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Abstract: The importance of the in utero environment as a contributor to later life metabolic 
disease has been demonstrated in both human and animal studies. In this review, we consider 
how disruption of normal fetal growth may impact skeletal muscle metabolic development, 
ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to 
later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated 
with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) 
is often the outcome, and early in postnatal life, LBW individuals display modifications in 
the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we 
will present literature detailing the classical development of insulin resistance in IUGR, but 
also discuss how this impaired development, when challenged with a postnatal Western diet, 
may potentially contribute to the development of later life insulin resistance. Considering 
the important role of the skeletal muscle in insulin resistance pathogenesis, understanding 
the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and 
how they may interact with an adverse postnatal environment, is an important step in 
highlighting potential therapeutic options for LBW offspring born of pregnancies 
characterized by placental insufficiency. 
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1. Introduction 

Recent clinical, epidemiological and animal studies have highlighted an association between an 
altered, adverse in utero environment and growth, and the subsequent propensity of these offspring to 
develop hallmarks of the metabolic syndrome [1–3]. The metabolic syndrome is a cluster of factors 
indicative of altered metabolism, including hypertension, visceral obesity, glucose intolerance and 
dyslipidemia, that predispose the patient to the development of comorbidities such as cardiovascular 
disease, non-alcoholic fatty liver disease and type 2 diabetes [4]. Decreased insulin sensitivity, or insulin 
resistance, is a critical precursor of the metabolic syndrome, as it is typically evident before other overt 
symptoms are apparent; and therefore it may represent an early, key step in the pathophysiological 
progression towards the metabolic syndrome [4]. 

It has been postulated that the origins of the metabolic syndrome, and insulin resistance specifically, 
originate during fetal development and early postnatal life [5]. As such, an adverse in utero environment 
has the potential to influence the relative risk of the offspring to the development of aberrant nutrient 
metabolism in later life, independently of postnatal diet. An adverse in utero environment, often 
characterized by suboptimal nutrient transfer to the fetus, culminates in intrauterine growth restriction 
(IUGR). IUGR is the endpoint of a continuum of conditions that result in the failure of the fetus to attain 
its inherent growth potential, which can be diagnosed using ultrasonography during pregnancy [6]. 
Clinically, IUGR often results in a baby born with a weight or length below the 10th percentile for 
gestational age [6,7]. 

The etiology of IUGR is multifactorial, with adverse environmental or genetic and epigenetic factors 
likely playing a role in the abnormal growth and development of the fetus. One of the most important 
environmental factors regulating fetal growth, is nutrient delivery to the fetus via placental diffusion and 
transport [7]. A reduced functional capacity of the placenta, or placental insufficiency, is typically 
associated with poor placental vascular development, which prevents adequate nutrition and oxygen 
from reaching the developing fetus, resulting in a hypoxic, nutrient deprived in utero environment. 
Interestingly, it should be noted that, independent of reductions in nutrient supply, hypoxia alone has 
been shown to have a significant impact on fetal growth, emphasizing hypoxia as a key contributor to 
impaired fetal growth and potentially IUGR [8]. 

With exposure to a hypoxic in utero environment, the fetus undergoes some key adaptations to ensure 
survival. A key component of this adaptation in the acute setting has been considered a redistribution of 
fetal cardiac output towards essential organs such as the brain, heart and adrenal glands, at the expense 
of other organ systems, including the lungs, kidney, liver and skeletal muscle [9–11]. With prolonged 
hypoxia, animal and human studies have highlighted a redistribution of blood flow toward the brain, as 
well as increased blood flow towards adrenal glands [12–15], and it is inferred from this redistribution 
that the brain continues to receive sufficient perfusion and nutrient supply to maintain relative growth. 
This brain sparing effect is visible at birth, with the size of the fetal head being larger than that of the 
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abdomen, giving rise to an observable asymmetrical growth restriction. Concurrent with the overall 
reduction in body weight and brain sparing effect, fetuses exposed to hypoxic in utero environments also 
display a reduced muscle mass compared with normal birth weight offspring [16,17], and are 
predisposed to altered insulin sensitivity [1,3,5,18]. Furthermore, rodent models of low birth weight have 
also demonstrated a decrease in skeletal muscle mass [19], similar to the altered muscle to fat ratio 
observed in older men who were born low birth weight [20]. With this altered development there are 
metabolic changes to the offspring, resulting in what has been proposed as a “thrifty phenotype” [1,18]. 
The “thrifty phenotype” encompasses a collection of metabolic adaptations initiated to aid in fetal 
survival when challenged with nutrient deprivation in utero [21]. While the “thrifty phenotype” 
represents the observable phenotype associated with IUGR, theories of fetal programming postulate that 
altered oxygen and nutrient transfer during critical windows of development, when the fetus is most 
sensitive to its environment, are associated with permanent alterations in structure and metabolism, and 
a fixed functional capacity of vital organs in postnatal life [1]. Since the plasticity of the organs in utero 
is lost in postnatal life, adaptations to these metabolic organs initiated in utero may persist into 
adulthood, increasing the propensity for these offspring to develop metabolic disease with age [1,22]. 

Markers of altered fetal growth (including low weight at birth and asymmetric growth) are most 
widely used as indicators of IUGR or a hypoxic in utero environment. However, more subtle adaptations 
at the physiological level may be the drivers underlying the observable later life phenotypes, such as 
changes in skeletal muscle metabolic function and anabolic capacity, and overall oxygen consumption. 
Once the organs have fully developed in utero, the IUGR fetus faced with a postnatal environment 
characterized by nutrient excess, a highly prevalent and easily accessible diet in modern society, may 
develop long-term adverse metabolic consequences [1,5,18]. Unfortunately, the mechanisms underlying 
these alterations in the metabolic capacity of the IUGR fetus and their propensity towards the 
development of later life insulin resistance and the metabolic syndrome remain poorly defined. 

2. Skeletal Muscle Insulin Signaling and IUGR 

Skeletal muscle is the primary location for insulin-stimulated glucose uptake, accounting for up to 
70% of whole body glucose disposal [23], and is a key regulator of whole body energy metabolism [24], 
with other metabolic organs, including liver, adipose tissue and pancreas also involved in the insulin 
response and pathogenesis of insulin resistance. The primary metabolic objective in the skeletal muscle 
is production of ATP for contractile purposes; however, skeletal muscle is also responsible for the 
production and storage of glycogen, an insulin dependent process that provides the cells with glucose 
for ATP production when circulating levels are low. β-oxidation, a process whereby free fatty acids are 
broken down to provide muscle with carbon chain substrates, is also important for skeletal muscle ATP 
production. Since the skeletal muscle is a critical producer of ATP and an important location for glucose 
and fat metabolism, determining the propensity of skeletal muscle towards developing insulin resistance 
is a key determinant in the pathophysiological progression towards metabolic syndrome. 

Depressed insulin sensitivity, or insulin resistance, is a metabolic state in which peripheral tissues, 
such as skeletal muscle, are no longer responsive to the anabolic effects of insulin, thereby reducing 
insulin-stimulated glucose uptake and perpetuating a state of hyperglycemia. Insulin resistance at  
the level of the skeletal muscle has been associated with a modulation of the serine/threonine 
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phosphorylation status of insulin receptor substrates (IRS) [25–27]. A relative increase in the serine 
phosphorylation of IRS-1, the predominant isoform in skeletal muscle [28], at Ser307 reduces its ability 
to activate or complex with phosphatidylinositol 3-kinase (PI3-kinase). This activation failure impairs 
downstream phosphorylation of protein kinase B (Akt) at Ser473, and Akt Substrate of 160 kDa (AS160) 
at Thr642, ultimately leading to a reduction in glucose uptake into skeletal muscle cells through glucose 
transporter 4 (GLUT4) transporters [25,27,29]. 

A hypoxic in utero environment, commonly associated with IUGR, is known to negatively influence 
the fetus during critical periods of development [1,5,18]. Interestingly, IUGR offspring in animal models 
display improved insulin sensitivity in very early postnatal life, as assessed by intravenous glucose 
tolerance challenge; however, a shift towards impaired glucose clearance and decreased insulin 
sensitivity is evident as these offspring age [30–32]. The timing of this shift in insulin sensitivity appears 
to be sex-specific, with insulin action being impaired earlier in males and later in females [30]. These 
animal studies highlight that sexually dimorphic effects occur with adverse in utero environments, and 
in the case of insulin resistance, studies suggest males appear to be more susceptible to a programmed 
later life insulin resistance [30,33]. 

Interestingly however, this sex-specific programming of insulin resistance may not exist in humans. 
In a mixed cohort of offspring aged 25 who were growth restricted in utero, a significantly lower insulin-
stimulated glucose uptake was observed compared to controls, as well as a higher plasma insulin 
concentration, suggesting the development of insulin resistance. Of note, these observations were in 
conjunction with a normal glucose tolerance challenge, thus representing an early phase in the 
pathogenesis to insulin resistance and the metabolic syndrome [34]. However, by age 64, men who were 
born small exhibited a strong link with impaired glucose tolerance and type 2 diabetes [35], while data 
concerning women born small is not widely available. Therefore, understanding the early steps in the 
progression towards insulin resistance in the low birth weight population, and any sex-specific effects, 
is of critical importance for mitigating the risk of these offspring to the development of later life type  
2 diabetes. 

Animal models of IUGR, as well as some human studies, have also been used in order to identify the 
molecular changes occurring at the level of the insulin-signaling cascade that may be underlying the 
reduced insulin sensitivity in this population [29,36]. In early postnatal life, expression of the insulin 
receptor is increased in low birth weight sheep, as a compensatory mechanism for the low insulin and 
glucose levels experienced in utero [37]. However, the expression of the insulin receptor is no different 
to normal birth weight controls in skeletal muscle of older low birth weight rodent offspring, highlighting 
that the later life alterations in insulin sensitivity are likely due to a defect down-stream of the receptor 
that affects the ability of GLUT4 to translocate to the membrane and take glucose into the cell [36]. 
Analysis of key intermediates in the insulin signaling cascade has demonstrated sex-specific alterations 
that may be responsible for altered GLUT4 expression and reduced glucose uptake that is associated 
with states of insulin resistance [17,29,36,38]. 

In rodent models of placental insufficiency, young adolescent male offspring show altered GLUT4 
transport in conjunction with an increased phosphorylation of IRS-1 [29], which is known to blunt the 
physiological response to insulin [27] by reducing the coupling efficiency of the insulin receptor  
and IRS-1 [39]. IRS-1 is also known to complex with PI3-kinase, and in young male low birth  
weight offspring, reduced expression of the p85 regulatory subunit and p110β catalytic subunit of  
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PI3K has also been observed in rodent, as well as larger animal (e.g., sheep) models of placental  
insufficiency [31,36,37]. Downstream of IRS-1, the total Akt levels were not altered by insulin infusion 
in growth restricted males [29,36]; however, phosphorylation of this intermediate was increased by 
insulin, suggesting a compensatory mechanism may be at play to maintain this physiological response 
to exogenous insulin [29]. Although Akt’s involvement in the insulin cascade appears to be unaffected, 
downstream AS160 shows reduced phosphorylation in response to insulin [29], suggesting a functional 
impairment that impacts GLUT4 translocation to the plasma membrane [40]. 

In young adolescent female rodent offspring, the phosphorylation status of Akt is higher in the basal 
state, and insulin infusion is still able to increase the phosphorylation further. Additionally, there are no 
changes in the phosphorylation of protein kinase C isoforms and an increased phosphorylation of 
phosphoinositide-dependent kinase (PDK), all of which point to programming of heightened insulin 
sensitivity [38]. This heightened sensitivity is in accordance with the early improvement observed in 
sheep models [30], and may represent a protective response initiated to maintain whole body insulin 
sensitivity at this early age [38]. However, despite this enhanced sensitivity during the growth phase, 
with age these offspring exhibited a decrease in insulin sensitivity and progression towards an insulin 
resistant phenotype [41]. 

Human data has suggested similar molecular alterations are present in young males born low birth 
weight, including reduced expression of the p85 and p110β subunits of PI3-kinase and reduced skeletal 
muscle GLUT4 content [16,36]. These alterations occur in conjunction with a blunted phosphorylation 
of Akt in response to insulin infusion, but with maintenance of glucose tolerance and whole body insulin 
sensitivity [16,36]. Taken together, changes in the molecular expression of key insulin signaling 
intermediates in skeletal muscle of low birth weight offspring may precede development of whole body 
insulin resistance and glucose intolerance, representing an early defect in metabolism that could be 
indicative of future metabolic disease [36]. However, the mechanisms by which the in utero environment 
may be modulating these changes in insulin sensitivity remain ill defined. 

3. Fiber Type, Oxygen Consumption and IUGR 

Skeletal muscle has a high demand for energy in order to perform its contractile function, with most 
of its energy requirement being met through oxidative phosphorylation (OXPHOS). While OXPHOS 
produces greater amounts of adenine triphosphate (ATP) than glycolysis, it is an aerobic process 
requiring oxygen, conducted within the Krebs cycle and electron transport system of the mitochondria. 
The density of mitochondria is the primary determinant of oxidative capacity, and this is ultimately set 
by fiber type and fiber distribution within the skeletal muscle bed. There are a number of different 
skeletal muscle fiber types distinguished primarily by their oxidative capacity. Type Ia (slow oxidative) 
fibers are the most mitochondria-rich fibers, and type IIb (fast glycolytic) fibers have the least 
mitochondria and thus the lowest oxidative capacity. Types IIa and IIx (fast oxidative) fibers have an 
intermediate number of mitochondria and oxidative capacity [42]. Maximal rates of OXPHOS is dictated 
by mitochondrial number and consequently directly related to fiber type composition [43,44]. 

OXPHOS is adversely affected in skeletal muscle of growth-restricted animals [19,45,46], in 
conjunction with decreased mitochondrial number [19]. These factors, combined with a lowered ATP 
production are associated with the development of insulin resistance [47,48]. The individual OXPHOS 
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complexes, including ATPase activity, have been studied using respirometry, a technique measuring 
oxygen consumption using a number of substrates that are metabolized by individual complexes within 
a closed cell chamber. The rate of oxygen consumption is measured in “states”, where state 1 represents 
baseline respiration, state 2 follows the addition of malate and glutamate, malate and pyruvate 
(metabolized as NADH at complex 1) or rotenone and succinate (rotenone inhibiting complex 1 and 
succinate metabolized at complex 2). State 3 respiration follows the addition of ADP (measuring ATPase 
activity) and state 4 follows the addition of oligomycin (inhibiting ATPase activity). The ratio of state 
3/state 4 respiration rates, termed the respiratory control ratio (RCR), is commonly used to measure 
mitochondrial dysfunction. Generally, a low RCR is associated with mitochondrial dysfunction as it 
measures how tightly respiration and phosphorylation are coupled. In rats, IUGR skeletal muscle state 3 
was decreased irrespective of substrate used, compared to controls.  

In addition to impaired OXPHOS reported in IUGR rats, reduced fetal glucose oxidation is observed 
in the heat stress ovine IUGR model [49]. These changes may reflect in the in utero determination of 
skeletal muscle fiber type composition of low birth weight offspring later in life [17,19,50]. In human 
studies, low birth weight is associated with an increase in type II fibers and no change in type I fibers at 
19 years of age [17], and an increased proportion of glycolytic fibers are reported to precede insulin 
resistance in the vastus lateralis of low birth weight males [17]. In rodent studies, IUGR offspring exhibit 
a lower proportion of type Ia muscle fibers [19] and a shift towards more glycolytic (type IIb)  
fibers [17], ultimately altering the oxidative capacity and GLUT4 content of the muscle fibers. The 
results of these adverse in utero associated changes however, is not always consistent. For instance, in 
IUGR piglet studies, the proportion of type I fibers increase in the hind-limb muscles, but the proportion 
of type IIb were not reported due to methodological difficulties [51,52]. These conflicting conclusions 
may lie, in part, to species differences, age of fiber collection, but also may be due to the different muscle 
groups studied. 

It is interesting to note that the alterations in skeletal muscle fiber composition and function early in 
life in low birth weight, IUGR offspring as reported above, appear similar to those observed in later life 
obese and type 2 diabetic individuals [53,54]. This similarity potentially highlights possible similar 
mechanisms at play in low birth weight offspring as those at work in patients with a propensity to develop 
insulin resistance and subsequent type 2 diabetes with age, independent of birth weight and an adverse 
in utero environment. Understanding these similarities will help define the mechanisms underlying 
altered fiber type distribution and oxygen utilization changes in these various disease states. 

4. The Impact of IUGR and Later Life Impaired Skeletal Muscle Fat Metabolism upon the 
Progression of Insulin Resistance 

A key traditional factor identified in the development of insulin resistance has been poor diet.  
The increasing prevalence of a “Western”, or energy-dense, high-fat diet has been implicated as a  
key-contributing factor in the pathogenesis of insulin resistance, promoting accumulation of fat within 
the skeletal muscle and impacting mitochondrial function [55–57], leading to a diminished 
mitochondrial fatty acid oxidation capacity [58]. Consumption of this diet generates a surplus of free 
fatty acids, ultimately leading to ectopic lipid accumulation in non-adipose tissues such as skeletal 
muscle [59]. Once in the skeletal muscle, excess fatty acids are activated to form their acyl-CoA 
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derivatives, which can be esterified into diacylglycerol (DAG), metabolized into ceramide, or conjugated 
to acylcarnitine for entry into the mitochondria to undergo β-oxidation [60]. Excess lipids may also be 
stored in lipid droplets as triacylglycerols, generating a pool of substrates termed intramyocellular 
triglycerides (IMTG) [56]. IMTG content is known to increase with percentage body fat, and to be 
elevated in obese or type 2 diabetic individuals. IMTGs are broken down by lipases to undergo oxidation, 
however disturbances in the rate of breakdown or oxidation may lead to accumulation of toxic lipid 
intermediates and subsequent insulin resistance [56,61]. The type of triglyceride (saturated vs. 
unsaturated) that make up the skeletal muscle lipid pool is also important, since unsaturated triglycerides 
may be destined to accumulate as IMTG, whereas saturated triglycerides may be broken down into 
DAGs [62]. Additionally, a higher proportion of saturated fatty acids within this lipid pool has recently 
been associated with insulin resistance [62]. Skeletal muscle relies heavily on fatty acid β-oxidation to 
generate energy, using this method to provide up to 90% of its total energy demand [58]. Therefore, any 
alterations in fatty acid oxidation may impair skeletal muscle metabolic capacity. Certainly in rodent 
IUGR studies, muscle oxidative ability is adversely affected in growth-restricted animals [19,45], and 
as such could set the stage for impaired mitochondrial function when challenged with a postnatal 
Western diet. 

In rodent lipid infusion studies, insulin resistance develops, and increased concentrations of  
long-chain acyl CoAs have been associated with insulin resistant skeletal muscle [25]. This increased 
lipid availability has been associated with reduced levels of skeletal muscle β-oxidation [63,64], leading 
to accumulation of toxic lipid metabolites including DAG [25] and ceramide [65]. While specific 
changes in long-chain acyl CoA levels have not been reported in IUGR/low birth weight offspring, 
reductions in enzymes involved in β-oxidation have [66], suggesting that accumulation of long-chain 
acyl CoAs secondary to a reduction in oxidative capacity may be involved in the pathogenesis of insulin 
resistance. Accumulation of these lipid metabolites in the skeletal muscle has been associated with 
increases in stress-induced kinases, such as protein kinase C (PKC)-θ or ε, isoforms known to act 
upstream of c-Jun N-terminal kinase (JNK) and IκB (inhibitor of NFκB) kinase (IKKβ). Notably, JNK 
and IKKβ are two central serine/threonine kinases mediating phosphorylation of IRS-1 at Ser307,  
a subsequent reduction in Ser473 phosphorylation of Akt, and reduced insulin-stimulated glucose  
uptake [25,60,65,67], similar to the molecular alterations that have been observed in the insulin signaling 
pathway in skeletal muscle of the low birth weight population [29,36]. PKC-θ activation itself 
(translocation from the cytosol to the plasma membrane) has also been reported to occur during a state 
of lipid overload in skeletal muscle, and may represent an alternative pathway mediating alterations in 
the serine/threonine phosphorylation status of key insulin signaling intermediates [25,61]. Direct 
evidence that these changes may be happening in low birth weight IUGR offspring as they age is still 
lacking, but if occurring, presents a potential pathway where in utero induced changes in fatty acid 
oxidation may play a contributing role to later life insulin resistance when challenged with a postnatal 
high fat diet. 

While the concept of reduced fatty acid oxidation has been held as a corner stone of the development 
of insulin resistance, new studies now suggest excessive, rather than diminished, fatty acid oxidation in 
skeletal muscle mitochondria may be the root cause. Evidence for this new concept comes from rodent 
studies, where animals were fed high-fat diets and subsequently display a metabolic phenotype 
associated with mitochondrial overload, a situation in which an increase in fatty acid uptake and  
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β-oxidation rate is stimulated, but later steps of metabolism, including the tricarboxylic acid (TCA) cycle 
or the electron transport chain, remain unaltered [26,58]. This mismatch between subsequent steps of 
oxidation allows accumulation of acylcarnitine intermediates that are indicative of incomplete oxidation 
or partial fatty acid degradation [26,58]. Incomplete oxidation occurs during mitochondrial overload 
because the high rates of β-oxidation generates excessive intermediates that overwhelm the TCA cycle, 
preventing further oxidation and allowing accumulation of acylcarnitines [26,58]. The recent interest in 
metabolomics has allowed for profiling of these acylcarnitine intermediates, highlighting a method that 
allows for further investigation of the relationship between incomplete β-oxidation and the pathogenesis 
of insulin resistance. High-fat feeding in rodents has been shown to induce a lipid profile high in  
even-chain acylcarnitines. Accumulation of these even-chain acylcarnitine species ranging in length 
from C6-C22 indicates that a large proportion of the fatty acids entering the mitochondria are only 
partially degraded for use as metabolic substrates [26,68]. Of interest, recent evidence has suggested that 
one even-chain acylcarnitine in particular, L-C14 carnitine, which can accumulate with incomplete  
β-oxidation, has the ability to activate pro-inflammatory pathways, as well as an induction of JNK which 
may modulate the serine/threonine phosphorylation status of insulin signaling intermediates, 
perpetuating a state of insulin resistance [67,69]. Mitochondrial overload has also been observed in 
rodent models of diabetes, including the Zucker Diabetic Fatty rat, further supporting the idea that 
incomplete fatty acid oxidation and accumulation of acylcarnitine intermediates may be implicated in 
the pathogenesis of insulin resistance [26,70]. The impact of high fat feeding in low birth weight IUGR 
offspring upon acylcarnitine production and mitochondrial overload has not been reported. However, 
short-term high fat feeding trials in human low birth weight offspring show that low birth weight is 
associated with a reduced degree of plasticity [71], suggesting that changes to β-oxidation and the TCA 
cycle, in conjunction with postnatal high fat ingestion, may be different in low birth weight offspring 
and potentially exacerbated. 

The regulation of mitochondrial fatty acid oxidation rate is also an important determinant of the 
propensity for mitochondrial overload to occur when skeletal muscle is faced with excess free fatty acids. 
Ingestion of a fatty diet appears to alter the activity of an important family of nuclear transcription factors 
regulating mitochondrial oxidative capacity, known as the peroxisome proliferator-activated receptors 
(PPARs). The PPARα isoform is mainly expressed in highly oxidative tissues, including skeletal muscle, 
liver and heart, with activation of this transcription factor promoting an increase in fatty acid uptake and 
β-oxidation [58,72]. Interestingly, overexpression of PPARα in skeletal muscle of transgenic mice has 
been associated with increases of lipid-oxidative genes, yet with the development of glucose intolerance [73], 
lending support to the notion that over-activation of PPARα in skeletal muscle is detrimental to insulin 
sensitivity [58]. While it appears that increasing fatty acid oxidation in skeletal muscle during periods 
of high-fat feeding through activation of PPARα should promote fat clearance by increasing fatty acid 
oxidation, evidence has suggested that only the genes related to fatty acid oxidation and uptake have 
been increased, with no changes in the downstream steps of oxidation [68,70]. In addition to detrimental 
changes in PPARα activity, a chronic high fat diet has been associated with a decrease in skeletal muscle 
levels of peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α). PGC1α plays an 
important role in regulating mitochondrial biogenesis and is a critical component of the PPARα-activated 
transcriptional machinery [68]. Decreases in PGC1α lead to a reduction in the coupling efficiency 
between β-oxidation and TCA cycle, preventing the mitochondria from completely oxidizing fatty acids 
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in response to high lipid availability [68]. This decrease in PGC1α levels with consumption of a Western 
diet would contribute to the mismatch of β-oxidation and TCA cycle activity observed in mitochondrial 
overload. Recent studies have also reported reduced mRNA levels of PGC1α [74,75] and reduced 
PGC1α protein levels in the soleus [75] and gastrocnemius [76] muscle of young adolescent low birth 
weight offspring. Additionally, alterations in the methylation status of the PGC1α promoter have been 
observed in both rodent [76] and human [77] models of IUGR, highlighting a potential epigenetic link 
with altered fat storage and metabolism in postnatal life. Therefore, reductions in PGC1α due to 
consumption of a Western diet, combined with a low birth weight situation could promote further 
incomplete oxidation and the potential for acylcarnitine intermediates to accumulate in the skeletal 
muscle and potentiate alterations in the phosphorylation status of insulin signaling molecules through 
the actions of stress-induced kinases. These emerging studies in the low birth weight population 
highlight a new area of investigation that is working to better characterize the epigenetic modifications 
to those genes involved in mitochondrial function and β-oxidation, which is a new and expanding field 
in understanding the development of insulin resistance in offspring of adverse intrauterine pregnancies. 

Collectively, new studies suggest there are alterations in the storage and metabolism of fat in the 
skeletal muscle of low birth weight offspring. However, the nature of the specific alterations, their degree 
of plasticity, and their underlying contribution to insulin resistance, when challenged with an adverse 
postnatal diet as these offspring age, remains to be fully elucidated. 

5. Conclusions 

Infants of an adverse in utero environment represent a unique population who appear to be at a greater 
risk for the development of insulin resistance and subsequent metabolic disease [1,5,18]. Adaptive 
programmed changes in skeletal muscle metabolic development and function (i.e., changes in insulin 
signaling, fiber type distribution, oxygen consumption, and oxidative capacity) due to an adverse  
in utero environment, lead to structural and metabolic deficits later in life. Further, and more concerning 
are recent studies suggesting that these low birth weight offspring are unable lose weight as efficiently 
as normal birth weight offspring when placed on a calorie restricted diet [19], and that PGC1α 
deficiencies associated with IUGR appear resistant to exercise intervention [78]. These studies highlight 
that these unique offspring, while being at a higher risk of developing aspects of metabolic syndrome, 
may be resistant, or lack plasticity to respond, to current intervention practices. When these infants with 
programmed alterations in skeletal muscle development are faced with a postnatal environment of 
nutrient excess, they appear to be at greater risk for aberrant skeletal muscle function. Definitive studies 
examining the interactive linkages between in utero programmed insulin resistance and postnatal 
environmental challenges, and those investigating the distinct mechanisms underlying the 
developmental origins of insulin resistance, and a lack of plasticity to later life challenges in low birth 
weight offspring are needed. With these data, the therapeutic options for this unique population can be 
better delineated. 
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