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RESEARCH Open Access

Activated CAMKKβ-AMPK signaling
promotes autophagy in a spheroid model
of ovarian tumour metastasis
Jeremi Laski1,2, Bipradeb Singha1,2, Xu Wang1,3, Yudith Ramos Valdés1, Olga Collins1 and Trevor G. Shepherd1,2,4,5,6*

Abstract

Background: A hallmark of epithelial ovarian cancer (EOC) metastasis is the process of spheroid formation,
whereby tumour cells aggregate into 3D structures while in suspension in the peritoneal cavity. EOC spheroids are
subjected to bioenergetic stress, thereby activating AMP-activated protein kinase (AMPK) signaling to enter a
metabolically quiescent state, which can facilitate cell survival under nutrient-limiting conditions. Independently, we
have also demonstrated that EOC spheroids induce autophagy, a process that degrades and recycles intracellular
components to restore energy and metabolites. Herein, we sought to examine whether AMPK controls autophagy
induction as a cell survival mechanism in EOC spheroids.

Results: We observed a co-ordinate increase in phosphorylated AMPK and the autophagy marker LC3-II during EOC
spheroid formation. Reduced AMPK expression by siRNA-mediated knockdown of PRKAA1 and PRKAA2 blocked
autophagic flux in EOC spheroids as visualized by fluorescence microscopy using the mCherry-eGFP-LC3B reporter.
A complementary approach using pharmacologic agents Compound C and CAMKKβ inhibitor STO-609 to inhibit
AMPK activity both yielded a potent blockade of autophagic flux as well. However, direct activation of AMPK in EOC
cells using oligomycin and metformin was insufficient to induce autophagy. STO-609 treatment of EOC spheroids
resulted in reduced viability in 7 out of 9 cell lines, but with no observed effect in non-malignant FT190 cell
spheroids.

Conclusions: Our results support the premise that CAMKKβ-mediated AMPK activity is required, at least in part, to
regulate autophagy induction in EOC spheroids and support cell viability in this in vitro model of EOC metastasis.

Keywords: High-grade serous ovarian cancer, Spheroid, AMPK, Autophagy, CAMKKβ, STO-609

Introduction
Epithelial ovarian cancer (EOC) is the deadliest gyneco-
logic malignancy in women in the developed world, and
is responsible for over 70% of all diagnosed cases [1].
The high mortality rates from EOC is most commonly
attributed to late-stage diagnosis since its symptoms are

shared with those of generalized post-menopausal condi-
tions. In addition, current diagnostic tests are limited to
physical pelvic exams, trans-vaginal ultrasound and CA-
125 serum tests, all of which have low sensitivity for
detection of early disease [2]. Since most EOC cases
present with late-stage disease consisting of extensive
tumour burden and ascites, treatment requires aggres-
sive surgical debulking procedures coupled with cyto-
toxic chemotherapy to reduce to minimal residual
disease and delay disease progression. Nevertheless, rates
of recurrence remain exceptionally high, with relapsed
EOC often acquiring chemo-resistance [1]. As such,
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gaining further understanding of the mechanisms gov-
erning late-stage EOC progression and recurrence of
chemo-resistant disease is of utmost importance in de-
veloping more effective therapeutics [3, 4].
During metastasis, EOC cells detach from the primary

tumour site, disseminate within the peritoneal fluid of
the abdominal cavity, then subsequently re-attach to
new sites thereby forming secondary lesions. A unique
hallmark of EOC metastasis lies in the process of multi-
cellular spheroid formation thereby affording metastatic
cells with enhanced survival and chemo-resistance [5],
as well as increased capacity to re-attach and invade the
peritoneum [6]. Previous work by our group demon-
strated that EOC cells enter a quiescent state within
spheroids [7], and they possess reduced metabolic activ-
ity with increased AMP-activated protein kinase
(AMPK) signaling [8]. AMPK is a conserved serine/
threonine heterotrimeric kinase complex acting as a bio-
energetic stress sensor in nearly all mammalian systems,
primarily to promote cell survival during starvation-like
conditions [9]. Following nutrient deprivation, increased
levels of adenosine monophosphate (AMP) and adeno-
sine diphosphate (ADP) bind to the gamma subunit of
the complex, cause an allosteric shift, and thereby facili-
tate AMPK phosphorylation at the threonine 172 residue
(T172) on the catalytic alpha subunit. AMPK activity
often acts as a major bioenergetic regulator to induce
catabolic processes while concurrently down-regulating
anabolic processes, however, its exact functions are often
tissue specific [9].
In separate studies, we demonstrated that EOC spher-

oids upregulate macroautophagy (described here as au-
tophagy) [10, 11], a lysosomal process allowing for the
degradation and recycling of intracellular nutrients and
damaged organelles [12]. Dual roles have been suggested
for autophagy in mediating cancer progression: autoph-
agy can serve tumour suppressive functions particularly
during disease initiation, yet a large proportion of studies
have demonstrated essential tumour-promoting effects
of autophagy in late-stage disease [13]. Tumour cells
undergoing cellular stress due to hypoxia, lack of nutri-
ent availability, and during metastasis, hijack native
autophagy functions to recycle their intracellular consti-
tuents ultimately providing temporary alternative sources
of energy and nutrients.
As such, AMPK signaling can act as a key link be-

tween metabolism homeostasis and autophagy regula-
tion. Although AMPK has several means by which to
activate autophagy [14], its potential regulation of au-
tophagy in EOC cells and spheroids has not been deter-
mined yet. Herein, we sought to examine whether
AMPK signaling mediates autophagy induction in a
spheroid model of EOC metastasis. Our results demon-
strate that intact AMPK activity is required but not

sufficient to promote autophagic flux in EOC spheroids.
Treatment of EOC spheroids with the CAMKKβ inhibi-
tor STO-609 potently blocks AMPK activity and autoph-
agic flux leading to reduced cell viability.

Materials and methods
Cell culture
Work was conducted with several established ovarian
cancer cell lines: CaOV3, OVCAR3, OVCAR4,
OVCAR5, and OVCAR8 (ATCC), COV318 and
COV362 (gift from Zia Khan, Western University), all of
which are classified as high-grade serous [15, 16], and
HeyA8 cells (ATCC). The iOvCa147-MA line was gener-
ated by subcutaneous injection of high-grade serous
iOvCa147 cells [17] into immune-compromised female
mice, isolation and dissociation of the resultant tumour,
followed by intraperitoneal injection into subsequent fe-
male mice. Malignant ascites fluid was collected aseptic-
ally and returned to tissue culture to generate the
iOvCa147-MA line. STR analysis was performed by the
TCAG Facility (Hospital for Sick Children, Toronto ON)
to confirm its identity with the original iOvCa147 cell
line. The immortalized human fallopian tube secretory
epithelial cell line FT190 [18] (gift from Ronny Drapkin,
University of Pennsylvania) was used as a non-malignant
cell line control. Cells were cultured in either DMEM/
F12 (Invitrogen) for iOvCa147-MA, CaOV3, COV318,
COV362, and FT190, or RPMI (Wisent) for OVCAR3,
OVCAR4, OVCAR5, OVCAR8, and HeyA8, and supple-
mented with 10% fetal bovine serum (FBS) (Wisent).
Cells were either grown under adherent conditions using
tissue culture-treated plastic (Sarstedt) or in suspension
using Ultra-Low Attachment (ULA) dishes (Corning) as
performed previously [7].

siRNA knockdown
RNA interference-mediated knockdown was achieved
using Dharmacon siGenome SMARTpool reagents: Non-
targeting control pool #2 (siNT, D-001206-14-05),
PRKAA1 (D-001206-14-05) PRKAA2 (M-005361-02-
0005). Cells were seeded into 6-well adherent plates at
300,000 cells/well for iOvCa147-MA, or 100,000 cells/well
for OVCAR8; the following day siRNA (siNT, or equimo-
lar PRKAA1/2) was transfected according to manufac-
turer’s instructions as performed previously [8]. Cells were
incubated with transfection mixtures for 3 days after
which the cells were trypsinized and seeded into ULA
dishes for protein isolation and fluorescence microscopy
at 48 h.

Protein isolation
Adherent cells were washed with ice-cold phosphate-
buffered saline (PBS) and placed in modified radioimmu-
noprecipitation assay (RIPA) lysis buffer as described
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previously [11]. Cells were subsequently scraped and left
to lyse on ice for 30 min. After high-speed centrifuga-
tion, supernatant was collected for protein quantification
by Bradford assay (BioRad) and stored at − 80 °C for sub-
sequent use. For protein lysates from spheroids, cell sus-
pensions were collected from ULA plates and
centrifuged at 2400 rpm for 3 minutes. The cell pellet
was washed with ice-cold PBS and placed in modified
RIPA lysis buffer for 30 min on ice and continued as de-
scribed above.

Immunoblotting
Protein lysates were prepared at 30 μg per sample and
resolved by 8 or 12% sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS-PAGE). Gels were trans-
ferred to a polyvinylidene difluoride (PVDF) membrane
and blocked with 5% w/v BSA in TBST (10 mM Tris–
HCl, pH 8.0, 150 mM NaCl, 0.1% Tween 20). Mem-
branes were subsequently incubated with protein-
specific primary antibodies at a 1:1000 dilution in 5%
BSA/TBST and incubated overnight at 4 °C. Following
primary antibody incubation, membranes were incu-
bated for 1 h at room temperature with a peroxidase-
conjugated anti-rabbit or anti-mouse immunoglobulin G
(1:10000 in 5% BSA/TBST). Protein detection was
achieved through enhanced chemiluminescence using
Luminata Forte (Millipore) and imaging was performed
using the Chemidoc™ MP 7 System (BioRad). Densito-
metric analyses were subsequently performed using Ima-
geLab™ software with tubulin used as a loading control.

Antibodies and other reagents
Primary antibodies were used to detect threonine-172
phosphorylated AMPKα (40H9), total AMPKα (D63G4),
p62 (2775S), LC3B (5114S) (Cell Signaling Technology,
Danvers, MA), or tubulin (T9026; Sigma, Mississauga,
ON). Secondary antibodies used were anti-rabbit horse-
radish peroxidase (HRP; NA934V Chicago, GE Health-
care) and anti-mouse HRP (NA931V Chicago, GE
Healthcare). The following pharmacologic agents were
used: Compound C (P5499) and Metformin (D150959-
5G) from Sigma (Mississauga, ON), and STO-609
(15325) and Oligomycin (11342) from Cayman Chemical
(Ann Arbor, MI) at concentrations indicated in the text.

Generation of mCherry-eGFP-LC3B clones
OVCAR8 cells were plated into 6-well adherent plates at
a density of 100,000 cells/well. Cells were transfected
with the pBABE-puro-mCherry-eGFP-LC3B plasmid
(gift from Jayanta Debnath, Addgene plasmid #22418),
using Lipofectamine 2000 reagent according to the man-
ufacturer’s protocol (MAN0009872, Invitrogen, Carlsbad
Ca). Following 72 h, cells were placed in puromycin-
supplemented media (1 μg/ml) for 72 h. Puromycin-

resistant fluorescent clones were selected using cloning
rings and expanded clonal populations expressing de-
tectable fluorescence were chosen for subsequent experi-
ments. The COV318 and FT190 cell lines were
generated in an identical fashion as described above,
however, following puromycin treatment, transfected
cells were pooled in suspension conditions using ULA
dishes and selected on the basis of high red
fluorescence.

Live-cell fluorescence microscopy
Phase contrast and fluorescence images of OVCAR8-,
COV318- and FT190-mCherry-eGFP-LC3B cells were
captured using a Leica DMI 4000B inverted fluorescence
microscope. Fluorescent images were captured using
GFP and Y3 filter cubes and merged images were gener-
ated using the Leica Application Suite (LAS). Alterna-
tively, STO-609-treated OVCAR8 mCherry-eGFP-LC3B
cells were seeded at 2000 cells/well in 96-well round-
bottom ULA plates. Each well was imaged by phase con-
trast, GFP and RFP using the IncuCyte® ZOOM live-cell
imaging system (Sartorius) at 3h intervals for a total of
14 days; time-lapse videos were generated using the
IncuCyte® built-in software. All images and videos are
presented in their original format with no adjustments
in colour or exposure correction.

Fluorescence quantification
Using Image J (Version 2.0.0-rc-69/1.52p), a region-
of-interest (ROI) was circumscribed around each
OVCAR8-mCherry-eGFP-LC3B spheroid (siNT- and
siPRKAA1/2-transfected cells) using the phase con-
trast image as a template. The ROI was subsequently
superimposed onto both the GFP and Y3 channel im-
ages where overall fluorescence intensity was mea-
sured in arbitrary units relative to overall spheroid
area. Alternatively, GFP and RFP fluorescence, and
signal overlap, were quantified on IncuCyte® ZOOM
images of individual OVCAR8-mCherry-eGFP-LC3B
spheroids (n = 10) using the built-in analysis software
and measured from days 2 to 12 as masked area per
image.

Cell viability
Spheroids were collected by centrifugation at 2400 rpm
for 3 min, washed with PBS, and centrifuged at 1000
rpm for 3 min. Pelleted spheroids were disaggregated
using 50 μL of 0.25% Trypsin-EDTA incubated for 10
min at 37 °C followed by the addition of 50 μL FBS. Try-
pan Blue Reagent (Gibco) was added at a 1:1 ratio and
cell counts were performed on the BioRad TC10™ auto-
mated cell counter.
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Statistical analysis
Graphs were generated using GraphPad Prism 8 (La Jolla,
California) and data are expressed as mean ± SD. Student’s
t-test and ANOVA with either Dunnett’s or Sidak’s mul-
tiple comparison test were performed using GraphPad
Prism 8; all results were considered significant at p < 0.05.

Results
Coordinated AMPK activity and LC3-II processing during
spheroid formation
We demonstrated previously that AMPK is activated in
EOC spheroids to promote cytostasis [8]. In an independ-
ent study, our group generated evidence that autophagy is
rapidly induced in EOC spheroids also, and autophagy is
required to maintain cell viability in these structures. Thus,
we now seek to connect the kinetics and requirement for
AMPK signaling with autophagy activation in our in vitro
spheroid model of EOC metastasis. Assessment of autopha-
gic flux can be initially performed by measuring protein ex-
pression of both microtubule-associated protein 1A/1B-
light chain (LC3) and p62 (sequestosome-1). Being recruited
to autophagosomal membranes, LC3 is proteolytically
cleaved at its C-terminus followed by lipidation to generate
LC3-II, making it an excellent marker for monitoring the
progression of autophagy [12]. Due to its ubiquitin-binding
domain, p62 is known to function as a mediator protein,
targeting ubiquitinated proteins to the autophagosomal
membrane. Accumulation of p62 protein levels is indicative
of reduced autophagic flux, whereas its decrease over time
indicates sustained autophagy induction [12].
To address AMPK phosphorylation kinetics and its rela-

tion to autophagy induction, iOvCa147-MA cells were
seeded in ULA conditions and protein was isolated at vari-
ous time points during spheroid formation. Following im-
munoblot analysis, we identified increased levels of LC3-II
processing and increased phosphorylation of AMPK at
T172 between 24h and 72 h relative to adherent cells
(Fig. 1a&b). The highest levels of both p-AMPK and LC3-II
was observed at 48 h; therefore, subsequent spheroid cul-
ture experiments were taken to the 48 h time point. Time
course experiments conducted using OVCAR8 spheroids
further confirmed the 48 h time point as optimal for evalu-
ating AMPK activity and autophagy markers (Fig. 1c&d).
Different levels of basal autophagy were observed in stand-
ard adherent conditions between the iOvCa147-MA and
OVCAR8 cell lines, as we have seen previously among
several ovarian cancer cell lines [11].

AMPK knockdown inhibits autophagic flux in EOC
spheroids but does not alter p62 or LC3 processing
To elucidate the requirement of AMPK signaling regula-
tion of autophagy in spheroids, we performed siRNA-
mediated knockdown of the AMPK α1 and α2 catalytic
subunits in iOvCa147-MA and OVCAR8 cells. AMPK

exists as a heterotrimeric protein consisting of one cata-
lytic α-subunit and two regulatory β- and γ-subunits. Al-
though up to 12 different isomeric configurations are
possible, there are only two known catalytic subunits
encoded by the genes PRKAA1 and PRKAA2 [9]. Com-
bined knockdown of PRKAA1 and PRKAA2 allowed us
to control for variations in catalytic subunit expression
and potential compensatory mechanisms, and to
maximize AMPK attenuation. Following transfection in
adherent conditions, cells were trypsinized and seeded
into ULA conditions for 48 h, at which point protein
was collected for immunoblot analysis. To our surprise,
PRKAA1/2 knockdown in iOvCa147-MA or OVCAR8
spheroids did not significantly alter LC3-II or p62 rela-
tive to siNT-transfected control spheroids (Fig. 2a&b).
This was intriguing since AMPK has been implicated in
several models as a canonical activator of autophagy,
with its loss typically inhibiting autophagic flux [14, 19,
20]. No significant difference in spheroid cell viability
was observed between the PRKAA1/2 knockdown and
siNT controls (data not shown), which corroborates the
results from our previous study [8].
To further investigate the effect of PRKAA1/2 knock-

down on autophagic flux in EOC spheroids, we used
OVCAR8 cells stably-transfected with an eGFP-LC3B re-
porter construct [10]. Following PRKAA1/2 knockdown,
OVCAR8-eGFP-LC3B cells were seeded as spheroids
and assessed using live-cell fluorescence microscopy. We
observed a notable increase in green fluorescence in
spheroids following PRKAA1/2 knockdown indicating a
block in autophagic flux (Figure S1). However, it is diffi-
cult to draw this conclusion, as well as adequately moni-
tor autophagic progression from early-to-late stages,
with a single fluorescence reporter construct. To address
this issue, we stably transfected OVCAR8 cells with the
dual fluorescence mCherry-eGFP-LC3B reporter [21].
Following autophagosome fusion with the acidic lyso-
some, the pH-sensitive eGFP signal is quenched,
whereas the mCherry signal remains unaffected. Highly
autophagic cells will exhibit predominantly red fluores-
cent punctae indicative of increased autophagic flux.
Conversely, inhibiting autophagy induces an increase in
green fluorescence due to reduced autophagosome fu-
sion with lysosomes. Although this reporter has been
used in adherent culture systems [21, 22], it can also be
applied to spheroid models [23]. By placing OVCAR8
mCherry-eGFP-LC3B cells into ULA conditions and
assessing overall fluorescence colour shift rather than in-
dividual autophagic punctae, we can characterize general
autophagic flux within spheroids in a rapid manner.
PRKAA1/2 knockdown in OVCAR8 mCherry-eGFP-

LC3B spheroids resulted in a dramatic increase in green
and red fluorescence relative to siNT-transfected control
spheroids, which had predominantly low levels of
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fluorescence signal (Fig. 2c&d). To confirm our interpret-
ation of a block in autophagic flux, we treated spheroids
with chloroquine (CQ), a well-characterized lysosomotro-
pic agent that inhibits lysosomal fusion to the autophago-
some [12], and which we have demonstrated previously
inhibits autophagy in EOC cells and spheroids [10, 11].
Treatment of OVCAR8 mCherry-eGFP-LC3B spheroids

with 50 μM CQ for 4 h resulted in similar accumulation of
green fluorescence as we observed with the PRKAA1/2
knockdown (data not shown). Thus, PRKAA1/2 knock-
down can reduce autophagic flux in EOC spheroids; how-
ever, based on our immunoblot data, this observed
AMPK-mediated regulation of autophagy may occur in an
LC3- and p62-independent manner.

Fig. 1 HGSOC spheroids have increased phosphorylated AMPK and LC3-II as compared with adherent cells. a iOvCa147-MA cells were trypsinized,
seeded into ULA plates, and protein lysates were isolated at each time point as indicated. Adherent cell controls (adh) were cultured using
standard tissue culture-treated plates for 72 h prior to protein isolation. Immunoblot analysis was performed for p-AMPK (T172), AMPK, and LC3B;
tubulin served as a loading control. b Densitometric analysis of p-AMPK/AMPK and LC3-II:I ratio from the immunoblots were tested by one-way
ANOVA followed by Dunnett’s multiple comparison test (n = 3) (*, p < 0.05). c OVCAR8 cells were trypsinized, seeded into ULA plates, and protein
lysates were isolated at each time point as indicated. Adherent cell controls (adh) were cultured using standard tissue culture-treated plates for
72 h prior to protein isolation. Immunoblot analysis was performed for p-AMPK (T172), AMPK, and LC3B; tubulin served as a loading control.
d Densitometric analysis of p-AMPK/AMPK and LC3-II:I ratio from the immunoblots were tested by one-way ANOVA followed by Dunnett’s multiple
comparison test (n = 3) (*, p < 0.05)
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In addition to PRKAA1/2 knockdown, we sought to
examine the effect of a pharmacological inhibitor of
AMPK on EOC spheroids. Currently, Compound C (also
known as dorsomorphin) is the only known selective in-
hibitor of AMPK [24]. Treatment of both iOvCa147-MA
and OVCAR8 cells with Compound C resulted in mod-
est reduction of p-AMPK at 10 μM (Fig. 3a), yet signifi-
cant increases in LC3 processing and a slight increase in
p62 levels were observed (Fig. 3a&b). OVCAR8
mCherrry-eGFP-LC3B spheroids treated with 10 μM
Compound C for 24 h exhibited a detectable increase in
green fluorescence relative to their DMSO-treated con-
trols (Fig. 3c).

AMPK activation alone is insufficient to induce autophagy
We have shown previously that proliferating adherent
EOC cells have relatively low levels of both autophagy
and p-AMPK yet are robustly induced upon spheroid
formation [8, 11]. As such, we deemed it important to
test whether AMPK activity on its own is sufficient to

induce autophagy in EOC cells. To achieve this, we acti-
vated AMPK by using the mitochondrial inhibitors oli-
gomycin (100 nM) and metformin (2 mM), since both
drugs are known to increase p-AMPK and its activity
[25]. Oligomycin and metformin treatment for 24 h led
to increased p-AMPK in adherent OVCAR8 cells, how-
ever no significant changes were observed in LC3-II pro-
cessing or p62 levels (Figure S2). Taken together, our
results suggest that AMPK activation is required in part
for autophagic flux in EOC spheroids, yet on its own is
insufficient to induce autophagy in adherent EOC cells.

Pharmacologic inhibition of CAMKKβ reduces AMPK
phosphorylation and inhibits autophagic flux
Due to the limited availability of small molecule inhibi-
tors of AMPK, we sought to attenuate AMPK phosphor-
ylation by targeting upstream kinases that lead to AMPK
activation. Liver Kinase B1 (LKB1) encoded by STK11, is
the best-characterized upstream kinase of AMPK. LKB1
is a highly-conserved serine-threonine kinase that

Fig. 2 PRKAA1/2 knockdown does not alter LC3-II and p62 levels in spheroids yet blocks autophagic flux. a Double knockdown of both AMPK α1
and α2 catalytic subunits was performed by co-transfection of PRKAA1 and PRKAA2 siRNA in adherent iOvCa147-MA and OVCAR8 cells; non-
targeting siRNA (siNT) served as a control. At 72 h post-transfection, cells were trypsinized and seeded into 6-well ULA plates for 48 h.
Immunoblot analysis was performed for p-AMPK (T172), AMPK, p62, and LC3B; tubulin served as a loading control. b Densitometric analysis for
AMPK/tubulin, p62/tubulin, and LC3-II:I ratio from the immunoblots were tested for significance using a Student’s t-test (****, p < 0.001). c OVCAR8
mCherry-eGFP-LC3B cells were transfected with siNT and siPRKAA1/2 as described above and seeded into 24-well ULA plates. Phase contrast and
fluorescence images were captured at 48 h post-seeding. Scale bar = 200 μm. d Quantification of eGFP (green markers) and mCherry (red markers)
fluorescence intensity per spheroid (normalized to spheroid area) in siNT and siPRKAA1/2-transfected OVCAR8-mCherry-eGFP-LC3B cells was
performed using Image J software and tested for significance by two-way ANOVA followed by Sidak’s multiple comparison test (**, p < 0.01;
****, p < 0.001)
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typically functions as a regulator of cellular metabolism
within the AMPK signaling axis [26]. Surprisingly, recent
work from our laboratory identified that EOC spheroids
lacking LKB1 expression by CRISPR-mediated STK11
knockout sustain elevated p-AMPK suggesting alterna-
tive kinase(s) target AMPK in our system [27].
Previous literature has implicated calcium/calmodulin-

dependent protein kinase beta (CAMKKβ) as an alterna-
tive AMPK activating kinase [28]. For example, cellular
matrix deprivation leads to CAMKKβ-mediated AMPK
phosphorylation in breast cancer cell lines [29]. As such,
we decided to use a selective CAMKKβ inhibitor, STO-
609, as another method to attenuate AMPK phosphoryl-
ation. We included additional cell lines, the high-grade
serous cancer COV318 cells, and immortalized human
fallopian tube secretory epithelial FT190 cells. Treatment
of non-malignant FT190 and EOC cell line spheroids
with 10 μM ST0–609 resulted in significant reduction in
p-AMPK (Fig. 4a). In addition, we observed a significant
increase in p62, but no change in LC3-II levels (Fig. 4b).
ST0–609 treated spheroids exhibited increased green
fluorescence relative to their DMSO control indicating

robust autophagic flux inhibition (Fig. 4c). Enhanced
green fluorescence was observed in FT190 spheroids,
suggesting that CAMKKβ-mediated regulation of AMPK
and autophagic flux occur in both EOC cells and their
potential premalignant precursor cells, too.
We have demonstrated previously that autophagy is

critical to maintain EOC cell viability in spheroids [10,
11], thus we postulate that potent inhibition of AMPK
activity using STO-609 over an extended period would
negatively impact EOC spheroid cell viability. First, we
treated OVCAR8 mCherrry-eGFP-LC3B spheroids with
10 μM STO-609 or DMSO for up to 12 days to visualize
extent of autophagic flux inhibition and spheroid integ-
rity. Autophagic flux was potently blocked by STO-609
over the complete time period as evidenced by increased
green fluorescence; we also observed a small decrease in
overall spheroid size due to STO-609 treatment
(Fig. 5a&b). Subsequently, we evaluated the effects of
CAMKKβ-AMPK signaling inhibition by treating nine
different high-grade serous EOC spheroids, and FT190
spheroid controls, with STO-609 for 3 and 7 days prior
to quantifying viable cell number. After 3 days of STO-

Fig. 3 Pharmacologic inhibition of AMPK using Compound C increases LC3-II and blocks autophagic flux in spheroids. a iOvCa147-MA and
OVCAR8 cells were seeded into 6-well ULA plates to form spheroids for 24 h prior to treatment with Compound C at the indicated
concentrations; DMSO was the vehicle control. Protein lysates were isolated at 24 h post-treatment. Immunoblot analysis was performed for p-
AMPK (T172), AMPK, p62, and LC3B; tubulin served as a loading control. b Densitometric analysis for p62/tubulin and LC3-II:I ratio from the
immunoblots were tested by one-way ANOVA followed by Dunnett’s multiple comparison test. Asterisks indicate significant differences relative to
control (*, p < 0.05; **, p < 0.01). c OVCAR8 mCherry-eGFP-LC3B cells were seeded into 24-well ULA plates, cultured for 24 h, then treated with
10 μM Compound C, or DMSO as a control, for an additional 24 h. Phase contrast and fluorescence images were captured. Scale bar = 200 μm
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609 treatment, we observed a significant reduction in
cell viability in 6 out of 9 EOC cell line spheroids
(Fig. 6a); extending this treatment to 7 days resulted in

an additional cell line (OVCAR4) sensitive to CAMKKβ-
AMPK inhibition (Fig. 6b). Cell viability for two EOC
cell lines, CaOV3 and COV318, as well as normal FT190

Fig. 4 STO-609 treatment reduces p-AMPK, increases p62, and blocks autophagic flux in spheroids. a Cell lines (EOC cells: iOvCa147-MA, OVCAR8
and COV318; non-malignant cells: FT190) were seeded into 6-well ULA plates to form spheroids for 24 h prior to treatment with 10 μM STO-609,
or DMSO as a vehicle control. Protein lysates were isolated at 24 h post-treatment. Immunoblot analysis was performed for p-AMPK (T172), AMPK,
p62, and LC3B; tubulin served as a loading control. b Densitometric analysis for p-AMPK/AMPK, p62/tubulin and LC3-II:I ratio from the
immunoblots for the three EOC cell lines together were tested by Student’s t-test. Asterisks indicate significant differences relative to control
(*, p < 0.05; ****, p < 0.001). c Representative phase contrast and fluorescence images of DMSO- and STO-609-treated spheroids using OVCAR8-
mCherry-eGFP-LC3B, COV318-mCherry-eGFP-LC3B, and FT190-mCherry-eGFP-LC3B cells. Treatments were performed as described above and
images were captured after 24 h. Scale bar = 200 μm
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spheroids, was unaffected by STO-609 treatment at both
time points. In summary, our results implicate
CAMKKβ-mediated activation of AMPK is required for
autophagy induction and resultant cell survival in EOC
spheroids.

Discussion
Dysregulation of autophagy has long been implicated in
numerous pathologies [30]. In the context of metastatic
ovarian cancer, it appears that autophagy serves a
tumour protective role. We have demonstrated previ-
ously that EOC spheroids display increased levels of au-
tophagy and that its inhibition can reduce overall EOC
spheroid viability [10, 11]. Independently, we demon-
strated that p-AMPK is increased in both patient-
derived EOC spheroids as well as those generated
in vitro, relative to proliferating adherent cells [8]. In this
study, we sought to bridge these two phenomena and

demonstrate that AMPK activity is required for auto-
phagy induction in EOC spheroids to maintain cell
viability.
In several biological contexts, AMPK activity on its

own can lead directly to autophagy induction. However,
treatment of adherent OVCAR8 cells with AMPK activa-
tors did not significantly change LC3-II or p62 expres-
sion. Metformin and oligomycin treatments increased p-
AMPK levels, but these drugs function indirectly to acti-
vate AMPK by inhibiting mitochondrial respiration [31,
32]. Thus, caution must be taken when using these
methods for AMPK activation and correlating results
with autophagy induction. However, we consider it un-
likely that AMPK activation is sufficient on its own to
induce autophagy in proliferating adherent EOC cells.
We show that RNAi-mediated AMPK inhibition

strongly inhibits autophagic flux as visualized by fluores-
cence microscopy. Interestingly, this phenotype may

Fig. 5 Time course of STO-609-mediated inhibition of autophagic flux in OVCAR8 mCherry-eGFP-LC3B spheroids. a OVCAR8 mCherry-eGFP-LC3B
cells were pretreated with either 10 μM STO-609 or DMSO and seeded at a density of 2000 cells/well into 96-well round-bottom ULA plates.
Images of eGFP and mCherry fluorescence signals were captured using the IncuCyte® ZOOM live-cell imaging system at 3h intervals over a
period of 14 days. Representative images are shown for specific time points (days 2–12). Scale bar = 200 μm. b Quantification of eGFP, mCherry
and Overlap fluorescence signals were quantified from 10 independent wells using the IncuCyte® ZOOM image analysis software. Data (mean ±
SD) are displayed starting at day 2 to allow for complete aggregation of cells into individual spheroids, and to avoid the increased background
fluorescence signal on image edges in the GFP channel at these early time points
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occur in an LC3- and p62-independent manner. The dis-
crepancy in our results between fluorescence reporter
and immunoblot assays raise certain questions as to
what specific players mediate autophagy induction in
ovarian cancer. Initially described in yeast as ATG8, sev-
eral orthologs of the ubiquitin-like LC3 protein have
been identified in mammals, although most work focuses
on LC3B. More recently, studies have implicated LC3B-
independent forms of autophagy. One candidate LC3
ortholog is gamma-aminobutyric acid receptor-
associated protein (GABARAP). GABARAP has been
shown to possess separate functions from LC3, as it is
involved in late-stage autophagosome maturation [33].
More recently, LC3-independent autophagy in rat

hepatocytes was shown to be regulated primarily
through the GABARAP complex in the autophagosome
[34]. Since we did not observe major effects on LC3 pro-
cessing, we are currently investigating whether AMPK
inhibition affects GABARAP expression and function in
autophagic flux in EOC spheroids.
Although Compound C did not attenuate p-AMPK

levels nearly to the same extent as either RNA interfer-
ence or STO-609 treatment, it clearly inhibited autopha-
gic flux in EOC spheroids. Compound C may affect
autophagy as a combination of AMPK inhibition as well
as with other potential targets of this agent. Previous lit-
erature identified multiple intersecting pathways that are
potently affected by Compound C that are independent

Fig. 6 STO-609 treatment reduces spheroid viability across several EOC cell line spheroids. Cells were seeded into 24-well ULA plates and treated
with 10 μM STO-609 or DMSO at the time of seeding. Trypan Blue Exclusion cell counting was performed at days 3 (a) and 6 (b); viability data
was normalized to DMSO-treated controls set to 100%. Student’s t-test was performed to determine statistical significance for each cell line
(*, p < 0.05)
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of AMPK (Harhaji-Trajkovic et al., 2010; Zhao et al.,
2018). In fact, Compound C is known to affect BMP and
mTOR signaling [24, 35]; we have demonstrated that
both of these signaling pathways impinge upon the EOC
spheroid phenotype [7, 10, 36]. As such, the combined
action of Compound C on multiple different kinases
could lead to our observed LC3 reporter results in EOC
spheroids. In fact, we observed poor p-AMPK attenu-
ation using Compound C, and it has conflicting roles as
either an activator or inhibitor of autophagy [35]. Thus,
use of this agent alone poses a limitation for analysis of
AMPK regulation of autophagy in our system.
To address this, we present new findings regarding the

requirement of CAMKKβ-mediated AMPK signaling in
modulating autophagy in EOC. Treatment of EOC
spheroids with the CAMKKβ inhibitor, STO-609, sup-
ports our PRKAA1/2 knockdown data, thus strengthen-
ing the notion that AMPK is required for autophagy
induction in EOC cells under spheroid conditions. This
phenotype holds true not only for EOC cell lines, but
also in non-malignant fallopian tube epithelial cells. Per-
haps the autophagic stress response mediated by AMPK
is conserved in secretory epithelial cells, as well as the
high-grade serous EOC cells from which they arise.
Furthermore, work in our laboratory identified re-

cently that LKB1-deficient EOC spheroids still retain the
capacity to induce p-AMPK through CAMKKβ activity
[27]. This finding together with our results herein sug-
gest a crucial role for CAMKKβ in regulating p-AMPK
levels in this disease. It has been previously reported that
a rise in cytosolic calcium can induce autophagy through
CAMKKβ in both MCF-7 and HeLa cell lines, highlight-
ing an ATP-independent mechanism for autophagy in-
duction [37]. More recently, cellular matrix deprivation
has been identified as an inducer of intracellular calcium
spikes, which in turn can activate AMPK through
CAMKKβ signaling [29]. Examination of the calcium-
oxidant signaling network in EOC spheroids might high-
light a unique characteristic of these cancer cells that
would lend itself to therapeutic inhibition. As such, it
would be prudent to further characterize both the
AMPK-dependent and -independent roles of CAMKKβ
in the context of ovarian cancer. Our encouraging re-
sults of CAMKKβ-AMPK inhibition using the STO-609
and its negative impact on EOC spheroid cell viability
lends even more support for such an intervention.
Overall, it appears that AMPK is required in part to

induce autophagy in EOC spheroids, although this may
occur in an LC3-and p62-independent manner. We also
show AMPK phosphorylation is regulated by CAMKKβ
activity in EOC spheroids to promote autophagic flux in
these structures. These findings have contributed to our
understanding of signaling axes regulating autophagy
induction in EOC cells, and may represent novel

therapeutic targets for this critical stress response in the
setting of metastatic disease.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13048-020-00660-5.

Additional file 1: Figure S1. PRKAA1/2 knockdown potentially inhibits
autophagy in OVCAR8 eGFP-LC3B spheroids. Adherent cells were trans-
fected with non-targeting siRNA (siNT) or siPRKAA1/2, or left untrans-
fected, for 72 h. Cells were seeded into 24-well ULA culture dishes for 48
h prior to capturing phase contrast and fluorescence images. Scale bar =
200 μm.

Additional file 2: Figure S2. Pharmacologic AMPK activation does not
alter LC3 processing and p62 levels in adherent iOvCa147-MA and
OVCAR8 cells. (a) iOvCa147-MA and OVCAR8 cells were plated at a dens-
ity of 150,000 cells/well in 6-well tissue-culture-treated plates and left to
attach overnight. Cells were subsequently treated for 24 h with either Oli-
gomycin (100 nM), or Metformin (2 mM, iOvCa147-MA; 1 mM, OVCAR8),
or DMSO vehicle control. Immunoblot analysis was performed for p-
AMPK (T172), AMPK, p62 and LC3B; tubulin served as a loading control.
(b) Densitometric analysis of p62/tubulin and LC3-II:I ratio from the im-
munoblots were tested by one-way ANOVA followed by Dunnett’s mul-
tiple comparison test (n = 3) and no significant differences were
observed.
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