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The Journal of Immunology

Adjuvant Immunotherapy Increases b Cell Regenerative
Factor Reg2 in the Pancreas of Diabetic Mice

Katrina Huszarik,*,† Benjamin Wright,*,† Christina Keller,*,† Enayat Nikoopour,*,†

Olga Krougly,*,† Edwin Lee-Chan,*,† Hui-Yu Qin,*,† Mark J. Cameron,‡,x

Werner K. Gurr,{ David J. Hill,‖,#,**,†† Robert S. Sherwin,{ David J. Kelvin,‡,x and

Bhagirath Singh*,†

Insulin-producing b cells can partially regenerate in adult pancreatic tissues, both in human and animal models of type 1 diabetes

(T1D). Previous studies have shown that treatment with mycobacterial adjuvants such as CFA and bacillus Calmette-Guérin

prevents induction and recurrence of T1D in NOD mice with partial recovery of b cell mass. In this study, we investigated factors

involved in the regeneration of b cells in the pancreas of NOD mice during diabetes development and after treatment with

adjuvants. The Regeneration (Reg) gene family is known to be involved in regeneration of various tissues including b cells. Reg2

expression was found to be upregulated in pancreatic islets both during diabetes development and as a result of adjuvant

treatment in diabetic NOD mice and in C57BL/6 mice made diabetic by streptozotocin treatment. The upregulation of Reg2

by adjuvant treatment was independent of signaling through MyD88 and IL-6 because it was not altered in MyD88 or IL-6

knockout mice. We also observed upregulation of Reg2 in the pancreas of diabetic mice undergoing b cell regenerative therapy

with exendin-4 or with islet neogenesis-associated protein. Reg2 expression following adjuvant treatment correlated with a re-

duction in insulitis, an increase in insulin secretion, and an increase in the number of small islets in the pancreas of diabetic NOD

mice and with improved glucose tolerance tests in streptozotocin-treated diabetic C57BL/6 mice. In conclusion, adjuvant immu-

notherapy regulates T1D in diabetic mice and induces Reg2-mediated regeneration of b cells. The Journal of Immunology, 2010,

185: 5120–5129.

T
ype 1 diabetes (T1D) is an autoimmune disease charac-
terized by destruction of the insulin-producing b cells in
the pancreatic islets. Islet transplantation has been ex-

perimentally used for b cell replacement. An attractive alternative
is exploring the endogenous production of b cells through stim-
ulation of the regenerative capacities of the pancreas. Indeed,
b cell regeneration has been shown to occur at a basal rate in
normal adult tissues and to increase under conditions of metabolic
stress such as pregnancy, obesity, and diabetes (1). In addition,
injection of metabolically active peptides such as glucagon-like
peptide-1 and islet neogenesis-associated protein (INGAP) pep-
tide have been shown to increase b cell regeneration (2–4). The
physiological mechanism of endogenous b cell regeneration is
controversial and is thought to occur either by production of new
b cells through the process of neogenesis (5) or by replication of

existing b cells (6). A recent study suggests that b cells in the
pancreas can regenerate by direct reprogramming of a cells (7).
In the NOD mouse model of T1D, insulitis develops at ∼4 wk of

age, and the onset of b cell destruction occurs shortly after. This
destruction leads to a significant decrease in b cell mass by 8 wk
of age, which is accompanied by an approximate 6-fold increase
in b cell replication rates, suggesting that there is a compensatory
regenerative effort in response to b cell destruction (8). Despite
this, in T1D, b cell mass continues to be reduced because the
endogenous regenerative response is overwhelmed by ongoing
autoimmunity. Understanding the molecular mechanisms involved
in this regenerative process is important for the development of
novel b cell regenerative therapies.
The Regeneration (Reg) genes encode a family of conserved

proteins that are members of the C-type lectin superfamily and are
found in a number of animal species (9). They were originally
identified in a cDNA library from rat regenerating islets (10) and
are closely associated with regeneration in a number of tissues and
in different disease models (11). There are seven types of Reg
proteins in mouse and five types of Reg proteins in humans and
rats (9), which have been categorized into four subfamilies. The
Reg2 subfamily has only been found to exist in mice and hamsters;
however, it has now been categorized as being a member of the
Reg1 subfamily because of amino acid sequence homology (76%
between mouse Reg1 and mouse Reg2) (9, 12). Of the Reg pro-
teins, Reg1 and INGAP have been definitively shown to play a
role in b cell regeneration (13–15).
Pancreatic overexpression of the Reg2 gene (and to a lesser

degree of the Reg1 gene) has been found in female NOD mice,
which develop diabetes early in life, whereas NOD males, which
are relatively protected, have a low mRNA level similar to the
level found in a control mouse strain (16, 17). The specificity of
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the overexpression of Reg2 in the diabetogenic process was
reinforced by the fact that it was also observed in NOD male mice
after treatment with cyclophosphamide, whereas this drug has no
effect in male control mice. Other stimuli for Reg2 expression
related to T1D are diet (18), type 1 IFN (19), and insulin-like
growth factor-1 (20) among others.
Previously we showed that a single injection of the Mycobac-

terium-containing adjuvant CFA prevents the development of di-
abetes in NOD mice by downregulating autoimmunity (21, 22).
Following studies by Faustman et al. (23, 24), several groups
reported that CFA treatment restores normoglycemia in a small
percentage of end-stage diabetic NOD mice (25–27). This was
demonstrated by the reappearance of pancreatic b cells as ob-
served by histological analysis of the islet tissue.
The precise role that CFA plays in the regeneration of b cell mass

is unclear. Immunomodulation by itself is not enough to promote b
cell regeneration in diabetic mice because immunotherapy using
anti-CD3 mAb was not accompanied by regeneration of b cell mass
(28, 29). Okamoto et al. (30) proposed that inflammatory stimuli
cause upregulation of Reg gene family proteins within the islets.
These proteins are secreted from theb cells and can act through their
cognate receptors to stimulate b cell replication in an autocrine and/
or paracrine manner. This led us to hypothesize that CFA treatment
could stimulate b cell regeneration in diabetic NOD mice not only
through prevention of autoimmunity but also by upregulating Reg
genes involved in endogenous b cell regeneration, such as Reg2 and
Reg3b. In this study, we show that CFA treatment does indeed cause
a significant upregulation of Reg2 expression in both diabetic and
nondiabetic animals. This effect is independent of signaling through
the TLR adaptor molecule MyD88 or through IL-6, which has pre-
viously been linked to the regulation ofReg gene expression.We also
show that Reg2 is upregulated following treatment with the estab-
lishedb cell regenerative agents INGAP peptide and the glucagon-like
peptide-1 analog exendin-4. The increased Reg2 expression was ac-
companied by partial reversal of insulitis, an increased insulin pro-
duction, and an increase in the number of islets in the pancreas of
diabetic mice. Therefore, adjuvant immunotherapy regulates T1D in
diabetic mice and induces Reg2-mediated regeneration of b cells.

Materials and Methods
Animals

Female NOD/Ltj and NOD.Scid mice were bred and maintained in the
specific pathogen-free facility at the University of Western Ontario (London,
Ontario, Canada). Female C57BL/6 (B6) and IL-6 knockout B6 (B6 IL-62/2)
mice were purchased from The Jackson Laboratory (Bar Harbor, ME).
MyD88 knockout B6 (B6.MyD882/2) mice were provided by Dr. R.
Flavell from Yale University (New Haven, CT). Mice were maintained in
the specific pathogen-free facility at the University ofWestern Ontario. Mice
were used at 4–8 wk of age, unless otherwise stated. All experiments were
performed in accordance with the Canadian Council for Animal Care
guidelines.

Glucose monitoring

Mice were monitored for diabetes development and reversal by urine
glucose with Diastix strips (Bayer, Elkhart, IN) and by blood glucose
analysis using a glucose meter (Bayer). Mice were recorded as diabetic
based on two consecutive positive urine glucose (.11.5 mmol/l) or blood
glucose (.16 mmol/l) results.

Treatments

Streptozotocin (STZ) (Sigma-Aldrich, St. Louis, MO) was reconstituted in
PBS and injected i.p. at a concentration of 200 mg/kg. Mice were fasted for
6–8 h prior to STZ treatment. Mice were injected i.p. or in hind footpad
with 50 or 100 ml CFA or IFA (Sigma-Aldrich) emulsified in saline (1:1) or
with saline alone. Recombinant exendin-4 (Cedarlane Laboratories,
Hornby, Ontario, Canada) was reconstituted in saline (8 mg/ml), and 100
ml was injected i.p. daily for 3 consecutive days.

Islet isolation and culture

Islets from NOD mice were isolated and handpicked as before (31). Islets
were incubated with INGAP peptide, IGLHDPSHGTLPNGS (5 mg/ml) in
DMEM, or in DMEM only (Invitrogen Life Technologies, Carlsbad, CA).
The DMEM was supplemented with 5 mg/ml penicillin, 100 U/ml strepto-
mycin (Invitrogen Life Technologies), and 10% (v/v) FCS at 37˚C. Peptides
were synthesized and purified in our laboratory as described previously (32).

RNA extraction

For whole pancreatic RNA, 50 mg tissue from NODmice was homogenized
in buffer RLT (Qiagen, Mississauga, Ontario, Canada) containing 2-ME
(Sigma-Aldrich) using PowerGen 700 homogenizer (Fisher Scientific,
Pittsburgh, PA). For RNA from islets, homogenization through a Qiash-
redder column (Qiagen) was performed. Total RNA was extracted from
homogenates using RNeasy Midi kit for whole tissue or RNeasy Mini kit
for islets (Qiagen), and contaminating DNAwas removed using the DNase
1 treatment kit from Ambion (Austin, TX). The RNA was quantified by
measuring absorbance at 260 nm using a Nanodrop 1000 spectropho-
tometer (NanoDrop Products, Wilmington, DE).

End-point RT-PCR

Five micrograms of total RNA from individual samples was used to syn-
thesize cDNA using oligo dT12–18 primer and SuperScript II reverse tran-
scriptase (Invitrogen Life Technologies) according to the protocol. Com-
plimentary DNA was amplified by PCR using the SuperScript first-strand
synthesis system with gene-specific primers (Sigma-Aldrich) as listed in
Table I. Amplification was performed in the GeneAmp PCR System 2400
thermocycler (Applied Biosystems, Foster City, CA). PCR products were
separated on a 1.5% ethidium bromide containing agarose gel by electro-
phoresis and were visualized under UV light using a gel documentation
system (Bio-Rad, Hercules, CA). Band intensities were quantified using
SigmaGelTMgel analysis software (Jandel Scientific, San Rafael, CA).

Real-time quantitative RT-PCR

One to 2 mg total RNA from each sample was reverse transcribed into cDNA
using oligo dT12–18 primers from Superscript III first-strand Synthesis
SuperMix for quantitative RT-PCR (qRT-PCR) (Invitrogen Life Technolo-
gies).Resultant cDNAwasdiluted to225ng/ml in diethyl pyrocarbonatewater
and PCR amplified using Quantifast SYBR Green PCR Kit (Qiagen). Gene-
specific primers (95–100% efficient; Sigma-Aldrich) (Table I) were used at
a concentration of 1.25mM.Amplification was performed in a Corbett Rotor-
Gene 6000 thermocycler (Corbett Life Sciences, San Francisco, CA). A two-
stepmelting/annealingprogramwas usedwith 40 cycles of amplification. The
efficiency of each set of primers was determined by the standard curve
method, and the Pfaffl method (33) was subsequently used for quantification
of cycle threshold values using b-actin as the housekeeping gene.

Western blot analysis

Ten milligrams of whole pancreatic tissue was snap frozen and homoge-
nized in lysis buffer (50 mM Tris-HCl [pH 7.4], 300 mM NaCl, 5 nM
EDTA, 0.02% [w/v] sodium azide, 1% Triton X-100, and complete pro-
tease inhibitors [Roche Applied Science, Laval, Quebec, Canada]) using
PowerGen 700 homogenizer. Total protein (10–50 mg) from each sample
was separated by nonreducing SDS-PAGE and transferred onto a nitro-
cellulose membrane using a TransBlot semidry Western blotting apparatus
(Bio-Rad). Membranes were blocked with skim milk and incubated
overnight at 4˚C with monoclonal rat anti-mouse Reg2 (R&D Systems,
Minneapolis, MN) and polyclonal goat anti-actin (Santa Cruz Bio-
technology, Santa Cruz, CA) at 1 mg/ml. The secondary Abs HRP-labeled
goat anti-rat IgG and HRP-labeled donkey anti-goat IgG (R&D Systems)
were used at 1/1000 dilution. Blots were developed using chemiluminescent
reagent (GE Healthcare, Buckinghamshire, U.K.) and a transillumination
apparatus (Alpha Innotech, Johannesburg, South Africa).

Histology and immunohistochemistry

Whole pancreatic tissue was fixed for 24 h in 10% neutral-buffered formalin
(EMD, Darmstadt, Germany), embedded in paraffin, cut (5–6 mm), and
mounted on microscope slides. Tissue was stained with H&E, and insulitis
was scored as described previously (31).

For immunohistochemical staining, Ag retrieval was performed using
sodium citrate buffer, endogenous peroxidase activity was quenched by
H2O2, and nonspecific binding was blocked with 10% goat normal serum
(Invitrogen Life Technologies). After staining, islets were photographed
using a QImaging camera (QImaging, Surrey, British Columbia, Canada),
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an Axioskop 2 microscope (Carl Zeiss, Thornwood, NY), and Northern
Eclipse imaging software.

For light microscopy imaging of insulin, sections were incubated with
chicken polyclonal anti-insulin primary Ab (1/200 dilution; Abcam,
Cambridge, MA), followed by biotin-labeled goat anti-chicken IgG sec-
ondary Ab (1/500 dilution; Molecular Probes, Eugene, OR) and the Vec-
tastain elite avidin/biotin complex immunoperoxidase system (Vector
Laboratories, Burlingame, CA). Diaminobenzidine substrate was used for
visualizing Abs.

For fluorescent microscopy imaging of insulin and Reg2, sections were
incubated with rabbit polyclonal anti-mouse Reg2 Ab (1/40 dilution) (34)
or chicken polyclonal anti-insulin Ab (1/200 dilution). The sections were
fluorescently labeled with Alexa Fluor 594 (red)-conjugated goat anti-
rabbit IgG Ab or Alexa Fluor 488 (green)-conjugated goat anti-chicken
IgG (Molecular Probes) at 1/500 dilution. Nuclei were stained using blue
fluorescent Hoechst Stain (Molecular Probes).

For the analysis of pancreatic tissue fromdiabeticNODmice that reverted
from diabetes following CFA treatment, the number of islets per tissue
section from reverted mice was compared with the number of islets per
section from untreated diabetic mice. The individual islets were sorted
into groups based on diameter, and the average numbers of islets per tissue
section were scored.

Intraperitoneal glucose tolerance test

Mice were fasted for 8–10 h, fasting blood glucose levels were measured,
and mice were injected i.p. with 10 ml/g body weight of 100 mg/ml
D-glucose (BDH, Toronto, Ontario, Canada). Blood glucose was mea-
sured at 15, 30, 60, and 120 min after injections.

Statistical analysis

All data p values were determined using the unpaired Student t test with Micro-
soft Excel software, and the values of p , 0.05 were considered significant.

Results
Reg family genes are upregulated in NOD mice during
diabetes development

An increase in the replication rate of b cells during diabetes de-
velopment in NOD mice has been reported previously (8). Gener-
ally, NOD mice do not begin to develop insulitis and subsequently
diabetes until after 6–8 wk of age. Therefore, expression of re-
generative genes in 4-wk-old mice was defined as the baseline level
to compare with expression in 8- and 12-wk-old mice because there
is known to be a significant reduction in b cell mass and increase
in b cell replication in NOD mice at these ages (8). As shown in
Fig. 1, we found the expression of two members of the Reg gene
family, Reg2 and Reg3b, was significantly upregulated in female
NOD mice at 8 and/or 12 wk of age. The semiquantitative RT-PCR
data in Fig. 1 confirmed an age-related increase in Reg2 and Reg3b
gene expression in NOD mice. See Table I for a list of primer
sequences used for PCR.

Reg2 expression is upregulated in NOD mice following CFA
treatment

It has been shown that CFA injection in diabetic NOD mice results
in the regeneration of b cell mass (25–27, 35). We hypothesized
that CFA upregulates the transcription of genes involved in en-

dogenous b cell regeneration. To test this hypothesis, NOD mice
were injected with CFA, and expression of genes associated with
embryonic b cell development including pax4, pax6, and pdx1 as
well as several members of the Reg gene family including Reg1 and
Reg2 was monitored in an age-dependent manner. Only the ex-
pression of Reg2 was elevated in the CFA-treated group at all time
points investigated (Fig. 2A). We also examined the expression of
regenerative and developmental genes in the pancreas of diabetic
mice and again found that Reg2 was the only gene that was up-
regulated after a single injection of CFA (Fig. 2B).
Quantitative real-time PCR analysis of Reg gene expression in

the pancreas of NOD mice following CFA treatment was per-
formed to quantify changes in regenerative gene expression. Reg2
expression was increased ∼100-fold in saline-treated diabetic
mice compared with saline-treated 4-wk-old mice, confirming that
there is an age-related increase in Reg2 expression in NOD mice
(Fig. 3A). A small increase in expression of the Reg1 and Reg3d
(INGAP) genes with age was also observed (Fig. 3A–C). Reg2
expression was significantly upregulated following CFA treatment
in young nondiabetic (4 wk old), prediabetic (8 wk old), and di-
abetic NOD mice (Fig. 3A). The change in expression compared
with controls was ∼30-fold in young mice compared with only
∼1.5-fold in diabetic mice, which is most likely because of the
increase in basal Reg2 expression that occurs as mice age.
Reg2 gene expression was the highest in the CFA-treated di-

abetic group being ∼4-fold greater than the CFA-treated 4-wk-old
group (Fig. 3A). An increase in Reg2 gene expression occurred as
early as 2 d following CFA treatment in diabetic mice, and ex-
pression decreased with time postinjection but remained greater
than the level of expression in the control mice at 1 mo post-
treatment (Fig. 3D).
Similar to the pattern of gene expression, Reg2 protein expression

was present in the pancreas of 4-wk-old mice 24 h after CFA treat-
ment, whereas expression was absent in 4-wk-old saline-treated
mice (Fig. 3E). Reg2 protein was also expressed in the pancreas of
diabeticmice 24h afterCFA treatment,whereas therewas only slight
expression of the protein in saline-treated diabetic mice (Fig. 3F).

Reg2 expression is localized to the islets following CFA
treatment

To determine whether Reg2 upregulation following CFA treatment
occurred specifically in pancreatic tissue, Reg2 expression in the
adjacent splenic tissue was analyzed by end-point PCR. No Reg2
expression could be detected in the spleen of CFA- or saline-treated
mice (data not shown). Previous studies have shown that Reg2
expression is localized to islet b cells in NODmice during diabetes
development (34). We found that there was an approximate 8-fold
increase in Reg2 expression specifically within the islet tissue
following CFA treatment in 4-wk-old mice (Fig. 4A). We also
observed Reg2 protein expression within the islets of immuno-
stained tissue sections from CFA-treated NOD mice at different
times postinjection (representative image shown in Fig. 4B). Reg2
expression was localized to the cytoplasm and occurred mainly
within the b cell area as seen by merged images of sections that
were double immunostained for insulin and Reg2 (Fig. 4B).

Reg2 expression is upregulated in B6 mice following STZ and/
or CFA treatment

To better clarify the role of Reg2 upregulation in islet regeneration
and to confirm results found in the NOD mouse, Reg2 expression
was analyzed in an STZ-induced model of diabetes. In this model,
a single high-dose injection (200 mg/kg) of STZ was administered
to B6 mice to induce diabetes. At this high dose of STZ, diabetes
develops mainly by direct toxic effects on b cells (36, 37).

FIGURE 1. Upregulation ofReg genes in pancreas ofNODmicewith age.

RT-PCR was performed on total RNA extracted from the pancreas of 4-, 8-,

and 12-wk-old female NOD mice. Expression of GAPDH housekeeping

gene is shown as a loading control. A, PCR products were separated on

a 1.5% agarose gel containing ethidium bromide for band visualization. B,

Quantification of band intensities adjacent on the left, using SigmaGelTMgel

analysis. Values indicate fold change compared with the 4-wk-old sample.

5122 ADJUVANT THERAPY INCREASES Reg2 IN b CELLS

 by guest on July 4, 2022
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


We found that treatment with high-dose STZ resulted in a sig-
nificant increase in pancreatic Reg2 expression within 24 h fol-
lowing injection (p , 0.01) (Fig. 5). Injection of CFA 1 d after
STZ treatment significantly increased Reg2 expression in high-dose
STZ-treated groups (p , 0.02) (Fig. 5). The highest expression of

Reg2 occurred in the high-dose STZ plus CFA treatment group,
which showed a 23-fold greater expression of Reg2 than the PBS
plus CFA treatment group (Fig. 5).

CFA upregulation of Reg2 expression is not MyD88 dependent

Mycobacterial adjuvants such as CFA are known to stimulate innate
immune responses through activation of a number of cell surface
receptors including members of the TLR family. MyD88 is an
adaptor molecule that is involved in downstream signaling through
all TLRs, except for TLR3 (38). To determine whether innate
immune responses that signal through MyD88 are required for
Reg2 upregulation after CFA treatment, Reg2 expression was an-
alyzed in B6 knocked out MyD88 mice (MyD882/2). In
MyD882/2 mice, Reg2 expression was significantly upregulated
after CFA treatment compared with mice that were treated with
saline, and the magnitude of the increase was similar to that seen
in wild-type mice. This suggests that there is no defect in Reg2
upregulation after CFA treatment in the MyD882/2 mice (Fig. 6)
and that other significant pathways may be involved in the up-
regulation of Reg2 by CFA.

CFA upregulation of Reg2 expression is not IL-6 dependent

Adjuvants including CFA have been shown previously to upreg-
ulate inflammatory cytokines such as IL-6 in the spleen and other
lymphoid tissues (39). A similar upregulation of IL-6 gene ex-
pression within the pancreas of young NOD mice was found in
pancreatic tissue from CFA versus saline groups 2 d after treat-
ment (Fig. 7A). The Reg genes contain an upstream response el-
ement for the inflammatory cytokine IL-6 and are responsive to
IL-6 in vitro. We found that in islets from NOD mice incubated
with IL-6 in vitro, the expression of Reg2 was upregulated ∼3.5-
fold compared with media (Fig. 7B). In comparison, there was
a 1.5 fold upregulation of Reg1 expression in islets after treatment
with IL-6 (Fig. 7B). This led us to hypothesize that IL-6 induced
by adjuvant therapy causes upregulation of Reg2 expression in the
pancreas in vivo by binding its cognate response element upstream
of the Reg2 gene. To test this hypothesis, we immunized IL-6
knockout mice with CFA and analyzed their pancreatic tissue
for Reg2 expression. However, we found that Reg2 expression was
significantly upregulated even in IL-6 knockout mice, and this
upregulation was similar to that seen for wild-type mice (Fig. 7C).
This indicates that Reg2 upregulation is independent of IL-6.

Reg2 expression is upregulated following treatment with
INGAP peptide

INGAP peptide induces upregulation of a number of cell cycle-
associated genes in neonatal rat islets when cultured in vitro (40),
and it has been previously used to stimulate b cell regeneration

Table I. List of genes with primer sequences used in RT-PCR and qRT-PCR

Gene Symbol Forward Primer (59→39) Reverse Primer (59→39) Product Size (bp)

RT-PCR Pdx1 cagtgaggagcagtactac gatgtgtctctcggtaagttc 569
Pax4 gctctccgttttcagtttgc ctttagctgggcaattcgag 613
Pax6 tctaatcgaagggccaaatg cataactccgcccattcact 343
Reg1 catctgccaggatcagttgc aggtaccataggacag 549
Reg2 gatcagcatggctcagaaca gtgccaacgacggttacttt 364
Reg3b cagacctggtttgatgcaag aattcgggatgtttgctgtc 382
b-Actin atccgtaaagacctctatgc aacgcagctcagtaacagtc 286
GAPDH atcactgccacccagaagac ccctgttgctgtagccgtat 430

qRT-PCR Reg1 gatcagttgcccagaaggtt ctgacaccaggtagcctgaa 124
Reg2 cactgccaaccgtggttat gacaaaggagtactgtgcctca 75

Reg3d (INGAP) ccatggtgtctcacaagacc tgatgcgtggagaagacagt 117
IL-6 gaggataccactcccaacaga aagtgcatcatcgttgttcat 140

b-Actin gcccagagcaagagaggtat cacacgcagctcattgtaga 116

FIGURE 2. Expression of b cell developmental and regenerative genes in

the pancreas of prediabetic and diabetic NODmice following CFA treatment.

RT-PCR was performed on RNA from whole pancreatic tissue from female

NOD mice that were injected i.p. with 100 ml CFA emulsified in saline or

saline alone.A, Eight-week-old femalemicewere injectedwithCFAor saline,

and RT-PCR was performed on pooled RNA from two mice per group every

2 wk after injection. B, Gene expression in diabetic mice was analyzed 1 wk

afterCFAor saline injection.Quantificationof band intensitieswas performed

using SigmaGelTMgel analysis software and normalized to b-actin expres-

sion. Results are shown as the average band density6 SEM (n = 5) per group.

pp, 0.05. Note that the differences in expression between groups cannot be

compared directly because the relationship between band density and gene

expression is not linear. C, CFA treated; S, saline treated.
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and diabetes reversal in several animal models (41) and is currently
in clinical trials for treating human T1D (42). To further substantiate
a relationship between Reg2 expression and b cell regeneration,
expression of Reg2 in this established b cell regeneration model
was investigated.
We used the protocol previously developed by Barbosa et al. (40)

to explore the effect of INGAP peptide on Reg2 expression in
islets from NOD mice. As shown in Fig. 8, Reg2 was significantly
upregulated in islets treated with INGAP peptide for 24 h com-
pared with those that were treated with media only. Reg2 ex-
pression was ∼3.5-fold greater in the INGAP-treated islets com-
pared with the islets treated with media alone.

Reg2 expression is upregulated by exendin-4 treatment

Multiple daily injections of exendin-4 were previously found to
increase b cell regeneration and b cell mass in NOD mice (43–
45). We treated 4-wk-old NOD mice with three daily injections of

exendin-4 or with saline as a control. We found that there was
a significant increase in Reg2 expression in whole pancreatic tis-
sue from the exendin-4 treatment group compared with the saline
control group (Fig. 9). The magnitude of the difference in ex-
pression between the two groups was ∼25-fold (Fig. 9).

CFA treatment influences autoimmunity and islet mass in
diabetic NOD mice

A role for several of the Reg genes in stimulating b cell re-
generation and ultimately diabetes reversal has been shown pre-
viously (15, 41); however, no role for Reg2 in this process has
been defined clearly. To correlate upregulation of Reg2 expression
with diabetes reversal, blood glucose levels were monitored in
diabetic NOD mice that were treated with CFA. A single injection
of CFA has been shown previously to reverse diabetes in a small
percentage of NOD mice (23, 35). We did not observe a reduction
in the blood glucose levels of diabetic mice within 1 mo following

FIGURE 3. Reg2 gene and protein expression in the pancreas of prediabetic and diabetic NOD mice following CFA treatment. Female NOD mice were

injected i.p. with 100 ml CFA emulsified in saline or saline alone. A–D, Reverse transcription quantitative real-time PCR analysis was performed on RNA

from whole pancreatic tissue using gene-specific primers. Results are shown as the average fold change in expression 6 SEM as compared with the 4-wk-

old saline-treated group (A–C) or the 2-d saline-treated group (D). A–C, Mice were treated with CFA at various ages, and expression of Reg genes from two

to three pooled samples of RNA per group was measured 1 wk after injection (three to five mice per pooled sample). pp , 0.01; ppp , 0.0005. D, Diabetic

mice were treated with CFA, and Reg2 expression from unpooled samples of RNA from two to three mice per group was measured at various times after

injection. Western blots showing Reg2 protein expression in whole pancreatic lysates from two groups of 4-wk-old (E) and diabetic NOD mice (F) 1 d after

CFA or saline injection. Actin expression is shown as a loading control. Bands were visualized using chemiluminescent staining.
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CFA injection. There was, however, a reduction in the degree of
insulitis in islets at 1-wk post-CFA injection (Fig. 10A) that cor-
related with an increased expression of Reg2 (Fig. 3A). Qualitative
analysis showed that the insulin-positive area within individual
islets was inversely correlated with the degree of insulitis (Fig.
10B), and therefore, there appeared to be more insulin staining
within tissue sections from CFA-treated mice compared with
controls. To confirm the reversal of diabetes by CFA treatment, we
treated 26 confirmed diabetic NOD mice with a single injection of
CFA (50ml in each hind footpad). Mice were maintained by daily
injection of 1 U insulin and were monitored for glycemia. Be-
tween 40 and 60 d after adjuvant therapy, insulin treatment was
discontinued, and we found at least five mice (19.2%) maintained
normoglycemia. In addition to recovery from disease, these mice
also showed evidence of b cell regeneration as indicated by an
increase in the number of pancreatic islets compared with un-
treated diabetic mice (Fig. 10C). This increase occurred for small-

and medium-sized islets but not large-sized islets, which suggests
that the increase in islet numbers is due to the formation of new
islet cells through islet neogenesis. These results confirm previous
studies that treatment with CFA alone can reverse diabetes (41). We
are currently exploring ways to improve the rate of diabetes reversal
in diabetic NOD mice by mycobacterial adjuvant treatment.

CFA treatment influences diabetes in STZ-treated B6 mice

The effect of CFA treatment on diabetes in the high-dose STZ
treatment model has not been investigated previously. We explored
the effect of CFA treatment on b cell regeneration in this model.
Approximately 60% of mice that were treated with high-dose STZ
became diabetic within 3 wk postinjection. We injected the

FIGURE 4. Localization of Reg2 expression in islets following CFA

treatment. Female NOD mice were injected i.p. with 100 ml CFA emul-

sified in saline or saline alone. A, One week after CFA injection, islets from

4-wk-old mice were extracted from the pancreatic tissue by collagenase

digestion, and islets from eight mice per group were pooled. Reverse

transcription quantitative real-time PCR analysis was performed on RNA

from pooled islets using Reg2-specific primers, and data were quantified by

the Pfaffl method (33) using b-actin as a housekeeping gene. Results are

shown as the average fold change in expression 6 SD of triplicate (n = 3)

PCRs as compared with the saline control group. pp , 0.005. B, Repre-

sentative differential contrast microscopy (top left panel) and fluorescent

microscopy (top right, bottom left, and bottom right panels) images of an

islet from a 16-wk-old mouse that was treated with CFA 4 wk earlier. Five-

micrometer-thick formalin-fixed and paraffin-embedded tissue sections

were double immunochemically stained using polyclonal primary Abs

reactive against Reg2 (red) and insulin (green) as well as Hoechst nuclear

stain (blue). Shown are fluorescent images of Reg2 only (top right), Reg2

and insulin merged (bottom left), and Reg2, insulin, and Hoechst merged

(bottom right). Original magnification 3400.

FIGURE 5. Pancreatic Reg2 expression following CFA treatment in

STZ-induced diabetic B6 mice. Four-week-old female B6 mice were given

a single i.p. injection of 200 mg/kg STZ dissolved in PBS or with PBS

only as a control. One day later, the mice were given a single i.p. injection

of 100 ml CFA emulsified in saline or saline alone. Reg2 expression was

then measured 1 d after the CFA treatment by performing qRT-PCR on

RNA from whole pancreatic tissue using gene-specific primers. PCR data

were quantified by the Pfaffl method (33). Results are shown as the average

fold change in Reg2 expression 6 SEM (n = 3) per group as compared

with saline only control groups. pp , 0.01; ppp , 0.02.

FIGURE 6. Reg2 expression after CFA treatment in B6 MyD882/2

mice. Four-week-old B6 wild-type (WT) or B6 MyD882/2 mice were

injected i.p. with CFA emulsified in saline or saline only. Seven days later,

RNA was extracted from whole pancreatic tissue, and qRT-PCR was

performed using gene-specific primers. Gene expression was analyzed by

the Pfaffl method (33) using b-actin as a housekeeping gene. Results are

shown as the average fold change in Reg2 expression from three mice per

group 6 SEM as compared with the saline control group. pp , 0.0001;

ppp , 0.005.
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diabetic mice with CFA or saline as a control and monitored
nonfasted blood glucose levels for 20 d. We found an initial in-
crease in glucose levels, but there was no difference in the average

nonfasted blood glucose levels between the two groups (Fig. 11A).
There was, however, a significant increase in the overall ability of
the CFA-treated mice to regulate blood glucose as indicated by
lower average blood glucose levels in the glucose tolerance test
compared with the saline-treated group (Fig. 11B). It is likely that
a longer time frame is needed to restore b cell mass to reverse
diabetes. A recent study suggests that it could take 5–10 mo for
islets to regenerate b cells to restore normoglycemia in diabetic
mice (7).

Discussion
There is considerable evidence that a low level of b cell turnover
normally exists within the adult pancreas, and the generation of
new b cells is accelerated by physiological stress or damage, such
as occurs during T1D development in NOD mice (8). However,
this attempted regeneration is not enough to prevent disease, most
likely because regenerated b cells are destroyed by ongoing au-
toimmunity. Several recent studies have shown that regeneration
of b cell mass and reversal of diabetes in the NOD mouse is
possible following blocking of autoimmunity by CFA treatment
(23–27, 35). The objective of this study was to determine the

FIGURE 7. Role of IL-6 in Reg2 upregulation after CFA treatment. A,

Four- to 6-wk-old female NOD mice were injected i.p. with CFA emulsified

in saline or saline only. RNAwas extracted from whole pancreatic tissue, and

qRT-PCR was performed using gene-specific primers. Gene expression was

analyzed by the Pfaffl method (33) using b actin as a housekeeping gene.

Results are shown as the average fold change in Reg2 expression per group

6 SEM (n = 3) as compared with saline control group. B, Islets from 4-wk-

old female NOD mice were extracted from pancreatic tissue by collagenase

digestion. Pooled islets from 12 mice were divided into two different wells in

a 6-well culture dish and treated with 40 ng IL-6 in DMEM or with media

only as a control, which was followed by an overnight incubation at 37˚C.

After incubation, RNA was extracted for qRT-PCR analysis of gene ex-

pression, which was quantified by the Pfaffl method (33) using b actin as

a housekeeping gene. Results are shown as the average fold change in Reg1

or Reg2 expression 6 SD of triplicate (n = 3) PCR tubes as compared with

the media control group. C, Four-week-old female IL-6 knockout (IL-62/2)

and wild-type (WT) B6 mice were injected i.p. with CFA emulsified in saline

or saline only. One day later, RNA was extracted from whole pancreatic

tissue, and qRT-PCR was performed using gene-specific primers. Gene ex-

pression was analyzed by the Pfaffl method using b-actin as a housekeeping

gene. Results are shown as the average fold change in Reg2 expression per

group6 SEM (n = 4) as compared with the B6 IL-62/2 saline control group.

pp , 0.001; ppp , 0.03.

FIGURE 8. Reg2 expression in the pancreas of NOD mice after in vitro

treatment with INGAP peptide. Pooled islets from 14 4-wk-old female

NOD mice were divided into three different wells in a 6-well culture dish

and treated with either 25 mg INGAP peptide or DMEM alone. Islets were

kept at 37˚C for 24 h after treatment, and then, RNA was extracted for

qRT-PCR to quantify Reg2 expression. Results are shown as the average

fold change in Reg2 expression 6 SD of triplicate (n = 3) PCR tubes as

compared with the media control group. pp , 0.0001.

FIGURE 9. Reg2 expression in pancreas of NOD mice following in vivo

treatment with exendin-4. Four-week-old female NOD mice were injected

i.p. daily for 3 d with 0.8 mg exendin-4 in 100 ml saline or with 100 ml

saline alone. RNA from whole pancreatic tissue was extracted for qRT-

PCR to quantify Reg2 expression. Results are shown as the average fold

change in Reg2 expression 6 SEM (n = 5) per group as compared with the

saline control group. ppp , 0.05.
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molecular mechanisms involved in b cell regeneration during T1D
development and following CFA-mediated reversal of diabetes.
We found that several members of the Reg gene family were

upregulated with age in NOD mice and that Reg2 was further
upregulated in diabetic NOD mice following CFA treatment. An
increased pancreatic Reg2 expression was also found in the STZ
model of diabetes both during development of disease and fol-
lowing CFA treatment. Previous studies have shown that Reg
genes, including Reg2, are upregulated in the pancreas in several
diabetes models including the NOD mouse (16, 18–20, 46) and
have identified Reg2 as a potential factor involved in endogenous
b cell regeneration during diabetes development. Our results
support these findings and suggest that Reg2 is also involved in
b cell regeneration following adjuvant immunotherapy in NOD
mice. This upregulation of Reg2 expression following CFA
treatment may be occurring via an inflammatory signaling path-
way involving IL-6 in the pancreas (19, 39). We found CFA
treatment caused in vivo upregulation of IL-6 within the pancreas,
whereas IL-6 treatment was shown to induce in vitro upregulation
of Reg2 in islets. However, we found that the upregulation of Reg2
expression following CFA treatment in IL-6 knockout mice was
not diminished; therefore, indicating that IL-6 does not play a role
in the signaling pathway for Reg2 upregulation. We also found
that Reg2 was upregulated following CFA treatment in MyD88
knockout mice, indicating that CFA signaling through MyD88-
dependent TLRs is not required for Reg2 induction. This fol-
lows logically from our result for IL-6 because expression of in-
flammatory cytokines in response to mycobacterial adjuvants
occurs at least partially by signaling through MyD88-dependent
TLR pathways. Previous studies have shown that expression
of Reg genes is increased in response to inflammatory molecules

FIGURE 10. Improved insulitis scores, insulin expression, and isletmass in

the pancreas of diabetic NODmice following CFA treatment. Diabetic female

NOD mice were injected i.p. with 100 ml CFA emulsified in saline or saline

alone (A, B) or in the footpad with 50 ml CFA (C), and pancreatic tissue was

extracted 1 mo (A, B) or 5 mo (C) later. Five-micrometer-thick formalin-fixed

and paraffin-embedded tissue sections were stained with H&E (A–C) or Abs

specific for insulin (B). A, Multiple tissue sections from five mice per group

were analyzed, and the degree of insulitis was graded in$50 islets from each

group. The individual islets were graded as follows: 0, no infiltration; 1,,25%

infiltration (peri-insulitis); 2, 25–50% infiltration (mild insulitis); 3, .50%

infiltration; and 4, islet destruction (severe insulitis). B, Representative mi-

croscopy images showing cell infiltration (left panels) and insulin expression

(right panels) in a healthy islet from a CFA-treated mouse at 31000 magni-

fication (top panels) and in a damaged islet from a saline-treated mouse

at 3400 magnification (bottom panels). C, Pancreatic tissue sections from

three mice that recovered from diabetes following CFA treatment were ana-

lyzed for the number of islets per tissue section and comparedwith the number

of islets per section from untreated diabetic mice. The individual islets were

sorted into groups based on diameter, and the average number of islets per

tissue section is shown. The results are significantly different (p , 0.05) be-

tween the two groups of mice for total number of islets, number of medium

sized islets (100–200 mm), and number of small-sized islets (,100 mm).

FIGURE 11. Partial disease reversal following CFA treatment in STZ-

induced diabetic B6 mice. Four-week-old B6 mice were given a single i.p.

injection of STZ (200 mg/kg body weight) and were then monitored for

diabetes development by measuring blood glucose levels via the tail vein.

Once all mice were diabetic, they were injected i.p. on day 0 with 100 ml

CFA emulsified in saline or saline alone. A, Nonfasted blood glucose levels

were measured every other day. B, A glucose tolerance test was performed

on day 20 by injecting mice i.p. with glucose (1 mg/g) and measuring

blood glucose via the tail vein at 15, 30, 60, and 120 min after injection.

The average blood glucose 6 SEM (n = 4) per group is shown in A and B.
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other than IL-6 such as IFN-b and TNF-a (9, 19, 47). It is possible
that Reg2 upregulation following CFA treatment involves one of
these inflammatory mediators through a MyD88-independent
pathway or through a cytokine-independent signaling pathway.
Similar to the results for gene expression, we found there to be

a greater amount of Reg2 protein in the pancreas following CFA
treatment in both 4-wk-old and diabetic NOD mice. This was
likely due to an increase in production of the protein, given similar
changes in mRNA; however, it is also possible that CFA acted to
stabilize Reg2 protein from degradation. The fact that CFA
treatment caused an increase in both Reg2 gene and protein ex-
pression over and above the already endogenously upregulated
levels in diabetic mice strongly supports a role for Reg2 in me-
diating b cell regeneration following CFA treatment.
CFA treatment in diabetic mice was previously thought to re-

verse disease by downregulating autoimmunity to allow re-
generation of b cell mass to occur through endogenous mecha-
nisms (23–27, 35). In this study, CFA treatment caused upregu-
lation of Reg2 gene and protein expression in nondiabetic mice
and influenced disease in a nonautoimmune STZ-induced model
of diabetes, suggesting that CFA might act to stimulate regen-
eration directly and independently from its ability to downregulate
autoimmunity. As Reg2 is being considered an autoantigen, CFA
might modulate autoimmune responses toward Reg proteins to
facilitate regeneration of b cells without being vulnerable to de-
struction by immune cells. The mechanism by which Reg2 acts to
induce b cell regeneration is not known. A CFA-stimulated in-
crease in Reg2 gene expression occurred specifically in the islets,
and Reg2 protein expression was localized to the b cell area,
which indicates that Reg2 may be acting to induce b cell repli-
cation through an autocrine and/or paracrine mechanism similar
to Reg1.
Previous studies have shown that exendin-4 increases b cell

regeneration and b cell mass through both neogenesis and b cell
replication (45). Reg2 expression was significantly upregulated
after only 3 d of exendin-4 treatment in nondiabetic NOD mice. In
addition, Reg2 was shown to be increased in isolated islets from
NOD mice following treatment with INGAP peptide in vitro,
which has been shown previously to induce b cell neogenesis in
isolated rat islets (40). The upregulation of Reg2 expression in
these two well established models of b cell regeneration provides
further evidence that Reg2 is directly involved in the process of
b cell regeneration.
The regeneration of pancreatic islet b cells is important for the

prevention and cure of diabetes mellitus. We have demonstrated
that different members of the mitogenic Reg gene family, Reg2
and Reg 3b, are upregulated during the course of diabetes de-
velopment in the pancreas of NOD mice and Reg2 was also up-
regulated following CFA treatment. We also demonstrate that
Reg2 gene is localized to the islets following CFA treatment.
Controversy exists as to the cellular source of the Reg2 (gene and
protein) expression in the pancreas. Watanabe et al. (48) demon-
strated that the Reg gene is normally expressed in the pancreatic
acinar cells, and the protein encoded by this gene is found in a
fairly high amount in pancreatic secretion in humans (49). Also,
Sanchez et al. (17) demonstrated that Reg mRNA and protein
expression remained restricted to exocrine tissue, both in
cyclophosphamide-treated mice, which represent a prediabetic
stage, and in overtly diabetic NOD females. Finally, we also
demonstrate that INGAP peptide and exendin-4 can upregulate
Reg2 gene expression in the pancreas of 4-wk-old prediabetic
NOD mice. De Leon et al. (50) showed that a common subset of
genes are regulated by exendin-4 after partial pancreatectomy
including members of the Reg gene family Reg2, Reg3g, and

Reg3d. These and other studies linking treatment with CFA,
INGAP peptide, and exendin-4 to Reg2 upregulation in pancreas
suggest a role for Reg genes in pancreatic growth and function.
In conclusion, we suggest that Reg2, a member of the Reg gene

family, is upregulated during diabetes development and could stim-
ulate b cell regeneration. However, this regenerative response is
not enough to compensate for b cell loss as a result of autoimmune
destruction, and diabetes eventually ensues. The injection of my-
cobacterial adjuvants into diabetic NOD mice further upregulates
Reg2 expression, which could potentially induce regeneration of
b cell mass. We have confirmed previous studies that diabetes re-
versal following a single CFA treatment can be achieved in ∼20%
of new-onset diabetic NOD mice and may take up to 40 d post-
injection to occur (26, 27, 35). These mice showed evidence of
b cell regeneration as indicated by an increase in the number of
pancreatic islets compared with untreated diabetic mice, (Fig. 10C).
This increase occurred for small- and medium-sized islets but not
large-sized islets, suggesting that the increase in islet numbers is
due to the formation of new islet cells through islet neogenesis. This
is interesting as the recent studies by Thorel et al. (7) observed that
in fully diabetic mice, a cells can reprogram to become b cells, but
the process takes 2–4 wk to start, and complete recovery of insulin
production takes between 5 and 10 mo. Our studies suggest that
Reg gene family members such as Reg2 may be useful targets for
b cell regenerative therapies (42, 51) to reverse T1D.
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