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Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive
function mainly through the Rho-GTPase–activating protein
(RhoGAP) domain. When activated, the domain promotes the
hydrolysis of RhoA-GTP, leading to reduced cell migration.
DLC1 is kept in an inactive state by an intramolecular interac-
tion between its RhoGAP domain and the DLC1 sterile �motif
(SAM) domain. We have shown previously that this autoinhib-
ited state of DLC1 may be alleviated by tensin-3 (TNS3) or
PTEN. We show here that the TNS3/PTEN-DLC1 interactions
are mediated by the C2 domains of the former and the SAM
domain of the latter. Intriguingly, the DLC1 SAM domain was
capable of binding to specific peptide motifs within the C2
domains. Indeed, peptides containing the binding motifs were
highly effective in blocking the C2-SAM domain-domain inter-
action. Importantly, when fused to the tat protein-transduction
sequence and subsequently introduced into cells, the C2 pep-
tides potently promoted the RhoGAP function inDLC1, leading
to decreased RhoA activation and reduced tumor cell growth in
soft agar and migration in response to growth factor stimula-
tion. To facilitate the development of the C2 peptides as poten-
tial therapeutic agents, we created a cyclic version of the TNS3
C2domain-derivedpeptide and showed that this peptide readily
entered the MDA-MB-231 breast cancer cells and effectively
inhibited their migration. Our work shows, for the first time,
that the SAM domain is a peptide-binding module and estab-
lishes the framework on which to explore DLC1 SAM domain-
binding peptides as potential therapeutic agents for cancer
treatment.

Deleted-in-liver cancer 1 (DLC1)4 is a tumor suppressor that
was initially implicated in hepatocellular cancers (1–4). It is

now known to be deregulated, via deletion or down-regulation
by epigenetic mechanisms, in malignancies of the lung, stom-
ach, colon, kidney, uterus, ovary, pancreas, prostrate, and
breast (5). DLC1 has four known isoforms, �, �, �, and 4i. The
ubiquitous, 1091-residue DLC1� and the longer, 1528-residue
DLC1� isoforms have been associated with focal adhesions (6,
7). Both isoforms harbor three structurally defined domains
and an intervening, unstructured serine-rich (SR) region. An
N-terminal sterile alphamotif (SAM) domain is separated from
a Rho-GTPase activating protein (RhoGAP) domain by the SR
region (6). The SR region is a hot spot for protein-protein inter-
action that plays important roles in the regulation of DLC1
function. Of note, the SR region has been shown to bind the
14-3-3 adaptor protein (8), tensins (9–11), the focal adhesion
kinase and talin (12). The region has also been shown to assist in
protein kinase A-induced dimerization of DLC1 (13). More-
over, the SR region undergoes phosphorylationmediated by the
cyclin-dependent Ser/Thr kinase CDK5 (14). Recently, we
identified a phosphorylation-mediated molecular interaction
switch comprising DLC1, tensin-3 (TNS3), phosphatase and
tensin homologue (PTEN), and phosphoinositide 3-kinase
(PI3K) (10). We further showed that dynamic interactions of
these proteins with each other in response tomotility cues such
as the epidermal growth factor (EGF) or platelet-derived
growth factor (PDGF) played an important role in the migra-
tion of mammary epithelial cells and breast cancer cells.
Remarkably, phosphorylation of specific Thr residues within
the C2 domains of TNS3 and PTEN, following the growth fac-
tor stimulation, triggers the switch of binding partners for
DLC1 andphosphoinositide 3-kinase to promote cellmigration
(10).
The function ofDLC1 as a tumor suppressor and regulator of

cell migration is primarily dependent on its RhoGAP domain,
which catalyzes the hydrolysis of GTP-bound RhoA (2, 15).
Although the RhoGAP activity may be regulated by phosphor-
ylation of the SR region in DLC1 (14, 16), we have shown that a
direct intramolecular interaction between the SAM and
RhoGAP domains keeps DLC1 in an autoinhibited state (11,
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17). The SAM domain is a versatile module shown to bind
RNA (18), lipid (19), and tensins and tensin-like proteins
(20). Although some SAM domains have been shown to
dimerize or oligomerize (21, 22), there is no evidence to sug-
gest that the DLC1-SAM undergoes oligomerization by itself
(13, 23). Nevertheless, the DLC1 SAM domain can bind
EF1A1 (24), TNS3 (tensin-3), and PTEN (10, 11, 25), in addi-
tion to the RhoGAP domain from the same protein (11, 17).
Therefore, the DLC1 SAM domain is a protein interaction
module capable of binding to a variety of different proteins.
Intriguingly, binding of TNS3 to the DLC1 SAM domain
blocks interaction of the latter with the RhoGAP domain,
thereby promoting RhoGAP activity and resulting in
decreased cellular RhoA-GTP levels (10). These studies sug-
gest that targeting the SAM domain-mediated protein-pro-
tein interactions may be an attractive strategy to control cell
migration by manipulating cellular RhoA-GTP levels via
DLC1.
We report here that the DLC1 SAMdomain binds directly to

the TNS3 and PTEN C2 domains. Using peptide-walking
arrays, we defined the regions in the twoC2domains thatmedi-
ate SAM-binding and identified specific peptides that bound
the SAM domain with micromolar affinities. Our work show,
for the first time, the SAM domain is a peptide-interaction
module that is capable of binding to multiple peptides derived
fromTNS3 andPTEN. Importantly, we provide evidence show-
ing that the TNS3 or PTEN C2 domain-derived peptides can
inhibit anchorage-independent cell growth and the migration
of a variety of cancer cells in response to growth factor
stimulation.

Results

The DLC1 SAM domain binds directly to the TNS3 and PTEN C2
domains

We have previously shown that the DLC1 SAM domain is
capable of binding to PTEN and TNS3 through a homologous
region (10, 11). Binding by TNS3 or PTEN may activate DLC1
by releasing the intramolecular interaction between the SAM
and RhoGAP domains, thereby resulting in increased RhoGAP
activity, decreased Rho-GTP level, and reduced cell migration
(Fig. 1A). To exploit this mechanism to control cell migration,
we first examined if the homologous C2 domains in TNS3 and
PTEN would bind directly to the DLC1 SAM domain. To this
end, we transfected HEK293 cells with expression constructs
for the TNS3-C2 or PTEN-C2 domain fused to green fluores-
cence protein (GFP) together with the FLAG epitope-tagged
DLC1, the SAM domain, or a DLC1 mutant in which the SAM
domain was deleted (DLC1-�SAM). Immunoprecipitation of
theGFP-C2domains followed byWestern blotting showed that
both the full-length DLC1 and the SAM domain co-immuno-
precipitated with the TNS3 or PTEN C2 domain, whereas
DLC1-�SAM did not (Fig. 1B). This indicates that the SAM
domain is required for DLC1 binding to the C2 domain.

The DLC1 SAM domain recognizes specific peptides within the
TNS3 or PTEN C2 domain

The SAM-C2 domain-domain interaction may be mediated
by peptide motifs as is often the case for protein interaction
modules (26). To explore this possibility, we synthesized pep-
tide spot arrays representing the amino acid (aa) sequences of
the PTEN and TNS3 C2 domains, respectively. Each peptide in

Figure 1. The SAM domain of DLC1 bound to its own RhoGAP domain and the C2 domain of TNS3 or PTEN. A, a schematic depicting the interactions
between the DLC1 SAM domain and the TNS3 or PTEN C2 domain and how these interactions regulate cell migration through the RhoGAP-RhoA pathway. B,
Western blots (WB) confirming the SAM-C2 domain interaction in cells. HEK293 cells co-expressing GFP-fused PTEN-C2 (left panel) or TNS3-C2 (right panel) and
FLAG-tagged full-length DLC1, DLC1-SAM (SAM domain only), or DLC1-�SAM (SAM deletion mutant) were subjected to immunoprecipitation (IP) and immu-
noblotting (IB) using anti-GFP and anti-FLAG antibodies.

SAM-binding peptides activate DLC1 to inhibit cell migration
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the spot array is 12-aa in length with 2-aa overlap between
neighboring peptides in the array (Fig. S1,A andB). The peptide
arrays were subsequently probed for binding to the purified
GST-SAM (Fig. 2A) or GST (for background binding, Fig. S2)
and the bound protein visualized by anti-GST Western blots.
This led to the identification of three distinct regions in the
PTEN-C2 domain, with the 230GPTR, 257FFHK, and 334NRYF
motifs, respectively, that were recognized by the DLC1-SAM
domain (Fig. 2, A, upper panel, and B). In contrast, only a single
motif on the TNS3-C2 domain, 244CYHK, was recognized by
the SAM domain (Fig. 2, A, lower panel, and B). Intriguingly,
this motif shares significant sequence identify to the 257FFHK
motif in PTEN-C2 (Fig. 2B), suggesting similar mechanisms
may be used by both C2 domains for SAM-binding. Although
the C2 peptide arrays included phosphorylated versions of the
bound peptides, none was found to bind the DLC1-SAM
domain (white boxes in Fig. 2A; Fig. S1, A and B). The SAM-
binding peptides mapped to specific �-strands or surface loops
at one side of the PTEN-C2 structure (Fig. 2C). Although the
TNS3-C2 domain structure is not yet available, it should be
noted that the 244CYHK peptide fromTNS3-C2 aligns with the
257FFHK motif of PTEN-C2 domain (Fig. 2, B and C).
To measure the binding affinities of the identified C2 pep-

tides for the SAM domain in solution, we synthesized peptides

representing the different motifs with a fluorescein tag. Fluo-
rescence polarization binding assays were conducted for the
peptide-SAM complexes and the equilibrium binding curves
were used to derive the corresponding dissociation constants
(KD) (Fig. 2,D and E; Table 1; Fig. S3). The strongest interaction
was observed for the 230GPTR motif-containing peptide from
PTEN-C2 (called the PTEN-C2 peptide for short hereafter)
with KD of 0.87 �M (Fig. 2D; Table 1). In contrast, the 244CYHK
motif-containing peptide (called the TNS3-C2 peptide hereaf-
ter) had a KD of 2.18 �M (Fig. 2E; Table 1), which is �7-fold
stronger than the equivalent 257FFHK peptide from the
PTEN-C2 domain (Fig. 2B; Table 1). A peptide containing the
other PTEN-C2 motif, 334NRYF, was much weaker in binding,
with a KD of 25.87 �M, (Table 1; Fig. S3A). To rule out that the
interaction was disulfide bond-dependent, a 244SYHK motif-
containing variant of the TNS3-C2 peptide was also synthe-
sized and tested for binding, which showed a minor change in
affinity (KD � 3.58 �M) compared with the 244CYHK peptide
(Table 1; Fig. S3A).
The importance of the 244CYHK and 230GPTR motifs for

SAM-binding was investigated by Ala-scanning peptide spot
arrays. TheN-terminal half of each peptidewas found to play an
important role as substitution of any residue within this region
led to amarked decrease or loss of SAM-binding (Fig. S4, A and

Figure 2. The DLC1 SAM domain bound to peptides derived from PTEN or TNS3 C2 domain. A, peptide-walking arrays of the PTEN-C2 (aa 174 – 403) or
TNS3-C2 domain (aa 166 – 440) were probed with purified GST-SAM and the bound protein detected by anti-GST Western blotting. Peptides representing
phosphorylated peptides, which showed no binding, are identified in white boxes. See Fig. S1 for the peptide array map and peptide identities. B, sequence
alignment of the PTEN and TNS3 C2 domains with the SAM-binding peptides/motifs identified in A are shown in black boxes. C, SAM-binding peptides from B
mapped onto the structure of the PTEN-C2 domain (PDB code 1D5R, aa 188 –351; 230GPTR peptide ingreen, 257FFHK in red, and 334NRYF inblue).DandE,binding
of the SAM domain to peptides from PTEN (230GPTRREDKFMYF) or TNS3 (244CYHKKYRSATRD) C2 domains. Shown are representative binding curves from
fluorescence polarization (FP) analysis (n� 3) using the corresponding fluorescein-labeled C2 peptides. �FP, difference in fluorescence polarization.
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B). To confirm this finding, we synthesized analogues of the C2
peptides in which the 2nd and 3rd residues in the two motifs
were substituted by Ala. Fluorescence polarization assay
showed that the resulting peptides, containing the GAAR or
CAAK motif, lost binding to SAM (Fig. S4, C and D).

The C2 peptides disrupt the SAM domain-C2 domain
interaction

To find out if the two C2 peptides could inhibit the corre-
sponding SAM-C2 interaction in cells, we resynthesized these
peptides with an N-terminal, HIV-derived tat-motif (27) to
facilitate cellular transduction and a fluorescein tag for easy
detection. We also synthesized a scrambled version of the flu-
orescein-tat-TNS3-C2 peptide as control. The tat-peptides
were able to transduce the MDA-MB-231 (breast cancer),
HCC78 (lung cancer), andHEK293DLC1 (HEK293 overexpress-
ing DLC1) cells with equal efficiency (Fig. S5) and the trans-
duced peptides appeared as punctate structures that colocal-
ized with actin (Fig. S6). With confirmation of cellular
transduction, we then tested if the C2 peptides could block the
interaction between GFP-TNS3-C2 or GFP-PTEN-C2 and
GST-DLC1-SAM that were co-expressed in the HEK293DLC1
cells. To this end, we first established the conditions for binding
between the SAM and two C2 domains. In agreement with pre-
vious findings (10), GST pulldown showed that the SAM
domain bound more robustly to the TNS3-C2 domain in the
absence, than in the presence, of EGF in serum-starved
HEK293DLC1 cells (Fig. 3A). In contrast, the SAM-PTEN-C2
interaction was stronger in the presence of EGF stimulation
(Fig. 3C). This discrepancy may be due to the distinct effect of
phosphorylation of the two C2 domains on SAM-binding (10).
To assess the efficacy of the C2 peptides in disrupting the
SAM-C2 interaction, an incremental amount of a fluoscein-
tat-C2 peptide was added to the cells in the absence or presence
of EGF followed by GST pulldown. As shown in Fig. 3, A and B,
the TNS3-C2 peptide blocked TNS3-C2 binding to the SAM
domain at a concentration as low as 5 �M, whereas the
PTEN-C2 peptide exhibited a significant inhibitory effect only
at 10 �M or above (Fig. 3, A and B). Intriguingly, in the presence
of EGF, the PTEN-C2 peptide disrupted SAM-binding by the
PTEN-C2 domain at 5 �M, whereas the TNS3-C2 peptide was
unable to completely inhibit the SAM-C2 domain-domain
interaction even at 15 �M (Fig. 3, C and D). The scrambled
TNS3-C2 peptide control, in contrast, was unable to block
SAM binding to either C2 domain even at 30 �M regardless of
EGF. These results indicate that the C2 peptides have distinct

abilities in disrupting SAM-binding to the corresponding C2
domains. Nevertheless, at high peptide concentrations (e.g. 30
�M), both peptides are effective in blocking the SAM-C2
interactions.

The C2 peptides inhibited RhoA activation and anchorage-
independent cell growth

Because the TNS3-C2 domain can act as inhibitor of cell
migration (10), apparently by binding to the SAM domain and
mitigating its inhibition of DLC1-RhoGAP, we inquired
whether theC2peptideswere sufficient to activate theRhoGAP
and thereby, promoting RhoA-GTP hydrolysis (10, 11). To this
end, the HEK293DLC1 cells were cultured in serum-free and
EGF-containing medium with increasing concentrations of a
C2 peptide (from 0 to 18 �M) or scrambled control (at 18 �M).
Rhotekin-RBDbeadswere used to pulldownGTP-boundRhoA
from the cell lysate followed by anti-RhoA Western blotting
(10). Although bothC2peptideswere capable of blockingRhoA
activation at 18�M, the PTEN-C2 peptidewasmore effective as
it abolished cellularGTP-RhoA at 10�M (Fig. 4A). This result is
consistent with the finding above (Fig. 3, C and D) showing that
the PTEN-C2 peptide inhibited the C2-SAM interaction more
effectively than the TNS3-C2 peptide in the presence of EGF.
To ascertain that the inhibitory effect of the C2 peptide on
RhoA activation was not limited to the specific cell type or
growth factor examined, we repeated the assay on MDA-MB-
231 (a breast cancer line) under EGF stimulation andHCC78 (a
lung cancer line) under the treatment of HGF (hepatocyte
growth factor) and obtained essentially identical results (Fig. 4,
B and C). It should be noted that the peptide treatment did not
alter the cellular level of DLC1 in any of three cell lines tested
(Fig. 4A; Fig. S7). Furthermore, the C2 peptides had no effect on
Rac1 activation (Fig. S8), consistent with DLC1 being a Rho-
specific GAP.
Because RhoA is known to play a role in tumorigenesis (4, 28,

29), we investigated if the corresponding tat-C2 peptides would
inhibit cellular transformation using an anchorage-independ-
ent cell growth assay. To this end, the HEK293DLC1 cells were
seeded on soft agar and allowed to grow in the absence or pres-
ence of a C2 peptide. Relative to the scrambled TNS3-C2 pep-
tide control that showed no significant effect on colony forma-
tion, both tat-C2 peptides significantly (p � 0.01) reduced the
number of colonies formed in soft agar. Moreover, the tat-
PTEN-C2 peptide showed a more remarkable effect than the
tat-TNS3-C2 peptide (Fig. 4, D and E), again reinforcing earlier
results (Fig. 4A). It should be noted that the C2 peptides had no
significant effect on cell proliferation or apoptosis (Figs. S9 and
S10).

The C2 peptides reduced anchorage-independent growth and
growth factor-induced migration of cancer cells

To corroborate the results obtained usingHEK293DLC1 cells,
we next tested the efficacy of the C2 peptides in inhibiting
transformation and migration of MDA-MB-231, a triple nega-
tive breast cancer cell linewith endogenous expression ofDLC1
(10). To this end, we subjected the MDA-MB-231 cells to soft-
agar growth assays in the presence of a C2 or control peptide.
To ensure that the effect of C2 peptides was mediated by the

Table 1
Equilibrium dissociation constants for the SAM-C2 peptide interac-
tions
All peptides contained a fluorescein tag coupled to theN terminus of the peptide via
a 6-aminohexanoic acid spacer.

Peptide (Sequence) KD
a

�M

TNS3-C2 peptide (CYHKKYRSATRD) 2.18� 0.45
244TNS3-C2 (Cys244-Ser) (SYHKKYRSATRD) 3.58� 1.09
PTEN-C2 peptide (GPTRREDKFMYF) 0.87� 0.18
PTEN-C2-FFHK (FFHKQNKMLKKD) 14.05� 1.51
PTEN-C2-NRYF (NRYFSPNFKVKLY) 25.87� 2.87

a KD values were derived from fluorescence polarization measurements.
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SAM domain, we overexpressed the SAM domain deletion
mutant of DLC1, DLC1�SAM, in the MDA-MB-231 cells. The
two C2 peptides and DLC1�SAM caused a significant reduc-
tion in colony formation in soft agar (Fig. 5, A and B). Specifi-
cally, the tat-TNS3-C2 peptide reduced colony formation by
38%, whereas the tat-PTEN-C2 peptide reduced the colony
number by 55% compared with the scramble control (Fig. 5, A
and B). This result is in excellent agreement with that obtained
using the HEK293DLC1 cells (Fig. 4, D and E).
Because RhoA plays a critical role in cell migration (10, 29),

we next determined the effect of the C2 peptides on cell migra-
tion using wound-healing assays. The C2 or control peptides
were added, respectively, into the culture of serum-starved
MDA-MB-231 under EGF stimulation (10). We found that
both the tat-TNS3-C2 and tat-PTEN-C2 peptide significantly
decreased the ability of the MDA-MB-231 cells to migration in
response to EGF (Fig. 5, C and D). Rhotekin-RBD pulldown
followed by Western blotting of the cell lysate harvested prior
to the addition of EGF or at 0.5 or 16 h following EGF stimula-
tion showed that both C2 peptides, but not the scrambled
control, effectively inhibited RhoA activation at the 16th hour.
These results suggest that the C2 peptides inhibited cell trans-
formation and migration through inactivating RhoA. The C2

peptides showed the same inhibitory effect on the migration of
the HCC78 and HEK293DLC1 cells (Fig. S11).

Cyclization of the TNS3-C2 peptide facilitated plasma
membrane penetration without loss of anti-migration effect

Because the target (DLC1) of the C2 peptides is intracellular,
the inability of these peptides to cross the lipid bilayer of the
plasma membrane greatly limits their therapeutic potential.
Although we have shown that this limitation may be overcome
by fusing the peptide with the tat sequence, we also wanted to
test if cyclization of the C2 peptides themselves would provide
an alternative for their intracellular delivery. Unlike linear pep-
tides, cyclic peptides, exemplified by cyclosporine (30, 31), have
been shown to penetrate the plasma membrane. Compared
with the PTEN-C2 peptide that required all 12 aa for optimal
binding, the TNS3 C2 peptide appeared to be less stringent in
sequence requirement (Fig. S4, A and B). We therefore focused
our cyclization of the latter. To optimize efficiency of cycliza-
tion, we first subjected the TNS3-C2 peptide to serial trunca-
tions to identify the minimal sequence for SAM-binding. Prob-
ing the peptide truncation arrays with GST-SAM allowed the
identification of a 7-residue motif, CYHKKYR, which retained
full binding ability of the parent peptide (Fig. 6A, red asterisk).

Figure 3. The C2peptides disrupted theDLC1 SAM-PTEN/TNS3-C2domain-domain interactions in cells.A and B, effect of the C2 peptides on DLC1-SAM
binding to the TNS3-C2 domain in HEK293DLC1 cells without EGF stimulation. The TNS3 C2 domain bound more tightly to the DLC1 SAM domain in the absence
of EGF stimulation; accordingly, the TNS3-C2– derived peptide inhibited this interaction more effectively than the PTEN C2– derived peptide. Quantification of
the Western blots indicates a significantly different effect between the two C2 peptides at 5 �M (n� 3; *, p� 0.01, Student’s t test). C and D, effect of the C2
peptides on DLC1-SAM binding to the PTEN C2 domain in HEK293 cells in the presence of EGF. The PTEN-C2 domain bound to the SAM domain more tightly
with EGF stimulation (for 30 min). Accordingly, the PTEN C2– derived peptide blocked this interaction more effectively than the TNS3 C2– derived peptide in
HEK293 cells with EGF. Quantification of Western blots (D) indicates a significantly different effect between the two C2 peptides at 5 �M peptide (n� 3; *, p�
0.01, Student’s t test). Scr: scrambled TSN3-C2 peptide control, applied at 30 �M.

SAM-binding peptides activate DLC1 to inhibit cell migration
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To enable cyclization, we added the Gly-Cys dipeptide to the
C terminus of this motif and used oxidization by air to promote
the cyclization of the resulting peptide (now a 9-mer)
through formation of an intramolecular Cys-Cys disulfide
bond (32, 33). Ellman’s reagent assay, HPLC separation, and
MALDI-MS verified the cyclic peptide with a final yield of
�52% (Fig. S12).
Confocal microscopy suggested that the fluorescein-labeled

TNS3-C2 cyclic peptide penetrated the MDA-MB-231 cells

more efficiently than the corresponding linear peptide fused to
the tat sequence as the former was detected intracellularly
within 30min, whereas the latter at 4 h (Fig. 6B). Moreover, the
cyclic peptide, but not the linear counterpart, was detectable at
72 h, suggesting the cyclic peptide was more stable than the
linear version (Fig. 6B). Importantly, the cyclic TNS3-C2 pep-
tide showed a similar level of efficiency as the liner peptide in
inhibiting themigration of theMDA-MB-231 cells triggered by
EGF (Fig. 6C).

Figure4. TheC2peptidesdecreasedRhoAactivity inmultiple cell lines and reduced colony formationbyDLC1-expressingHEK293 cells.A,both TNS3
and PTEN C2 peptides were able to inhibit RhoA activation in the DLC1-overexpressing HEK293DLC1 cells in a concentration-dependent manner. B and C, the
same RhoA-GTP inhibitory effect was observed for the C2 peptides in EGF-treated MDA-MB-231 cells (B) or HGF-treated HCC78 cells (C). D, colony-formation in
soft agar for the HEK293DLC1 cells in the absence (no treatment) or presence of a C2 peptide or the scrambled TNS3-C2 peptide. E,quantify of colony-formation
data in D; *, denotes a p value� 0.01 (n� 3), Student’s t test; IB, immunoblotting.
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Discussion

DLC1 has been implicated in numerous cancers, including
metastatic breast cancer (10, 11, 25, 34, 35). Recent studies have
underscored the importance of DLC1 in actin skeleton re-or-
ganization and directional cell migration via its interactions
with TNS3 and PTEN (10, 11, 36). TNS3 and PTEN act as alter-
nate binding partners for DLC1 or P13K, depending on the
phosphorylation states of the TNS3 and PTEN C2 domains
(10). The binding partner-switch for DLC1 has been shown to
regulate the spatiotemporal activation of Rac1 and RhoA under
growth factor stimulation and govern directional cell migration

fate (10). These previous studies suggest that the DLC1-TNS3/
PTEN interactions are mediated by the C2 domains of TNS3
and PTEN and the SAM domain of DLC1 (10, 11, 25). Further-
more, these studies also indicate that the SAM domain plays a
crucial role in the autoinhibition of the RhoGAP domain. Lowy
and colleagues (12, 14, 16, 37) have shown that the autoinhibi-
tion of theDLC1-RhoGAPdomainmay also bemediated by Ser
phosphorylation of the SR region byAkt1 andCDK5. It is there-
fore likely that either or both of the SAMdomain and SR region
may regulate the RhoGAP activity in DLC1, depending on cel-
lular context.

Figure 5. C2 peptides reduced anchorage-independent growth and EGF-dependentmigration of breast cancer cells. A, colony formation by MDA-MB-
231 cells treated with a C2 peptide or scrambled control (of tat-TNS3-C2) or transfected with DLC1-�SAM. B, quantification of data in A to show efficiency in
colony formation for the above cells compared with the parent cells (set as 100%).C, representative images of wound-healing in peptide-treated MDA-MB-231
cells. D, quantification of the would-healing data in C. For panels B and D, * denotes p� 0.01 (compared with the scramble peptide, n� 3), Student’s t test. E,
Western blots of total and active RhoA in peptide-treated MDA-MB-231 cells in response to EGF treatment. Peptide concentration in C–E: 18 �M.
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The SAM domain is a small (60–90 residue) helical domain
present in numerous proteins in the animal and plant king-
doms, including�200 in human proteins (17, 22). Themodular
domain primarily acts as scaffolding entity in larger, multido-
main proteins involved in orchestrating cellular signaling. SAM
domains display a remarkable promiscuity in binding macro-
molecules that include proteins, lipids, and RNA (18, 19, 22).
There have been extensive investigations into the structure and
function of the SAM domain of the EphA2 tyrosine kinase
receptor (38–44). In comparison, the function of the DLC1
SAM domain is not fully understood despite a few early studies
on the topic (17, 24, 45, 46).We have shown here that theDLC1
SAM domain binds directly to the TNS3 or PTEN C2 domain
with micromolar affinities. Moreover, multiple peptides from
the two C2 domains are capable of binding the DLC1 SAM
domain. These findings have several important implications.
First, our study shows, for the first time, that the DLC1 SAM
domain is both a protein- and a peptide-interaction module.
Although the SAM domain has been shown to form homo- or
heterodimers, it has not been characterized for binding to other
proteins or peptides. The versatile nature of the DLC1 SAM
domain in protein/peptide binding greatly expands the reper-
toire of proteins that this modular domain may interact. It is

likely that other SAM domains may have the same characteris-
tics and therefore warrant further investigation. Second, our
study suggests that the DLC1 SAM domain is capable of bind-
ing to peptides with distinct sequences. It would be interesting
to find out how this versatility in ligand-binding is accom-
plished by such a small modular domain. Third, our study iden-
tifies the C2 domain as a protein-binding module. Like the
SAMdomain, the C2 domain has been found in numerous pro-
teins (47). Studies to date have been focused on the calcium-de-
pendent lipid-binding property of the C2 domain. In this
regard, the PTEN/TNS3 C2 domains bind phospholipids, but
in a calcium-independent manner (47, 48). Our work supports
the notion that the C2 domain is also a protein-interaction
module (49–51). It would be interesting to investigate if other
C2 domains possess the same protein-binding capability and
whether some C2 domains have the dual properties of lipid-
and protein-binding.
Protein-protein interactions are frequently mediated by

modular domains and targeting protein-protein interaction is
an attractive approach for cancer therapeutics (50, 51). We
explored this principle in the current study by identifying and
developing peptides that block the SAM-C2 interaction. We
have shown that peptides derived from the TNS3 or PTEN C2

Figure 6. Cyclization of the TNS3-C2 peptide led to increased stability without comprising its ability to inhibit MDA-MB-231 cell migration. A,
identification of the minimal length for the active TNS3-C2 peptide by peptide truncation spot array. Peptide spot arrays representing N- or C-terminal
truncation (or Ala-scanning analogues, Fig. S4A) of the TNS3-C2 peptides were probed with the GST-SAM domain. Based on the binding data, a 9-mer peptide
(CYHKKYS-GC) was synthesized for cyclization. B, the cyclized C2 peptide showed increased cellular stability. MDA-MB-231 cells were transduced with fluores-
cein-labeled tat-TNS3-C2 9-mer linear peptide or the corresponding cyclized TNS3-C2 peptide (without tat label) and fixed at the indicated time points. The
cells were stained with DAPI (blue for the nucleus) and phalloidin (red for actin) and imaged by confocal microscopy. The fluorescein-labeled peptides were
shown ingreenpunctate structures.C, serum-starved MDA-MB-231 cells were transduced with scrambled, linear, and cyclized TNS3 C2 peptides (each at 18 �M)
and subjected to wound healing assays under EGF stimulation. Closed wound areas were measured at 18 h and are represented as percentages of wound area
closed relative to the untreated cells; * denotes a p value� 0.01, n� 3; Student’s t test.
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domains are potent inhibitors of the SAM-C2 interaction in
cells. These peptides, when fused to the tat protein transduc-
tion sequence (27, 52) or cyclized, effectively activated DLC1
RhoGAP in both DLC1-expressing HEK293 cells or cancer
cells, including MDA-MB-231 and HCC78. The ensuing inac-
tivation of RhoA led to markedly reduced tumorigenic poten-
tial for these cells as assessed by anchorage-independent
growth and decreased migratory potential as measured by
wound-healing assay. Although DLC1 expression can be
silenced by epigenetic mechanisms, many cancers express
DLC1 (53). Therefore, peptide-based strategies to activate
DLC1 RhoGAP, as illustrated by this study, may be a feasible
approach in cancer therapy. Our finding that both the linear
tat-C2 peptide and the cyclic versionwere capable of effectively
inhibiting tumorigenic and migratory potential of cancer cells
raises the possibility that these peptide inhibitors may be
exploited for potential therapeutic applications.

Experimental procedures

Antibodies

Rabbit anti-DLC1 (H-260; sc-32931) and mouse anti-DLC1
(C-12; sc-271915) were obtained from Santa Cruz Biotech Inc.
Anti-RhoA (catalog number ARH03) was supplied in the RhoA
pulldown kit from Cytoskeleton Inc. Anti-GST-HRP (catalog
number A7340), rabbit anti-GFP (catalog number G1544), and
mouse anti-FLAG (M2; catalog number F1804) were obtained
from Sigma-Aldrich. Rabbit anti-Rac1 was obtained fromGen-
Script (A00660). Goat anti-mouse IgG (H	L)-HRP (catalog
number 170–6516) and anti-rabbit IgG (HþL)-HRP (catalog
number 170–6515) conjugates were obtained from Bio-Rad
Laboratories.

Expression constructs

DNA sequence encoding the DLC1-SAM (residues 13–78)
was subcloned into the pGEX-2T vector (Addgene) for the
expression of GST-SAM in Escherichia coli. FLAG-DLC1,
FLAG-DLC1-SAM, FLAG-DLC1�SAM, GFP-TNS3-C2, and
GFP-PTEN-C2 for mammalian cell expression were cloned as
reported previously (10).

Cell culture and transfection

HEK293, MDA-MB-231, and HCC78 cells were obtained
from American Type Culture Collection (ATCC, Manassas,
VA). Cells were cultured as monolayers as described (10).
HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing antibiotics and 10% fetal bovine
serum (FBS; Sigma-Aldrich). MDA-MB-231 cells were grown
in DMEM/F-12 containing antibiotics and 10% FBS. HCC78
cells were grown in RPMI1640 medium containing antibiotics
and 10% FBS. Serum-free/starved growth media contained no
FBS and growth factor. EGF treatment medium contained 20
ng/ml of EGF, and EGF treatment was for 30min at 37 °C in 5%
CO2. Plasmids (2 �g) were transiently transfected using
X-tremeGENE HP transfection reagent (Roche) at 70% conflu-
ence, using the manufacturer’s protocols. Cultures were
allowed to grow for an additional 16 h before further
treatments.

Peptide arrays and soluble peptide synthesis

Cellulose spot peptide arrays and soluble peptides were syn-
thesized on aMultipep synthesizer from Intavis AGBioanalyti-
cal Instruments. Peptide arrays were printed on cellulosemem-
branes and soluble peptideswere synthesized onTFA-cleavable
resins (Rink resin; AnaSpec Inc.) using Fmoc chemistry.
Design, probing, and blotting (Far Westerns) of peptide arrays
followed the same procedures as reported previously (54). Pep-
tide walking arrays were designed with 2-amino acid residue
overlaps. Truncation peptide arrays were designed to interro-
gate single-amino differences. N-hydroxysuccinimide (NHS)
fluorescein (Pierce) was used to label the N-terminal of soluble
peptides when required. 6-Aminohexanoic acid (AnaSpec Inc.)
linkers separated the Tensin3 (TNS3) and PTEN C2 peptide
motifs from the cell-penetrating peptide (HIV-based tat motif,
GRKKRRQRRRPQ) and the NHS-fluorescein label, to avoid
possible steric interference during protein-peptide interac-
tions. Peptides were purified by repeated cold-ether precipita-
tion and desalted on Sephadex�G10 (Sigma-Aldrich) columns
or purified on HPLC (C18 columns; Waters). Peptide masses
were validated by MALDI MS.

Determination of equilibrium dissociation constant (KD) by
fluorescence polarization

Binding affinities of GST and the GST-DLC1-SAM domain
for the fluorescein-labeled peptides from TNS3-C2 or
PTEN-C2 were determined using a Multi-label Reader
(PerkinElmer Life Sciences). Fluorescein-labeled peptides were
diluted and incubatedwith increasing concentrations of DLC1-
SAM in 20mMTris (pH 7.0), 150mMNaCl2, 3mMDTT.The FP
data (experiments performed in triplicates) was fitted to a non-
linear regression model as described previously (55).

Pulldown assays for RhoA-GTP

Rhotekin-RBD beads pulldown and immunoblotting for
Rho-GTP and total RhoA followed themanufacturer’s protocol
(Cytoskeleton Inc., BK036). For peptide penetration, tat-pep-
tides (at concentrations of 0–18 �M) were incubated with the
cell culture at 37 °C for 0.5 h before lysate preparation, pull-
down, and immunoblotting. For the GFP-C2 domain pulldown
assay, 0–30 �M tat-C2 peptides were used to treat the
HEK293DLC1 cells.Western blots were quantified using ImageJ.

Pulldown assays for Rac1-GTP

PAK-PBD beads pulldown and immunoblotting for Rac1-GTP
and total Rac1 followed the manufacturer’s protocol (Cytoskele-
ton Inc., BK035S). For peptide penetration, tat-peptides (at con-
centrations of 0–18 �M) were incubated with the cell culture at
37 °C for 0.5 h before lysate preparation, pulldown, and immuno-
blotting.Western blots were quantified using ImageJ.

Fluorescence microscopy and confocal microscopy

MDA-MB-231 cells were grown in glass-bottom dishes until
20–40% confluence. Cultures were incubated for 30 min to
72 h with linear (9-mer) and cyclic (9-mer) fluorescein-tagged
tat-labeled or nonlabeled peptides (18�M) in serum-freemedia
containing EGF. Cells were fixed by incubation in 3.7% formal-
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dehyde for 5 min. The fixed cells were washed with 1
 phos-
phate-buffered saline (PBS) twice and treated with 0.2% Triton
X-100 for 10 min. The fixed cells were rhodamine phalloidin
stained and washed with 1
 PBS (twice). Cells were imaged
using a LSM-510 Zeiss META/ConfoCor2 microscope or an
Olympus FV1000 microscope, after adding VectaShield�
mounting medium containing DAPI to the fixed cells.

Anchorage-independent growth (soft-agar) assay

HEK293 andMDA-MB-231 cells (70% confluence) were trans-
fected with plasmids encoding DLC1-SAM or treated with a tat-
peptide (30 �M). After incubation with peptides for 4 h, the cells
were trypsinized and plated at a density of 5
 104 cells in 0.30%
agarose inDMEM(10%FBS), ona layerof0.6%agarose suspended
in DMEM (10% FBS) in 6-well-plates (in triplicates). A small ali-
quot of cells was saved for ascertaining cell counts using a hemo-
cytometer, post-peptide treatment (4h)or transfection (16h).The
soft agar bilayers, with proliferating colonies, were replenished
with DMEM (10% FBS) containing�tat-peptides and EGF, twice
a week. Colonies were allowed to grow in 37 °C in 5% CO2 for 22
days. Soft agarwellswere stained for 1hwith crystal violet (Sigma-
Aldrich) andwashed inPBS.Colonieswere counted and thenum-
bers normalized to untreated cell cultures grown in soft-agar. Col-
onies �100 �m in diameter were counted. Representative
micrographswere takenusing an InfinityCapture Imaging system
(Lumenera Corporation) mounted on a Motic AE31 inverted
microscope (MaticMicroscope).

Wound-healing assay

Cellmonolayers at�100%confluence in serum-freemedium
were scratched using a 200-�l pipette tip and cell debris were
rinsed off with PBS. Wounded monolayers were incubated for
24 h in�serum,�EGF, and tat-peptides (18 �M) or cyclic pep-
tides (30 �M). Images were captured at 0 and 24 h using the
Infinity Capture Imaging System (Lumenera Corporation)
mounted on a Motic AE31 inverted microscope (Matic Micro-
scope). The cell migration front was established as one that had
a continuous line of live migrating cells. As all wounds created
were not the exact size between wells in which the cells were
allowed to migrate, the wound areas at the end points were
calculated by normalizing it to the wound area at 0 h for each
well. Wound area dimensions were then determined using the
analyze and measure functions of the ImageJ software and are
expressed as a percentage.

Optimization of TNS3-C2 peptide

The 7-mer motif of TNS3-C2 was used as the core sequence
for synthesizing cyclic peptides with two additional amino res-
idues (Gly-Cys) at the C-terminal end to provide a linker and a
disulfide-bond partner. The 9-mer linear peptide was synthe-
sized as described before and all further cyclization steps were
done on-resin. The peptide was allowed to cyclize, via disulfide
bond formation at room temperature by incubating the pep-
tide-resin in 18%DMSO at pH 6.0 for 48 h (32, 33, 56). The side
chain protection groups were removed in a sequential manner,
with the cysteine side chains de-protected first before cycliza-
tion. The reduction of free-sulfhydryl groups were tracked by
spectrometer readings, using Ellman’s reagent (5,5�-dithiobis-

(2-nitrobenzoic acid); Sigma-Aldrich) at 412 nm. Monomers
andmultimers were separated byHPLC and the peaks analyzed
by MALDI-MS. Total yield and purity of cyclic peptides were
calculated from the volume of the reactionmixture loaded onto
the HPLC column, the area under the HPLC peaks, and from a
cysteine-Ellman’s reagent assay-based standard curve. The cyclic
peptides were labeled with fluorescein after 20% piperidine
treatment of the peptides to remove the Fmoc moiety
and before the cleavage of the peptides from resin with 95% TFA.

Flow cytometry

Cells were culture until 70% confluence. After 16 h serum
starvation, cells were incubated with 18 �M peptides for 24 h.
Subsequently, cells were harvested and resuspended in annexin
binding buffer (10 mM Hepes (pH 7.4), 140 mM NaCl, and 2.5
mM CaCl2) and stained with annexin V-FITC (Biolegend) and
SYTOXTM AADvanced (ThermoFisher Scientific). All flow
cytometry samples were analyzed using LSRII flow cytometer
(BD Biosciences) and FlowJo V10 (FlowJo LLC). Aminimum of
20,000 events was recorded.

Cell proliferation assay

Cellswere cultured in 100�l ofmedium in96-well-plates.After
16 h serum starvation, cells were incubated with 18 �M peptides
for 24 h. Subsequently, cell number was evaluated using Sigma
WST-8 ((2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium, monosodium salt). 10 �l of
WST-8 solutionwas directly added to the 100�l ofmedium.Cells
were then returned to the incubation chamber for 30 min. The
96-well-plates were then read for absorbance at 460 nm.

Peptide transfection efficiency detection by fluorescein absor-
bance measurement

Cells were cultured in 96-well-plates. After 16 h serum star-
vation, cells were incubated with or without 18 �M peptides for
4 h. Afterwashing twicewith PBS, 200�l of RIPAbuffer (25mM

Tris, 75mMNaCl, 1%Nonidet P-40, 0.5% sodiumdeoxycholate,
0.1% SDS, pH 7.6) was used to lyse the cells. Intracellular fluo-
rescence was detected by 480 and 535 nm for excitation and
emission, respectively. For comparison, the absorbance of the
scramble peptide was set as 100% (Fig. S5).

Statistical analysis

All statistical analyses were based on paired Student’s t test
using Excel and GraphPad�. A p value of�0.01 was considered
to be statistically significant.
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