEFs, cells were pre-differentiated by replacing 

maintenance medium with differentiation medium: 20% fetal bovine serum (Hyclone), 0.1 mM 

β-mercaptoethanol (Sigma), 0.1 mM non-essential amino acids (NEAA), 2 mM L-glutamine, 50 

U/mL penicillin, and 50 µg streptomycin in ko-DMEM (all from Gibco).  After 24 h cells were 

incubated with collagenase type IV (2 mg/mL, Invitrogen) for 10 min and then the collagenase 

was replaced by differentiation medium.  To initiate EB formation cells were scraped-off and 

small clumps were generated by gently pipetting 8x.  These cell clumps were cultured in 

suspension on ultra-low attachment non-tissue culture treated plates (Corning) for additional 24 h 

before transferring into the desired culture system (described below). 

Micropatterned EBs 

To control aggregate size, a micro-contact printing technique was developed whereby hESC 

colonies are cultured on a micro-patterned ECM surface (Peerani, Rao et al. 2007).  The micro-

contact printing process employed a published technique by Tan (Tan, Tien et al. 2002; Tan, Liu 

et al. 2004).  Briefly, Poly(dimethylsiloxane) (PDMS) circular stamps with diameter, D (400 µm 

and 800 µm), and pitch, P (500 µm) were fabricated using standard soft lithography techniques 

(Younan Xia 1998).  Stamps were inked with an aqueous solution of pH 5 Matrigel™ for 1 h.  

After rinsing away excess Matrigel™ and drying stamps with sterile N2, a monolayer of protein 

remained on the surface of the stamp.  This layer was transferred to a tissue culture treated 

substrate (tissue culture dish) after the stamp has been placed in conformal contact with the 

substrate for more than 10 sec.  The pattern was passivated with 5% w/v Pluronic™-127 (Sigma) 

which is used to prevent protein adsorption and cell attachment to unpatterned regions of the 

substrate.  Matrigel™ patterns were seeded with a single cell suspension of hESCs prepared as 

follows: Colonies of hESCs cultured on mEFs were incubated with 0.25% Trypsin-EDTA 

(Gibco) for 3 min.  Trypsin-EDTA was inactivated with serum-containing hESC differentiation 

medium.  Vigorous pipetting was used to mechanically dissociate the colonies to single cells.  

Cells were centrifuged and then resuspended in serum-free (SF) hESC maintenance medium (XV 

medium) consisting of X-Vivo 10 (XV, Biowhittaker), 2mM glutamax, 0.1mM NEAA, 0.1mM 

β-mercaptoethanol, 40 ng/mL FGF-2, and 0.1 ng/mL TGF-β. This single cell suspension of 

hESCs was plated onto patterns at 1.5 x 106 cells/mL.  At 12 h post-seeding, patterned cells were 
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washed 3x with XV medium to prevent cell attachment on unpatterned areas.  As many as ∼9500 

size-controlled aggregates could be generated on a single microscopes slide (9500 EBs/ 9.6cm²).  

Patterned colonies were fed daily with 3mL SF-medium until d2 or d3 when the colonies were 

transferred to suspension culture to initiate differentiation.  To form differentiating aggregates, 

d3 patterned hESC colonies were gently scraped off the dishes, and resuspended in hESC 

differentiation medium consisting of ko-DMEM, 20% FBS, 2mM glutamax, 0.1mM NEAA, 

0.1mM β-mercaptoethanol, 50 IU/mL penicillin and 50 μg/mL streptomycin.  These aggregates 

were cultured in suspension in the culture systems described below. 

Culture systems 

Ultra-low attachment plates were used for static culture and small-scale dynamic cultivations on 

an orbital shaker (Rotomix VWR, 50 rpm).  A Barnstead rotisserie system was employed for 

roller-bottle culture (50 mL, 40 rpm).  For stirred suspension cultivations, we employed spinner 

flasks from a DasGip cellferm-pro bioreactor system provided with a glass bulb impeller (125 

mL, 40 rpm) and a plastic paddle equipped Bellco spinner (150 mL, 40 rpm).  All bioreactor 

cultures were performed with the DasGip cellferm-pro system, a parallel cultivation system that 

is capable of monitoring and controlling oxygen tension and pH in up to eight parallel 500-mL 

vessels.  Cultures were maintained under either normoxic (21% O2 tension) or hypoxic (4% O2 

tension) conditions in a medium volume of 125 mL.  Medium was replaced every 4 d. 

Cell and EB counts 

EB numbers and number of contracting EBs were quantified by taking samples of 1mL cell 

suspension on d2, d5, d9, d13 and d16 of differentiation.  EBs were counted in a 24-well plate 

using an inverted-microscope.  The same sample was used to determine cell number and viability 

by dissociating EBs to single cells followed by trypan-blue staining. 

Quantitative RT-PCR 

Total RNA was extracted from the cells by homogenization in Trizol (Invitrogen).  Extraction 

with chloroform was followed by precipitation with iso-propyl alcohol.  RNA was purified using 

RNAEasy columns (Qiagen) with an on-column DNase-I digestion step.  cDNA was generated 

from purified RNA with Superscript-III reverse transcriptase (Invitrogen) as per manufacturer’s 
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instructions.  10 ng of cDNA was used per PCR reaction with iQ-SYBR-green master mix 

(BioRad) in triplicate.  Relative expression was determined by delta-delta Ct method with the 

expression of α-actin as housekeeping reference.  Table 3-I provides a list of all primer 

sequences derived from the MGH Primerbank (Wang and Seed 2003).  Specificity of 

amplification was assured with analysis of dissociation curves of all reactions.  Human fetal 

heart (FH; BioChain, Total RNA human fetal heart) was used as reference.  For all samples a 

control was performed without reverse transcriptase and no amplification was detected in these 

controls. 

 

 
Table 3-I – Overview of primer sequences used for quantitative RT-PCR 

• Gene 5’ Primer 3’ Primer 

beta-Actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 

Oct4 CTTGAATCCCGAATGGGAAAGGG CCTTCCCAAATAGAACCCCCA 

Brachyury T TGCTTCCCTGAGACCCAGTT GATCACTTCTTTCCTTTGCATCAAG 

Mesp1 CTCTGTTGGAGACCTGGATG CCTGCTTGCCTCAAAGTG 

Nkx2.5 GGTGGAGCTGGAGAAGACAGA CGACGCCGAAGTTCACGAAGT 

FoxC1 ACGGCATCTACCAGTTCATC TCCTTCTCCTCCTTGTCCTT 

Isl1 TGATGAAGCAACTCCAGCAG GGACTGGCTACCATGCTGTT 

Tbx2 ACCCTGAGATGCCCAAAC CAGTGACGGCGATGAAGT 

Tbx5 TACCACCACACCCATCAAC ACACCAAGACAGGGACAGAC 

Mef2c CGAGATACCCACAACACACG- TTCGTTCCGGTGATCCTC 

α-Actinin GGGTCCGTTTGCCAGTCAG GGCTTTCCTTAGGTGGGAGTT 

Troponin T GGACGAAGACGAGCAGGAG CTTCCGGTGGATGTCATCAAA 

MLC2v TGGGCGAGTGAACGTGAAAAA CACTTTGAATGCGTTGAGAATGG 

 

Immunocytochemistry and confocal laser scanning microscopy 

Fluorescence pictures were obtained from d16 cell aggregates after cells were incubated with 

Collagenase type IV (2mg/mL, Invitrogen) for 6 min and cell clumps were vigorously pipetted.  

Single cells were seeded on fibronectin/gelatin-coated (1 mg fibronectin in 80 mL of 0.02 % 

gelatin) 4-well chamber slides (LabTek) at a density of 1 x 104 cells/well.  Cells were cultured 

for 3 d before staining was performed as previously described (Bauwens, Yin et al. 2005).  The 

following antibodies were used: α-actinin (EA-53, 1:800, Sigma), sarcomeric actin (A2172, 
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1:500, Sigma) and secondary antibodies (Alexa 546 and Alexa 488, both 1:200, Molecular 

Probes).  Cells were imaged using an Olympus FV1000 confocal laser microscope. 

Electrophysiological characterisation 

Spontaneous electrical activity of hESC derived cardiomyocytes can be assessed by optical 

mapping.  D13 EBs were harvested and plated on fibronectin/gelatin-coated culture dishes and 

cultured for additional 2 d before analysis.  For action potential (AP) tracking, plated EBs were 

incubated for 8 min in the dark with 5 µM of di-8-ANNEPS in Tyrode’s salt solution (T2397, 

Sigma) followed by three washes with Tyrode solution.  Recordings of EBs exhibiting 

contracting areas were performed in Tyrode in the dark and at stabilized 37°C.  Additionally, 

norepinephrine (1 mM, diluted in differentiation medium) was applied during AP tracking.  

Experiments were performed using a CMOS optical mapping system with a microscope capable 

of magnification and image intensification (Ultima, Brain Vision Inc, Japan).  Fluorescence was 

excited at 531 nm ± 20 nm with a 150 W halogen light source (MHF-G150LR, Moritek Corp, 

Japan,).  Emission signal was long pass filtered at 610 nm and recorded for a period of 15s with 

temporal resolution as fast as 1 kHz. Changes in dye signal were recorded and analyzed using 

BV-analyzer software (Brain Vision Inc, Japan). 

Statistics 

Values are presented as means ±SD, if not otherwise indicated.  Statistical significance was 

assessed with one-tailed Student’s t-test at a significance level of 5% and was noted when the p-

value for three independent experiments was less than 0.05.  Best-fit regression curves were 

assessed for the means of cell numbers and percentage of contracting EBs with polynomial fit 

analysis in an order of 2 (fit curve min = 2, fit curve max = 16).  All numerical analysis was 

performed using Origin 7.5 (OriginLab, Northhampton, MA) graphing and data analysis 

software. 

RESULTS 

Dynamic culture supports cell expansion and yield of contracting EBs 

As a first step in developing a bioprocess capable of supporting the production of differentiated 

cells from hESCs, we screened a number of dynamic culture systems and compared cell growth 
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to static plate controls.  Almost no cell expansion was documented for hESCs grown in static 

culture after 16d of differentiation (d16 cell-fold expansion 1.0 ± 0.4; Fig. 1A).  Switching to 

dynamic culture, as reported by others in mESC (Carpenedo, Sargent et al. 2007), resulted in an 

improved cell growth, shown here for hESCs cultured in ultra-low attachment dishes on an 

orbital shaker table (2.0 ± 0.7).  Next we evaluated different scalable culture systems.  We found 

a cell-fold expansion of 3.8 ± 1.9 in roller bottles, whereas culture in glass-bulb equipped spinner 

flasks resulted in an expansion of 5.0 ± 2.8.  In spinner systems with a plastic paddle impeller, 

cell expansion was found to be 3.8 ± 0.8.  These findings suggest that cell growth of 

differentiating hESCs is significantly improved by dynamic culture conditions, demonstrated in 

four suspension systems differing in agitation forces and vessel geometry.  Furthermore, in 

comparison to static culture, a higher percentage of EBs with contracting areas was observed in 

all dynamic systems tested (Fig. 3.1B).  In conclusion a spinner system equipped with a single 

glass-bulb impeller (DasGip cellferm-pro spinner flask) was found to be the most favorable for 

cell growth and percentage of contracting EBs.  
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Figure 3.1:  Dynamic culture supports cell expansion and increases percentage of contracting EBs. A: Cell-
fold expansion of H9 hESCs on d16 of differentiation. By comparing static culture with dynamic culture an 
improved cell growth was found in all dynamic systems tested. Ultra-low attachment dishes were used for static 
culture and as well for dynamic cultivations on an orbital shaker. A Barnstead rotisserie system was employed for 
rollerbottle culture. Stirred suspension cultivations were performed in a DasGip cell-ferm pro spinner system 
equipped with a glass bulb impeller and in a Bellco spinner equipped with a plastic paddle impeller. B: Percentage 
of EBs with contracting areas. In comparison to static culture on 16d higher percentage of EBs with contracting 
areas was observed in all dynamic systems tested. Data are reported as mean with standard deviation of two 
independent experiments. 
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Robust generation of size-controlled EBs  

Creating EBs with conventionally used protocols results in heterogeneous size distributions 

(Ungrin, Joshi et al. 2008), which may influence cell fate.  Typically, both a wide range of EB 

sizes, and significant variations in mean EB sizes between separate runs, are observed.  In order 

to control input cell population properties, we have developed a robust micropatterning 

technique, whereby hESCs were cultured on circular-features varying in diameters (Peerani, Rao 

et al. 2007).  This technology was adapted to the generation of size-specific aggregates by adding 

a colony removal step (Fig. 3.2).  Pattern sizes of 400 and 800 µm diameters were chosen based 

on earlier results suggesting that small patterns (≤ 200 µm result in predominantly primitive 

endoderm differentiation (Peerani, Rao et al. 2007), while large patterns (≥ 800 µm), and thus 

large aggregates of cells, may exhibit limited growth and proliferation (Dang, Gerecht-Nir et al. 

2004).  Two-to-four days after hESCs were printed on MatrigelTM-coated circular patterns, cells 

were scraped-off.  Patterned aggregates were more homogenous in their size distribution and 

shape than EBs induced by traditional techniques (Fig. 3.2A).  Noteworthy, on a single 

microscope slide as many as ∼9500 size-controlled aggregates could be generated, making this 

technology amenable to the generation of large numbers of size-controlled aggregates to seed 

bioreactors.  
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Figure 3.2:  Conventional hEB protocols result in heterogeneous aggregates, whereas micropatterned 
aggregates are more uniform in size and shape.  (A) Undifferentiated H9 hESC cells on mEFs were used to 
induce EB formation using a colony scraping-off technique resulting in uncontrolled formed EBs (UCEBs) (i). For 
micropatterning (ii), hESCs on mEFs were scraped-off and seeded as single cells on patterned features. To form 
differentiating aggregates, d3 patterned hESC colonies were scraped-off the dish followed by inoculation into stirred 
suspension cultures (scale bars: 400 µm). (B) Highest cell outputs were achieved with MP400 aggregates. hESC 
colonies were patterned with an initial feature diameter of 400 µm and 800 µm (MP400, MP800), respectively, 
followed by growth in stirred suspension. Cell growth was compared to growth of EBs generated by scraping-off 
(uncontrolled, UCEBs).  (C) Cell expansion of cells derived from MP400 and MP800, respectively, normalized to 
expansion of UCEBs. (D) EBs with contracting areas were observed in all three conditions. Data are reported from 
two independent experiments each performed with UCEBs (black, dash line), MP400 EBs (black, straight line) and 
MP800 EBs (grey, straight line). Polynomial regression analysis was used to model best-fit curves. 
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Removing heterogeneity and controlling EB size allows for more robust cell 
growth in suspension culture  

The above results indicated that controlling aggregate size leads to more uniform EB 

populations.  As a next step, we investigated if the size-specified aggregates could be grown in 

scalable suspension systems.  Control aggregates, and aggregates formed using micropatterning, 

were formed and cultured in differentiation medium for 24 h in low-attachment dishes, and then 

inoculated into spinner flasks equipped with a single glass-bulb impeller (125 mL).  

Interestingly, although all three aggregate conditions were seeded at the same initial cell density, 

dramatic differences were observed in the overall cell output (Fig. 3.2B, C).  Specifically, we 

found an improved yield of differentiating cells from micro-patterned hESC colonies (MP) as 

opposed to uncontrolled EBs (UCEBs); significant differences were also observed as a function 

of micro-patterned aggregate diameter [400 µm (MP400) vs. 800 µm (MP800)].  Trend-lines 

generated using polynomial regression with related datapoints for two independent experiments 

are shown in Figures 3.2B to D and highlight the impact of each culture condition.  After 16 days 

of differentiation the MP400 culture delivered the highest yield of differentiating cells; for 

example, in one representative experiment (Figure 3.2B) cell outputs were MP400: 7.5 x 105 vs. 

MP800: 4.5 x 105 vs. UCEBs: 3.1 x 105 cells/mL.  In all three culture conditions, cell viability 

was consistently >93%.  Figure 3.2C demonstrates the significant differences in cell expansion 

observed over 3 experiments, with the outputs from the MP400 and MP800 cultures normalized 

to the UCEBs cultures.  Aggregates derived from MP400 cells were found to expand 2.9x (± 0.7) 

more, whereas MP800 derived cells expanded 1.5x (± 0.14) more, compared to UCEBs.  Cell 

expansion was significantly increased in MP400 aggregates (p= 0.01) as compared to MP800.  

Notably, even after 16d in culture, MPEBs are more uniform in size and more compact than 

UCEBs, which typically exhibit a necrotic morphology (Suppl. Figure S2-2).  EBs with 

contracting areas were observed under all three conditions.  The highest percentage of 

contracting EBs were found in MP400 culture (Fig. 3.2D). 

Impact of oxygen on cell expansion  

As a next step in the development of this bioprocess we explored conditions that may further 

improve the yield of total cells or differentiated target cells in dynamic suspension systems.  Our 

previous findings with mESCs suggested that oxygen concentration may be used as a parameter 
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to guide cardiomyogenic induction in differentiating ESCs (Bauwens, Yin et al. 2005).  In the 

studies reported here, we incorporated this parameter into our bioprocess for hESC 

differentiation.  EB formation was initiated by scraping-off hESCs colonies.  After an additional 

24h in static culture 40 EBs/mL were seeded into the bioreactor vessel (DasGip system, 125 mL 

volume).  In order to compare cell densities achieved in the bioreactor system under hypoxic (4% 

oxygen tension) and normoxic conditions (21% oxygen tension, Fig. 3.3A) vs. cell densities 

obtained under uncontrolled conditions (UC, employing an identical culture vessel), trend lines 

for the two independent experiments were determined using polynomial regression.  As shown in 

Figure 3.3B the highest cell densities and d16 cell-fold expansion were observed under hypoxia.  

For instance, in a representative experiment the highest cell density, 7.4 x 105 cells/mL, was 

achieved under hypoxic conditions as compared to 5.6 x 105 cells/mL under normoxic 

conditions.  Cell expansion normalized to cell expansion in uncontrolled conditions (Fig. 3.3C) 

confirms the significant beneficial effect of hypoxia on cell growth.  On d16 of differentiation 

cell-fold expansion was found to be significantly higher under hypoxic as compared to normoxic 

conditions (1.75x ± 0.16 vs. 1.4x ± 0.22; (p= 0.04)).  EBs with contracting areas were found in 

all three cultures (Fig. 3.3D).  
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Figure 3.3:  Hypoxia culture in a controlled bioreactor supports cell growth.  (A) Oxygen tension profiles in 
controlled normoxic and hypoxic bioreactor culture.  (B) Growth kinetics of H9 EBs under different oxygen 
conditions. hEBs generated by colony scraping-off were cultured in a bioreactor system under hypoxic (pO2 = 4%; 
HO) and normoxic (pO2 = 21%; NO) conditions, respectively. Growth was compared to EBs cultured in a 
comparable culture vessel but under uncontrolled (UC, incubator) oxygen conditions. Highest cell densities were 
achieved under hypoxic conditions. (C) Cell expansion normalized to cell growth under uncontrolled conditions 
demonstrates beneficial effect of hypoxia on cell growth. (D) EBs with contracting areas were observed in all three 
conditions. Data are reported from two independent experiments each performed under uncontrolled conditions 
(black, dash line), hypoxic (black, straight line) and normoxic conditions (black, straight line). Polynomial 
regression analysis was used to model best-fit curves. 

 

Combining micropatterning, dynamic culture and oxygen regulation results in a 
bioprocess with enhanced cell output.  

Our results demonstrate that size-specified EB formation, dynamic systems and oxygen tension 

all influence cell proliferation and differentiation output.  Consequently, as a next step, we 

combined these tools to establish an integrated bioprocess.  Performing all experiments with both 

H9 and HES2 cells allowed us to validate our process strategy with two cell lines.  Human ESC 

colonies were patterned at an initial diameter of 400 µm followed by culture in either dish or in 
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stirred suspension culture under normoxic and hypoxic conditions, respectively.  EBs 

conventionally generated with the scraping-off protocol and cultured in uncontrolled conditions 

(UC, incubator) served as controls.  Raw data are displayed in Figure 3.4 along with best-fit 

curves, which were assessed for each condition in order to highlight trends.  In dish culture, cell 

growth kinetics for both H9 and HES2 cells demonstrate an improved cell growth for 

micropatterned EBs cultured under hypoxic conditions as opposed to uncontrolled conditions 

(Fig. 3.4Ai).  A similar trend was found in stirred suspension culture (Fig. 3.4Aii).  For instance 

highest cell yields were observed for size-controlled H9 EBs in low oxygen environment 

resulting in 5.2 x 105 ± 2.8 x 104 cells/mL (HO) as opposed to 4.0 x 105 ± 2.3 x 104 cells/mL 

(NO) vs. 2.2 x 105 ± 8.5 x 104 cells/mL (UC).  Table 3-II provides a summary of final cell 

numbers with related standard deviations and significance levels generated in all three conditions 

highlighting the significant improvement in cell expansion achieved with the novel approach.  

Data for cell expansion normalized to uncontrolled conditions support those findings as shown in 

Figure 3.4Bi and 3.4Bii.  Importantly, although H9-culture resulted in higher overall cell 

expansion, similar growth kinetic trends were monitored for both H9 and HES2 cell cultures.  

High viabilities were consistently observed in all conditions, such that in a working volume of 

125 mL, outputs of e.g. 6.1 x 107 (H9, hypoxic) vs. 5.2 x 107 (H9, normoxic) cells were enabled.  

The impact of the new protocol on cell output is summarized in Figure 3.4Ci by comparing state-

of-the-art dish cultures to our approach.  Notably the novel strategy led to a 5.2 (± 0.26; H9)-fold 

cell expansion as opposed to 1.5 (± 0.08)-fold in uncontrolled dish culture translating to a 3.5x 

improved cell yield.  Contracting areas were observed under all conditions and reflect cardiac 

differentiation within the EBs.  A significant increase of EBs exhibiting contracting areas was 

observed in size-controlled EBs in hypoxic culture as opposed to conventional dish culture, 

resulting in 48.8% ± 2.8  vs. 19.0% ± 2.3 contracting EBs (Fig. 3.4Cii).  Table 3-II summarizes 

data for percentage of contracting EBs in all three conditions.  Significance levels highlight the 

beneficial effect of controlled over uncontrolled conditions. 
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Figure 3.4:  Combination of micro-patterning technique and bioreactor regulated environment enhances cell 
yield. Micropatterned aggregates (MP) of an initial size of 400 µm were grown under oxygen-controlled conditions 
(normoxic (NO); blue symbols and hypoxic (HO); red symbols). Uncontrolled-formed EBs cultured in uncontrolled 
oxygen conditions (UC, black symbols) served as internal controls. Each experiment was performed with H9 cells 
(straight lines) and HES2 cells (dash lines) for 16 days in dish and spinner culture.  (A) Under hypoxic conditions 
cell growth was improved in both dish (i) and spinner culture (ii).  (B) Normalized cell expansion demonstrates 
beneficial effect of hypoxia on cell growth in dish (i) and spinner culture (ii). Statistical significance at the p<0.05 
level in comparison to control conditions (UC) is denoted by *.  (C) Normalized cell expansion (i) for d16 of 
differentiation highlights advantage of size- and oxygen-control on cell expansion by comparing the optimized 
approach to state-of-the-art culture. Statistical significance at the p<0.05 level in comparison to control conditions 
(UC) is denoted by *. Percentages of contracting EBs grown in common dish culture vs. new protocol (ii).  (D) 
Percentage of aggregates exhibiting contracting areas during dish (i) and spinner culture (ii). All data are reported 
from three independent experiments each performed under uncontrolled, hypoxic and normoxic conditions. 
Polynomial regression analysis was used to assess best-fit curves. 
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Table 3-II  Dish 
UC                   HO 

 
UC 

Spinner 
NO 

 
HO 

Cell density d16 [cells/ mL]     

1.7x105 ± 1.5x104 2.3x105 ± 1.5x104  * 2.2x105 ± 8.5x104 4.0x105 ± 2.3 x 104 5.2x105 ± 2.8x104 * ** H9 

HES2 1.5x105  ±  1.0x104 2.2x105 ± 5.0x103   * 3.1x105 ± 3.2x104  4.3x105 ± 2.0x104 * 6.3 x105 ± 5.0x104 * ** 

Contracting EBs d16 [%]     

19.0 ±  2.3 20.6 ± 7.7  23.7 ±  3.7 48.3 ± 4.4 * 48.8 ± 2.8 *  H9 

HES2 17.5 ±  6.0 23.5 ±  8.0  25.3 ±  1.8 46.1 ±  9.7 * 50.5 ± 12.1 *  

Table 3-II - Final cell densities (d16) and percentage of contracting EBs generated in uncontrolled and 
controlled conditions. Micropatterned EBs were cultured in dish and spinner culture under hypoxic (HO) and 
normoxic (NO) conditions compared to uncontrolled formed EBs cultured in an uncontrolled environment (UC, 
incubator). Numbers represent mean ± standard deviation from three independent experiments. Statistical 
significance at the p<0.05 level in comparison to control conditions (UC) is denoted by *. Statistical significance at 
the p<0.05 level in comparison to normoxic conditions (NO) is denoted by**. 

 

Functional and phenotypic analysis of mesoderm and cardiac development on 
cells produced using the integrated bioprocess. 

• Hypoxia enhances cardiac-enriched genes 

As a next step we examined the differentiation program induced by hypoxic and normoxic 

conditions.  Quantitative RT-PCR (qRT-PCR) was carried out on total RNA from differentiated 

cells generated in bioreactor cultures under hypoxic and normoxic conditions.  Differences were 

determined in comparison to pooled RNA from human fetal heart tissue (FH), except for Oct4 

expression, which was normalized to RNA from hESCs. RNA was analysed from H9 and HES2 

experiments.   

Oct4 analysis demonstrated that the initial ESC population differentiated in response to the 

inductive conditions employed (Fig. 3.5, Ai).  QRT-PCR analyses for several mesodermal and 

cardiac markers were then performed.  Our analysis revealed a temporal induction of 

differentiation, as expected, from mesendoderm and mesoderm markers to more definitive 

cardiac-associated genes.  Mean expression of brachyury (T) increased in 4d EBs and was found 

to be significantly higher (4.4x; H9) under hypoxic conditions as compared to normoxic 

conditions, suggesting a supportive effect of low oxygen on mesendoderm differentiation (Fig. 
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3.5, Aii).  Mesodermal markers Nkx2.5 and transcription factor Mesp1 were highly expressed on 

d4 of differentiation in all three conditions (Fig. 3.5, Aiii, Aiv). Brachyury and Mesp1 expression 

was found to be increased in hypoxia.  Interestingly FOXC1 expression was upregulated on both 

d4 and d14 suggesting a role in early and late development as reported before (Beqqali, Kloots et 

al. 2006) (Fig. 3.5, Av).  LIM domain homeobox gene Isl-1 (ISL1), which has been described as 

a marker for a cardiac progenitor cell population (Laugwitz, Moretti et al. 2005), was highly 

expressed under hypoxia on 4d, (Fig. 3.5, Avi).  After 14d of differentiation up regulation of 

cardiac transcription factors T-box (Tbx)2, Tbx5 and Mef2c (Fig. 3.5, Avii, Aviii, Axi) was 

detected.  Similarly known cardiac genes such as α-Actinin, Troponin T and Myosin light chain 

2v (MLC2v; Fig. 3.5, Ax, Axi, Axii) were highly expressed on d14.  Gene upregulation of 

cardiogenic markers was clearly effected by oxygen tension, e.g. Troponin T and α-Actinin 

expression was found to be significantly higher as compared to normoxic conditions: 3.2x (α-

Actinin), 1.7x (Troponin T). 
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Figure 3.5:  Micropatterned and oxygen controlled bioprocess-generated aggregates exhibit mesodermal and 
cardiac-related genes in an oxygen sensitive manner. Quantitative RT-PCR analysis of patterned H9 (filled 
columns) and HES2 (sparse columns) aggregates cultured under hypoxic (HO) and normoxic (NO) conditions, 
respectively. Conventionally formed EBs in uncontrolled spinner culture (UC) served as internal control. Expression 
was normalized to RNA from fetal heart tissue (FH), except Oct4 expression was normalized to RNA from hESCs. 
RNA was harvested from the initial ESC population and at d4 and d14 of differentiation.  Data are reported from 
two independent experiments analysed in duplicates for each data point.  
 

• Bioprocess generated EBs exhibit cardiac specific morphology and 
functionality 

Immunocytochemistry was used to characterize cardiac cells.  Aggregates were dissociated on 

16d of differentiation and replated at a density enabling analysis of individual cells.  On average 
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three to five percent of the seeded cells demonstrated a typical cardiac morphology with 

organized sarcomeric-actin and α-actinin structures (Fig. 3.6A).  

In addition, analysis of the replated EBs was performed to explore the function and maturation 

stage of the bioprocess generated cells.  Cells displaying prolonged action potentials may 

represent Purkinje-like cells or cells with primitive levels of expression of ion channels that 

regulate repolarisation (Vassalle, Bocchi et al. 2007).  Our survey of the upstrokes of the 

recorded action potentials revealed that each cell analyzed appeared unique in its 

electrophysiological properties.  This could suggest that cells of different conduction-system 

lineages (nodal vs. ventricular vs. atrial) were generated, or that cells varied between primitive 

and mature expression levels of sodium channels (Fig. 3.6B), although the number of beating 

areas analyzed (n= 15) is insufficient to make definitive conclusions at this time.  To further 

assess physiological properties of these cardiomyocytes, we tested whether they could respond to 

the adrenergic stimulant norepinephrine (NE).  As expected an increased rate of spontaneous 

depolarization, and a shortening of action potential duration was observed with NE infusion, 

suggesting intact physiological responses in these cells (Fig. 3.6C).  In summary, these results 

suggest the generation of bona fide cardiomyocytes in our bioreactor process. 
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Figure 3.6:  Immunohistochemistry and optical mapping studies demonstrate cardiac morphology and 
functionality generated from micropatterned aggregates in bioreactor culture.  (A) Fluorescence labelling of 
bioreactor generated cells. d16 embryoid bodies were dissociated to single cells, plated on chamber slides and 
cultured for additional 3 days before staining. Cardiomyocytes within the cell population were detected by α-actinin 
(i,ii; red) and sarcomeric actin (iii; green). Cells were double labelled for α-actinin (iv; red), sarcomeric actin (v; 
green) and merged image (vi). Nuclear staining appears blue (scale bars represent 50 µm). Figure (B) demonstrates 
d15 bioreactor produced aggregates are capable of generating spontaneously beating colonies of cells. Optical 
mapping reveal cells with varying action potential duration and shape.  (C) Effects of norepinephrine on the 
physiology of the bioprocess generated aggregates. The two panels show action potentials recorded before (upper 
panel) and after (lower panel) administration of norepinephrine. The effect of the drug shows a shortening of the 
action potential duration (APD) and a decreased basic cycle length (BCL). APs were monitored over a period of 15s. 
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DISCUSSION 

Cell replacement therapy, drug discovery and pharmacotoxicology are applications that require 

large numbers of pluripotent cell-derived cells.  Well characterized cardiomyocytes and their 

progenitors would be a valuable resource of pre-clinical transplantation studies and drug 

screening and tissue engineering protocols.  

Scalable dynamic culture systems, such as spinner flasks, stirred bioreactors and rotary culture 

have been used for the generation of differentiated cells from mESCs (Zandstra, Bauwens et al. 

2003; Dang, Gerecht-Nir et al. 2004; Bauwens, Yin et al. 2005; Schroeder, Niebruegge et al. 

2005; Carpenedo, Sargent et al. 2007; Niebruegge, Nehring et al. 2008).  The beneficial effects 

of dynamic conditions on cell viability are well described and likely due to decreased events of 

EB agglomeration (Dang, Gerecht-Nir et al. 2004), increased circulation of exogenous factors 

(nutrients, soluble factors), increased physicochemical homogeneity (oxygen and pH) and, 

importantly, the reduction of endogenously produced inhibitory factors (both metabolites and 

cytokines) (Gerecht-Nir, Cohen et al. 2004; Schroeder, Niebruegge et al. 2005; Cameron, Hu et 

al. 2006; Carpenedo, Sargent et al. 2007; Niebruegge, Nehring et al. 2008).  EB agglomeration is 

also directly related to initial EB and cell densities.  For our bioprocess an inoculum of 40 

EBs/mL (~100 000 cells/mL) was chosen based on previously published data for mESCs and 

hESCs (Bauwens, Yin et al. 2005; Cameron, Hu et al. 2006).  For future studies it is worthy to 

further investigate the impact of initial cell density on hESC growth kinetics.  

Importantly, although cell viability and differentiation is promoted by implementing mixing in 

three-dimensional systems, resulting EBs typically appear inconsistent in shape and size.  

Previously published work (Ng, Davis et al. 2005) has demonstrated a significant role of hEB 

size on differentiation outcomes, and we have shown that hESC self-renewal and differentiation 

is influenced by colony size (Peerani, Rao et al. 2007).  Thus the ability to control the size of an 

aggregate, in a manner that can be incorporated into a scalable differentiation bioprocess, may 

contribute to a more homogeneous and synchronized cell production system.  By incorporating 

the micropatterning technique into our bioreactor system we overcame two challenges.  First, 

initial aggregates with more homogenous in shape and size distribution than conventionly 

formed EBs.  Second, almost no evidence for oversized aggregates was detected during the 
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process, a likely consequence of both the serum-free “predifferentiation” EB induction step and 

the mixing in the stirred cultures.  

Based on our previous findings with mESCs (Bauwens, Yin et al. 2005) we used the bioreactor 

system to evaluate the effect of hypoxia on the yield of hESC derivatives.  The impact of oxygen 

on mesoderm and cardiac differentiation in the bioprocess was screened using quantitative gene 

expression analysis.  The fact that differentiation was efficiently initiated from micropatterned 

aggregates was demonstrated by downregulated expression of self-renewal associated gene Oct4 

as the culture progressed, followed by up regulation of several known mesodermal and cardiac 

markers (Mummery, Ward-van Oostwaard et al. 2003; Beqqali, Kloots et al. 2006).  Hypoxic 

exposure resulted in enhanced expression of mesodermal and early cardiac genes such as 

brachyury, Mesp1 and Isl1 indicating the impact of hypoxia at early stages of differentiation.  

This data suggests that hypoxia may act to provide a mesoderm-inductive signal.  Hypoxia was 

furthermore observed to significantly increase the expression of late cardiac genes such as α-

actinin, Tbx2, Tbx5 and Troponin T.  

Notably, compared to well-based EB culture approaches, our culture system combining 

aggregate size control with low oxygen tension resulted in a 3.5x increased cell output.  A 

comparison of hypoxic and normoxic conditions in controlled culture demonstrate the benefits of 

hypoxic cultures: final cell numbers were significantly increased (Table 3-II).  

Protein-based and functional analyses were also performed on bioreactor generated cells.  

Immunocytochemistry of dissociated EBs detected expression of typical cardiac morphology 

with highly organized α-actinin and sarcomeric actin structures; this analysis indicates that the 

suspension bioreactor and microcontact printing steps did not compromise the ability of the 

differentiated cells to re-adhere and express mature cardiac markers.  Action potentials (APs) 

were recorded from plated EBs.  This analysis revealed that APs indeed propagate from a central 

colony to the rest of the cells, suggesting that some of these cells may be pacemaker in origin.  

The drug responsiveness of the bioprocess generated cells also supports the possibility of their 

use in drug screening studies.  

Importantly, although the reported bioprocess represents a next-generation technology for the 

production of pluripotent cell derivatives, further improvements are necessary to increase the 

yield of target cells.  Under currently serum-induced differentiation conditions only a subset of 



 

 

75

these cells are mesoderm and cardiac cells fated.  We previously used genetic selection systems 

to enrich for target cells (Zandstra, Bauwens et al. 2003) and, certainly, with appropriately 

engineered hESC lines this strategy could work here.  Alternately, incorporating the use of 

serum-free media and cytokine driven differentiation as demonstrated in recent developments in 

ESC differentiation protocols (Li, Powell et al. 2005; McDevitt, Laflamme et al. 2005; Passier, 

Oostwaard et al. 2005; Kattman, Huber et al. 2006; Xu, He et al. 2006; Kattman, Adler et al. 

2007; Laflamme, Chen et al. 2007; Yang, Soonpaa et al. 2008; Zhang, Li et al. 2008) could 

improve the yield of target cells.  An important aspect of transferring bioreactor systems to 

serum-free cytokine induced systems will be developing new bioengineering strategies to deliver 

recombinant molecules in a cost effective manner, and addressing the known (van der Pol and 

Tramper 1998) increased sensitivities of cells to shear in serum free systems.  

In this paper we have focused on hESCs as a model system, but the described technology is 

broadly adaptable to other cell types, including pluripotent lines produced by iPS cells 

(Takahashi, Tanabe et al. 2007; Yu, Vodyanik et al. 2007).  Overall, this study contributes 

towards the goal of generating pluripotent stem cell-derived cells in a scalable manner under 

controlled conditions; an important step in the technological and health-related use of these cells.  
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Chapter 4  
Geometric Control of Cardiomyogenic Induction in Human 

Pluripotent Stem Cells 
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ABSTRACT 

Rationale:  It has been widely observed that aggregate size affects cardiac differentiation 

efficiency of human pluripotent stem cells, but the cellular mechanisms underlying 

cardiomyogenesis are incompletely understood.  Objective: To develop cellular and molecular 

mechanisms for the intrinsic control of human tissue development, we evaluated tissue-specific 

differentiation as a function of human embryonic stem cell (hESC) aggregate size, and examined 

the effect of manipulating expression of SOX7, a transcription factor required for 

extraembryonic endoderm (ExE) commitment, on cardiac development.  Methods and Results:  

HESC aggregates were generated with either 100, 1000, or 4000 cells per aggregate.  We 

observed that the frequency of endoderm marker (FoxA2 and GATA6) expressing cells 

decreased with increasing aggregate size during early differentiation.  Cardiogenesis was 

maximized in aggregates initiated from 1000 cells, with 49.2% ± 5.8% (45.6-55.9%) of cells 

exhibiting a cardiac progenitor phenotype (KDRlow/C-KITneg) on day 5 (D5) and 23.6% ± 5.7% 

(17.1-27.7%) expressing cardiac troponin T on D16.  A direct relationship between ExE and 

cardiac differentiation efficiency was established by forming aggregates with varying ratios of 

SOX7-overexpressing or knockdown hESCs to unmanipulated hESCs, wherein cardiomyocyte 

frequency (~27%) was maximized in aggregates formed with 10 to 25% SOX7 overexpressing 

cells.  Conclusions:  We demonstrate that cardiac differentiation efficiency is a function of ExE 

cell concentration, a parameter that can be directly modulated by controlling hESC aggregate 

size.  This is the first presentation of a cellular mechanism to describe the effect of aggregate size 

on cardiac development, suggesting that a molecular mechanism may be based on endoderm-

secreted factors.   
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INTRODUCTION 

One of the most common techniques to induce human pluripotent stem cell (hPSC) 

differentiation is by forming three-dimensional cell aggregates (Doetschman, Eistetter et al. 

1985).  Within the developing aggregate, pluripotent stem cells differentiate to cell types 

belonging to each of the three germ layers (mesoderm, endoderm, and ectoderm) (Thomson, 

Itskovitz-Eldor et al. 1998).  Differentiating aggregates are thought to mimic the environment of 

the peri-implantation embryo where interactions between various cell types facilitate inductive 

events.  As in the embryo, one of the earliest events during aggregate-based stem cell 

differentiation is the organization of the cells into an outer epithelial layer of extraembryonic 

endoderm (ExE) cells surrounding an inner core of epiblast-like pluripotent cells (Coucouvanis 

and Martin 1995; Keller 1995; Abe, Niwa et al. 1996; Grabel, Becker et al. 1998; Coucouvanis 

and Martin 1999; Ungrin, Joshi et al. 2008; Carpenedo, Bratt-Leal et al. 2009).  During 

embryonic development, precardiac mesoderm is in close contact with endoderm tissue which 

has been shown to play an inductive role as evidenced by the generation of beating cardiac tissue 

in cocultures of non-cardiogenic embryonic tissue explants and endodermal tissue (Orts Llorca 

1963; Jacobson and Duncan 1968; Sugi and Lough 1994; Nascone and Mercola 1995; 

Schultheiss, Xydas et al. 1995).  In differentiating PSCs, ExE and its derivatives, visceral and 

parietal endoderm, have also been shown to promote cardiomyocyte differentiation in co-culture 

and conditioned medium studies (Hogan, Taylor et al. 1981; Bader, Gruss et al. 2001; 

Mummery, Ward-van Oostwaard et al. 2003; Passier and Mummery 2005; Passier, Oostwaard et 

al. 2005; Bin, Sheng et al. 2006; Xu, Graichen et al. 2008).   

One of the main challenges of aggregate-based hPSC differentiation is that heterogeneity and 

spatial disorganization leads to inefficient differentiation to specific cell types and a poor 

understanding of the mechanisms involved in lineage commitment.  In studies addressing this 

challenge, two strategies have emerged.  One involves exogenously controlling differentiation by 

delivering factors that are known or thought to be involved in specification, commitment and 

proliferation of the cell type of interest (Laflamme, Chen et al. 2007; Pick, Azzola et al. 2007; 

Yang, Soonpaa et al. 2008; Nakanishi, Kurisaki et al. 2009).  The second strategy focuses on 

controlling physical parameters of aggregate formation, such as aggregate size and shape (Ng, 

Davis et al. 2005; Khademhosseini, Ferreira et al. 2006; Mohr, de Pablo et al. 2006; Burridge, 
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Anderson et al. 2007; Pick, Azzola et al. 2007; Bauwens, Peerani et al. 2008; Ungrin, Joshi et al. 

2008; Niebruegge, Bauwens et al. 2009).  We and others have previously reported the 

observation that human embryonic stem cell (hESC) aggregate size can be modulated to 

optimize cardiac induction efficiency (Burridge, Anderson et al. 2007; Bauwens, Peerani et al. 

2008; Hwang, Chung et al. 2009; Mohr, Zhang et al. 2009; Niebruegge, Bauwens et al. 2009), 

however the cellular mechanism by which aggregate size and geometry impacts differentiation to 

specific cell types remains unclear.  Given that the surface area to volume ratio of a sphere 

decreases with increasing sphere size, and that an ExE layer forms on the surface of the 

differentiating aggregate, we examined the possibility that this geometric relationship dictates 

ExE cellularity during early aggregate-based hESC differentiation and the implications of 

varying ExE concentration on cardiomyocyte differentiation efficiency. 

One challenge in controlling hESC aggregate size has been that hESCs exhibit poor tolerance to 

single cell dissociation (Reubinoff, Pera et al. 2000; Burridge, Anderson et al. 2007).  A number 

of techniques have been developed to address this challenge including forced aggregation of 

defined cell numbers (Ng, Davis et al. 2005; Burridge, Anderson et al. 2007; Ungrin, Joshi et al. 

2008), or culturing hESCs in maintenance conditions as size specified colonies on 

micropatterned extracellular matrix (Bauwens, Peerani et al. 2008; Niebruegge, Bauwens et al. 

2009) or as 3-D clumps in size-specified microwells (Khademhosseini, Ferreira et al. 2006; 

Mohr, de Pablo et al. 2006; Hwang, Chung et al. 2009; Mohr, Zhang et al. 2009) and then 

transferring these colonies or cell clumps to suspension in differentiation medium to induce 

aggregate differentiation.  Since we previously observed that the status of the input population is 

a function of hESC colony size and significantly affects cardiac induction efficiency (Bauwens, 

Peerani et al. 2008), we tracked ExE and cardiac development in size specified aggregates 

formed using forced aggregation of a single cell suspension (Ungrin, Joshi et al. 2008) to 

eliminate heterogeneity of the input hESCs.  To investigate the effect of ExE differentiation 

frequency on cardiomyocyte differentiation independently of aggregate size, we manipulated the 

expression of SOX7.  SOX7 is a transcription factor that plays a crucial role in ExE 

development.  SOX7 silencing leads to inhibition of ExE differentiation of pluripotent cells 

(Futaki, Hayashi et al. 2004) and SOX7 overexpression of hESCs leads to the development of an 

ExE progenitor phenotype (Seguin, Draper et al. 2008).  It should be noted that this is the first 

report examining the effect of hESC aggregate size on cardiomyocyte differentiation under 
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defined conditions that promote cardiogenesis (Yang, Soonpaa et al. 2008).  From the results 

presented here, we propose that varying hESC aggregate size leads to geometrically determined 

effects on the level of ExE development during early differentiation which subsequently impacts 

cardiac differentiation efficiency. 

MATERIALS AND METHODS 

Cell culture 

The H9 (Israel Institute of Technology, WiCell Research Institute), HES2 (ES Cell 

International), and CA1 (Nagy Lab, Mount Sinai Hospital, University of Toronto) hESC cell 

lines used in these experiments were maintained and expanded as previously described 

(Bauwens, Peerani et al. 2008; Seguin, Draper et al. 2008; Yang, Soonpaa et al. 2008).  Briefly, 

hESC colonies were maintained on mitotically inactivated mouse embryonic fibroblast (MEF) 

feeders in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12, Invitrogen) 

supplemented with 10 to 20% KnockoutTM Serum Replacement (ko-SR, Invitrogen) and 20 

ng/mL Basic Fibroblast Growth Factor (FGF-2, Peprotech).  Cells were passaged by enzymatic 

dissociation.  H9 passaging was performed every 4 days by dissociating the cells into small 

clumps using Collagenase type IV (2 mg/mL, Invitrogen), whereas CA1 and HES2 cells were 

passaged every 7 days by dissociating to single cells using TrypLETM (Invitrogen).  SOX7 O/E 

cell lines were generated from CA1 cells as previously described (Seguin, Draper et al. 2008) 

and maintained in the same conditions as their parental CA1 cell line.  Aggregate-based 

differentiation of hESCs was carried out using a protocol for serum-free directed differentiation 

to the cardiac lineage which has been previously described (Yang, Soonpaa et al. 2008).  Briefly, 

hESC aggregates were cultured in base media composed of StemPro34 (Invitrogen) with 2 mM 

glutamine, 4×10-4 M monothioglycerol (MTG), 50 μg/ml ascorbic acid (Sigma), and 0.5 ng/ml 

BMP4.  The following concentrations of factors were used for primitive-streak formation and for 

mesoderm induction and cardiac specification: BMP4, 10 ng/ml; human bFGF, 5 ng/ml; activin 

A, 3 ng/ml; human DKK1, 150 ng/ml; and human VEGF, 10 ng/ml.  The factors were added 

with the following sequence: days 1–4, BMP4, bFGF and activin A; days 4–8, VEGF and 

DKK1; after day 8, VEGF, DKK1 and bFGF.  All factors were purchased from R&D Systems. 

Cultures were maintained in a 5% CO2/5% O2/90% N2 environment for the first 12 days and then 

transferred to a 5% CO2/air environment.  HESC aggregate size was controlled by forced 



 

 

81

aggregation of defined cell concentrations in AggreWells (Stem Cell Technologies), 

poly(dimethylsiloxane) (PDMS) inserts containing a textured surface of micro-wells (Ungrin, 

Joshi et al. 2008).   

Knockdown of SOX7 gene expression in hESCs by siRNA 

The DharmafectTM 1 (Dharmacon) delivery system was used to transfect hESCs with 

predesigned siRNA against SOX7 (100nM, SMARTpool, L-019017-01) according to the 

manufacturer’s protocol in OptiMEM (Invitrogen) base medium.  Control cells were similarly 

transfected with non-targeting siRNA (ON-TARGETplus Non-targeting Pool, D-001810-10-20).  

Cells were enzymatically dissociated to single cells with TrypLE, and seeded onto a Matrigel-

coated surface in hESC maintenance medium plus the transfection medium.  After 24 hours the 

cells were washed and re-fed with hESC maintenance medium alone.  48 hours following 

seeding, aggregates were formed by forced aggregation of varying ratios of SOX7 siRNA 

transfected HES2 cells and SOX7 O/E CA1 cells (hESC-derived ExE progenitors). 

Flow cytometry 

HESC colonies or aggregates were dissociated to single cells using the appropriate dissociation 

technique.  For detection of intracellular proteins FoxA2 (R&D Systems), GATA6 (R&D 

Systems), and cardiac troponin T (cTnT, Lab Vision), cells were fixed and permeabilized with 

the IntraPrep fixation and permeabilization kit (Immunotech), then incubated in the presence of 

primary antibody (1:500 for FoxA2, 1:10 for GATA6, and 1:100 for cTnT) for 20 minutes at 

room temperature, followed by an incubation with secondary fluorophore-conjugated antibody 

(Molecular Probes) at a 1:100 dilution for 20 minutes at room temperature.  For detecting the 

expression of surface proteins KDR and C-KIT, live cells were incubated on ice for 30 minutes 

in the presence of anti-KDR-PE (Phyco-erythrin; 1:10, R&D Systems) and anti-C-KIT-APC 

(Allophycocyanin; 1:100, R&D Systems).  Cells were analyzed using a FACSCanto (BD 

Biosciences) flow cytometer.  Positive staining was defined as the emission of a level of 

fluorescence that exceeded levels obtained by 99.5% of cells from the control population stained 

with only the secondary antibody. 
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Confocal microscopy 

HESC aggregates were fixed and stained for confocal microscopy imaging at different stages in 

the differentiation culture using a protocol that has been previously described (Bauwens, Yin et 

al. 2005).  The following antibodies were used: FoxA2 (1:1000), and secondary antibodies 

(1:200, Molecular Probes).  Cell nuclei were detected by staining aggregates with Hoechst 33342 

(Molecular Probes).  Cells were imaged at the University Health Network’s Advanced Optical 

Microscopy Facility using an Olympus FV1000 confocal laser microscope. 

Immunostaining and Imaging 

Fluorescent images of Sox7 (1:100, R&D Systems), Sox17 (1:100, R&D Systems), and GATA-6 

(1:20, R&D Systems) protein expression were obtained with the Cellomics Arrayscan VTI 

platform and quantitatively analyzed using the Target Activation assay algorithms available with 

the Cellomics Arrayscan VTI platform (Cellomics). 

Statistics 

All data shown are the mean of three independent experiments with error bars on plots 

representing the standard deviation of the mean unless otherwise indicated.  To evaluate 

differences between conditions, statistics were computed in Origin 7.5 using the the two sample 

t-test or one-way ANOVA as indicated at a significance level of P < 0.5. 

RESULTS 

Establishing optimal hESC aggregate size to maximize cardiomyocyte 
differentiation 

Cardiac induction and differentiation was assessed in hESC aggregates formed with 100, 1000 

and 4000 cells per aggregate (Figure 4.1A).  It was previously reported that when conventional 

scraped EBs, cultured in the same defined conditions used for the studies presented here, were 

analyzed for expression of KDR and CKIT on day (D)5/6, three distinct populations emerged: 

KDRhigh/CKITpos, KDRlow/CKITneg, and KDRneg/CKITpos (Yang, Soonpaa et al. 2008).  In that 

report it was demonstrated that the KDRlow/CKITpos population expressed high levels of genes 

involved in cardiac development and that these cells subsequently gave rise to an enriched 
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population of cells expressing mature cardiac differentiation markers (Yang, Soonpaa et al. 

2008).  We therefore assayed the same markers to assess the influence of aggregate size on 

cardiac induction.  Representative flow cytometry dot plots are presented in Figure 4.1B.  The 

results of the KDR/CKIT flow cytometry analysis demonstrate that the large (4000 cells) and 

small (100 cells) aggregate sizes we tested were not optimal for cardiac induction, and that the 

highest frequency of KDRlow/CKITneg cells were detected in the mid- size condition (1000 cells) 

(Figure 4.1C).  This observation is consistent with previously published findings that varying 

aggregate size modulates the level of cardiac induction during hESC differentiation (Burridge, 

Anderson et al. 2007; Bauwens, Peerani et al. 2008; Hwang, Chung et al. 2009; Mohr, Zhang et 

al. 2009).   

By day 12 of differentiation, spontaneous contractions were observed in the majority of EBs 

under all size conditions.  Mature cardiac differentiation was assessed by measuring the 

frequency of cardiac troponin T (cTnT) expressing cells in D16 size-specified aggregates using 

flow cytometry (representative flow cytometry histograms are presented in Figure 4.1D).  

Corresponding to the results of the cardiac induction analysis, the highest percentage 

(approximately 25%) of cTnT expressing cells was detected in aggregates initiated with 1000 

cells (Figure 4.1E).  Aggregates formed with 100 and 4000 cells exhibited lower frequencies of 

cTnT expression by D16, ranging between 5 to 10% (Figure 4.1E).  This data demonstrates that 

controlling aggregate size with respect to the number of cells per aggregate influences cardiac 

induction and differentiation even in defined medium that contains factors that specify cardiac 

commitment and expansion. 
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Figure 4.1:  Of the three EB sizes investigated, cardiac induction is maximized in EBs generated from 1000 
cells.  (A)  Phase contrast microscopy images of size controlled aggregates initiated with 100, 1000, or 4000 cells 
per aggregate.  (B)  Representative flow cytometry dot plots for the cardiac progenitor analysis examining KDR and 
C-KIT protein expression.  The population identified as not expressing C-KIT and expressing KDR protein at low 
levels is recognized as a cardiac progenitor enriched population.  (C)  Bar graph displaying the frequency of 
KDRlow/C-KIT- cells in D5 size-controlled EBs.  * indicates significantly different values as determined by a two 
sample t-test.  (D)  Representative flow cytometry histograms for the expression of cardiac marker cTnT in d16 size-
controlled EBs.  (E)  Bar graph displaying the frequency cTnT+ cells in D16 size-controlled EBs.  * indicates 
significantly different values as determined by a two sample t-test. 

Emergence and spatial organization of endoderm cells in size-controlled 
aggregates 

We next evaluated spatial organization in differentiating hESC aggregates to confirm that 

endoderm cells develop on the surface of the spheroid during early differentiation.  Figure 4.2A 

outlines the relationship between the surface area and volume of a sphere as sphere radius 

doubles.  With each radius doubling, the surface area to volume ratio of a sphere is halved.  If an 

inverse relationship also applies to the development of the ExE layer on the surface of a 

differentiating hESC aggregate, then ExE frequency during early differentiation decreases with 

increasing aggregate size.  Confocal imaging revealed the spatial expression of the endoderm 

protein marker FoxA2 was mainly localized to the surface of D4 aggregates (Figure 4.2B).  This 
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analysis suggested that spatial organization of endoderm cells to the aggregate surface occurs in 

hESC aggregates formed by forced aggregation in the AggrewellTM system. 

The capacity for hESC differentiation along the endoderm lineage increases with 
decreasing aggregate size 

To directly evaluate the effect of aggregate size on endoderm concentration during early 

differentiation, size specified aggregates were assessed at D0, D1, D3, and D6 of differentiation 

for frequency of cells expressing the endoderm protein markers FoxA2 and GATA6 by flow 

cytometry (Figure 4.2C, D).  Figure 4.2C depicts representative dot plots from the flow 

cytometry analysis.  A trend emerged in which the frequency of FoxA2+ and GATA6+ cells 

increased with decreasing aggregate size at each timepoint, with the smallest aggregates that 

were formed at an initial size of 100 cells consistently exhibiting the highest frequency of 

endoderm marker-expressing cells (Figure 4.2D).  Similar protein expression profiles were 

observed for both endoderm markers tested at all three aggregate sizes, with maximum 

frequencies generally reached by D3 of the timepoints that were analyzed.  FoxA2 expression 

reached a maximum level of 7.30% ± 1.30% in the smallest aggregate condition (initiated with 

100 cells) on D3, whereas the largest aggregates (formed with 4000 cells) consistently displayed 

the lowest frequencies of FoxA2+ cells never exceeding 3% (Figure 4.2Di).  Maximum 

expression frequencies for GATA6 were also observed on D3, where the highest levels of cells 

expressing the protein (11.93% ± 1.32% of cells) was observed in the smallest aggregate size 

condition (initiated with 100 cells) and the lowest levels (6.40% ± 0.71%) in the largest 

aggregates (initiated with 4000 cells) (Figure 4.2Dii).   

D3 aggregate diameters were measured by analyzing phase contrast microscope images of the 

aggregates and these values were then used to estimate the ratio of the volume of the outer layer 

of cells (OV) to the total aggregate volume (TV).  To estimate the outer cell layer volume, the 

diameter of a single cell was assumed to equal 10 μm(Sharma, Cabana et al. 2008).  The OV/TV 

ratios for aggregates generated with 100, 1000 and 4000 cells are presented in Figure 4.2E.  

Under all aggregate size conditions, the OV/TV ratios decreased with increasing aggregates size 

similar to the trend observed in tracking FoxA2+ and GATA6+ cells on D3, and consistent with 

our hypothesis.  In all cases, the OV/TV ratios were higher than the corresponding FoxA2+ and 

GATA6+ cell frequencies (100 cell aggregates: OV/TV ~ 0.6, FoxA2+ ~ 0.07, GATA6+ ~ 0.12; 
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1000 cell aggregates: OV/TV ~ 0.3, FoxA2+ ~ 0.05, GATA6+ ~ 0.09; 4000 cell aggregates: 

OV/TV ~ 0.2, FoxA2+ ~ 0.03, GATA6+ ~ 0.06), indicating that either endoderm cells do not 

make up a complete layer surrounding the aggregate, cells in the outer layer may not be as 

densely packed as cells located in the interior of the aggregate, or may vary in size from inner 

cells.  It can be observed in the confocal images (Figure 4.2B) that not all aggregates contain an 

outer layer of endoderm cells and that in many aggregates endoderm cells do not make up the 

full layer of outer cells. 
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Figure 4.2:  Endoderm cells develop on the surface of size-specified hESC aggregates formed by forced 
aggregation and endoderm differentiation frequency decreases with increasing hESC aggregate size.  (A)  An 
illustration of the underlying concept behind the hypothesis that the level of extraembryonic endoderm 
differentiation is inversely proportional to EB size.  (B)  Confocal microscopy image of aggregates demonstrating 
protein expression of FoxA2 (red, blue = Hoechst nuclear staining) in D4 EBs generated from 1000 cells.  Scale bar 
= 250 μm.  (C)  Representative flow cytometry dot plots for FoxA2 and GATA6 protein expression.  (D)  Kinetics 
of the frequency of cells expressing endoderm-associated proteins FoxA2 (i) and GATA6 (ii) in aggregates 
generated from 100, 1000, and 4000 cells.  * represents significant differences between the values at each time point 
as determined by ANOVA analysis.  (E)  The ratio of the volumes of the outer layer of cells to the total aggregate of 
D3 aggregates generated with 100, 1000, and 4000 cells per aggregate, determined by image analysis of phase 
contrast microscope images.  * indicates significantly different values as determined by a two sample t-test. 
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Varying the frequency of ExE progenitor cells in hESC aggregates influences 
cardiac differentiation efficiency in size controlled hESC aggregates 
independently of aggregate size  

As it was observed that cardiac induction and differentiation could be modulated by varying 

hESC aggregate size and that there was an inverse relationship between aggregate size and the 

frequency of endoderm cells present during the first six days of differentiation, we next 

examined the possibility that the frequency of endoderm cells can be optimized to maximize 

cardiomyocyte differentiation efficiency.  To vary ExE frequency independently from aggregate 

size, we manipulated the expression of SOX7, a transcription factor that is required for ExE 

differentiation (Futaki, Hayashi et al. 2004; Seguin, Draper et al. 2008), in the input hESC 

population (Figure 4.3A).  To study the effect of increasing ExE frequency, 1000 cell aggregates 

were generated with varying ratios of normal hESCs to SOX7-overexpressing (O/E) hESCs (ExE 

progenitors) (Figure 4.3Bi).  Conversely, the effect of reducing ExE frequency was examined by 

generating 1000 cell aggregates with varying ratios of normal hESCs to knockdown SOX7 

hESCs (kd-SOX7) (Figure 4.3Bii).  SOX7 expression was induced in genetically engineered 

CA1 hESC lines (SOX7 O/E) following transient expression of Cre recombinase.  An ExE 

progenitor phenotype in transgenic cell lines was confirmed by expression of SOX7, GATA6 

and SOX17 proteins, markers that are associated with an ExE phenotype (Supplementary Figure 

S3-1).  SiRNA transfection was employed to silence SOX7 expression in hESCs.  SOX7 siRNA 

transfection was validated by demonstrating SOX7 protein knockdown in the SOX7 O/E cells 

that were transfected with the siRNA (Supplementary Figure S3-2).   

The frequency of cTnT+ cells on D16 was measured to track cardiomyocyte differentiation 

frequency with respect to input ExE progenitor (SOX7 O/E hESC) or kd-SOX7 hESC frequency.  

Parallel controls that were carried out included the parental non-Cre-transfected CA1 cells in 

place of SOX7 O/E hESCs or non-targeting siRNA-transfected hESCs in place of kd-SOX7 

hESCs.  It was observed that cardiomyocyte differentiation efficiency varied in response to 

different input levels of ExE progenitors (Figure 4.3Ci).  Maximum cardiac differentiation 

(27.55% ± 4.74% and 27.50% ± 1.90%) was observed in aggregates generated with 10% to 25% 

SOX7 O/E hESCs (Figure 4.3Ci).  In the condition initiated with 50% input ExE progenitors, 

cardiomyocyte differentiation efficiency returned to control levels (13.4%).  As expected, in 

aggregates initiated with 100% ExE progenitors, cardiomyocyte differentiation was drastically 
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reduced (3.1%) from control levels.  A negative response to increasing frequencies of kd-SOX7 

hESCs was observed with respect to cardiomyocyte differentiation efficiency (Figure 4.3Cii), 

wherein all aggregates containing kd-SOX7 hESCs exhibited reduced cardiomyocyte frequencies 

compared to the control condition reaching a minimum of 2.5% cTnT+ in aggregates generated 

with 100% kd-SOX7 hESCs, indicating that although SOX7-expressing cells do not efficiently 

differentiate towards the cardiac lineage their presence promotes cardiogenesis.  From these 

findings it was concluded that by manipulating the input frequencies of ExE progenitors, 

cardiomyocyte differentiation could be attenuated or increased even in the presence of growth 

factors that specifically direct cardiac commitment and expansion, suggesting that ExE cells 

exert a cell non autonomous effect on differentiating hESCs.     

 

Figure 4.3:  The frequency of input ExE cells has an aggregate size independent effect on cardiomyocyte 
differentiation efficiency.  (A)  ExE differentiation is blocked by transfecting cells with siRNA that silences SOX7 
transcription factor (ko-SOX7) and promoted in genetically engineered cells that over-express SOX7 upon 
transfection with Cre (SOX7 O/E).  (B)  Size controlled EBs are formed at controlled ratios of SOX7 O/E and ko-
SOX7.  (C)  Frequency of cardiomyocytes (cTnTpos) in D16 EBs generated with varying frequencies of SOX7 O/E 
cells or (D)  siSOX7-transfected cells (N=2). 
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DISCUSSION 

Using a variety of methods to control aggregate size, a number of reports have demonstrated that 

this parameter influences hPSC differentiation along the cardiac lineage (Burridge, Anderson et 

al. 2007; Bauwens, Peerani et al. 2008; Mohr, Zhang et al. 2009; Niebruegge, Bauwens et al. 

2009).  A significant observation that has been made consistently across these studies is that 

there is a specific range of aggregate sizes, usually defined by aggregate diameter, in which the 

frequency of contracting aggregates and cardiac-associated gene expression is maximized.  In 

aggregates generated by either forced aggregation (Burridge, Anderson et al. 2007) or in 

microwells (Mohr, Zhang et al. 2009), it has been shown that the frequency of contracting 

aggregates and expression of cardiac-associated genes was maximized in aggregates with 

diameters in the 250 to 350 μm range, and decreased in smaller and larger aggregates.  Even 

under conditions in which aggregate size has been optimized however, cardiac differentiation 

efficiency appears to be quite low in these studies, with observed frequency of contracting 

aggregates typically less than 25% (Burridge, Anderson et al. 2007; Mohr, Zhang et al. 2009), 

and in the few cases where cardiomyocyte differentiation frequency was evaluated, less than 5% 

of cells expressed cardiac-specific proteins (Bauwens, Peerani et al. 2008; Mohr, Zhang et al. 

2009). 

The present study is the first report investigating the effect of hESC aggregate size on 

cardiomyocyte differentiation under defined conditions that promote cardiogenesis.  In addition, 

more robust metrics for aggregate size and cardiac differentiation efficiency were employed than 

in the previously described reports.  Aggregate size was defined in terms of the number of input 

cells per aggregate, not aggregate diameter which can represent slightly different cell numbers 

between runs depending on cell density.  To more accurately determine cardiomyocyte 

differentiation efficiency we analyzed the frequency of cells expressing cardiac progenitor and 

mature cardiac markers, instead of counting the frequency of beating aggregates or determining 

relative gene expression levels of cardiac markers.  Similar to previous reports, we observed a 

trend wherein cardiomyocyte induction and differentiation was attenuated in aggregates that 

were too small or too large even in the presence of growth factors that specify the cardiac 

lineage, and mid-size aggregates (initiated with 1000 cells) produced the highest levels of D5 

cardiac progenitors (~50%) and D16 cardiomyocytes (~25%).  While the trend we observed was 

similar to previous studies, under defined conditions that specify cardiac induction we achieved 
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significantly higher levels of cardiomyocyte differentiation in hESC size-controlled aggregates 

than in any prior reports.  

From the findings presented here we propose a cellular mechanism to describe how aggregate 

size affects cardiomyocyte differentiation efficiency.  We reasoned that aggregate size 

determined the level of cardiac-promoting ExE that developed by a simple geometric 

relationship; that the ratio of the surface area to volume of a sphere decreased with increasing 

sphere diameter.  In this case, aggregate size could be varied to directly control the frequency of 

ExE differentiation which subsequently could impact the efficiency of cardiac differentiation.  

Tracking endoderm frequency over the first 6 days in size-specified aggregates, we observed a 

relationship in which the level of endoderm cell development decreased with increasing 

aggregate size, supporting the hypothesis that the level of endoderm differentiation is related to 

the ratio of outer cells to inner cells in the cell spheroid.  A direct relationship between frequency 

of ExE cells during aggregate formation and cardiomyocyte differentiation efficiency was 

confirmed by monitoring cardiomyocyte frequency in size-specified hESC aggregates that were 

generated with controlled frequencies of cells that either overexpressed SOX7 transcription 

factor or were transfected with siRNA blocking SOX7 transcription.  Our findings support the 

concept that there is a geometric relationship between hESC aggregate size and the extent of ExE 

development during early differentiation that subsequently impacts cardiac induction and 

differentiation efficiency. 

It has been suggested that the effect of hESC aggregate size on cardiac differentiation is 

influenced by the diffusion of critical substrates and growth factors throughout the aggregate 

(Mohr, Zhang et al. 2009).  Certainly, during embryogenesis spatial gradients of several 

signaling molecules are involved in guiding cardiac development, many originating from ExE 

cells as previously described.  The inductive characteristic of the endoderm has been attributed to 

TGF-β superfamily and FGF family growth factors that have been reported to be involved in 

cardiac differentiation (Sugi and Lough 1994; Schultheiss, Xydas et al. 1995; Sugi and Lough 

1995; Schultheiss, Burch et al. 1997; Schultheiss and Lassar 1997).  It has been shown using 

mouse (m)ESCs that inhibition of primitive endoderm with diffusible leukemia inhibitory factor 

(LIF) during cell aggregation attenuates cardiomyocyte differentiation and that 

cardiomyogenesis could be rescued with parietal endoderm conditioned medium (Bader, Gruss et 

al. 2001), suggesting that the primitive endoderm secretes factors that contribute to cardiac 
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commitment in a paracrine, LIF independent manner.  In mESC aggregates generated by mixing 

different ratios of Dox-inducible GATA4 overexpressing mESCs with the untransfected parental 

cell line (Holtzinger, Rosenfeld et al. 2010), GATA4 overexpressing cells develop into SOX17+ 

cells that secrete BMPs and DKK to promote cardiac induction in the non-GATA4 

overexpressing cells.  It has been recently observed in the mESC system that Wnt5A gene 

expression is modulated in an aggregate size dependent manner wherein lower gene expression 

in larger aggregates (generated from 450 μm diameter microwells) corresponded to enhanced 

cardiogenesis based on frequency of beating aggregates and cardiac gene expression (Hwang, 

Chung et al. 2009).  In the same study it was shown that GATA4 mRNA was highly expressed in 

larger aggregates.  It may be that the GATA4-expressing cells secrete enough DKK to inhibit 

Wnt5A in the larger aggregate condition.  SPARC (Secreted Protein, Acidic, Rich in Cysteine), a 

matricellular glycoprotein that is highly expressed in the developing heart (Holland, Harper et al. 

1987; Brekken and Sage 2001), is another candidate molecule secreted by parietal endoderm that 

has been shown to promote early myocardial differentiation in mESC aggregates (Stary, 

Pasteiner et al. 2005; Hrabchak, Ringuette et al. 2008).  Mouse ESC aggregates cultured in 

parietal endoderm conditioned medium exhibit enhanced cardiac differentiation (Stary, Pasteiner 

et al. 2005); an effect which is abrogated with the addition of anti-SPARC antibodies in a 

concentration-dependent manner.   

In conclusion, we have established a robust system for hESC aggregate-size controlled cardiac 

induction and differentiation.  Using this system, it was determined that aggregate size influences 

endoderm differentiation efficiency, and that the concentration of ExE in size controlled 

aggregates directly influences cardiac differentiation efficiency.  This system establishes a basis 

to examine the effect of endoderm-secreted factors on cardiogenesis in aggregate size-controlled 

hPSC aggregates. 
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Chapter 5  
Discussion and Future Work 
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THE MECHANISM UNDERLYING THE EFFECT OF HPSC AGGREGATE SIZE ON 
CARDIOMYOGENESIS 

As demonstrated here and widely reported by others, aggregate size is a parameter that can be 

varied to influence pluripotent stem cell differentiation along the cardiac lineage (Burridge, 

Anderson et al. 2007; Bauwens, Peerani et al. 2008; Mohr, Zhang et al. 2009; Niebruegge, 

Bauwens et al. 2009).  What remained to be determined was the mechanism underlying this 

observation.  Herein, we have revealed a cellular mechanism to describe how aggregate size 

influences cardiac induction by modulating the frequency of cardiac-promoting ExE cells which 

form an epithelial layer surrounding the differentiating aggregate.  Interestingly, a recent report 

has suggested that spatial organization in hESC-derived EBs differs from mESC-derived EBs, 

wherein the outer layer is composed of OCT4+ ectoderm, and primitive endoderm cells are 

located in the interior of the aggregate based on expression of erythropoietin receptor (EPOR) 

(Kopper, Giladi et al. 2010).  The authors suggested that the EPOR+ cells may represent 

primitive endoderm because this marker is also expressed in the yolk sac of 7 day old embryos.  

This report appears to contradict our own observations that ExE cells are located on the 

aggregate surface based on the expression of FoxA2 and GATA6 (Ungrin, Joshi et al. 2008).  It 

has been previously reported that primitive endoderm cells do not originate at the EB surface but 

first appear throughout the EB and subsequently migrate to the surface to form an epithelial layer 

(Rula, Cai et al. 2007; Moore, Cai et al. 2009).  Early aggregates of F9 embryonal carcinoma 

cells (1 and 2 days old) are largely made up of undifferentiated cells but do contain a few 

primitive endoderm cells, detected by the expression of GATA4 and the cytoplasmic endocytic 

adaptor Dab2 (Rula, Cai et al. 2007), which are mainly located in the interior of some of the 

spheroids with some also present on the surface.  By day 4 and 7 of aggregate culture primitive 

endoderm cells are located on the outer layer of the aggregates, probably by migration, and only 

a few differentiated cells are located in the interior.  Therefore the discrepancy between our 

observations and those made by Koppler et al may be attributed to the timing of aggregate 

analysis.  Koppler et al analyzed 2 and 3 day old EBs, while we only observe a surface layer of 

endoderm cells starting at day 4 of aggregate culture (Figure 4.2).  Interesting future studies in 

our system could include tracking the endoderm population during the course of differentiation 

and tracking the SOX7 O/E hESC population in our EB co-cultures. 
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An important observation made in these studies is that cell-cell interactions can override 

exogenous signals during hESC maintenance and differentiation.  The development of protocols 

designed to either maintain pluripotent stem cell populations in the undifferentiated state or 

differentiate pluripotent stem cells along specific lineages has been largely based on bulk 

addition of exogenous factors to the culture medium.  In the case of hESC maintenance this 

strategy has consisted of culturing colonies in the presence of saturating concentrations of TGF-β 

and bFGF.  As illustrated in Chapter 2, however, gene expression profiles for hESCs cultured 

under these conditions vary widely from run to run and it was observed that cell interactions, 

manipulated by controlling colony size, have a tremendous impact on gene and protein 

expression status and the subsequent differentiation trajectory of hESCs.  These findings, along 

with previous work published by our lab (Peerani, Rao et al. 2007), suggest that manipulating the 

physical arrangement of cells in these cultures may influence hESC fate despite the addition of 

exogenous factors to the medium (Peerani, Rao et al. 2007; Bauwens, Peerani et al. 2008).  

Similarly, protocols for hESC differentiation to cardiomyocytes typically rely on exogenous 

factors that are either provided by serum (Kehat, Kenyagin-Karsenti et al. 2001; Xu, Police et al. 

2002), secretions from an inductive cell type (Mummery, Ward-van Oostwaard et al. 2003; 

Passier, Oostwaard et al. 2005), or directly added in a manner meant to mimic the timing and 

secretion of growth factors during gastrulation in the embryo (Yang, Soonpaa et al. 2008).  It 

was demonstrated in Chapters 2 through 4 that cardiac differentiation efficiency in hEBs cultured 

in the presence of exogenous factors that specify the cardiac lineage could be further influenced 

by manipulating aggregate size.  Indeed, examining the frequency of cardiomyocytes produced 

in aggregates generated from 100, 1000, and 4000 cells per aggregate, it appears that in small 

and large aggregates, cardiac induction is hindered despite the presence of growth factors that are 

supposed to promote cardiac specification and commitment.   

We have collected data that describes a cellular mechanism behind the effect of hESC aggregate 

size on cardiomyogenesis, however the molecular basis for the effect of aggregate size on 

cardiogenesis has still not been explored.  Now that it has been established that endoderm 

differentiation can be regulated by manipulating aggregate size and that ExE frequency directly 

affects cardiac differentiation efficiency, future studies can focus on examining the role of 

factors secreted by SOX7 O/E hESCs on cardiac development.  There are a number of candidate 

cardiogenic molecules originating from extraembryonic endoderm cells.  One of the only 
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published studies examining the underlying biology behind the effect of (mESC) aggregate size 

on cardiac induction demonstrated that Wnt11 expression along with lower levels of Wnt5A 

gene expression in larger EBs (generated from 450 μm diameter microwells) corresponded with 

enhanced cardiogenesis based on frequency of beating EBs and cardiac gene expression (Hwang, 

Chung et al. 2009).  In the same study it was shown that GATA4 mRNA was highly expressed in 

larger EBs.  GATA4-expressing endoderm cells have been shown to secrete DKK, a Wnt 

inhibitor (Holtzinger, Rosenfeld et al. 2010).  SPARC (Secreted Protein, Acidic, Rich in 

Cysteine) is another candidate molecule secreted by parietal endoderm that has been shown to 

promote early myocardial differentiation in mouse EBs (Stary, Pasteiner et al. 2005; Hrabchak, 

Ringuette et al. 2008).  SPARC is a matricellular glycoprotein that is highly expressed in the 

developing heart (Holland, Harper et al. 1987; Brekken and Sage 2001).  Mouse EBs cultured in 

parietal endoderm conditioned medium exhibit enhanced cardiac differentiation (Stary, Pasteiner 

et al. 2005); an effect which is abrogated with the addition of anti-SPARC antibodies in a 

concentration-dependent manner.  Additionally TGF- and FGF-family proteins are known to 

promote PS formation and exogenously added to hESC differentiation cultures to direct cardiac 

development (Kattman, Adler et al. 2007; Laflamme, Chen et al. 2007; Yang, Soonpaa et al. 

2008).   

A direct link between SOX7 expression and cardiogenesis has been previously examined 

(Nelson, Chiriac et al. 2009).  SOX family transcription factors have been implicated in the 

regulation of cardiac and/or vascular fate selection during early embryonic development (Naito, 

Shiojima et al. 2006; Nelson, Chiriac et al. 2009).  Bioinformatics analysis has revealed that the 

Wnt/β-catenin signaling pathway, which has been demonstrated to drive early progenitor cells 

into mature cardiomyocytes, is a target of SOX transcription factors (Faustino, Behfar et al. 

2008).  Differential SOX7 expression has been associated with cardiovascular lineage 

specification in Flk-1+ PS-like cells (Nelson, Chiriac et al. 2009).  It has also been reported that 

SOX7 can inhibit the Wnt/β-catenin pathway (Takash, Canizares et al. 2001), which as discussed 

in Chapter 1, is involved in commitment of mesoderm towards the vascular and hematopoietic 

lineages but inhibits cardiac induction (Naito, Shiojima et al. 2006).  Therefore, investigating 

downstream SOX7 signalling may also provide insights into the molecular mechanism behind 

the role of ExE in promotoing cardiogenesis. 
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DEFINITIVE ENDODERM (DE) VERSUS EXE: PROMOTING SPECIFIC CARDIAC 
CELL TYPES 

In Chapter 4, the investigation into the effect of aggregate size on endoderm differentiation 

showed that the frequency of cells expressing the pan-endodermal markers FoxA2 and GATA6 

decreased with increasing aggregate size during the first 6 days of differentiation.  The 

subsequent analysis assaying the effect of SOX7 O/E hESC frequency on cardiac differentiation 

indicated that ExE cells specifically promote cardiogenesis but did not eliminate the possibility 

that definitive endoderm (DE) cells also contribute to the aggregate size effect observed.  

Reports specifically examining the effect of DE on cardiac development have been sparse and 

contradictory.  In zebrafish, although heart morphogenesis is severely disrupted when endoderm 

formation is impaired following inactivation of a Sox-related transcription factor (Kikuchi, 

Agathon et al. 2001) cardiac tissue still forms (Alexander, Rothenberg et al. 1999; Latinkic, 

Kotecha et al. 2003).  Therefore it appears that induction of cardiac tissue can occur in the 

absence of endoderm.  In xenopus, ectopic expression of GATA4 in animal pole explants results 

in the formation of DE tissues such as gut (Weber, Symes et al. 2000) and liver.  However, it was 

observed that GATA4-mediated cardiac induction was not dependent on the presence of 

endoderm in these explants.  In fact inhibition of endoderm differentiation by a dominant-

negative form of the endoderm transcription factor SOX17β actually led to increased formation 

of cardiac tissue (Latinkic, Kotecha et al. 2003).  These findings appear to suggest that in 

xenopus the formation of DE may in fact antagonize cardiogenesis, or that inhibition of SOX17 

expression may shift cell fate from endoderm to mesoderm (Clements and Woodland 2000).  

Reports on the role of SOX17 on cardiac mesoderm specification in mESCs appear to contradict 

what has been observed in xenopus (Liu, Asakura et al. 2007).  RNA interference of SOX17 

using short hairpin RNA (shRNA) did not impair mesendoderm formation but suppressed Mesp1 

and Mesp2 transcription factors that are required for cardiac induction (Kitajima, Takagi et al. 

2000).  Suppression of SOX17 by either shRNA or treatment with Noggin and sFz8 was 

followed by suppression of transcription factors for endoderm (FoxA1 and FoxA2) and cardiac 

differentiation (Nkx2.5, Tbx5, Mef2c, and Myocd).  Further indications of impaired cardiac 

differentiation in mESC-derived EBs were the lack of sarcomeric proteins and spontaneous 

contractions as cultures progressed.  Inhibition of SOX17 did not appear to impair mesendoderm 

formation, as Oct4 pluripotency marker was downregulated upon initiating differentiation and PS 
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markers, brachyury and Gsc, as well as hematopoietic marker Runx1 were upregulated.  Flk1, a 

mesoderm marker expressed by both hematopoietic and cardiac muscle progenitors, expression 

was impaired in 4 to 5 day old EBs however (Liu, Asakura et al. 2007).  In mouse EBs generated 

by mixing different ratios of Dox-inducible GATA4 overexpressing mESCs with the 

untransfected parental cell line (Holtzinger, Rosenfeld et al. 2010), GATA4 overexpressing cells 

develop into SOX17+ cells that secrete BMPs and DKK to promote cardiac induction in the non-

GATA4 overexpressing cells.   

From the conflicting results of these studies, the effect of DE on cardiac specification during 

embryogenesis is still unclear.  It was suggested that impaired cardiac development upon 

inhibiting SOX17 in mESCs occurred because SOX proteins interfere with canonical Wnt 

signaling while expression of cardiogenic Wnt11 was impaired following suppression of SOX17 

(Liu, Asakura et al. 2007).  It should also be noted that SOX17 expression is not exclusive to DE, 

but is also expressed by ExE during embryogenesis (Hudson, Clements et al. 1997; Kanai-

Azuma, Kanai et al. 2002).  Previous reports suggest that Sox17 contributes to later 

differentiation of the visceral and parietal endoderm (Shimoda, Kanai-Azuma et al. 2007).  

Therefore, in these studies it may still be unclear whether it is the lack of DE or ExE that is 

affecting cardiogenesis. 

Using the system developed herein, it would be relatively simple to test the effect of DE on 

cardiac induction and differentiation.  Similar to the SOX7 O/E hESC cell lines used here in the 

studies presented in Chapter 4, hESCs have also been genetically engineered to overexpress 

SOX17 in CA1 and CA2 cell lines (Seguin, Draper et al. 2008).  SOX17 O/E hESCs were 

analyzed after being exposed to either BMP, which is used to induce ExE and trophectoderm 

differentiation from hESCs (Xu, Chen et al. 2002; Pera, Andrade et al. 2004), or activin A which 

promotes DE differentiation (D'Amour, Agulnick et al. 2005).  Activin A treatment increased 

expression of the DE markers CXCR4, CER, GSC, and DLX5 in SOX17 O/E hESCs compared 

to control hESCs, while ExE genes were not expressed in BMP4-treated SOX17 O/E hESCs.  

Furthermore, BMP4 treatment of SOX17 O/E hESCs actually induced DE markers, indicating 

that SOX17 O/E hESCs are DE progenitor cells exclusively and incapable of ExE differentiation.  

Therefore, the effect of DE cells on cardiac commitment during hESC differentiation can be 

examined by generating EB cocultures containing hESCs and SOX17 O/E cells similar to the 

experiments presented in Chapter 4 using SOX7 O/E hESCs. 
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It would be of particular interest to contrast the effects of DE and ExE on different cardiac cell 

types.  In the early streak mouse embryo, a sheet of visceral endoderm is located on the anterior 

embryonic surface, whereas definitive endoderm develops in the medial regions of the embryo 

(Figure 5.1A) (Lewis and Tam 2006).  Heart mesoderm progenitors arise in the posterior region 

of the embryo and migrate towards the anterior and medial regions (Figure 5.1B) (Kinder, 

Loebel et al. 2001).  During gastrulation, cardiogenesis occurs in two separate progenitor cell 

populations that arise from a common progenitor (Garry and Olson 2006).  The first cardiac 

progenitors are specified in the anterior lateral plate mesoderm to form the primary heart field 

and subsequently give rise to cardiomyocytes belonging to the left ventricle and atria.  The first 

heart field is characterized by the unique expression of Tbx-5 and Hand1 (heart and neural crest 

derivatives expressed protein-1) transcription factors (Cai, Liang et al. 2003).  Pharyngeal 

mesoderm cells give rise to the secondary heart field which is located medial to the primary heart 

field.  Cells in the secondary heart field express the transcription factors Islet-1 (Isl1) and FGF-

10 (Kelly, Brown et al. 2001; Cai, Liang et al. 2003) and contribute to the right ventricle and 

outflow tract of the heart.  Given that there is evidence for both ExE and DE promotion of 

cardiogenesis and that the two heart fields arise at different times and locations in the embryo, it 

may be that ExE cells play a role in specifying cardiac induction in the primary heart field while 

DE cells are involved in guiding commitment of the secondary heart field.   

 

Figure 5.1:  Emerging cardiac tissue in relation to extraembryonic endoderm and definitive endoderm.  (A)  The 
regionalization of the anterior visceral endoderm and progenitors of the definitive endoderm in the epiblast of the early 
streak embryo (Lawson, Meneses et al. 1991).  (B)  Localization of mesodermal tissue progenitors in the epiblast/ 
ectoderm (light blue), the primitive streak (PS, black bar) and the mesoderm (pulled-away layer).  Mesoderm tissue 
composition reflects the types of progenitors that have been recruited from the epiblast through the PS in the 
immediately preceding developmental stage, not those that are currently ingressing into the PS. 
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INSIGHTS INTO THE DEVELOPMENT OF A BIOPROCESS FOR EFFICIENT, 
LARGE SCALE PRODUCTION OF CARDIOMYOCYTES 

While examining the effect of hESC aggregate size on cardiac induction provides insights into 

the mechanisms of embryonic development and cell-cell interactions that guide cardiac 

commitment, these studies also provide valuable information towards optimizing cardiac 

production for large scale cell generation.  Cell replacement therapy, drug discovery and 

pharmacotoxicology are applications that require large numbers of pluripotent cell-derived cells.  

We demonstrated that bioreactor cultures inoculated with micropatterned, size-controlled hESC 

aggregates contain higher cell expansions (2 to 3 times) and frequency of beating aggregates (2 

to 5 times) than bioreactors inoculated with non-size-controlled EBs (Niebruegge, Bauwens et al. 

2009).  Interestingly, the effect of controlling aggregate size exerted a greater influence on cell 

expansion and frequency of beating aggregates than the effect of controlling oxygen tension in 

the bioreactors which only improved yield by approximated 1.7 times under hypoxic conditions 

and 1.4 times in normoxic conditions compared to uncontrolled oxygen conditions and suggests 

that in aggregate-based differentiation the endogenous interactions between cells may have a 

greater impact on cell fate than controlling external parameters such as oxygen concentration.   

Controlling hESC aggregate size in an oxygen-controlled stirred suspension bioreactor was a 

first step in developing robust scalable protocols for efficient cardiac generation.  While 

controlling aggregate size in the studies described in Chapter 3 did lead to a significant 

improvement in cell expansion which corresponds to improved cardiomyocyte yield, cardiac 

differentiation efficiency was still very low due to the serum-based induction used in these 

studies.  Many improvements can readily be enabled in this bioprocess.  For instance, since 

performing those experiments, we have established a protocol for cardiac differentiation in size-

controlled hESC aggregates under defined conditions (serum-free) (Yang, Soonpaa et al. 2008).  

Additionally, instead of micropatterning hESC aggregates, a system in which the effects of 

colony size and aggregate size can not be separated, size controlled aggregates can be formed by 

centrifuging a single cell suspension of hESCs in Aggrewells (Ungrin, Joshi et al. 2008), thereby 

enabling us to screen the cardiogenic capacity of aggregates of varying size from one consistent 

input hESC population.  Using forced aggregation also allows for the production of aggregate 

cocultures containing hESCs and inductive cell types (such as SOX7 O/E hESCs), which we 

demonstrated in Chapter 4 could further enhance cardiac induction and maximize cardiomyocyte 
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yield per input hESC in a scalable system.  By combining the elements of independent control of 

hESC colony and aggregate size, consistent input hESC populations, hESC aggregate cocultures 

containing inductive cell types, and defined conditions that drive cardiac induction in a stirred 

suspension controlled bioreactor, there is a strong potential of developing a robust system for 

large scale, efficient production of cardiomyocytes.   

SUMMARY AND CONCLUSIONS 

The methods developed to control hESC aggregate size revealed that there is a viable range of 

aggregate sizes for cardiac induction.  Furthermore, the newly developed systems for controlling 

aggregate size were used to elucidate a mechanism for the effect of aggregate size on cardiac 

induction.  Chapter 2 described the establishment of a micropatterning technique for robust 

generation of uniform hESC aggregates of controlled size that were capable of cardiac 

differentiation.  Further it was demonstrated that differentiation trajectory in size-controlled 

hESC aggregates was influenced by both MP-hESC colony and aggregate size.  These findings 

demonstrate the importance of controlling input hESC populations for efficient and reproducible 

differentiation cultures.  Specifically, reproducible, efficient (endogenous) mesoderm/cardiac 

induction is dependent on the ratio of endoderm to neural precursors in the input hESC 

population, which can be modulated by controlling hESC colony size, as well as on aggregate 

size.  In Chapter 3, it was demonstrated that large-scale differentiation of cardiomyocytes in 

stirred suspension was enhanced by incorporating MP-hESC aggregates, evidenced by higher 

cell expansions (2 to 3 times) and frequency of beating aggregates (2 to 5 times) compared to 

stirred suspension differentiation of non-size controlled aggregates.  Finally, in Chapter 3, a 

direct link between hESC aggregate size, endoderm differentiation efficiency and cardiac yield 

was established.  Using a serum-free, forced aggregation based system for cardiac induction in 

size controlled hESC aggregates, an inverse relationship between endoderm frequency and hESC 

aggregate size was observed during the first 6 days of differentiation.  In aggregate cocultures, 

generated by forming aggregates from a mixture of SOX7 O/E ExE progenitor cells and hESCs, 

it was confirmed that varying the ratio of ExE progenitors directly affects cardiac differentiation 

efficiency. 

Our findings suggest that there is a geometric relationship between hESC aggregate size and the 

extent of endoderm development during early differentiation that subsequently impacts cardiac 
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induction and differentiation efficiency, probably via the level of expression of signaling 

molecules (DKK, SPARC, BMP, Wnt) originating from these ExE cells.  These findings are an 

important step in understanding endogenous control of cell fate through cell-cell interactions in 

the hESC aggregate, and also provide insights into improving cardiac yields in large scale 

cultures.   
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Appendix I 

Supplementary Figures for Chapter 2 
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Figure S1-1:  Demonstration of cell viability following TripLE enzymatic single cell dissociation of hESCs.  A) 
Flow cytometry-based forward scatter and side scatter analysis of hESCs following enzymatic dissociation.  B) Flow 
cytometry-based analysis of 7-AAD viability staining on enzymatically dissociated hESCs.  
 
 

 
Figure S1-2:  Analysis of size controlled MP-hESC colonies reveals the influence of colony size on 
differentiation trajectory.  Representative qRTPCR analysis for 3 out of 7 trials for gene expression of 
pluripotency marker Nanog, endoderm-associated marker CXCR4, and neural-associated marker Sox3. 
 
 

 
Figure S1-3:  Demonstration that Oct4 protein is exclusively expressed in the nucleus in the input hESC 
population.  Immunofluorescence images of hESC colonies stained with anti-Oct4 antibody (right), (left panel 
Hoechst nuclear stain).  Scale bar represents 100 microns. 
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Appendix II 

Supplementary Figures for Chapter 3 

  



 

 

124

  
Figure S2-1:  Karyotype results of H9 hESCs, Passage 52. 
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Figure S2-2:  EB sizes as cells/EB in spinner culture under uncontrolled (UC) and oxygen-controlled conditions 
(normoxic (NO); hypoxic (HO)). Each experiment was performed with H9 (black symbols) and HES2 (white 
symbols) cells (i). H9 EBs were formed by either colony scraping-off (UCEBs; ii) or by micropatterning followed 
by scraping-off size-controlled EBs (MPEBs, iii). On d16 of differentiation UCEBs exhibit a necrotic morphology, 
whereas patterned EBs appear compact and more uniform in size.   
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Appendix III 

Supplementary Figures for Chapter 4 
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Figure S3-1:  Characterization of SOX7-overexpressing (SOX7 O/E) cells.  (A)  Levels of expression of 
endoderm-associated proteins Sox7, Gata6 and SOX17 are higher in SOX7 O/E cells than in the non-Cre transfected 
(no Cre) controls.  Scale bar = 250 μm.   
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Figure S3-2:  Validation of SOX7-specific siRNA.  (A)  2 days after transfecting SOX7 O/E cells with siRNA 
against SOX7, SOX7 protein expression level is lower compared to SOX7 O/E cells transfected with scrambled 
control siRNA.  Scale bar = 250 μm.  (B)  Quantitative analysis of SOX7 protein knockdown in SOX7 O/E cells 2 
and 4 days following transfection with siRNA against SOX7. 
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