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Original Research

Feasibility and Precision of Cerebral Blood Flow and
Cerebrovascular Reactivity MRI Measurements
Using a Computer-Controlled Gas Delivery System in
an Anesthetised Juvenile Animal Model

Jeff D. Winter, PhD,1 Jorn Fierstra, MD,2,3 Stephanie Dorner, RRT,4

Joseph A. Fisher, MD,5,6 Keith S. St. Lawrence, PhD,7,8 and Andrea Kassner, PhD1,9*

Purpose: To demonstrate the feasibility and repeatability
of cerebrovascular reactivity (CVR) imaging using a con-
trolled CO2 challenge in mechanically ventilated juvenile
pigs.

Materials and Methods: Precise end-tidal partial pres-
sure CO2 (PETCO2) control was achieved via a computer-
controlled model-driven prospective end-tidal targeting
(MPET) system integrated with mechanical ventilation
using a custom-built secondary breathing circuit. Test-
retest blood-oxygen level dependent (BOLD) CVR images
were collected in nine juvenile pigs by quantifying the
BOLD response to iso-oxic square-wave PETCO2 changes.
For comparison, test-retest baseline arterial spin labeling
(ASL) cerebral blood flow (CBF) images were collected.
Repeatability was quantified using the intra-class correla-
tion coefficient (ICC) and coefficient of variation (CV).

Results: The repeatability of the PETCO2 (CV < 2%) step
changes resulted in BOLD CVR ICC > 0.94 and CV < 6%

for cortical brain regions, which was similar to ASL CBF
repeatability (ICC > 0.96 and CV < 4%).

Conclusion: This study demonstrates the feasibility and
precision of CVR imaging with an MPET CO2 challenge in
mechanically ventilated subjects using an animal model.
Translation of this method into clinical imaging protocols
may enable CVR imaging in young children with cerebro-
vascular disease who require general anesthesia.

Key Words: cerebrovascular reactivity; cerebral blood
flow; arterial spin labeling; blood-oxygen level dependent;
end-tidal CO2
J. Magn. Reson. Imaging 2010;32:1068–1075.
VC 2010 Wiley-Liss, Inc.

CHILDHOOD CEREBROVASCULAR DISORDERS
such as sickle cell disease, moyamoya, and cerebral
arteriopathies have been identified as risk factors for
stroke and are significant causes of mortality and
long-term morbidity (1,2). Given that cerebral hemo-
dynamic vulnerability is often associated with
encroachment on vasodilatory reserve, a surrogate
measure of regional cerebral blood flow (CBF) reserve
would enhance the assessment and management of
pediatric cerebrovascular disease. A potentially valua-
ble measure is cerebrovascular reactivity (CVR), which
is the quantification of the CBF response to a vasoac-
tive stimulus (e.g., carbon dioxide). MRI measures of
CVR have been used to identify hemodynamic com-
promise in adult patients (3–5), however, the use of
MRI-based CVR measurements to study childhood
cerebral vascular disease has been limited to children
who were sufficiently cooperative to be studied awake
and breathing on their own (6).

One key consideration in the implementation of
CVR imaging in children is the respiratory challenge
used to alter the arterial partial pressure of CO2

(PaCO2). Conventional methods of CO2 manipulation
include breath-holding, hyperventilation and inhala-
tion of a fixed concentration of CO2 balanced with
medical air or oxygen. Although these methods do not
require specialized equipment, they lack the ability to
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accurately target specific CO2 levels. Moreover, the
induced CO2 changes are generally slow to imple-
ment, unpredictable in extent, and unstable over
time. Improvements in the efficacy of CVR imaging
have been achieved with recent implementation of
computer-controlled manipulation of end-tidal partial
pressure of CO2 (PETCO2) levels, including dynamic
end-tidal forcing (DEF) (7) and model-driven prospec-
tive end-tidal targeting (MPET) (8). The MPET system
is a relatively compact device that uses low gas flows
and has the unique advantage that the PETCO2 steps
generated closely match PaCO2 levels (9). However,
this gas delivery method, originally implemented in
spontaneously breathing adults, requires modification
for use in very young patients (typically less than
three years of age) who frequently require general an-
esthesia and mechanical ventilation for imaging pro-
cedures (10).

The purpose of the current study was to demon-
strate the feasibility and repeatability of CVR imaging
using an MPET system to provide a controlled cere-
brovascular challenge in anesthetised juvenile pigs.
We selected the juvenile pig for this purpose as the
brain is similar to humans in terms of both cerebro-
vasculature (11) and gray-matter-to-white-matter ra-
tio (12). Moreover, the physical size of the pig will ena-
ble easy translation of this computer-controlled MPET
system to young children. For CVR imaging, blood ox-
ygen level-dependent (BOLD) MRI was used to provide
an indirect measure of the changes in CBF in
response to PETCO2 transitions. We assessed the
short-term reproducibility of the BOLD CVR measures
and compared the results with the short-term repro-
ducibility of CBF estimates obtained using arterial
spin labeling (ASL).

MATERIALS AND METHODS

This study was approved by our institutional animal
care committee, and all procedures were conducted
according to the Canadian Council on Animal Care.
Imaging data were obtained from nine male Yorkshire
pigs (one to three months old) with a median body
weight of 10 kg (range ¼ 5.2–25.8 kg) scanned as part
of an ongoing study of normal swine brain develop-
ment. Repeatability metrics were obtained from con-
secutive test and retest BOLD-CVR measurements
separated in time by approximately four minutes;
and, the repeatability of test-retest (separated in time
by approximately two minutes) ASL-based CBF
images was also assessed in a subset of seven pigs.

Animal Preparation

Anesthesia was induced with 0.2 mL/kg Akmezine
(intramuscular) and switched to 3% isoflurane for
intubation and animal preparation. A catheter was
inserted into the ear vein for a constant delivery of in-
travenous anesthesia (22 mg/kg ketamine with 1 mg/
kg midazolam). Pigs were transported to the MRI
scanner and mechanically ventilated with an oxygen/
medical air mixture. After the pig was stabilized on

the ventilator, a bolus of 0.2 mg/kg pancuronium was
delivered via the ear vein and infused at a constant
rate of 1 mg/kg/hour for the duration of the experi-
ment. Pigs were allowed to stabilize for at least 30
minutes prior to cerebrovascular imaging.

Computer-Controlled Gas Delivery System

The PETCO2 and end-tidal partial pressure of O2

(PETO2) were controlled using an MPET system con-
sisting of a sequential gas delivery breathing circuit in
combination with an automated gas blender (Respi-
rActTM, Thornhill Research Inc., Toronto, Canada).
Slessarev et al (13) previously described and demon-
strated this method in spontaneously breathing adult
human subjects. Briefly, the RespirActTM prospec-
tively targets PETCO2 and PETO2 by adjusting the com-
position and flow rates of source gases based on the
subject’s CO2 production and O2 consumption. This
fresh gas mixture is delivered to the subject by a se-
quential gas delivery breathing circuit, consisting of
two one-way valves, one cross-over valve, an inspira-
tory and an expiratory reservoir. This breathing circuit
directs the fresh gas mixture to the subject and
ensures the balance of the subject’s tidal volume is
delivered from the expiratory reservoir via the cross-
over valve (sequential rebreathing cycle). For the cur-
rent study, we developed a secondary circuit to
administer the gas output of the RespiractTM to the
mechanically ventilated animals (Fig. 1). This second-
ary breathing circuit consisted of inspiratory and ven-
tilator reservoirs encased in an air-tight polymethyl
methacrylate box, which acts as an expiratory reser-
voir. The net effect of the circuit was to deliver the
gases in a sequential rebreathing cycle, as described
by Slessarev et al (13), in order to maintain PETCO2

levels that are in close agreement with PaCO2 (9).
Expired gases were continuously sampled from the

endotracheal tube and the PCO2 and PO2 were meas-
ured using sensors within the RespirActTM automated
gas blender and recorded using customizable data ac-
quisition software (LabView; National Instruments
Corporation, Austin, TX, USA) that enabled auto-
mated identification of the breath-by-breath PETCO2

and PETO2. End-tidal selection from the PCO2 wave-
forms was verified manually.

Anatomical MRI

MRI data were collected on a 1.5 T GE Signa MRI
(General Electric Healthcare, Milwaukee, WI, USA)
equipped with 40 mT/m gradients. Radiofrequency
transmission was achieved with a body coil and an
eight-channel receive-only head coil was used for ra-
diofrequency detection. To isolate tissue regions,
three-dimensional (3D) anatomical images were
acquired with a high-resolution T1-weighted fast
spoiled gradient-recalled echo sequence using the fol-
lowing imaging parameters: TE ¼ 4.2 msec, TR ¼ 8.46
msec, flip angle ¼ 20�, field-of-view (FOV) ¼ 180 mm,
slab thickness ¼ 180 mm, matrix size ¼ 192 � 192 �
120.
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Blood-Oxygen Level Dependent (BOLD) CVR Imag-
ing and Analysis

BOLD images were collected using a single-shot gradi-
ent-echo echo-planar imaging sequence during con-
trolled cycling of the PETCO2. Imaging parameters
included: FOV ¼ 160 mm, matrix size ¼ 64 � 64,
number of slices ¼ 14–16, slice thickness ¼ 4.5 mm,
slice separation ¼ 0.5 mm, TE ¼ 35 msec and TR ¼ 2
seconds. Square-wave PETCO2 transitions, consisted
of five steps of normocapnia (PETCO2 ¼ 40 mmHg for
60 seconds) separated by four steps of hypercapnia
(PETCO2 ¼ 55 mmHg for 60 seconds) during BOLD
imaging.

CVR post-processing was performed offline with
FSL (FMRIB Software Library, http://www.fmrib.ox.
ac.uk/fsl, Oxford University, UK) and in-house Mat-
Lab (MathWorks, Natick, MA, USA) scripts. BOLD
images were spatially smoothed with a Gaussian ker-
nel (full-width half-maximum [FWHM] ¼ 5 mm),
motion corrected and high-pass filtered using FEAT
(FMRI Expert Analysis Tool, v 5.98, FMRIB). PETCO2

and BOLD MRI time courses were matched by identi-
fying shift of the PETCO2 that generated the maximum
correlation coefficient to the BOLD signal. This time
delay is attributed to the time required for mixing and
inhalation of fresh gases from the RespirActTM, the
delayed physiological response, and the transition
time of sampled gas from the endotracheal tube to the
gas analyzers. Once in phase, CVR (% D BOLD sig-
nal/mmHg CO2) was quantified on a pixel-by-pixel
basis from the slope of the regression of % BOLD sig-
nal with PETCO2. The temporal derivative of the
PETCO2 time series was also included in the model to
remove the effect of small time shifts in the BOLD
response.

ASL Acquisition and Analysis

Baseline CBF measurements were collected with
PETCO2 maintained at 40 mmHg by the MPET experi-
mental setup described above for BOLD-CVR imaging.
CBF was measured by collecting ASL data from six
coronal slices through the pig’s head using a single-
shot gradient-echo spiral imaging sequence. The ASL
method was based on flow-sensitive alternating inver-
sion recovery technique, with a spin labeling pulse
that alternated between slab-selection (39.6 mm) and
global inversion (14). Static tissue water signal was
suppressed using background suppression (15). The
duration of the labeling period was defined by an arte-
rial saturation pulse (35 mm in width) applied 850
msec after the spin labeling pulse. Prior to acquiring
perfusion data, four proton-density (i.e., M0) images
were acquired for CBF quantification. A series of tag-
control image pairs were collected at an inversion
time (TI) ¼ 1700 msec to generate a total of 64 perfu-
sion-weighted (i.e., DM) images. Using a Look-Locker
acquisition (16), we quantified the brain tissue R1

relaxation rate (R1tissue) by fitting a train of 11 low flip
angle (20�) T1-weighted images collected at TIs sepa-
rated by 300 msec. All ASL images were acquired with
the following imaging parameters: FOV ¼ 160 mm,
matrix size ¼ 64 � 64, slice thickness ¼ 5 mm, slice
separation ¼ 1 mm, TE ¼ 4 msec and TR ¼ 3.75
seconds.

All ASL post-processing was performed using
scripts written in IDL (Interactive Data Language,
Research Systems, Boulder, CO, USA) and MatLab.
These post-processing steps included: generating the
spiral images by interpolating the k-space data onto a
Cartesian grid, performing the pair-wise subtraction
of the complex ‘‘tag’’ and ‘‘control’’ images, and

Figure 1. Schematic diagram of the secondary breathing system designed to incorporate sequential gas delivery and me-
chanical ventilation. The circuit was attached to the pig’s endotracheal tube via a manifold that separates into inspiratory
and expiratory branches, which are distinguished by the directionality of one-way low resistance valves. A conduit connects
the two branches using a one-way cross-over valve with a resistance set greater than both of the one-way valves in the two
branches. The breathing circuit functions as follows. During the expiratory phase, exhaled gases are directed through the ex-
piratory reservoir (box) to the ventilator via the one-way valve on the manifold connected to the ventilator. And, the last por-
tion of each exhaled breath remains within the expiratory reservoir. Fresh gases are continuously collected in the inspiratory
reservoir from the RespirActTM. During the inspiratory phase, ventilator reservoir inflates, increasing pressure in the box,
which forces fresh gases from the inspiratory reservoir and inlet into the subject. The fresh gas flow is set lower than the mi-
nute ventilation so that during the inspiratory phase, the inspiratory reservoir is completely depleted and collapses. Negative
pressure in the inspiratory limb causes the cross-over valve to open, which then delivers the balance of the breath from the
expiratory reservoir.
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generating the average DM images. The CBF values
were obtained using the following equation (15,17):

DM

M0
¼ �2a

l
� CBF � e�R1a �TI

� ð1� e�DR1�ðTI�tÞÞ
DR1

þ ðtþ d � TIÞ
� �

½1�

where DM is the magnitude of the perfusion-weighted
image, M0 is the equilibrium MR signal, a is set to 0.85
to account for background-suppression related signal
losses, l (0.9 mL/g) is the partition coefficient of water,
R1a (0.8 seconds�1) is the arterial water longitudinal
relaxation rate at 1.5 T (18), DR1 ¼ R1a - R1tissue, TI is the
TI adjusted on a slice-by-slice basis, t (1130 msec) is
the tissue transit time (17), and d is the time between
the inversion pulse and the arterial saturation pulse.
Pixels with CBF greater than 200 mL/100 g/minute
were considered vascular and removed from both trials.

Brain Tissue Segmentation

The 3D anatomical images were segmented into six
tissue regions using both automatic (FMRIB Auto-
mated Segmentation Tool, FAST) (19) and follow-up
manual segmentation. Regions identified include cort-
ical gray matter (GM), cortical white matter (WM),
deep GM, deep WM, mesencephalon, and cerebellum
(Fig. 2). BOLD CVR and CBF images were transformed
to the anatomical images via low resolution T1-
weighted images collected at the same slice locations
as the BOLD and ASL datasets (FMRIB Linear Image
Registration Tool, FLIRT) (20). Mean CVR and CBF
values for test-retest acquisitions were extracted for
each tissue region. CBF measures were not available
for the mesencephalon and cerebellum because of the
limited spatial coverage in the ASL acquisition.

Statistical Analysis

To assess the repeatability of the CO2 transitions, we
calculated the coefficient of variation (CV ¼ SD/mean

� 100%) for the PETCO2 at each square-wave step.
Between-trial bias of CVR estimates and limits of
agreement were assessed using Bland-Altman analy-
sis. To quantify repeatability, we performed a random
effects variance components analysis to compute the
intra-class correlation coefficient (ICC) (21) for each
region separately for both the CVR and CBF data. We
also computed repeatability of the CVR and CBF
measurements using the CV for comparison with pre-
vious studies. Statistical analyses were performed
with SPSS version 11 (SPSS Inc., Chicago, IL, USA).

RESULTS

The measured PETCO2 and PETO2 matched the tar-
geted PETCO2 and PETO2 levels in the end-tidal
sequence delivered by the RespirActTM, although a
small spike was observed at the start of each transi-
tion to hypercapnia (Fig. 3). Table 1 presents the
measured PETCO2 levels achieved for all stages of the
BOLD CVR experiments averaged across all subjects.
The measured normocapnia PETCO2 levels of 41.1 6
2.6 mmHg (mean 6 SD), averaged over all subjects
and stages closely matched our target level of 40

Figure 2. Saggital T1-weighted anatomical MRI with tissue
regions-of-interest overlaid, including 1: cortical gray matter
(GM); 2: cortical white matter (WM); 3: deep GM; 4: deep WM;
5: mesacephalon; and 6: cerebellum. The image was cropped
to isolate the brain. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 3. Targeted (a) and measured (b) PETCO2 (solid line)
and PETO2 (dashed line) levels for an end-tidal sequence
delivered by the RespirActTM system during the BOLD MRI
acquisition in a two-month-old pig. The control of PETO2 was
maintained despite large changes in PETCO2.
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mmHg. Similarly, the targeted hypercapnia PETCO2

level of 55 mmHg was also closely matched by the
measured values (56.2 6 2.7 mmHg). Excellent test-
retest repeatability existed for each stage in the
square wave PETCO2 cycle (CV < 2 %, Table 1). In
addition to well-defined square-wave transitions,
baseline values were restored with high reliability,

showing a small positive drift of only 1.3 mmHg for
the normocapnia steps and 0.6 mmHg for the hyper-
capnia steps. Good control of PETO2 was maintained
during the PETO2 transitions (Fig. 3b). For the ASL ac-
quisition, we targeted a constant PETCO2 of 40 mmHg
for both trials. Mean PETCO2 levels in the ASL acquisi-
tion, averaged over all subjects, were 41.2 6 1.6
mmHg for the first trial and 41.0 6 1.5 mmHg for the
second trial, with a between-trial CV of 1.1 6 0.7 %.

The BOLD signal response closely followed the
changes in the PETCO2 values, after temporal match-
ing of the two signals (Fig. 4). Representative test-
retest BOLD CVR images and corresponding test-
retest baseline ASL CBF images collected from the
same two-month old pig are shown in Figure 5. These
images show the consistency the CVR and CBF values
between the two trials. Figure 6 presents the BOLD-
CVR repeatability assessment performed using Bland-
Altman analysis for all regions investigated. The mean
test-retest difference for cortical GM was 0.0023%/
mmHg, with 6 0.0086%/mmHg (61.96 � SD) limits
of agreement and the mean cortical WM difference
was 0.0021%/mmHg, with 6 0.0081%/mmHg limits
of agreement. Mean test-retest BOLD-CVR differences
in the deep GM, deep WM and mesencephalon regions
were similar to those observed in the cortical regions,
but, the limits of agreement were greater. The cerebel-
lum showed similar mean differences and limits of
agreement to the cortical regions. Table 2 provides the
ICC and CV repeatability measures for the BOLD CVR
results for all six regions interrogated. The cortical
regions and cerebellum exhibited excellent BOLD CVR
repeatability (ICC > 0.94), and all other regions exhib-
ited good to excellent repeatability (ICC > 0.75).

The global CBF, across all subjects, trials, and
regions was 54.1 6 12.5 mL/100 g/minute (mean 6

Table 1

Mean PETCO2 Levels Achieved for Each BOLD CVR Trial*

Stage

PETCO2 (mmHg)

CV (%)Trial 1 Trial 2

Normocapnia 1 40.6 6 2.0 40.9 6 2.0 1.8 6 0.7

Hypercapnia 1 54.7 6 1.8 55.1 6 1.8 1.1 6 0.7

Normocapnia 2 41.1 6 2.2 41.4 6 2.2 1.9 6 0.6

Hypercapnia 2 55.2 6 1.9 55.5 6 1.9 1.0 6 0.7

Normocapnia 3 41.5 6 2.7 41.8 6 2.8 1.5 6 0.9

Hypercapnia 3 55.4 6 2.1 55.6 6 2.1 1.0 6 0.6

Normocapnia 4 41.9 6 2.9 42.3 6 2.9 1.6 6 1.1

Hypercapnia 4 55.5 6 2.2 55.6 6 2.2 1.0 6 0.9

*Mean PETCO2 and the mean between-trial coefficient of variation

(CV) values averaged across all subjects for each of the eight

stages in the BOLD CVR imaging protocol. Data are presented

mean 6 SD.

Figure 4. Representative test (a) and retest (b) BOLD signal
intensity time series (solid line) averaged across all brain tis-
sue, with the modelled PETCO2 time course (dashed line)
overlaid.

Figure 5. Representative BOLD cerebrovascular reactivity
(CVR) images for trial 1 (a) and trial 2 (b) along with corre-
sponding ASL CBF images for trial 1 (c) and trial 2 (d) col-
lected from a two-month old pig. The CVR and CBF images
were registered to the anatomical images and all non-brain-
tissue pixels were removed. All images were cropped to high-
light the brain.
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SD) determined using the measured R1tissue (0.85 6
0.01 second�1). Regional CBF levels are provided in
Table 3 along with the reliability measures. Similar to
the BOLD CVR, between-trial ICC and CV results for
ASL measures of CBF also exhibited excellent repro-
ducibility for the cortical GM and WM regions (ICC >
0.95) as well as the deep GM and WM regions (ICC >
0.80).

DISCUSSION

Advances in computer-controlled gas delivery systems
have improved imaging-based CVR quantification by

providing rapid and reproducible changes in PETCO2

while maintaining PETO2 levels (7,8). These systems
have considerable promise for the noninvasive assess-
ment of CVR in adults and older children with cere-
brovascular disease; however, there is a need to inte-
grate gas delivery with mechanical ventilation for
younger children who often require general anesthesia
for imaging procedures. In the current study, we dem-
onstrated the first application of an MRI-compatible
computer-controlled CO2 gas delivery system in
anaesthetized and ventilated animals for the purpose
of obtaining high-quality BOLD CVR images. To our
knowledge, this is the first report to provide quantita-
tive values of BOLD CVR measurements in an animal
model and the first to report short-term reproducibil-
ity of the method. In the absence of previous literature
for comparison, we evaluated BOLD CVR reliability
against an established cerebrovascular imaging tech-
nique, ASL, which has been validated in newborn pigs
(17). In this study we found excellent repeatability for
ASL CBF measures for all regions investigated. Simi-
larly, BOLD CVR measurement repeatability was clas-
sified as excellent in the cortical regions (ICC > 0.94)
and good to excellent (ICC > 0.75) for all other
regions. BOLD CVR repeatability observed in the cur-
rent study (CV < 9 %, for all brain regions) was supe-
rior to a recent human study that employed a 10 %
fixed CO2 inhalation to investigate short-term repro-
ducibility (GM CV ¼ 23.8 % and WM CV ¼ 24.7 %)
(22). We infer that the repeatability of BOLD CVR
measures has improved in the current study due to a
combination of reduced subject motion (anesthesia)
and controlled PETCO2 transitions.

This is also the first study to report the implementa-
tion of MPET with mechanical ventilation. This was
achieved with a custom-built secondary breathing cir-
cuit that incorporated sequential gas delivery with
partial rebreathing of exhaled gases. Sequential gas
delivery enables accurate prospective targeting of
PETCO2 and PETO2 levels and ensures that PETCO2

transitions agree with targeted PaCO2 levels (9). The
secondary circuit retained the rapid transitions and
accurate end-tidal targeting of the original method
(13), which minimizes issues regarding BOLD signal
drift; and, the ability to clamp PETO2 independently of
changes in PETCO2 removes the influence of arterial
O2 changes on the BOLD signal (8).

An alternative approach to generate controlled CO2

transitions is DEF of CO2, which was previously uti-
lized in young pigs under anesthetic (23); however

Figure 6. Bland-Altmann plots for test-retest BOLD-CVR
measurements (two minutes apart) demonstrating repeat-
ability for regions of cortical GM (a), cortical WM (b), deep
GM (c), deep WM (d), mesencephalon (e), and cerebellum (f).
The mean BOLD-CVR difference is represented by a solid
line and the 95% confidence intervals are displayed with a
dashed line.

Table 2

Mean Values and Coefficients of Variation of Test-Retest BOLD CVR Results*

Region

BOLD CVR (%/mmHg), mean 6 SD CV (%) between-trial,

mean 6 SD

ICC between-trial,

mean [95% CI]Trial 1 Trial 2

Cortical GM 0.060 6 0.017 0.058 6 0.017 4.6 6 1.5 0.96 [0.85 0.99]

Cortical WM 0.053 6 0.012 0.051 6 0.013 5.0 6 1.5 0.94 [0.77, 0.99]

Deep GM 0.059 6 0.011 0.055 6 0.013 7.0 6 2.1 0.85 [0.50 0.96]

Deep WM 0.054 6 0.004 0.052 6 0.011 8.1 6 1.9 0.76 [0.28, 0.94]

Mesencephalon 0.064 6 0.017 0.062 6 0.019 9.0 6 2.2 0.86 [0.53, 0.97]

Cerebellum 0.076 6 0.025 0.075 6 0.027 4.4 6 0.6 0.98 [0.92 0.99]

*N ¼ 9. CV ¼ coefficient of variation, ICC ¼ intraclass correlation coefficient, CI ¼ confidence interval.
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these animals were free-breathing. Control of end-
tidal gases using DEF has not been described in ven-
tilated subjects. DEF generally involves a closed feed-
back system with sophisticated prediction-correction
algorithms controlling the subject’s PETCO2 levels.
This method is capable of generating rapid CO2 tran-
sitions within the MRI environment (7). The main limi-
tation of this method relates to its implementation,
which is generally complex, expensive, and requires
large gas stores to deliver the high gas flow levels
required to attain peak inspiratory flows (7). A rela-
tively compact DEF system has recently been
described (24) for use in studies of ventilatory
response, however its use in the MR environment and
with ventilated subjects has not yet been demon-
strated. The caveat is that end-tidal forcing systems
have in common the use of pure CO2, O2, and N2 as
source gases, raising the risk of sudden anoxia and
death should the O2 gas flow inadvertently fail, even
for a few seconds. The RespiractTM mitigates this risk
by not using anoxic source gases, which is particu-
larly relevant for future clinical applications involving
children.

The square-wave PETCO2 transitions generated in
the current study were in agreement with targeted lev-
els. Each step in the cycle also provided excellent
repeatability (between-trial CV < 2 %), although we
did observe a PETCO2 ‘‘spike’’ following each transition
to hypercapnia and a small drift in the baseline
PETCO2 levels across all transitions. The initial PETCO2

spikes are most likely related to the mixing of inspired
gases within the lungs during each transition to
hypercapnia, and may be more pronounced in the
current study, compared with previous human stud-
ies (13), owing to direct sampling from the endotra-
cheal tube. The PETCO2 drift may be attributed to the
large magnitude of the transitions (�15 mmHg) as
well as to the short stage duration for each transition
(60 seconds). The intervals may not have been suffi-
cient to allow the PETCO2 levels to return to baseline
(40 mmHg). As the above-mentioned CO2 drift exhib-
ited a similar pattern for test and retest experiments,
between-trial repeatability for each individual step
was not greatly affected. Consistently and precisely
targeted iso-oxic PETCO2 transitions may also benefit
studies of the physiology of brain vasculature, animal
models of cerebrovascular disease, or neuropharma-
cology of drugs as well as animal studies investigating
the hemodynamic response to functional stimuli (25).

The magnitude of the BOLD response to PETCO2

changes acquired in this study in the juvenile pig

(cortical GM ¼ 0.058%/mmHg) were approximately
half of that reported in awake, spontaneously breath-
ing, human subjects (GM BOLD CVR ¼ 0.12 6
0.03%/mmHg on a 1.5 T scanner with a similar echo
time) (26). The lower BOLD CVR values in the current
study may reflect species differences in cerebrovascu-
lar function, age-related developmental effects, and/
or anesthetic effects. Previous work in rats demon-
strated a significant attenuation of the BOLD
response to CO2 inhalation in the anaesthetized state
compared to awake (27).

The anesthetics used in the study may have also
impacted CBF measurements, as previous swine
studies demonstrated that ketamine administered ei-
ther alone or in combination with midazolam can
decrease CBF, when compared with a fentanyl and ni-
trous oxide mixture (28,29). The CBF estimates in the
current study are similar to previous reports, includ-
ing a positron emission tomography (PET) study in
the one-year old Gottengin minipig that found whole
brain CBF of 49.0 6 6.7 mL�100 g�1�minute�1 (30)
and a microsphere study performed in the Yucatan
minipig, with a global CBF of 63.4 6 12.0 in four-
week old pigs and 60.8 6 12.1 in 10-week old pigs
(31). However, our CBF measurements were greater
than those reported in a previous PET study per-
formed in two- to three-month old domestic pigs,
which found whole brain CBF levels of 27 6 5 mL�100
g�1�minute�1 (32). Our results were lower than an
ASL study performed in newborn domestic pigs,
which found greater CBF in the GM (73 mL�100
g�1�minute�1) and WM (60 mL�100 g�1�minute�1

regions (17) compared with the current study. Vari-
ability of literature CBF estimates may be related to
breed, anesthetics and measurement technique.

In conclusion, this study provides the first demon-
stration of computer-controlled targeting of PETCO2

and PETO2 integrated with mechanical ventilation
within the MRI environment. This study in 5.2 kg to
25.8 kg pigs was scaled to test the practicality for use
in small children. We observed excellent trial repeat-
ability for the square-wave CO2 stimulus, as well as
the BOLD measurements of CVR. Translation of this
method of gas delivery for clinical pediatric studies
would, for the first time, enable CVR tests of small
children and other patients who require anesthesia
for compliance during imaging procedures. We also
anticipate that improved experimental manipulation
of CO2 levels in animal studies may benefit the study
of cerebrovascular development, function, pathology,
or pharmacological agents.

Table 3

Mean Values and Coefficients of Variation of Test-Retest ASL-CBF Results*

Region

CBF (mL�100 g�1�minute�1 ),

mean 6 SD CV (%) between-trial,

mean 6 SD

ICC between-trial,

mean [95% CI]Trial 1 Trial 2

Cortical GM 53 6 9 52 6 10 3.1 6 3.5 0.95 [0.76 0.99]

Cortical WM 41 6 5 40 6 5 2.0 6 1.8 0.95 [0.77, 0.99]

Deep GM 69 6 7 66 6 6 2.9 6 3.2 0.81 [0.31 0.97]

Deep WM 56 6 8 54 6 8 3.7 6 4.2 0.88 [0.51, 0.98]

*N ¼ 7. CV ¼ coefficient of variation, ICC¼ intraclass correlation coefficient, CI ¼ confidence interval.
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