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RATIONALE AND INTRODUCTION
Epilepsy associated with inborn errors of metabolism (IEM)

are characterized by the following clinical features; 1) frequent
presentation in the neonatal period, infancy or early childhood
years, 2) persistent neurological and functional impairment in all
developmental domains, coinciding or associated with the
occurrence of frequent clinical and or subclinical seizures, 3)
resistance to conventional antiepileptic therapy, 4) adverse
effects on cognition, and long term developmental outcomes1,2.
Electroencephalographic records show variable features;
diffusely abnormal and slow background rhythms, generalized
attenuation of background rhythms, superimposed on which
paroxysmal multifocal and or generalized epileptiform

ABSTRACT: Epileptic encephalopathies presenting in early life present a diagnostic and therapeutic
challenge. These disorders present with multiple seizure types that are treatment resistant and associated
with significant abnormalities on electroencephalographic studies. The underlying etiology in many
cases may be related to an inborn error of metabolism. Efforts to establish the specific diagnosis of a
genetic defect or an inborn error of metabolism often results in requests for a vast array of biochemical
and molecular tests leading to an expensive workup. In this review, we present the clinician with
information that provides a rationale for a selective and nuanced approach to biochemical assays, and
initial treatment strategies while waiting for a specific diagnosis to be established. A careful
consideration of the presentation, identification of potentially treatable conditions, and consultation with
the biochemical genetics laboratory can lead to a greater measure of success while limiting cost
overruns. Such a targeted approach is hoped will lead to an early diagnosis and appropriate
interventions.

RÉSUMÉ: Diagnostic et traitement de l’épilepsie à début précoce dans les maladies métaboliques
héréditaires. Les encéphalopathies épileptiques qui surviennent en bas âge présentent un défi diagnostique et
thérapeutique. Plusieurs types de crises convulsives résistantes au traitement se retrouvent dans ces maladies et les
études électroencéphlographiques démontrent qu’ils sont associés à des anomalies importantes. Dans plusieurs cas,
l’étiologie sous-jacente peut être liée à une erreur innée du métabolisme. Les efforts pour établir le diagnostic d’un
défaut génétique ou d’une erreur innée du métabolisme donnent souvent lieu à une panoplie de tests biochimiques
et moléculaires, donc à un bilan coûteux. Dans cette revue, nous présentons des informations qui fournissent une
approche sélective et nuancée aux tests biochimiques et aux stratégies initiales de traitement en attendant qu’un
diagnostic précis soit posé. Une étude soigneuse du mode de présentation, l’identification de maladies
potentiellement traitables et la consultation du laboratoire de biochimie génétique peut améliorer les chances de
succès et minimiser les coûts. Une approche mieux ciblée favorisera, nous l’espérons, un diagnostic précoce et des
interventions appropriées.
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abnormalities of varying severity may be noted2-4. In this group
of disorders, one may include catastrophic epilepsy syndromes
(Ohtahara syndrome, West syndrome, etc). Imaging studies,
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particularly magnetic resonance imaging (MRI) may or may not
reveal associated structural abnormalities. The clinical challenge
lies in establishing the specific diagnosis of an inborn error of
metabolism without which specific interventions (at least for the
treatable disorders) would not be possible, and critically
important questions regarding the long-term prognosis and
outcomes cannot be outlined for families. While most conditions
are recessively inherited, other conditions may follow non-
mendelian inheritance (e.g. mitochondrial disorders) in some
instances the inheritance pattern has not been delineated (folinic
acid responsive epilepsy). The precise delineation of a molecular
diagnosis can be of the greatest importance for future family
planning. For the purposes of discussion, we will henceforth
refer to this group of disorders associated with severe epilepsy as
metabolic epileptic encephalopathies.

Metabolic epileptic encephalopathies display an age
dependent susceptibility and expression in the clinical
phenotype. This age dependent vulnerability is related in part to
the sequential development of excitatory and inhibitory
pathways in the neonatal brain5. The initial excitatory role for
gamma-aminobutyric acid (GABA) and its developmental
switch from an excitatory to inhibitory role is dependent on the

maturation of the cation chloride co transporter (KCC2). These
changes are followed by the slightly later development of a
glutamatergic related excitatory drive resulting in a time window
during which the immature brain displays an imbalance in favor
of excitability6,7. Many inborn errors of metabolism are
accompanied by metabolic perturbations that tilt the balance
further to the point of epileptogenesis and ictogenesis.

There is a need to establish the rationale for a clinical and
investigational approach to diagnosis and management, to allow
pediatricians and neonatologist to proceed on a more informed
basis, by prioritizing rather than ordering a large number of
investigations. A systematic approach such as the one suggested
(Figure 1) and discussed in this paper is likely to maximize the
diagnostic yield, with a higher priority for potentially treatable
conditions in the diagnostic work-up. Careful consideration and
consultation with a metabolic geneticist, and the neurometabolic
laboratory can be invaluable in directing the course of
investigations and treatment.

The various inherited metabolic disorders that are known to
present as epileptic encephalopathy in the neonate and infant are
listed in Tables 1 and 2. The underlying biochemical defects
involve many different pathways and link through known and

Figure 1: Proposed scheme of investigation and initial management in epilepsy associated with inborn errors of metabolism. CSF=Cerebrospinal
fluid, 5-MTHF= 5-Methyltetrahydrofolate, VLCFA= Very Long Chain Fatty Acids, MRS= Magnetic Resonance Spectroscopy, EEG=
Electroencephalography.
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unknown mechanisms in creating an epileptogenic state.
Readers are advised to refer to a detailed discussion of these
issues in review articles8,9. Most importantly, the majority of
disorders in the neonatal age group are amenable to specific
rational therapy: 13 out of 20 in total (Table 1) and four out of
five of the more common entities: nesidioblastosis, urea cycle
disorders, propionic, methylmalonic and isovaleric acidurias and
maple syrup urine disease. Only non-ketotic hyperglycinemia
can still be considered untreatable. In infancy, 10 out of 21
disorders are treatable as indicated in Table 2.

Inborn errors of metabolism and “epilepsy syndromes”
A wide variation in phenotypic expression is seen in terms of

age of onset and seizure type in different IEMs. Variables that
influence clinical presentation include the severity of enzyme
deficiency, as well as the site of the metabolic block and its
consequences; both immediate (deficiency of a critical substrate,
accumulation of a neurotoxic intermediary), and remote (which
are incompletely understood in most cases). Manifestation occur
in-utero, at birth or thereafter in the first year of life. In-utero,
seizures are often reported as abnormal and exaggerated fetal
movements by the mother. After birth, affected infants present
with features of an epileptic encephalopathy with altered
sensorium, changes in muscle tone, irregular breathing, hiccups,

apnea, autonomic disturbances, and multiple seizure types.
Systemic disturbances are often present in the toxic encephal-
opathies due to urea cycle defects, organic acidurias and maple
syrup urine disease9. In this context, many infants may be
misdiagnosed as having hypoxic ischemic encephalopathy or
sepsis in neonatal units.

Age dependent expression of epilepsy syndromes is well
recognized in the presentation of epilepsy associated with
different inborn errors of metabolism. For instance, glycine
encephalopathy is well known to present with early myoclonic
encephalopathy (EME), while early infantile epileptic
encephalopathy (EIEE) has been reported in adenylosuccinase
deficiency10,11. At other times, the disorders present for the very
first time with infantile spasms after the neonatal period. Those
presenting in the neonatal period with severe seizures and
encephalopathy often display evolution to infantile spasms with
age. Further evolution into mixed seizure types (clonic, tonic,
tonic clonic, atonic and myoclonic seizures) is also documented
when patients survive beyond infancy12.

The seizure phenotype thus can be seen to evolve over time to
fit descriptions of different epilepsy syndromes such as EME
evolving into infantile spasms in nonketotic hyperglycinemia,
and focal seizures-evolving into infantile spasms in patients with
Menkes disease)13.

Electroencephalographic changes in severe epileptic
encephalopathies range from disorganized and slow background

Table 1: Neonatal epileptic encephalopathy - causes

Nesidioblastosis
Urea Cycle Disorders
Non-ketotic hyperglycinemia
Developmental Delay, epilepsy and Neonatal Diabetes (DEND)
Hyperinsulinism, Hyperammonemia (HI/HA)
Propionic, Methylmalonic and Isovaleric Acidurias
Maple Syrup Urine Disease
Pyridoxine-dependant Epilepsy (Piperideine--6-carboxylate

Dehydrogenase Deficiency
Folinic Acid Responsive Seizures
Pyridoxal phosphate-dependent Epilepsy (Pyridox(am)ine 5 -

phosphate Oxidase Deficiency)
Biotinidase Deficiency
Perinatal Hypophosphatasia
Adenylsuccinate Lyase Deficiency
Methylene tetrahydrofolate Reductase Deficiency (MTHFR

Deficiency)
D-2-Hydroxyglutaric Aciduria
Congenital Disorders of Glycosylation
3-Phosphoglycerate Dehydrogenase Deficiency
GABA-Transminase Deficiency
Congenital Glutamine Deficiency
Glutamate Transporter Deficiency
Neonatal Ceroidlipofuscinosis with Cathepsin Deficiency
(Creatine Deficiency Disorders)

The conditions highlighted in bold are more common and those in
italic are potentially treatable.

Table 2: Infantile metabolic encephalopathy - causes

GLUT1 Deficiency
Urea Cycle Disorders
Non-ketotic Hyperglycinemia
Propionic, Methylmalonic and Isovaleric Acidurias
2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase (MHBD) Deficiency

Maple Syrup Urine Disease
Pyridoxine-dependant Epilepsy

Pyridoxal phosphate-dependent Epilepsy

Biotinidase Deficiency
Untreated Classical Phenylketonuria as well as Pterin Defects

Menke Disease
Sulphite Oxidase/ Molybdenum Cofactor Deficiency

Generalized Peroxisomal Disorders
Mitochondriopathies (especially MERRF)
Congenital Disorders of Glycosylation
Adenylsuccinate Lyase Deficiency

D-2-Hydroxyglutaric Aciduria

MTHFR Deficiency

Creatine Deficiency Disorders
Infantile Neuronal Ceroid Lipofuscinoses (NCL)
Lysosomal Diseases

The conditions highlighted in bold are more common and those in
italic are potentially treatable.
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rhythms, focal and multifocal epileptiform patterns, generalized
abnormalities as well as suppression-burst patterns (Figure 2a,b).

The EEG findings can be strikingly abnormal but they lack
specificity and overlapping findings are frequent in different
IEMs with the exception of glycine encephalopathy. The EEG in
glycine encephalopathy is consistently associated with periods of
complete flattening of the background lasting three to ten
seconds, with superimposed bursts of bilateral but asynchronous
epileptiform patterns lasting one to five seconds in the context of
a clinical presentation of myoclonic that is multifocal and erratic.
The EEG patterns of glycine encephalopathy show suppression

burst mainly in sleep, and the duration of suppression is longer
than encountered in other conditions14. In many instances, these
patterns evolve into hypsarrhythmia while the seizures evolve
into infantile spasms.

Biochemical investigation of epileptic encephalopathies
Inherited metabolic disorders presenting in the neonatal

period and infancy are listed in Tables 1 and 2. A detailed
description of the biochemical and clinical features of each of
these conditions is beyond the scope of this discussion. The
initial investigations in all cases should include estimation of
blood glucose, electrolytes (calcium, magnesium), lactate and
ammonia. The early detection of hypoglycemia, hypocalcemia,
hyperammonemia and its management is critical to effectively
manage seizures and to prevent the development of further
neuronal injury and long-term developmental sequelae. Two
disorders are of particular interest as there may be specific
targeted treatments available. The condition of developmental
delay, epilepsy and neonatal diabetes (DEND), is related to
mutations in the gene encoding a specific ATP sensitive K
channel subunit Kir6.2 (KCNJ11) can be treated with a
sulfonylurea15-18. The second is a form of congenital
hyperinsulinism associated with hyperammonemia19,20, which is
dominantly inherited and related to a gain of function mutations
in the enzyme glutamate dehydrogenase (GDH). The
hyperinsulinism responds to treatment with diazoxide. Affected

individuals may manifest with generalized seizures beyond the
neonatal period unrelated to the hypoglycemia21,22.
Abnormalities in quantitative assays for acylcarnitines, plasma
amino acids and urine organic acids should lead to identification
of markers for organic acidurias, aminoacidopathies, urea cycle
defects, and primary disorders of energy metabolism. While
these early investigations are drawn, access to EEG monitoring
in the neonatal unit is important for the detection and treatment
of seizure activity. While most neonatal units are currently able
to access routine EEG studies, prolonged or continuous
monitoring under video surveillance is becoming feasible and
gaining in significance. This is in part due to the recognition of
subclinical and electrographic seizures that are more frequently
overlooked unless specifically monitored for in the newborn
period23,24. The phenomenon of electroclinical dissociation
during treatment makes it difficult to pick up electrographic
seizures without continuous EEG monitoring25. Amplitude
integrated EEG and compressed spectral array analysis may well
be on their way to being utilized as the first line screen for the
detection of seizure activity23,26.

If the initial metabolic investigations exclude hypoglycemia,
hypocalcemia, hypomagnesemia, elevations of lactate and
ammonia, the focus of investigation and management should
continue to vigorously search for treatable epileptic
encephalopathies (Tables 1-3). It then becomes important to
investigate for total homocysteine levels (MTHFR deficiency)
and biotinidase deficiency as these are not reliably included in
amino and organic acid determinations. At present, with the
discovery of biochemical markers for pyridoxine dependent
epilepsy, folinic acid dependent epilepsy as well as pyridoxine
resistant pyridoxal-phosphate dependent epilepsy, a lumbar
puncture should be carried out next.

A sequential therapeutic trial with vitamin B6, folinic acid and
pyridoxal phosphate should be instituted early and should be
mandatory in every case that exhibits the features of an epileptic
encephalopathy and failure of a sustained response to
antiepileptic treatment. The current recommendations from

Figure 2: (a) Focal ictal rhythms at three-months and (b) generalized ictal rhythmic discharges that accompanied brief flexor spasms in a five-month-
old infant with Menkes disease and a chronic epileptic encephalopathy.

a b
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recent studies suggest that the initial administration of 100 mg of
pyridoxine intravenously during EEG monitoring (Figures 3a-c)
(preferably in the neonatal intensive care unit as there is a risk of
apnea in cases of pyridoxine dependency) should be followed by
oral administration of pyridoxine 30 mg/kg daily for five to
seven days; folinic acid should also be given simultaneously at
the doses of 3-5 mg/kg/day27. Folinic acid and pyridoxine
responsive epilepsy are considered now to be allelic conditions.
Several patients with folinic acid responsive seizures have now
been shown to be positive for the urinary biochemical marker (α-
aminoadipic semialdehyde (AASA), and for pathogenic
mutations in the antiquitin gene. In addition, patients with
folinic acid responsive epilepsy have initially responded to
pyridoxine, only to experience seizure recurrences that have

responded to subsequent addition of folinic acid. Furthermore,
the mortality rate has been high for some patients with folinic
acid responsive epilepsy. For these reasons, current recom-
mendations suggest using both pyridoxine and folinic acid in
combination for a therapeutic trial. Simultaneously initiated
investigations should include a search for pipecolic acid in blood
and cerebrospinal fluid (CSF)28. Failure of response to these
measures should be followed through by a trial with
administration of pyridoxal phosphate 50 mg/kg for three days29.

Cerebrospinal fluid analysis in the investigation of epileptic
encephalopathies

In addition to ruling out infection, CSF should be screened for
glucose, amino acids, lactate, pipecolic acid, 5-

3OMD=3-O-methylDOPA, L-DOPA,= Levodopa, HVA=Homovanillic acid, 5HTP=5 -Hydroxytryptophan,
MHPG=3-hyrdoxy 4-methoxy propylglycol, PNPO=Pyridox(am)ine 5'-phosphate oxidase, MTHFR=Methylene
tetrahydrofolate reductase, 5-HIAA= 5-hydroxyindole acetic acid.

Table 3: Biochemical markers that can be assayed in blood and body fluids, and their clinical
significance
Metabolite Change Relevant to the diagnosis of:
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methyltetrahydrofolate as well as neurotransmitter and pterin
profile. Glucose and amino acids must be determined in blood
simultaneously30. Cerebrospinal fluid abnormalities serve as
biochemical markers for several inherited metabolic disorders
(Table 3); hypoglycorrhachia (glucose transporter GLUT1
deficiency)31, elevated lactate (disorders of energy
metabolism)32, elevated CSF pipecolic acid in CSF, plasma and
urine (pyridoxine dependent epilepsy)33. An abnormal
neurotransmitter profile in the CSF, e.g. low levels of HVA
(homovanillic acid), MHPG (3-methyl-4-hydroxyphenylglycol),
and HIAA (5-hydroxyindoleacetic acid), and elevated levels of
lactate, alanine, threonine and glycine suggests pyridoxal-
phosphate dependent epilepsy)34,35. Cerebrospinal fluid
neurotransmitter profiles are useful in establishing a snapshot of
the state of catecholamine biosynthesis and metabolism in the
brain. The findings have to be corroborated with clinical picture
and the findings of biochemical assays of other body fluids.

The assay for 5-methyltetrahydrofolate is useful in
establishing the diagnosis and monitoring of cerebral folate
deficiency states36, while CSF pterin profiles are very useful in
the diagnosis of tetrahydrobiopterin related defects which
include; deficiency of GTP cyclohydrolase I, 6-pyruvoyl

tetrahydropterin synthase, sepiapterin reductase, dihydrop-
teridine reductase (DHPR) and pterin-4α-carbinolamine
dehydratase. With the exception of the last condition which is
benign, autosomal dominant deficiency of GTP cyclohydrolase
and autosomal recessive sepiapterin reductase manifest with
deficiency of BH4 only in the brain. The others are accompanied
by elevated phenylalanine levels in the blood37. Special attention
must be paid to the appropriate collection and processing and
transport of CSF samples to the reference laboratory.

Non-specific metabolic encephalopathies
Once the treatable and acute toxic encephalopathies are

excluded, one is often faced with the situation of chronic
epilepsy with non specific encephalopathic features. In this
situation, it is important to again emphasize the importance of a
careful history, family pedigree, and physical examination. The
presence of dysmorphic facial features, abnormal fat pads, and
inverted nipples for instance would suggest congenital disorders
of glycosylation, while respiratory abnormalities may indicate an
associated metabolic disturbance of pH regulation. The presence
of hepatosplenomegaly, hypotonia and dysmorphic features
suggests lysosomal or peroxisomal disorders. An

Figure 3: (a) EEG recording in an infant with epileptic encephalopathy, showing poorly organized background and multifocal spike complexes, (b) ictal
rhythms in the same patient, there were no clinical manifestations, and (c) after an injection of pyridoxine 100 mg administered intravenously, under
monitoring, there is a dramatic response with cessation of spike activity and seizure remission.

b

a

c
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ophthalmological examination is required to rule out lens
subluxation (sulfite oxidase and molybdenum cofactor
deficiency)38-40. Additional tests may be called for at this stage;
assays for plasma very long chain fatty acids (peroxisomal
disorders)41,42, transferrin electrophoresis (disorders of
glycosylation), pre and post prandial assays for lactate, urinary
sulfites (dipstick) (sulfite oxidase deficiency), urinary guanidino
compounds (disorders of creatine biosyntheses), urinary purines
and pyrimidines (disorders of purine and pyrmidine biosynthesis
and degradation), and finally electrophoresis for glycosamino-
glycans and oligosaccharides in the urine (mucopysaccharidoses,
oligosaccharidoses). Additional clues to the presence of inherited
metabolic disorders can be obtained through a systematic search
for laboratory markers for thyroid and parathyroid dysfunction
(markers for mitochondrial and CDG syndromes), uric acid
levels (increased in glycogen storage disorders, disorders of
purine metabolism, fatty acid oxidation defects, and reduced in
sulfite oxidase deficiency and molybdenum co-factor
deficiency). These associations are listed in Table 4. Invasive
procedures such as skin and muscle biopsies may be reserved
until the later stages of investigation. Ultrastructural
abnormalities in the skin and muscle may reveal diagnostic clues
to inborn errors of metabolism. Biochemical assays on fresh
muscles are necessary to diagnose defects in the respiratory
chain, while many specific enzyme assays can be carried out in
fibroblast cultures.

Magnetic resonance spectroscopy in the investigation of
epileptic encephalopathies

Access to cranial tomography (CT) and MRI is almost
universal. Their combined use can not only be useful in the
detection of structural brain malformations, as findings can be
especially relevant in the investigation of epileptic metabolic
encephalopathies. Proton MRS is gaining importance as the
study can be combined with MRI studies and performed in a
single setting. It is able to non-invasively identify several
metabolite peaks related to metabolic encephalopathies. A

reduced or absent creatine peak (cerebral creatine deficiency)43,
an abnormal inverted doublet peak suggestive of lactate
elevation (mitochondrial disorders)44,45, or glycine elevation
(glycine encephalopathy) are of particular value46,47. MRS
studies have also been used to monitor response to treatment in
cerebral creatine deficiency and 3-phosphoglycerate
dehydrogenase deficiency48.

CONCLUSIONS
The clinical and EEG considerations to recognize a metabolic

epileptic encephalopathy in the newborn and infant are
delineated. Disorders that should be considered in the evaluation
of an epileptic encephalopathy are listed by age of presentation.
Different specialized assays of metabolites in body fluids; blood,
urine, and cerebrospinal fluid should be carried out sequentially,
priority should be given on the basis of age at presentation, and
the need to identify potentially treatable conditions, so that
neurological injury can be minimized.

Time is especially precious, when faced with disorders such
as urea cycle defects, as the recognition and early treatment of
hyperammonemia is critical in influencing survival and long-
term outcomes. In a long-term outcome study on patients treated
for urea cycle defects in Central Europe, early death was
reported in 49%, and mortality ten years after diagnosis reached
85%. The strongest predictors of IQ < 70, i.e. mental retardation,
were levels of NH3 ≥ 500 μmol/l at diagnosis and the duration of
coma (days) x NH3 ≥ 400049,50.

Amongst the treatable conditions; vitamin dependent
epilepsies (biotinidase, pyridoxine, pyridoxal-phosphate and
folinic acid), cerebral creatine deficiency, GLUT1 transporter
deficiency and 3-phosphoglycerate dehydrogenase deficiency
are important early considerations. In the management of these
conditions early diagnosis offers the chance of timely and
specific interventions through vitamin supplementation or diets.
In the remaining disorders, treatment is usually symptomatic and
along schemes of management with antiepileptic drug therapy,
detailed consideration of which is beyond the scope of the
current discussion.

Table 4: Laboratory indicators of neurometabolic disorders

Lab abnormality Relevant Metabolic Disorder
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