

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/114478

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Elsevier Editorial System(tm) for

Resuscitation

Manuscript Draft

Manuscript Number: RESUS-D-19-00116R1

Title: A Systematic Review and Meta-Analysis of the Effect of Dispatcher-Assisted CPR on Outcomes from Sudden Cardiac Arrest in Adults and Children.

Article Type: Review

Keywords: dispatcher-assisted CPR, out-of-hospital cardiac arrest, resuscitation, systematic review, meta-analysis

Corresponding Author: Dr. Katie N Dainty,

Corresponding Author's Institution: St. Michael's Hospital

First Author: Nikolaos Nikolaou, MD

Order of Authors: Nikolaos Nikolaou, MD; Katie N Dainty; Keith Couper, RN, PhD; Peter Morley, MBBS, GCertClinTeach, FRACP, FANZCA, FCICM, AFRACM; Janice Tijssen, MD, MSc, FRCPC; Christian Vaillancourt, MD, MSc, FRCPC

Abstract: BACKGROUND: Dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) has been reported in individual studies to significantly increase the rate of bystander CPR and survival from cardiac arrest.

METHODS: We undertook a systematic review and meta-analysis to evaluate the impact of DA-CPR programs on key clinical outcomes following out-ofhospital cardiac arrest. We searched the PubMED, EMBASE, CINAHL, ERIC and Cochrane Central Register of Controlled Trials databases from inception until July 2018. Eligible studies compared systems with and without dispatcher-assisted CPR programs. Included studies were divided into three groups: comparison of outcomes in systems providing DA-CPR; comparison of cases where DA-CPR was provided to cases where bystander CPR was ongoing, and DA-CPR was not provided; and comparison of cases where DA-CPR was provided to cases where no bystander CPR was provided (patient level comparisons). The GRADE system was used to assess certainty of evidence at an outcome level. We used random-effects models to produce summary effect sizes across all outcomes.

RESULTS: Of 5,531 citations screened, 33 studies were eligible for inclusion. All included studies were observational. Evidence certainty across all outcomes was assessed as low or very low. In system-level and patient-level comparisons, the provision of DA-CPR compared with no DA-CPR was consistently associated with improved outcome across all analyses. Comparison of DA-CPR to bystander CPR produced conflicting results. Findings were consistent across sensitivity analyses and the pediatric sub-group.

CONCLUSION: These results support the recommendation that dispatchers provide CPR instructions to callers for adults and children with suspected OHCA.

Review registration: PROSPERO- CRD42018091427

- A Systematic Review and Meta-Analysis of the Effect of Dispatcher-Assisted CPR 1
- on Outcomes from Sudden Cardiac Arrest in Adults and Children. 2
- Running Title: Nikolaou DA-CPR systematic review 3
- 4

5 Nikolaos Nikolaou, MD

6 Department of Cardiology and Cardiac Intensive Care, Konstantopouleio General 7 8 Hospital, Agias Olgas 3-5, Nea Ionia 142 33, Athens, Greece

Katie N. Dainty, PhD 9

Research & Innovation, North York General Hospital and Institute of Health Policy, 10 Management and Evaluation, University of Toronto 11 12

Keith Couper, RN, PhD 13

- Warwick Medical School, University of Warwick, Coventry, UK. 14
- 15 16 University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Peter Morley, MBBS, GCertClinTeach, FRACP, FANZCA, FCICM, AFRACMA, 17 FERC, FAHA 18
- 19 Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne, Australia
- 20 21

Janice Tijssen, MD, MSc, FRCPC 22

- Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, 23
- and Pediatric Intensive Care Unit, London Health Sciences Centre, London, ON, 24 25 26 Canada
- Christian Vaillancourt, MD, MSc, FRCPC, CSPQ 27
- Department of Emergency Medicine, University of Ottawa and Clinical Epidemiology 28
- Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada. 29
- 30

On behalf of the International Liaison Committee on Resuscitation's (ILCOR) 31

Basic Life Support and Pediatric Task Forces 32

- 33
- 34

Corresponding Author: 35

Nikolaos Nikolaou 36

nikosnik@otenet.gr 37

- Konstantopouleio General Hospital 38
- 39 Department of Cardiology and Cardiac Intensive Care
- Agias Olgas 3-5, Nea Ionia 142 33 40
- Athens, Greece 41
- 42 +30 21 3205 7000
- 43

TOTAL MANUSCRIPT WORD COUNT = 3848 44

46 **ABSTRACT (348 words)**

BACKGROUND: Dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) has
been reported in individual studies to significantly increase the rate of bystander
CPR and survival from cardiac arrest.

51

47

METHODS: We undertook a systematic review and meta-analysis to evaluate the 52 impact of DA-CPR programs on key clinical outcomes following out-of-hospital cardiac 53 arrest. We searched the PubMED, EMBASE, CINAHL, ERIC and Cochrane Central 54 Register of Controlled Trials databases from inception until July 2018. Eligible studies 55 compared systems with and without dispatcher-assisted CPR programs. The results of 56 57 included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, case-based 58 comparison of DA-CPR to bystander CPR, and case-based comparisons of DA-CPR to 59 no CPR before EMS arrival. The GRADE system was used to assess certainty of 60 evidence at an outcome level. We used random-effects models to produce summary 61 effect sizes across all outcomes. 62

63

RESULTS: Of 5,531 citations screened, 33 studies were eligible for inclusion. All included studies were observational. Evidence certainty across all outcomes was assessed as low or very low. In system-level and patient-level comparisons, the provision of DA-CPR compared with no DA-CPR was consistently associated with improved outcome across all analyses. Comparison of DA-CPR to bystander CPR

69	produced conflicting results. Findings were consistent across sensitivity analyses and
70	the pediatric sub-group.
71 72	CONCLUSION: These results support the recommendation that dispatchers provide
73	CPR instructions to callers for adults and children with suspected OHCA.
74 75	Review registration: PROSPERO- CRD42018091427
76	

78 **INTRODUCTION**

Out-of-hospital cardiac arrest (OHCA) is a significant cause of death world wide¹ with an annual rate of between 55 and 113/100,000 person-years.² The immediate commencement of cardiopulmonary resuscitation (CPR) by bystanders increases the likelihood of a meaningful neurological recovery.^{3,4} The majority of cardiac arrests are witnessed by someone that could initiate this life-saving intervention, yet rates of bystander CPR in many systems are disappointingly low. ^{5,6}

A key challenge is that bystanders may be untrained or uncomfortable in performing CPR without assistance.⁷ Dispatcher-assisted CPR (DA-CPR), also known as telecommunicator-assisted CPR (T-CPR), is a system in which dispatchers provide CPR instructions to emergency callers over the telephone. The goal of this approach is to increase the performance of bystander CPR, and ultimately improve survival.⁸

In 2010, Bohm et al conducted a systematic review which concluded that evidence supporting the use of DA-CPR was limited.⁹ The subsequent publication of additional studies led to clinical experts within the International Liaison Committee on Resuscitation (ILCOR) recommending the re-examination of this question as a key research priority within their continuous evidence evaluation process¹⁰.

95

96 METHODS

We conducted a systematic review and meta-analysis to evaluate the effect of
 DA-CPR provision, compared with no DA-CPR provision, on key clinical outcomes in
 cases of suspected OHCA.

The review was performed in accordance with and funded by the ILCOR continuous evidence evaluation process.¹⁰ This report complies with the PRISMA checklist for reporting systematic reviews.¹¹ We used the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach to categorise certainty of evidence.¹² Our protocol was registered with the PROSPERO database (PROSPERO - CRD42018091427).

106 Inclusion and Exclusion Criteria

107 All primary research studies including human participants, adult and pediatric 108 patients, with cardiac arrest outside a hospital setting, and which reported outcomes of 109 interest were included. Randomised controlled trials (RCTs) and non-randomised 110 studies (non-randomised controlled trials, interrupted time series, controlled before-and-111 after studies, cohort studies) were eligible for inclusion.

112 Studies including animals, simulated patients and humans without a comparator 113 group were not eligible. We also excluded commentaries, reviews, and studies not 114 published in peer-reviewed journals or only as abstracts.

115

116 Information Sources and Search Strategies

In collaboration with an expert information specialist, we conducted a comprehensive search of five electronic databases: PubMED, EMBASE, CINAHL, ERIC, and the Cochrane Library from inception to July 1, 2018. The search strategy combined MESH and free text terms to describe the population and the intervention/comparator. No language or geographic restrictions were applied. A full

search strategy is included in the electronic supplement. Search results from all five databases were merged and duplicate references were manually discarded. Additional citations were identified through backward citation tracking of the included studies, consultation with clinical experts on ILCOR task forces, and a search of clinical trials registries.

127

128 Study Selection and Data Extraction

Titles and abstracts of all studies that resulted from the search were independently screened by two experienced reviewers (NN and KND) to determine eligibility for full-text review. The same reviewers reviewed full text articles of all potentially relevant articles and extracted data from eligible full-text articles. Data collection forms were developed and pilot-tested to capture relevant data. Each step of review was discussed, and any incongruence was resolved by consensus.

135

137

136 **Outcomes**

Outcomes were pre-defined and ranked by the ILCOR BLS and Pediatric Task Forces (see electronic supplement). The clinical outcomes of interest were: health related quality of life; favorable neurological outcomes; survival; rate of bystander CPR; return of spontaneous circulation (ROSC); initial shockable rhythm; and time to CPR.

142

143 Assessment of Risk of Bias and evidence certainty

144 Two reviewers (KND and JT) independently assessed each included study for 145 risk of bias using the GRADE handbook¹² advice and the Cochrane Methods Group template for observational studies.¹³ For each outcome, two reviewers (KC, NN) also
assessed publication bias according to the criteria defined by GRADE (study design,
study size, lag bias, and comprehensiveness of search strategy).

We categorised the overall certainty of evidence for each outcome using the approach recommended by GRADE.

151

152 Data Synthesis and Analysis

The results of included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, case-based comparison of DA-CPR to bystander CPR, and case-based comparisons of DA-CPR to no CPR before EMS arrival. Summary effect sizes were produced across all outcomes and a subgroup analysis was pre-specified for pediatric studies.

Given the observational nature and the differences in settings and population of 158 included studies we could not assume a common effect size, so we used a random 159 effects model for meta-analysis, to avoid discounting a small study by giving it a very 160 small weight (as in a fixed-effect analysis). We used Review Manager software (Version 161 5.1. Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2011), to 162 calculate combined odds ratios (ORs) with 95% confidence intervals and measure 163 statistical heterogeneity. Heterogeneity between studies was described using the I^2 164 statistic. The I² was categorized according to GRADE recommendations as low, 165 moderate, substantial or considerable.¹⁴ To avoid reducing the number of studies 166 available for synthesis, mainstream analyses included studies reporting unadjusted 167 data. When there were studies coming from the same region and with overlapping 168

populations, only the study (or combination of non-overlapping studies) that providedthe largest number of participants was used.

We also performed a sensitivity analysis including only studies reporting ORs 171 adjusted for the confounders that were deemed most important for each outcome by the 172 study authors. These two analyses were presented in GRADE tables and the overall 173 certainty of evidence was evaluated according to GRADE. Data from the pre-specified 174 subgroup analysis for the pediatric group i.e. number and combined effect size of 175 pediatric studies and heterogeneity with regard to the rest of the studies, were also 176 177 presented in the summary of findings tables. Raw data were used in order to calculate unadjusted summary ORs while the generic inverse variance method was used in order 178 to combine the reported adjusted odds. 179

Additional sensitivity analyses were performed replacing excluded studies with the next largest study and so on until all studies from the same region were entered. These analyses were not entered into GRADE tables and the overall certainty of evidence was not assessed but they are included in Appendix B. These analyses were used to assess robustness of the combined effect size that has been calculated for each outcome.

186

187 **RESULTS**

188 **Overall Description of Included Studies**

A total of 5,531 citations were identified through the search methods described above. Of these, 93 full text articles were reviewed, and 33 studies were included in this

systematic review.¹⁵⁻⁴⁷ Of the 60 studies excluded at the full text stage, the majority
were removed due to the lack of a comparison between DA-CPR and no DA-CPR (see
Figure 1 for the detailed PRISMA flowchart).

194

195 Study Characteristics

A total of 33 studies reported on the effectiveness of dispatcher-assisted CPR in 196 out-of-hospital cardiac arrest. Geographically, the studies were conducted in a range of 197 countries with the majority from Japan (n = 10), United States (n = 6) and Korea (n=6)... 198 A total of 544.037 cases (Table 1) were included. The median number of participants 199 per study was 803 patients (IQR: 392 to 4,899 patients; Range: 145 to 193,914 200 patients). No RCTs were identified. All the included studies were observational and 201 included 11 retrospective cohort studies, 9 prospective cohort studies, 7 retrospective 202 before-after studies and 6 cross-sectional studies. The duration of follow-up ranged 203 from 1 month to 1 year following cardiac arrest. Of the 33 total studies, the number 204 included in each meta-analysis for the outcomes of interest was variable due to the 205 inconsistent nature of reporting in each of the studies. The way in which studies with 206 overlapping data were entered in the mainstream and sensitivity analyses is shown in 207 Appendix C. 208

209

210

211 **Patient Characteristics**

Of the 33 included studies, 15 were conducted in the adult population only^{16,20,22,25,27,31,34,37,41-45,47,49}, five were conducted in the pediatric population

only^{15,18,26,33,40}, and 13 included both adults and children^{17,19,21,23,28-30,32,35-37,45,48}. The proportion of males ranged from 52% to 85% (average 66%). The age reported for adult-only studies ranged from 18 to >90 years and ranged between 0 to 19 years for pediatric-only studies (Table 1).

218

219 **Risk of Bias Assessment**

All of the included studies were observational cohort studies and most were 220 retrospective (18/33). With respect to overall risk of bias, 1 study was deemed at low 221 risk of bias, 16 were at moderate risk of bias, and 16 were at high risk of bias (Table 2). 222 The main methodological shortcoming was related to the comparability of cohorts on the 223 basis of the design or analysis, as the majority did not adjust for potential confounding 224 variables. In addition, some studies were not clear about their assessment of exposure 225 and the majority did not report the duration of follow-up or how they dealt with missing 226 227 data.

228

229 **Outcomes**

The results of included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, comparison of DA-CPR to bystander CPR, and comparisons of DA-CPR to no CPR before EMS arrival. For the comparisons of DA-CPR provided versus not provided, we were able to compare 11 outcomes, 7 of which had adjusted analyses. For DA-CPR compared to bystander CPR, we were able to compare 12 outcomes, 7 which had adjusted analyses. For DA-CPR compared to no CPR, we were able to compare 11

outcomes, 5 which had adjusted analyses. The studies included in each analysis are 237 indicated in Table 4-6. The outcomes of interest were then analyzed within each 238 category and a summary of findings is outlined in Table 3 and Figure 2. The number of 239 confounders that were adjusted for in the multivariable analyses ranged from 4 to 11. 240 The most frequently used ones were: gender 11/14 (79% of studies), witnessed arrest 241 10/14 (71% of studies), location of arrest (public vs. home, 9/14- 64% of studies), call to 242 response time 9/14 (64% of studies), shockable initial rhythm 6/14(43% of studies), and 243 etiology of cardiac arrest 5/14 (36% of studies). 244

245

246 A. System Comparison

This analysis represents those published comparisons of before-after retrospective studies but also studies where emergency medical systems had DA-CPR programs in place but where the protocol was applied variably, ie. within an EMS system, outcomes for those patients who received DA-CPR compared to those who did not. A summary of findings for this group is outlined in Table 4. Evidence Profile tables for these comparisons appear in Appendix G.

253

254 Survival with Favourable Neurologic Outcome

Among the studies included, survival with favourable neurological outcome was recorded at hospital discharge (2 studies reported unadjusted analyses^{17,42}; 1 study reported adjusted analyses⁴²) and one-month (3 unadjusted^{26,28,44}; 2 adjusted^{26,28}). In unadjusted analyses, DA-CPR was associated with improved survival with favourable neurological outcome at discharge and one-month (OR 1.10; [1.03,1.17]). Adjusted analyses produced similar findings (AOR 1.47; [1.03,2.09]). Certainty of evidence was
assessed as very low for all analyses.

262

263 Survival

Survival was reported at three time-points: hospital admission (unadjusted six 264 studies^{17,24,28,35,42,46} adjusted one study²⁸); one-month (unadjusted two studies^{26,28}; 265 studies^{26,28}) adjusted two and at hospital discharge (unadjusted 266 seven studies^{16,19,29,32,42,43,46}; adjusted one study⁴²). Systems with Dispatcher-Assisted CPR 267 programs were not associated with significantly improved survival at any time-point in 268 unadjusted analyses, although the point estimate suggested benefit. In adjusted 269 analyses, DA-CPR was associated with improved outcome at 1-month (AOR 1.40; 270 [1.07,1.85]) and at hospital discharge (AOR 1.33; [1.07,1.66]), but not at hospital 271 admission (AOR 0.97 [0.70, 1.34]). Certainty of evidence was assessed as very low in 272 all analyses (Table 4 and Appendix G). 273

274

275 Other Outcomes

276

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (seeAppendix G for details).

279 280

281 **B. DA-CPR versus Bystander CPR (Table 5, Appendix H)**

282

283 Survival with Favourable Neurologic Outcome

Survival with favourable neurologic outcome was reported at 1 month (unadjusted data was available in 2 studies^{28,45}, adjusted data from 1 study³¹) and at hospital discharge (unadjusted data from 3 studies^{18,37,48}, adjusted data from 1 study⁴⁰).
Unadjusted data at both time points suggested less favourable outcomes and showed
an association between DA-CPR and less favourable outcomes (OR 0.73; [0.68,0.77]
and OR 0.83; [0.70,0.98]). The adjusted data suggest no difference between the groups
at 1 month or at hospital discharge (AOR 1.0; [0.91,1.08] and AOR 1.12; [0.94,1.34]).

291

292 Survival

Survival was reported at three time points: at hospital admission (unadjusted 293 data in 1 study²⁸), at 1 month (unadjusted data from 5 studies^{26,27,28,31,47}, adjusted data 294 studies^{31,47}) and at hospital discharge (unadjusted data from 9 from 2 295 studies^{16,18,22,29,36,37,38,41,48}, adjusted data from one study⁴⁰). At hospital admission, DA-296 CPR was not associated with improved outcome (OR 0.71; [0.31,1.60]), but was 297 associated with less favourable outcomes at 1 month (OR 0.75; [0.60,0.95]) and at 298 299 hospital discharge (OR 0.73; [0.67,0.81]. The adjusted data indicated a potential survival benefit with DA-CPR at 1 month (AOR 1.13; [1.06, 1.20]), but not at hospital 300 discharge (AOR 0.95; [0.83-1.09]). 301

302

304

303 Other Outcomes

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (seeAppendix G for details).

- 308 C. DA-CPR vs. No CPR (Table 6, Appendix I)
- 309 Survival with Favourable Neurologic Outcome

When comparing DA-CPR to no CPR with regard to survival with favourable neurologic outcome at hospital discharge, both unadjusted 20,34,37,48 from four studies (OR 2.21; [1.44,3.40]) and adjusted 18,40,48 data from three studies (AOR 1.54; [1.35, 1.76]) indicated a benefit with DA-CPR. The same was true for survival with favourable neurologic outcome at 1 month 26,28,45 (OR 1.45; [1.38,1.53] and AOR 1.81; [1.23, 267]).

- 315
- 316 **Survival**

Survival in this group was reported at hospital, hospital discharge and at 1 317 month. Unadjusted analyses at hospital admission ^{20,28,34} (OR 1.54; [0.62, 3.83]) and at 318 1 month ^{26,27,28} (OR 1.68; [0.63, 4.45]) indicated no survival benefit with DA-CPR, 319 however adjusted analysis at 1 month²⁶ was associated with improved survival (AOR 320 1.63; [1.32, 2.01]). These studies had very low certainty with serious risk of bias. For 321 survival at hospital discharge both unadjusted^{16,18,20,22,29,34,36,37,38,40,41,48} (OR 1.67; [1.39, 322 2.0]) and adjusted^{18,38,40,48} analysis (AOR 1.40; [1.09, 1.78]) indicated benefit with DA-323 CPR. 324

325

327

326 Other Outcomes

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (see Appendix G for details).

330

331 **Pediatric Studies**

332 Subgroup analyses were performed for all mainstream and sensitivity analyses 333 where pediatric studies were available. Heterogeneity ranged from none to substantial.

For all critical outcomes where data were available any observed heterogeneity was 334 due to larger magnitude of effect in the pediatric group while the direction of effect was 335 always similar (Table 3). For the important outcome of shockable initial rhythm there 336 was considerable heterogeneity in mainstream analysis for the system based 337 comparison. The OR was 0.74 (0.54-1) for the pediatric group (1 study²⁶) and 1.15 338 (1.10-1.19) for the adult studies^{27,40,43,45}. The heterogeneity was not confirmed in a 339 sensitivity analysis where Goto et al (2014)²⁵ was replaced by the overlapping study of 340 Akahane et al (2012).¹⁵ 341

For the same outcome, two sensitivity analyses for the comparison of DA-CPR vs. no CPR indicated lower rates of initial shockable rhythm with DA-CPR, while the mainstream analysis and the other 3 of 5 relevant sensitivity analyses indicated higher rates of shockable rhythm with DA-CPR

346

347 Sensitivity Analyses

In sensitivity analyses, we explored the impact of study selection in relation to overlapping study samples. These analyses showed that study selection did not affect our overall review findings (appendices D-F). The hierarchy of how overlapping studies were handled is outlined in Appendix C.

352

353

354 **DISCUSSION**

In this systematic review and meta-analysis which included 33 studies and

544,037,cases, we found evidence that the provision of DA-CPR, compared with no bystander CPR, is associated with improved patient outcome in cases of suspected OHCA. In our comparison of DA-CPR with Bystander CPR the unadjusted and adjusted analyses showed divergent results, with the unadjusted data actually showing an increased benefit of Bystander CPR without dispatcher assistance and the adjusted analysis showing increased benefit of dispatcher-assisted CPR. Across all analyses, certainty of evidence was assessed as either very low.

363 Previous Work in this Area

This updated review supports the 2017 International Consensus on 364 Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with 365 Treatment Recommendations (COSTR) which recommended that dispatchers provide 366 CPR instructions to callers for adults and children with suspected OHCA⁴⁸. The 367 systematic review on which that COSTR was based was conducted in 2015⁴⁹. Since 368 then several new studies have been added to the literature. This review significantly 369 enhances the work previously completed in that it is based on a very robust search, 370 371 reports both adjusted and unadjusted analyses and includes important subgroup and sensitivity analyses based on the nature of the included papers (i.e. accounting for 372 several overlapping datasets, etc.) in order to ensure complete transparency about the 373 meta-analyses. 374

375

376 Interpretation of Findings

The beneficial effects seen can likely be attributed to a few different reasons. Firstly, an increase in BCPR with DA-CPR (from 28.9% to 64% in unadjusted analysis)

was confirmed in all sensitivity analyses and analyses of adjusted odds. Secondly, 379 there was an increase in sustained ROSC evident in unadjusted and sensitivity 380 analyses. Lastly, there was also higher (but not significant) unadjusted odds for the 381 presence of shockable rhythm on arrival of EMS (OR 1.1 (0.97-1.24). In terms of the 382 diminished time to CPR, DA-CPR may increase time compared to BCPR but also 383 decrease time to CPR if first provided by emergency response personnel. The existing 384 evidence from 1 study indicates a shorter time to CPR²⁶. The direction of effect for 385 these patients has been confirmed by adjusted and sensitivity analyses for the majority 386 387 of the outcomes.

There are several challenges for the generalizability of the magnitude of effect in 388 this analysis. The effect was expected to be lower in cases where there is very rapid 389 response time from EMS^{19,45}, to vary according to the baseline BCPR rates and to be 390 affected by the quality of DA-CPR program and the existence of quality assurance 391 programs. Such programs can impact the rates of recognition of OHCA, time to deliver 392 DA-CPR, and how instructions for DA-CPR are delivered (DA protocol, dispatcher 393 handling delays induced by the caller). The effect can also be affected by the previous 394 training experience of bystanders, their likelihood to follow the DA-CPR instructions, 395 and the guality of the CPR provided⁴¹. Across 21 European countries that participated 396 in the EURECA-1 study, less than one third of patients received DA-CPR⁵⁰. In light of 397 our review findings, these data highlight the opportunity, to save more lives through the 398 establishment of systems that ensure the effective delivery of DA-CPR in all cases of 399

OHCA, such as some of the recent work done on dispatcher training and changes in the
 language used on such calls^{51,52}.

402 **Pediatric Findings**

This systematic review added 3 pediatric studies (Ro 2016³³, Lee 2017⁴⁰, 403 Chang¹⁸) to the 2 studies (Akahane 2012¹⁵, Goto 2014²⁶) from the previous iteration in 404 405 2015 and performed additional subgroup analyses comparing these to the adult studies. We found that the results of the meta-analysis of pediatric studies were consistent in 406 direction of effect with the adult studies for the 3 grouped analyses and for sensitivity 407 analyses for all critical outcomes. When heterogeneity was substantial (DA-CPR vs no 408 CPR and select sensitivity analyses), it was due to a larger magnitude of effect in 409 pediatric studies. 410

411

412 Analytic Challenges with Data Quality

This was a very complex meta-analysis due to the variability in data reporting. 413 lack of proper adjustment for confounders and the low certainty of evidence. It may be 414 difficult to conduct a true randomized trial given the known benefits of bystander CPR 415 and therefore we are likely to be left with observational studies of varying quality on 416 which to base our advice. We chose to report both unadjusted and adjusted analyses in 417 order to be transparent about the data on which our recommendations are based. 418 There were several reasons for doing so. Only 14 of the 31 studies reported adjusted 419 data. Reporting only studies with adjusted data would have led to the exclusion of 420 studies with 205,382 patients. Most of the studies reported adjusted data only for their 421

primary outcomes. Therefore, study participants are even fewer for secondary 422 outcomes (critical or important for this meta-analysis). Studies with adjusted data often 423 had fewer participants across all outcomes; a median 7,639 fewer (range: 0 to 92,541 424 fewer). The unadjusted and adjusted data were equal in number to crude OR for only 2 425 outcomes. Also, studies reporting adjusted odds did not always provide higher overall 426 certainty of evidence when compared with those reporting crude ORs. This was due to 427 the presence of serious or very serious risk of bias in both adjusted and unadjusted 428 data, leading to a very low overall certainty of evidence. Downgrading for inconsistency 429 was more often present in the adjusted analyses. Upgrading for large magnitude of 430 effect and plausible confounding occurred more often in the unadjusted data. 431

Adjusting for confounders confirmed benefit for system-based comparisons and 432 in patient-based comparisons when DA-CPR was compared to No CPR. For patient-433 based comparisons, the combined adjusted ORs for DA-CPR vs. BCPR tended to offset 434 the increased benefit that was observed with BCPR. In all publications where this 435 information was provided, patients who received bystander CPR often had a witnessed 436 cardiac arrest occurring in public locations with shorter time to CPR. Therefore, it is 437 possible that the increased benefit with BCPR may be due the effect of these 438 confounders on unadjusted ORs. 439

440

441

442 Strengths & Limitations

The strengths of this systematic review include its rigorous methods including collaboration with an experienced information scientist to develop and conduct the

search, the use of double screening, data extraction and risk of bias assessment,
consultation with world experts from the ILCOR BLS and Pediatric Task Forces
throughout the process and the presentation of both unadjusted and adjusted data for
transparency.

As with all research, the current work also has some limitations including the 449 incongruity and complexity of the data, overlap of datasets in several studies, the high 450 risk of bias and confounding. The included cohort studies were methodologically flawed 451 because most did not adjust for confounding variables in their analysis. The adjusted 452 ORs remained similar to that of the crude ORs for system-based comparisons and for 453 patient-based comparisons where DA-CPR was compared to no CPR. Adjustment for 454 confounders tended to reduce confidence in unadjusted ORs only when DA-CPR was 455 compared to cases with bystander CPR. Consequently, we present both unadjusted 456 and adjusted data here to be clear about why results might not be reliable and should 457 be interpreted with caution. 458

459

460

461 **CONCLUSIONS**

Dispatcher-assisted CPR is associated with a beneficial effect on patient outcomes following out-of-hospital cardiac arrest. When comparing DA-CPR to no CPR, both the unadjusted and adjusted analyses show DA-CPR provides better results in terms of survival with favourable neurologic outcome, survival to hospital discharge, and return of spontaneous circulation. Findings were consistent across sensitivity and subgroup analyses, however evidence certainty for all outcomes was assessed as low or 468 very low.

In terms of areas identified for future research, only one study to date has reported long-term outcomes (past 1 month) and we did not find any studies that measured survivor quality of life post-arrest. This should be a key consideration in the design of future studies/trials, as per the recommendations of the recent Core Outcomes in Sudden Cardiac Arrest (COSCA) statement.⁵³

475 **Sources of Funding & Disclosures**

476	• This Systematic Review was funded by the American Heart Association, on
477	behalf of The International Liaison Committee on Resuscitation (ILCOR). The
478	following authors received payment from this funding source to complete this
479	systematic review: Nikolaos Nikolaou as Expert Systematic Reviewer and
480	David Lightfoot as Information Services, St Michael's Hospital
481	• CV has received peer-reviewed funding to study the topic of Dispatcher-
482	Assisted CPR from the Canadian Institutes of Health Research, Heart &
483	Stroke Foundation of Canada and the Canadian Arrhythmia Network.
484	 KC is supported by an NIHR post-doctoral research fellowship award.
485	KND is supported by a Research Chair from North York General Hospital
486	

487

488 Acknowledgements

Besides the author Christian Vaillancourt (BLS) and Janice Tijssen (PLS), the members

490 of the International Liaison Committee on Resuscitation Basic Life Support (BLS) Task

491 Force and Pediatric Life Support (PLS) Task Force include:

492

BLS Task Force Members	Pediatric Task Force Members
Theresa Olasveegen (Chair)	Ian Maconachie (Chair & CE Rep)
Mary Beth Mancini (Chair)	Richard Aickin (Chair)
Andrew Travers	Allan De Caen
Bo Løfgren	Dianne Atkins
Chika Nishiyama	Robert Bingham
David Stanton	Thomaz Bittencourt Couto
Giuseppe Ristagno	Anne-Marie Guerguerian
Julie Considine	Peter Meaney
Maaret Castren	Vinay Nadkarni
Michael Smyth	Kee-Chong Ng
Peter Kudenchuk	Gabrielle Nuthall
Raffo Escalante	Yong-Kwang Gene Ong
Raul Gazmuri	Amelia Reis
Steven Brooks	Steve Schexnayder
Sung Phil Chung	Naoki Shimizu
Tetsuo Hatanaka	Patrick Van de Voorde
Gavin Perkins	

493

In addition, the following non Task Force members are also acknowledged for their
 contributions: David Lightfoot, Information Scientist, for revising, executing and updating
 the literature searches.

497 Institutional Affiliations

498

- 499 Department of Cardiology and Cardiac Intensive Care, Konstantopouleio General
 500 Hospital (N.N.)
- 502 Office of Research & Innovation, North York General Hospital, Toronto Canada (K.N.D.)
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto
 Canada (K.N.D)
- 507 Warwick Medical School, University of Warwick, Coventry, UK. (K.C.)
- 509 University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. (K.C.) 510
- Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne,
 Australia (P.M.)
- 514 Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University 515 (J.T.)
- Pediatric Intensive Care Unit, London Health Sciences Centre, London, ON, Canada
 (J.T.)
- 520 Department of Emergency Medicine, University of Ottawa and Clinical Epidemiology 521 Program, Ottawa Canada (C.V.)
- 522
- 523 Ottawa Hospital Research Institute, Ottawa Canada. (C.V.)
- 524
- 525

526 **References**

- 1. World Health Organization (2014). The top 10 causes of death. Media centre 2014.
- Berdowski J., (2010) Global Incidences of out-of-Hospital Cardiac Arrest and
 Survival Rates: Systematic Review of 67 Prospective Studies. Resuscitation 81 (11);1479–87,
- Strategies to Improve Cardiac Arrest Survival: A Time to Act. Committee on the Treatment of Cardiac Arrest: Current Status and Future Directions; Board on Health Sciences Policy; Institute of Medicine; Graham R, McCoy MA, Schultz AM, editors. Washington (DC): National Academies Press (US); 2015 Sep 29.
- 4. Stiell IG, Wells GA, Field B, et al (2004): Advanced cardiac life support in out-ofhospital cardiac arrest. N Engl J Med, 351:647-65635% bystander CPR
- 5. Herlitz J et al. (2002), Characteristics and Outcome among Patients Having out
 of Hospital Cardiac Arrest at Home Compared with Elsewhere. Heart 88 (6):
 579–82
- Sasson C, Rogers MAM, Dahl J, Kellerman AL (2010). Predictors of Survival from Out-of-Hospital Cardiac Arrest: A systematic Review and Meta-Analysis. Circulation: Cardiovascular Quality and Outcomes; 3:63-81
- Anderson ML, Cox M, Al-Khatib SM, Nichol G, Thomas KL, Chan PS, SahaChaudhuri P, Fosbol EL, Eigel B, Clendenen B, Peterson ED. Rates of
 cardiopulmonary resuscitation training in the United States. JAMA Internal
 Medicine. 2014;174(2):194–201.
- Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted
 cardiopulmonary resuscitation and survival in cardiac arrest. Circulation. 2001;
 104: 2513–2516.
- Bohm K, Vaillancourt C, Charette ML, Dunford J, Castrén M. In patients with outof-hospital cardiac arrest, does the provision of dispatch cardiopulmonary resuscitation instructions as opposed to no instructions improve outcome: a systematic review of the literature. Resuscitation. 2011 Dec;82(12):1490-5
- 55510. ILCOR Continuous Evidence Evaluation (CEE) and Consensus on Science and556Treatment Recommendations (CoSTRs) process https://costr.ilcor.org/about557(last accessed July 17, 2018)
- 11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke
 M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting
 systematic reviews and meta-analyses of studies that evaluate healthcare
 interventions: explanation and elaboration. BMJ. 2009 Jul 21;339:b2700.
- 562 12. Grading of Recommendations Assessment, Development and Evaluation
 563 (GRADE) Working Group <u>http://www.gradeworkinggroup.org/</u> (last accessed
 564 July 17, 2018)
- 13. Cochrane methods group Tool to Assess Risk of Bias in Cohort Studies <u>http://methods.cochrane.org/sites/methods.cochrane.org.bias/files/public/uploads</u>

567	/Tool%20to%20Assess%20Risk%20of%20Bias%20in%20Cohort%20Studies.pdf
568	(last accessed July 17, 2018)
569	14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat
570	Med. 2002 Jun 15;21(11):1539-58.
571	15. Akahane M, Ogawa T, Tanabe S, Koike S, Horiguchi H, Yasunaga H, Imamura
572	T. Impact of telephone dispatcher assistance on the outcomes of pediatric out-of-
573	hospital cardiac arrest. Crit Care Med. 2012 May;40(5):1410-6.
574	16. Bang A, Biber B, Isaksson L, Lindqvist J, Herlitz J. Evaluation of dispatcher-
575	assisted cardiopulmonary resuscitation. Eur J Emerg Med. 1999;6(3):175-83.
576	17. Besnier E, Damm C, Jardel B, Veber B, Compere V, Dureuil B. Dispatcher-
577	assisted cardiopulmonary resuscitation protocol improves diagnosis and
578	resuscitation recommendations for out-of-hospital cardiac arrest. Emerg Med
579	Australas. 2015 Dec;27(6):590-596.
580	18. Chang I, Lee SC, Shin SD, Song KJ, Ro YS, Park JH, Kong SY. Effects of
581	dispatcher-assisted bystander cardiopulmonary resuscitation on neurological
582	recovery in pediatric patients with out-of-hospital cardiac arrest based on the pre-
583	hospital emergency medical service response time interval. Resuscitation. 2018
584	Jun 28;130:49-56.
585	19. Culley LL, Clark JJ, Eisenberg MS, Larsen MP. Dispatcher-assisted telephone
586	CPR: common delays and time standards for delivery. Ann Emerg Med.
587	1991;20(4):362-6.
588	20. Dami F, Heymann E, Pasquier M, Fuchs V, Carron PN, Hugli O. Time to identify
589	cardiac arrest and provide dispatch-assisted cardio-pulmonary resuscitation in a
590	criteria-based dispatch system. Resuscitation. 2015;97:27-33.
591	21. Dami F, Carron PN, Praz L, Fuchs V, Yersin B. Why bystanders decline
592	telephone cardiac resuscitation advice. Acad Emerg Med. 2010;17(9):1012-5.
593	22. Eisenberg MS, Hallstrom AP, Carter WB, Cummins RO, Bergner L, Pierce J.
594	Emergency CPR instruction via telephone. Am J Public Health. 1985;75(1):47-50.
595	23. Fujie K, Nakata Y, Yasuda S, Mizutani T, Hashimoto K. Do dispatcher
596	instructions facilitate bystander-initiated cardiopulmonary resuscitation and
597	improve outcomes in patients with out-of-hospital cardiac arrest? A comparison
598	of family and non-family bystanders. Resuscitation. 2014;85(3):315-9.
599	24. Fukushima H, Imanishi M, Iwami T, et al. Abnormal breathing of sudden cardiac
600	arrest victims described by laypersons and its association with emergency
601	medical service dispatcher-assisted cardiopulmonary resuscitation instruction.
602	Emerg Med J. 2015 Apr;32(4):314-7.
603	25. Fukushima H, Kawai Y, Asai H, et al. Performance review of regional emergency
604	medical service pre-arrival cardiopulmonary resuscitation with or without
605	dispatcher instruction: a population-based observational study. Acute med.
606	surg 2017;4(3):293-299.
607	26. Goto Y, Maeda T, Goto Y. Impact of dispatcher-assisted bystander
608	cardiopulmonary resuscitation on neurological outcomes in children with out-of-
609	hospital cardiac arrests: a prospective, nationwide, population-based cohort
610	study. J Am Heart Assoc. 2014;3(3):e000499.

- 27. Gotz J, Petutschnigg B, Wasler A, Wran-Schumer D, Hansak P. Bystander
 resuscitation as a measure of success. Notfall Rettungsmed 2017 · 20:470–476
- 28. Harjanto S, Na MX, Hao Y, et al. A before-after interventional trial of dispatcher assisted cardio-pulmonary resuscitation for out-of-hospital cardiac arrests in
 Singapore. Resuscitation. 2016 May 1;102:85-93.
- 29. Hiltunen PV, Silfvast TO, Jantti TH, Kuisma MJ, Kurola JO, FINNRESUSCI
 Prehospital Study Group. Emergency dispatch process and patient outcome in
 bystander-witnessed out-of-hospital cardiac arrest with a shockable rhythm. Eur J
 Emerg Med. 2015;22(4):266-72.
- 30. Iwamura T, Sakamoto Y, Kutsukata N, et al. An Utstein-style examination of out of-hospital cardiac arrest patients in Saga Prefecture, Japan. J Nippon Med
 Sch. 2013;80(3):184-91.
- 31. Japanese Circulation Society Resuscitation Science Study Group. Chest compression-only bystander cardiopulmonary resuscitation in the 30:2
 compression-to-ventilation ratio era. Nationwide observational study. Circ J.
 2013;77(11):2742-50.
- 32. Kuisma M, Boyd J, Vayrynen T, Repo J, Nousila-Wiik M, Holmstrom P.
 Emergency call processing and survival from out-of-hospital ventricular
 fibrillation. Resuscitation. 2005 Oct;67(1):89-93.
- 33. Lee YJ, Song KJ, Shin SD, et al. Dispatcher-Assisted Cardiopulmonary
 Resuscitation Program and Outcomes After Pediatric Out-of-Hospital Cardiac
 Arrest. Pediatric Emerg Care. 2017 Dec 1 (Epub ahead of print).
- 34. Lewis M, Stubbs BA, Eisenberg MS. Dispatcher-assisted cardiopulmonary
 resuscitation: time to identify cardiac arrest and deliver chest compression
 instructions. Circulation. 2013;128(14):1522-30.
- 35. Moriwaki Y., Tahara Y., Kosuge T., Suzuki N. The effect of telephone advice on cardiopulmonary resuscitation (CPR) on the rate of bystander CPR in out-ofhospital cardiopulmonary arrest in a typical urban area. Hong Kong J. Emerg.
 Med.. 2016;23(4):220-226.
- 36. Oman G, Bury G. Use of telephone CPR advice in Ireland: Uptake by callers and
 delays in the assessment process. Resuscitation. 2016;102:6-10.
- 37. Park JH, Ro YS, Shin SD, Song KJ, Hong KJ, Kong SY. Dispatcher-assisted
 bystander cardiopulmonary resuscitation in rural and urban areas and survival
 outcomes after out-of-hospital cardiac arrest. Resuscitation. 2018 Apr;125:1-7
- 38. Rea TD, Fahrenbruch C, Culley L, et al. CPR with chest compression alone or
 with rescue breathing. N Engl J Med. 2010;363(5):423-33.
- 39. Ro YS, Shin SD, Song KJ, et al. Effects of Dispatcher-assisted Cardiopulmonary
 Resuscitation on Survival Outcomes in Infants, Children, and Adolescents with
 Out-of-hospital Cardiac Arrests. Resuscitation. 2016;108:20-26.
- 40. Ro YS, Shin SD, Lee YJ, et al. Effect of Dispatcher-Assisted Cardiopulmonary
 Resuscitation Program and Location of Out-of-Hospital Cardiac Arrest on
 Survival and Neurologic Outcome. Ann Emerg Med. 2017;69(1):52-61.e1.
- 41. Shah M, Bartram C, Irwin K, et al. Evaluating Dispatch-Assisted CPR Using the CARES Registry. Prehosp Emerg Care. 2018;22(2):222-228.

42. Song KJ, Shin SD, Park CB, et al. Dispatcher-assisted bystander 655 656 cardiopulmonary resuscitation in a metropolitan city: a before-after populationbased study. Resuscitation. 2014;85(1):34-41. 657 658 43. Stipulante S, Tubes R, El Fassi M, et al. Implementation of the ALERT algorithm, a new dispatcher-assisted telephone cardiopulmonary resuscitation protocol, in 659 non-Advanced Medical Priority Dispatch System (AMPDS) Emergency Medical 660 Services centres. Resuscitation. 2014;85(2):177-81. 661 44. Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does 662 dispatcher-assisted CPR generate the same outcomes as spontaneously 663 delivered bystander CPR in Japan?. Am J Emerg Med. 2018;36(3):384-391. 664 45. Takei Y, Kamikura T, Nishi T, et al. Recruitments of trained citizen volunteering 665 for conventional cardiopulmonary resuscitation are necessary to improve the 666 outcome after out-of-hospital cardiac arrests in remote time-distance area: A 667 nationwide population-based study. Resuscitation. 2016;105:100-8. 668 46. Vaillancourt C, Verma A, Trickett J, et al. Evaluating the effectiveness of 669 dispatch-assisted cardiopulmonary resuscitation instructions. Acad Emerg Med. 670 671 2007;14(10):877-83. 47. Viereck S, Palsgaard Moller T, Kjaer Ersboll A, Folke F, Lippert F. Effect of 672 bystander CPR initiation prior to the emergency call on ROSC and 30day 673 survival-An evaluation of 548 emergency calls. Resuscitation. 2017;111:55-61. 674 48. Wu Z, Panczyk M, Spaite DW, et al. Telephone cardiopulmonary resuscitation is 675 independently associated with improved survival and improved functional 676 677 outcome after out-of-hospital cardiac arrest. Resuscitation. 2018;122:135-140. 49. Olasveengen et al. 2017 International Consensus on Cardiopulmonary 678 Resuscitation and Emergency Cardiovascular Care Science with Treatment 679 Recommendations Summary. Resuscitation (2017) 121:201-214 680 50. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, et al and the 681 EuReCa ONE Collaborators. EuReCa ONE-27 Nations, ONE Europe, ONE 682 Registry: A prospective one month analysis of out-of-hospital cardiac arrest 683 outcomes in 27 countries in Europe. . Resuscitation. 2016 Aug;105:188-95. doi: 684 10.1016/j.resuscitation.2016.06.004. Epub 2016 Jun 16. Erratum in: 685 Resuscitation. 2016 Dec;109 :145-146. 686 51. Riou M, Ball S, Whiteside A, Bray J, Perkins GD, Smith K, O'Halloran KL, 687 Fatovich DM, Inoue M, Bailey P, Cameron P, Brink D, Finn J. 'We're going to do 688 CPR': A linguistic study of the words used to initiate dispatcher-assisted CPR and 689 their association with caller agreement. Resuscitation. 2018 Dec;133:95-100 690 52. Tsunoyama T, Nakahara S, Yoshida M, Kitamura M, Sakamoto T. Effectiveness 691 of dispatcher training in increasing bystander chest compression for out-of-692 hospital cardiac arrest patients in Japan. Acute Med Surg. 2017 Aug 7;4(4):439 693 53. Haywood K, Whitehead L, Nadkarni VM, Achana F, Beesems S, et al; COSCA 694 Collaborators. COSCA (Core Outcome Set for Cardiac Arrest) in Adults: An 695 Advisory Statement from the International Liaison Committee on Resuscitation. 696 Resuscitation. 2018 Jun;127:147-163 697 698

699 List of Tables, Figures and Appendices

700 (listed in the order they appear in the manuscript)

- 701
 - Table 1 Study Characteristics
- 702 Table 2 – Risk of Bias Assessment
- 703
- Table 3 Brief Table of Findings 704
- Table 4 Summary of Findings Systems Comparisons 705
- Table 5 Summary of Findings DA-CPR vs. Bystander CPR 706
- Table 6 Summary of Findings DA-CPR vs. No CPR 707
- 708
- Figure 1 PRISMA Flow Chart 709
- Figure 2 Caterpillar Plot Diagram 710
- Appendix A List of Priority Outcomes 711
- Appendix B Full Search Strategy 712
- · Appendix C Hierarchy for Including Studies with Overlapping Data 713
- 714 Appendix D – Additional Sensitivity Analyses: Systems Comparisons
- Appendix E Additional Sensitivity Analyses: DA-CPR vs. Bystander CPR 715
- Appendix F Additional Sensitivity Analyses: DA-CPR vs. No CPR 716
- 717 Appendix G-Evidence Profile Tables-Systems Comparison
- Appendix H-Evidence Profile tables-DA-CPR vs. Bystander CPR 718
- Appendix I-Evidence Profile tables-DA-CPR vs. No CPR 719
- 720 721

A Systematic Review and Meta-Analysis of the Effect of Dispatcher-Assisted CPR on Outcomes from Sudden Cardiac Arrest in Adults and Children.

Running Title: Nikolaou – DA-CPR systematic review

Nikolaos Nikolaou, MD

Department of Cardiology and Cardiac Intensive Care, Konstantopouleio General Hospital, Agias Olgas 3-5, Nea Ionia 142 33, Athens, Greece

Katie N. Dainty, PhD

Research & Innovation, North York General Hospital and Institute of Health Policy, Management and Evaluation, University of Toronto

Keith Couper, RN, PhD

Warwick Medical School, University of Warwick, Coventry, UK. University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.

Peter Morley, MBBS, GCertClinTeach, FRACP, FANZCA, FCICM, AFRACMA, FERC, FAHA

Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne, Australia

Janice Tijssen, MD, MSc, FRCPC

Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, and Pediatric Intensive Care Unit, London Health Sciences Centre, London, ON, Canada

Christian Vaillancourt, MD, MSc, FRCPC, CSPQ

Department of Emergency Medicine, University of Ottawa and Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.

On behalf of the International Liaison Committee on Resuscitation's (ILCOR) Basic Life Support and Pediatric Task Forces

Corresponding Author:

Nikolaos Nikolaou nikosnik@otenet.gr Konstantopouleio General Hospital Department of Cardiology and Cardiac Intensive Care Agias Olgas 3-5, Nea Ionia 142 33 Athens, Greece +30 21 3205 7000

TOTAL MANUSCRIPT WORD COUNT = 3848

ABSTRACT (348 words)

BACKGROUND: Dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) has been reported in individual studies to significantly increase the rate of bystander CPR and survival from cardiac arrest.

METHODS: We undertook a systematic review and meta-analysis to evaluate the impact of DA-CPR programs on key clinical outcomes following out-of-hospital cardiac arrest. We searched the PubMED, EMBASE, CINAHL, ERIC and Cochrane Central Register of Controlled Trials databases from inception until July 2018. Eligible studies compared systems with and without dispatcher-assisted CPR programs. The results of included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, case-based comparison of DA-CPR to bystander CPR, and case-based comparisons of DA-CPR to bystander CPR, and case-based comparisons of DA-CPR to eligible to the system was used to assess certainty of evidence at an outcome level. We used random-effects models to produce summary effect sizes across all outcomes.

RESULTS: Of 5,531 citations screened, 33 studies were eligible for inclusion. All included studies were observational. Evidence certainty across all outcomes was assessed as low or very low. In system-level and patient-level comparisons, the provision of DA-CPR compared with no DA-CPR was consistently associated with improved outcome across all analyses. Comparison of DA-CPR to bystander CPR

produced conflicting results. Findings were consistent across sensitivity analyses and the pediatric sub-group.

CONCLUSION: These results support the recommendation that dispatchers provide CPR instructions to callers for adults and children with suspected OHCA.

Review registration: PROSPERO- CRD42018091427

INTRODUCTION

Out-of-hospital cardiac arrest (OHCA) is a significant cause of death world wide¹ with an annual rate of between 55 and 113/100,000 person-years.² The immediate commencement of cardiopulmonary resuscitation (CPR) by bystanders increases the likelihood of a meaningful neurological recovery.^{3,4} The majority of cardiac arrests are witnessed by someone that could initiate this life-saving intervention, yet rates of bystander CPR in many systems are disappointingly low. ^{5,6}

A key challenge is that bystanders may be untrained or uncomfortable in performing CPR without assistance.⁷ Dispatcher-assisted CPR (DA-CPR), also known as telecommunicator-assisted CPR (T-CPR), is a system in which dispatchers provide CPR instructions to emergency callers over the telephone. The goal of this approach is to increase the performance of bystander CPR, and ultimately improve survival.⁸

In 2010, Bohm et al conducted a systematic review which concluded that evidence supporting the use of DA-CPR was limited.⁹ The subsequent publication of additional studies led to clinical experts within the International Liaison Committee on Resuscitation (ILCOR) recommending the re-examination of this question as a key research priority within their continuous evidence evaluation process¹⁰.

METHODS

We conducted a systematic review and meta-analysis to evaluate the effect of DA-CPR provision, compared with no DA-CPR provision, on key clinical outcomes in cases of suspected OHCA.

The review was performed in accordance with and funded by the ILCOR continuous evidence evaluation process.¹⁰ This report complies with the PRISMA checklist for reporting systematic reviews.¹¹ We used the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach to categorise certainty of evidence.¹² Our protocol was registered with the PROSPERO database (PROSPERO - CRD42018091427).

Inclusion and Exclusion Criteria

All primary research studies including human participants, adult and pediatric patients, with cardiac arrest outside a hospital setting, and which reported outcomes of interest were included. Randomised controlled trials (RCTs) and non-randomised studies (non-randomised controlled trials, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion.

Studies including animals, simulated patients and humans without a comparator group were not eligible. We also excluded commentaries, reviews, and studies not published in peer-reviewed journals or only as abstracts.

Information Sources and Search Strategies

In collaboration with an expert information specialist, we conducted a comprehensive search of five electronic databases: PubMED, EMBASE, CINAHL, ERIC, and the Cochrane Library from inception to July 1, 2018. The search strategy combined MESH and free text terms to describe the population and the intervention/comparator. No language or geographic restrictions were applied. A full

search strategy is included in the electronic supplement. Search results from all five databases were merged and duplicate references were manually discarded. Additional citations were identified through backward citation tracking of the included studies, consultation with clinical experts on ILCOR task forces, and a search of clinical trials registries.

Study Selection and Data Extraction

Titles and abstracts of all studies that resulted from the search were independently screened by two experienced reviewers (NN and KND) to determine eligibility for full-text review. The same reviewers reviewed full text articles of all potentially relevant articles and extracted data from eligible full-text articles. Data collection forms were developed and pilot-tested to capture relevant data. Each step of review was discussed, and any incongruence was resolved by consensus.

Outcomes

Outcomes were pre-defined and ranked by the ILCOR BLS and Pediatric Task Forces (see electronic supplement). The clinical outcomes of interest were: health related quality of life; favorable neurological outcomes; survival; rate of bystander CPR; return of spontaneous circulation (ROSC); initial shockable rhythm; and time to CPR.

Assessment of Risk of Bias and evidence certainty

Two reviewers (KND and JT) independently assessed each included study for risk of bias using the GRADE handbook¹² advice and the Cochrane Methods Group

template for observational studies.¹³ For each outcome, two reviewers (KC, NN) also assessed publication bias according to the criteria defined by GRADE (study design, study size, lag bias, and comprehensiveness of search strategy).

We categorised the overall certainty of evidence for each outcome using the approach recommended by GRADE.

Data Synthesis and Analysis

The results of included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, case-based comparison of DA-CPR to bystander CPR, and case-based comparisons of DA-CPR to no CPR before EMS arrival. Summary effect sizes were produced across all outcomes and a subgroup analysis was pre-specified for pediatric studies.

Given the observational nature and the differences in settings and population of included studies we could not assume a common effect size, so we used a random effects model for meta-analysis, to avoid discounting a small study by giving it a very small weight (as in a fixed-effect analysis). We used Review Manager software (Version 5.1. Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2011), to calculate combined odds ratios (ORs) with 95% confidence intervals and measure statistical heterogeneity. Heterogeneity between studies was described using the I² statistic. The I² was categorized according to GRADE recommendations as low, moderate, substantial or considerable.¹⁴ To avoid reducing the number of studies available for synthesis, mainstream analyses included studies reporting unadjusted data. When there were studies coming from the same region and with overlapping

populations, only the study (or combination of non-overlapping studies) that provided the largest number of participants was used.

We also performed a sensitivity analysis including only studies reporting ORs adjusted for the confounders that were deemed most important for each outcome by the study authors. These two analyses were presented in GRADE tables and the overall certainty of evidence was evaluated according to GRADE. Data from the pre-specified subgroup analysis for the pediatric group i.e. number and combined effect size of pediatric studies and heterogeneity with regard to the rest of the studies, were also presented in the summary of findings tables. Raw data were used in order to calculate unadjusted summary ORs while the generic inverse variance method was used in order to combine the reported adjusted odds.

Additional sensitivity analyses were performed replacing excluded studies with the next largest study and so on until all studies from the same region were entered. These analyses were not entered into GRADE tables and the overall certainty of evidence was not assessed but they are included in Appendix B. These analyses were used to assess robustness of the combined effect size that has been calculated for each outcome.

RESULTS

Overall Description of Included Studies

A total of 5,531 citations were identified through the search methods described above. Of these, 93 full text articles were reviewed, and 33 studies were included in this

8

systematic review.¹⁵⁻⁴⁷ Of the 60 studies excluded at the full text stage, the majority were removed due to the lack of a comparison between DA-CPR and no DA-CPR (see Figure 1 for the detailed PRISMA flowchart).

Study Characteristics

A total of 33 studies reported on the effectiveness of dispatcher-assisted CPR in out-of-hospital cardiac arrest. Geographically, the studies were conducted in a range of countries with the majority from Japan (n = 10), United States (n = 6) and Korea (n=6).. A total of 544,037 cases (Table 1) were included. The median number of participants per study was 803 patients (IQR: 392 to 4,899 patients; Range: 145 to 193,914 patients). No RCTs were identified. All the included studies were observational and included 11 retrospective cohort studies, 9 prospective cohort studies, 7 retrospective before-after studies and 6 cross-sectional studies. The duration of follow-up ranged from 1 month to 1 year following cardiac arrest. Of the 33 total studies, the number included in each meta-analysis for the outcomes of interest was variable due to the inconsistent nature of reporting in each of the studies. The way in which studies with overlapping data were entered in the mainstream and sensitivity analyses is shown in Appendix C.

Patient Characteristics

Of the 33 included studies, 15 were conducted in the adult population only^{16,20,22,25,27,31,34,37,41-45,47,49}, five were conducted in the pediatric population

9

only^{15,18,26,33,40}, and 13 included both adults and children^{17,19,21,23,28-30,32,35-37,45,48}. The proportion of males ranged from 52% to 85% (average 66%). The age reported for adult-only studies ranged from 18 to >90 years and ranged between 0 to 19 years for pediatric-only studies (Table 1).

Risk of Bias Assessment

All of the included studies were observational cohort studies and most were retrospective (18/33). With respect to overall risk of bias, 1 study was deemed at low risk of bias, 16 were at moderate risk of bias, and 16 were at high risk of bias (Table 2). The main methodological shortcoming was related to the comparability of cohorts on the basis of the design or analysis, as the majority did not adjust for potential confounding variables. In addition, some studies were not clear about their assessment of exposure and the majority did not report the duration of follow-up or how they dealt with missing data.

Outcomes

The results of included studies were classified into 3 categories for the purposes of more accurate analysis: comparison of outcomes in systems with DA-CPR programs, comparison of DA-CPR to bystander CPR, and comparisons of DA-CPR to no CPR before EMS arrival. For the comparisons of DA-CPR provided versus not provided, we were able to compare 11 outcomes, 7 of which had adjusted analyses. For DA-CPR compared to bystander CPR, we were able to compare 12 outcomes, 7 which had adjusted analyses. For DA-CPR compared to no CPR, we were able to compare 11 outcomes, 5 which had adjusted analyses. The studies included in each analysis are indicated in Table 4-6. The outcomes of interest were then analyzed within each category and a summary of findings is outlined in Table 3 and Figure 2. The number of confounders that were adjusted for in the multivariable analyses ranged from 4 to 11. The most frequently used ones were: gender 11/ 14 (79% of studies), witnessed arrest 10/14 (71% of studies), location of arrest (public vs. home, 9/14- 64% of studies), call to response time 9/14 (64% of studies), shockable initial rhythm 6/14(43% of studies), and etiology of cardiac arrest 5/14 (36% of studies).

A. System Comparison

This analysis represents those published comparisons of before-after retrospective studies but also studies where emergency medical systems had DA-CPR programs in place but where the protocol was applied variably, ie. within an EMS system, outcomes for those patients who received DA-CPR compared to those who did not. A summary of findings for this group is outlined in Table 4. Evidence Profile tables for these comparisons appear in Appendix G.

Survival with Favourable Neurologic Outcome

Among the studies included, survival with favourable neurological outcome was recorded at hospital discharge (2 studies reported unadjusted analyses^{17,42}; 1 study reported adjusted analyses⁴²) and one-month (3 unadjusted^{26,28,44}; 2 adjusted^{26,28}). In unadjusted analyses, DA-CPR was associated with improved survival with favourable neurological outcome at discharge and one-month (OR 1.10; [1.03,1.17]). Adjusted

analyses produced similar findings (AOR 1.47; [1.03,2.09]). Certainty of evidence was assessed as very low for all analyses.

Survival

Survival was reported at three time-points: hospital admission (unadjusted six studies^{17,24,28,35,42,46} adjusted one study²⁸); one-month (unadjusted two studies^{26,28}; adjusted two studies^{26,28}) and at hospital discharge (unadjusted seven studies^{16,19,29,32,42,43,46}; adjusted one study⁴²). Systems with Dispatcher-Assisted CPR programs were not associated with significantly improved survival at any time-point in unadjusted analyses, although the point estimate suggested benefit. In adjusted analyses, DA-CPR was associated with improved outcome at 1-month (AOR 1.40; [1.07,1.85]) and at hospital discharge (AOR 1.33; [1.07,1.66]), but not at hospital admission (AOR 0.97 [0.70, 1.34]). Certainty of evidence was assessed as very low in all analyses (Table 4 and Appendix G).

Other Outcomes

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (see Appendix G for details).

B. DA-CPR versus Bystander CPR (Table 5, Appendix H)

Survival with Favourable Neurologic Outcome

Survival with favourable neurologic outcome was reported at 1 month (unadjusted data was available in 2 studies^{28,45}, adjusted data from 1 study³¹) and at

hospital discharge (unadjusted data from 3 studies^{18,37,48}, adjusted data from 1 study⁴⁰). Unadjusted data at both time points suggested less favourable outcomes and showed an association between DA-CPR and less favourable outcomes (OR 0.73; [0.68,0.77] and OR 0.83; [0.70,0.98]). The adjusted data suggest no difference between the groups at 1 month or at hospital discharge (AOR 1.0; [0.91,1.08] and AOR 1.12; [0.94,1.34]).

Survival

Survival was reported at three time points: at hospital admission (unadjusted data in 1 study²⁸), at 1 month (unadjusted data from 5 studies^{26,27,28,31,47}, adjusted data from 2 studies^{31,47}) and at hospital discharge (unadjusted data from 9 studies^{16,18,22,29,36,37,38,41,48}, adjusted data from one study⁴⁰). At hospital admission, DA-CPR was not associated with improved outcome (OR 0.71; [0.31,1.60]), but was associated with less favourable outcomes at 1 month (OR 0.75; [0.60,0.95]) and at hospital discharge (OR 0.73; [0.67,0.81]. The adjusted data indicated a potential survival benefit with DA-CPR at 1 month (AOR 1.13; [1.06, 1.20]), but not at hospital discharge (AOR 0.95; [0.83-1.09]).

Other Outcomes

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (see Appendix G for details).

C. DA-CPR vs. No CPR (Table 6, Appendix I) Survival with Favourable Neurologic Outcome

When comparing DA-CPR to no CPR with regard to survival with favourable neurologic outcome at hospital discharge, both unadjusted ^{20,34,37,48} from four studies (OR 2.21; [1.44,3.40]) and adjusted^{18,40,48} data from three studies (AOR 1.54; [1.35, 1.76]) indicated a benefit with DA-CPR. The same was true for survival with favourable neurologic outcome at 1 month ^{26,28,45} (OR 1.45; [1.38,1.53] and AOR 1.81; [1.23, 267]).

Survival

Survival in this group was reported at hospital, hospital discharge and at 1 month. Unadjusted analyses at hospital admission ^{20,28,34} (OR 1.54; [0.62, 3.83]) and at 1 month ^{26,27,28} (OR 1.68; [0.63, 4.45]) indicated no survival benefit with DA-CPR, however adjusted analysis at 1 month²⁶ was associated with improved survival (AOR 1.63; [1.32, 2.01]). These studies had very low certainty with serious risk of bias. For survival at hospital discharge both unadjusted^{16,18,20,22,29,34,36,37,38,40,41,48} (OR 1.67; [1.39, 2.0]) and adjusted^{18,38,40,48} analysis (AOR 1.40; [1.09, 1.78]) indicated benefit with DA-CPR.

Other Outcomes

Data for ROSC, initial shockable rhythm and time to CPR all favoured DA-CPR (see Appendix G for details).

Pediatric Studies

Subgroup analyses were performed for all mainstream and sensitivity analyses where pediatric studies were available. Heterogeneity ranged from none to substantial.

For all critical outcomes where data were available any observed heterogeneity was due to larger magnitude of effect in the pediatric group while the direction of effect was always similar (Table 3). For the important outcome of shockable initial rhythm there was considerable heterogeneity in mainstream analysis for the system based comparison. The OR was 0.74 (0.54-1) for the pediatric group (1 study²⁶) and 1.15 (1.10-1.19) for the adult studies^{27,40,43,45}. The heterogeneity was not confirmed in a sensitivity analysis where Goto et al (2014)²⁵ was replaced by the overlapping study of Akahane et al (2012).¹⁵

For the same outcome, two sensitivity analyses for the comparison of DA-CPR vs. no CPR indicated lower rates of initial shockable rhythm with DA-CPR, while the mainstream analysis and the other 3 of 5 relevant sensitivity analyses indicated higher rates of shockable rhythm with DA-CPR

Sensitivity Analyses

In sensitivity analyses, we explored the impact of study selection in relation to overlapping study samples. These analyses showed that study selection did not affect our overall review findings (appendices D-F). The hierarchy of how overlapping studies were handled is outlined in Appendix C.

DISCUSSION

In this systematic review and meta-analysis which included 33 studies and

544,037,cases, we found evidence that the provision of DA-CPR, compared with no bystander CPR, is associated with improved patient outcome in cases of suspected OHCA. In our comparison of DA-CPR with Bystander CPR the unadjusted and adjusted analyses showed divergent results, with the unadjusted data actually showing an increased benefit of Bystander CPR without dispatcher assistance and the adjusted analysis showing increased benefit of dispatcher-assisted CPR. Across all analyses, certainty of evidence was assessed as either very low.

Previous Work in this Area

This updated review supports the 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations (COSTR) which recommended that dispatchers provide CPR instructions to callers for adults and children with suspected OHCA⁴⁸. The systematic review on which that COSTR was based was conducted in 2015⁴⁹. Since then several new studies have been added to the literature. This review significantly enhances the work previously completed in that it is based on a very robust search, reports both adjusted and unadjusted analyses and includes important subgroup and sensitivity analyses based on the nature of the included papers (i.e. accounting for several overlapping datasets, etc.) in order to ensure complete transparency about the meta-analyses.

Interpretation of Findings

The beneficial effects seen can likely be attributed to a few different reasons. Firstly, an increase in BCPR with DA-CPR (from 28.9% to 64% in unadjusted analysis) was confirmed in all sensitivity analyses and analyses of adjusted odds. Secondly, there was an increase in sustained ROSC evident in unadjusted and sensitivity analyses. Lastly, there was also higher (but not significant) unadjusted odds for the presence of shockable rhythm on arrival of EMS (OR 1.1 (0.97-1.24). In terms of the diminished time to CPR, DA-CPR may increase time compared to BCPR but also decrease time to CPR if first provided by emergency response personnel. The existing evidence from 1 study indicates a shorter time to CPR²⁶. The direction of effect for these patients has been confirmed by adjusted and sensitivity analyses for the majority of the outcomes.

There are several challenges for the generalizability of the magnitude of effect in this analysis. The effect was expected to be lower in cases where there is very rapid response time from EMS^{19,45}, to vary according to the baseline BCPR rates and to be affected by the quality of DA-CPR program and the existence of quality assurance programs. Such programs can impact the rates of recognition of OHCA, time to deliver DA-CPR, and how instructions for DA-CPR are delivered (DA protocol, dispatcher handling delays induced by the caller). The effect can also be affected by the previous training experience of bystanders, their likelihood to follow the DA-CPR instructions, and the quality of the CPR provided⁴¹. Across 21 European countries that participated in the EURECA-1 study, less than one third of patients received DA-CPR⁵⁰. In light of our review findings, these data highlight the opportunity, to save more lives through the establishment of systems that ensure the effective delivery of DA-CPR in all cases of

17

OHCA, such as some of the recent work done on dispatcher training and changes in the language used on such calls^{51,52}.

Pediatric Findings

This systematic review added 3 pediatric studies (Ro 2016³³, Lee 2017⁴⁰, Chang¹⁸) to the 2 studies (Akahane 2012¹⁵, Goto 2014²⁶) from the previous iteration in 2015 and performed additional subgroup analyses comparing these to the adult studies. We found that the results of the meta-analysis of pediatric studies were consistent in direction of effect with the adult studies for the 3 grouped analyses and for sensitivity analyses for all critical outcomes. When heterogeneity was substantial (DA-CPR vs no CPR and select sensitivity analyses), it was due to a larger magnitude of effect in pediatric studies.

Analytic Challenges with Data Quality

This was a very complex meta-analysis due to the variability in data reporting, lack of proper adjustment for confounders and the low certainty of evidence. It may be difficult to conduct a true randomized trial given the known benefits of bystander CPR and therefore we are likely to be left with observational studies of varying quality on which to base our advice. We chose to report both unadjusted and adjusted analyses in order to be transparent about the data on which our recommendations are based. There were several reasons for doing so. Only 14 of the 31 studies reported adjusted data. Reporting only studies with adjusted data would have led to the exclusion of studies with 205,382 patients. Most of the studies reported adjusted data only for their

primary outcomes. Therefore, study participants are even fewer for secondary outcomes (critical or important for this meta-analysis). Studies with adjusted data often had fewer participants across all outcomes; a median 7,639 fewer (range: 0 to 92,541 fewer). The unadjusted and adjusted data were equal in number to crude OR for only 2 outcomes. Also, studies reporting adjusted odds did not always provide higher overall certainty of evidence when compared with those reporting crude ORs. This was due to the presence of serious or very serious risk of bias in both adjusted and unadjusted data, leading to a very low overall certainty of evidence. Downgrading for inconsistency was more often present in the adjusted analyses. Upgrading for large magnitude of effect and plausible confounding occurred more often in the unadjusted data.

Adjusting for confounders confirmed benefit for system-based comparisons and in patient-based comparisons when DA-CPR was compared to No CPR. For patientbased comparisons, the combined adjusted ORs for DA-CPR vs. BCPR tended to offset the increased benefit that was observed with BCPR. In all publications where this information was provided, patients who received bystander CPR often had a witnessed cardiac arrest occurring in public locations with shorter time to CPR. Therefore, it is possible that the increased benefit with BCPR may be due the effect of these confounders on unadjusted ORs.

Strengths & Limitations

The strengths of this systematic review include its rigorous methods including collaboration with an experienced information scientist to develop and conduct the search, the use of double screening, data extraction and risk of bias assessment, consultation with world experts from the ILCOR BLS and Pediatric Task Forces throughout the process and the presentation of both unadjusted and adjusted data for transparency.

As with all research, the current work also has some limitations including the incongruity and complexity of the data, overlap of datasets in several studies, the high risk of bias and confounding. The included cohort studies were methodologically flawed because most did not adjust for confounding variables in their analysis. The adjusted ORs remained similar to that of the crude ORs for system-based comparisons and for patient-based comparisons where DA-CPR was compared to no CPR. Adjustment for confounders tended to reduce confidence in unadjusted ORs only when DA-CPR was compared to cases with bystander CPR. Consequently, we present both unadjusted and adjusted data here to be clear about why results might not be reliable and should be interpreted with caution.

CONCLUSIONS

Dispatcher-assisted CPR is associated with a beneficial effect on patient outcomes following out-of-hospital cardiac arrest. When comparing DA-CPR to no CPR, both the unadjusted and adjusted analyses show DA-CPR provides better results in terms of survival with favourable neurologic outcome, survival to hospital discharge, and return of spontaneous circulation. Findings were consistent across sensitivity and subgroup analyses, however evidence certainty for all outcomes was assessed as low or very low.

In terms of areas identified for future research, only one study to date has reported long-term outcomes (past 1 month) and we did not find any studies that measured survivor quality of life post-arrest. This should be a key consideration in the design of future studies/trials, as per the recommendations of the recent Core Outcomes in Sudden Cardiac Arrest (COSCA) statement.⁵³

Sources of Funding & Disclosures

- This Systematic Review was funded by the American Heart Association, on behalf of The International Liaison Committee on Resuscitation (ILCOR). The following authors received payment from this funding source to complete this systematic review: Nikolaos Nikolaou as Expert Systematic Reviewer and David Lightfoot as Information Services, St Michael's Hospital
- CV has received peer-reviewed funding to study the topic of Dispatcher-Assisted CPR from the Canadian Institutes of Health Research, Heart & Stroke Foundation of Canada and the Canadian Arrhythmia Network.
- KC is supported by an NIHR post-doctoral research fellowship award.
- KND is supported by a Research Chair from North York General Hospital

Acknowledgements

Besides the author Christian Vaillancourt (BLS) and Janice Tijssen (PLS), the members of the International Liaison Committee on Resuscitation Basic Life Support (BLS) Task Force and Pediatric Life Support (PLS) Task Force include:

BLS Task Force Members	Pediatric Task Force Members
Theresa Olasveegen (Chair)	Ian Maconachie (Chair & CE Rep)
Mary Beth Mancini (Chair)	Richard Aickin (Chair)
Andrew Travers	Allan De Caen
Bo Løfgren	Dianne Atkins
Chika Nishiyama	Robert Bingham
David Stanton	Thomaz Bittencourt Couto
Giuseppe Ristagno	Anne-Marie Guerguerian
Julie Considine	Peter Meaney
Maaret Castren	Vinay Nadkarni
Michael Smyth	Kee-Chong Ng
Peter Kudenchuk	Gabrielle Nuthall
Raffo Escalante	Yong-Kwang Gene Ong
Raul Gazmuri	Amelia Reis
Steven Brooks	Steve Schexnayder
Sung Phil Chung	Naoki Shimizu
Tetsuo Hatanaka	Patrick Van de Voorde
Gavin Perkins	

In addition, the following non Task Force members are also acknowledged for their contributions: David Lightfoot, Information Scientist, for revising, executing and updating the literature searches.

Institutional Affiliations

Department of Cardiology and Cardiac Intensive Care, Konstantopouleio General Hospital (N.N.)

Office of Research & Innovation, North York General Hospital, Toronto Canada (K.N.D.)

Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto Canada (K.N.D)

Warwick Medical School, University of Warwick, Coventry, UK. (K.C.)

University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. (K.C.)

Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne, Australia (P.M.)

Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University (J.T.)

Pediatric Intensive Care Unit, London Health Sciences Centre, London, ON, Canada (J.T.)

Department of Emergency Medicine, University of Ottawa and Clinical Epidemiology Program, Ottawa Canada (C.V.)

Ottawa Hospital Research Institute, Ottawa Canada. (C.V.)

References

- 1. World Health Organization (2014). The top 10 causes of death. Media centre 2014.
- Berdowski J., (2010) Global Incidences of out-of-Hospital Cardiac Arrest and Survival Rates: Systematic Review of 67 Prospective Studies. Resuscitation 81 (11);1479–87,
- 3. Strategies to Improve Cardiac Arrest Survival: A Time to Act. Committee on the Treatment of Cardiac Arrest: Current Status and Future Directions; Board on Health Sciences Policy; Institute of Medicine; Graham R, McCoy MA, Schultz AM, editors. Washington (DC): National Academies Press (US); 2015 Sep 29.
- 4. Stiell IG, Wells GA, Field B, et al (2004): Advanced cardiac life support in out-ofhospital cardiac arrest. N Engl J Med, 351:647-65635% bystander CPR
- Herlitz J et al. (2002), Characteristics and Outcome among Patients Having out of Hospital Cardiac Arrest at Home Compared with Elsewhere. Heart 88 (6): 579–82
- 6. Sasson C, Rogers MAM, Dahl J, Kellerman AL (2010). Predictors of Survival from Out-of-Hospital Cardiac Arrest: A systematic Review and Meta-Analysis. Circulation: Cardiovascular Quality and Outcomes; 3:63-81
- Anderson ML, Cox M, Al-Khatib SM, Nichol G, Thomas KL, Chan PS, Saha-Chaudhuri P, Fosbol EL, Eigel B, Clendenen B, Peterson ED. Rates of cardiopulmonary resuscitation training in the United States. JAMA Internal Medicine. 2014;174(2):194–201.
- Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation. 2001; 104: 2513–2516.
- Bohm K, Vaillancourt C, Charette ML, Dunford J, Castrén M. In patients with outof-hospital cardiac arrest, does the provision of dispatch cardiopulmonary resuscitation instructions as opposed to no instructions improve outcome: a systematic review of the literature. Resuscitation. 2011 Dec;82(12):1490-5
- ILCOR Continuous Evidence Evaluation (CEE) and Consensus on Science and Treatment Recommendations (CoSTRs) process - <u>https://costr.ilcor.org/about</u> (last accessed July 17, 2018)
- 11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Jul 21;339:b2700.
- Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group - <u>http://www.gradeworkinggroup.org/</u> (last accessed July 17, 2018)
- 13. Cochrane methods group Tool to Assess Risk of Bias in Cohort Studies http://methods.cochrane.org/sites/methods.cochrane.org.bias/files/public/uploads

/Tool%20to%20Assess%20Risk%20of%20Bias%20in%20Cohort%20Studies.pdf (last accessed July 17, 2018)

- 14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58.
- Akahane M, Ogawa T, Tanabe S, Koike S, Horiguchi H, Yasunaga H, Imamura T. Impact of telephone dispatcher assistance on the outcomes of pediatric out-ofhospital cardiac arrest. Crit Care Med. 2012 May;40(5):1410-6.
- 16. Bang A, Biber B, Isaksson L, Lindqvist J, Herlitz J. Evaluation of dispatcherassisted cardiopulmonary resuscitation. Eur J Emerg Med. 1999;6(3):175-83.
- 17. Besnier E, Damm C, Jardel B, Veber B, Compere V, Dureuil B. Dispatcherassisted cardiopulmonary resuscitation protocol improves diagnosis and resuscitation recommendations for out-of-hospital cardiac arrest. Emerg Med Australas. 2015 Dec;27(6):590-596.
- 18. Chang I, Lee SC, Shin SD, Song KJ, Ro YS, Park JH, Kong SY. Effects of dispatcher-assisted bystander cardiopulmonary resuscitation on neurological recovery in pediatric patients with out-of-hospital cardiac arrest based on the prehospital emergency medical service response time interval. Resuscitation. 2018 Jun 28;130:49-56.
- 19. Culley LL, Clark JJ, Eisenberg MS, Larsen MP. Dispatcher-assisted telephone CPR: common delays and time standards for delivery. Ann Emerg Med. 1991;20(4):362-6.
- 20. Dami F, Heymann E, Pasquier M, Fuchs V, Carron PN, Hugli O. Time to identify cardiac arrest and provide dispatch-assisted cardio-pulmonary resuscitation in a criteria-based dispatch system. Resuscitation. 2015;97:27-33.
- Dami F, Carron PN, Praz L, Fuchs V, Yersin B. Why bystanders decline telephone cardiac resuscitation advice. Acad Emerg Med. 2010;17(9):1012-5.
- 22. Eisenberg MS, Hallstrom AP, Carter WB, Cummins RO, Bergner L, Pierce J. Emergency CPR instruction via telephone. Am J Public Health. 1985;75(1):47-50.
- 23. Fujie K, Nakata Y, Yasuda S, Mizutani T, Hashimoto K. Do dispatcher instructions facilitate bystander-initiated cardiopulmonary resuscitation and improve outcomes in patients with out-of-hospital cardiac arrest? A comparison of family and non-family bystanders. Resuscitation. 2014;85(3):315-9.
- 24. Fukushima H, Imanishi M, Iwami T, et al. Abnormal breathing of sudden cardiac arrest victims described by laypersons and its association with emergency medical service dispatcher-assisted cardiopulmonary resuscitation instruction. Emerg Med J. 2015 Apr;32(4):314-7.
- 25. Fukushima H, Kawai Y, Asai H, et al. Performance review of regional emergency medical service pre-arrival cardiopulmonary resuscitation with or without dispatcher instruction: a population-based observational study. Acute med. surg.. 2017;4(3):293-299.
- 26. Goto Y, Maeda T, Goto Y. Impact of dispatcher-assisted bystander cardiopulmonary resuscitation on neurological outcomes in children with out-ofhospital cardiac arrests: a prospective, nationwide, population-based cohort study. J Am Heart Assoc. 2014;3(3):e000499.

- 27. Gotz J, Petutschnigg B, Wasler A, Wran-Schumer D, Hansak P. Bystander resuscitation as a measure of success. Notfall Rettungsmed 2017 · 20:470–476
- 28. Harjanto S, Na MX, Hao Y, et al. A before-after interventional trial of dispatcherassisted cardio-pulmonary resuscitation for out-of-hospital cardiac arrests in Singapore. Resuscitation. 2016 May 1;102:85-93.
- 29. Hiltunen PV, Silfvast TO, Jantti TH, Kuisma MJ, Kurola JO, FINNRESUSCI Prehospital Study Group. Emergency dispatch process and patient outcome in bystander-witnessed out-of-hospital cardiac arrest with a shockable rhythm. Eur J Emerg Med. 2015;22(4):266-72.
- 30. Iwamura T, Sakamoto Y, Kutsukata N, et al. An Utstein-style examination of outof-hospital cardiac arrest patients in Saga Prefecture, Japan. J Nippon Med Sch. 2013;80(3):184-91.
- 31. Japanese Circulation Society Resuscitation Science Study Group. Chestcompression-only bystander cardiopulmonary resuscitation in the 30:2 compression-to-ventilation ratio era. Nationwide observational study. Circ J. 2013;77(11):2742-50.
- 32. Kuisma M, Boyd J, Vayrynen T, Repo J, Nousila-Wiik M, Holmstrom P. Emergency call processing and survival from out-of-hospital ventricular fibrillation. Resuscitation. 2005 Oct;67(1):89-93.
- 33. Lee YJ, Song KJ, Shin SD, et al. Dispatcher-Assisted Cardiopulmonary Resuscitation Program and Outcomes After Pediatric Out-of-Hospital Cardiac Arrest. Pediatric Emerg Care. 2017 Dec 1 (Epub ahead of print).
- 34. Lewis M, Stubbs BA, Eisenberg MS. Dispatcher-assisted cardiopulmonary resuscitation: time to identify cardiac arrest and deliver chest compression instructions. Circulation. 2013;128(14):1522-30.
- 35. Moriwaki Y., Tahara Y., Kosuge T., Suzuki N. The effect of telephone advice on cardiopulmonary resuscitation (CPR) on the rate of bystander CPR in out-of-hospital cardiopulmonary arrest in a typical urban area. Hong Kong J. Emerg. Med.. 2016;23(4):220-226.
- 36. Oman G, Bury G. Use of telephone CPR advice in Ireland: Uptake by callers and delays in the assessment process. Resuscitation. 2016;102:6-10.
- 37. Park JH, Ro YS, Shin SD, Song KJ, Hong KJ, Kong SY. Dispatcher-assisted bystander cardiopulmonary resuscitation in rural and urban areas and survival outcomes after out-of-hospital cardiac arrest. Resuscitation. 2018 Apr;125:1-7
- 38. Rea TD, Fahrenbruch C, Culley L, et al. CPR with chest compression alone or with rescue breathing. N Engl J Med. 2010;363(5):423-33.
- 39. Ro YS, Shin SD, Song KJ, et al. Effects of Dispatcher-assisted Cardiopulmonary Resuscitation on Survival Outcomes in Infants, Children, and Adolescents with Out-of-hospital Cardiac Arrests. Resuscitation. 2016;108:20-26.
- 40. Ro YS, Shin SD, Lee YJ, et al. Effect of Dispatcher-Assisted Cardiopulmonary Resuscitation Program and Location of Out-of-Hospital Cardiac Arrest on Survival and Neurologic Outcome. Ann Emerg Med. 2017;69(1):52-61.e1.
- 41. Shah M, Bartram C, Irwin K, et al. Evaluating Dispatch-Assisted CPR Using the CARES Registry. Prehosp Emerg Care. 2018;22(2):222-228.

- 42. Song KJ, Shin SD, Park CB, et al. Dispatcher-assisted bystander cardiopulmonary resuscitation in a metropolitan city: a before-after population-based study. Resuscitation. 2014;85(1):34-41.
- 43. Stipulante S, Tubes R, El Fassi M, et al. Implementation of the ALERT algorithm, a new dispatcher-assisted telephone cardiopulmonary resuscitation protocol, in non-Advanced Medical Priority Dispatch System (AMPDS) Emergency Medical Services centres. Resuscitation. 2014;85(2):177-81.
- 44. Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does dispatcher-assisted CPR generate the same outcomes as spontaneously delivered bystander CPR in Japan?. Am J Emerg Med. 2018;36(3):384-391.
- 45. Takei Y, Kamikura T, Nishi T, et al. Recruitments of trained citizen volunteering for conventional cardiopulmonary resuscitation are necessary to improve the outcome after out-of-hospital cardiac arrests in remote time-distance area: A nationwide population-based study. Resuscitation. 2016;105:100-8.
- 46. Vaillancourt C, Verma A, Trickett J, et al. Evaluating the effectiveness of dispatch-assisted cardiopulmonary resuscitation instructions. Acad Emerg Med. 2007;14(10):877-83.
- 47. Viereck S, Palsgaard Moller T, Kjaer Ersboll A, Folke F, Lippert F. Effect of bystander CPR initiation prior to the emergency call on ROSC and 30day survival-An evaluation of 548 emergency calls. Resuscitation. 2017;111:55-61.
- 48. Wu Z, Panczyk M, Spaite DW, et al. Telephone cardiopulmonary resuscitation is independently associated with improved survival and improved functional outcome after out-of-hospital cardiac arrest. Resuscitation. 2018;122:135-140.
- 49. Olasveengen et al. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations Summary. Resuscitation (2017) 121:201-214
- 50. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, et al and the EuReCa ONE Collaborators. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016 Aug;105:188-95. doi: 10.1016/j.resuscitation.2016.06.004. Epub 2016 Jun 16. Erratum in: Resuscitation. 2016 Dec;109 :145-146.
- 51. Riou M, Ball S, Whiteside A, Bray J, Perkins GD, Smith K, O'Halloran KL, Fatovich DM, Inoue M, Bailey P, Cameron P, Brink D, Finn J. 'We're going to do CPR': A linguistic study of the words used to initiate dispatcher-assisted CPR and their association with caller agreement. Resuscitation. 2018 Dec;133:95-100
- 52. Tsunoyama T, Nakahara S, Yoshida M, Kitamura M, Sakamoto T. Effectiveness of dispatcher training in increasing bystander chest compression for out-ofhospital cardiac arrest patients in Japan. Acute Med Surg. 2017 Aug 7;4(4):439
- 53. Haywood K, Whitehead L, Nadkarni VM, Achana F, Beesems S, et al; COSCA Collaborators. COSCA (Core Outcome Set for Cardiac Arrest) in Adults: An Advisory Statement from the International Liaison Committee on Resuscitation. Resuscitation. 2018 Jun;127:147-163

List of Tables, Figures and Appendices (listed in the order they appear in the manuscript)

- Table 1 Study Characteristics
- Table 2 Risk of Bias Assessment
- Table 3 Brief Table of Findings
- Table 4 Summary of Findings Systems Comparisons
- Table 5 Summary of Findings DA-CPR vs. Bystander CPR
- Table 6 Summary of Findings DA-CPR vs. No CPR
- Figure 1 PRISMA Flow Chart
- Figure 2 Caterpillar Plot Diagram
- Appendix A List of Priority Outcomes
- Appendix B Full Search Strategy
- Appendix C Hierarchy for Including Studies with Overlapping Data
- Appendix D Additional Sensitivity Analyses: Systems Comparisons
- Appendix E Additional Sensitivity Analyses: DA-CPR vs. Bystander CPR
- Appendix F Additional Sensitivity Analyses: DA-CPR vs. No CPR
- · Appendix G-Evidence Profile Tables-Systems Comparison
- · Appendix H-Evidence Profile tables-DA-CPR vs. Bystander CPR
- Appendix I-Evidence Profile tables-DA-CPR vs. No CPR

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Belgium, Liege	Stipulante 2014 ⁴³	392	Before: 1 November 2008 - 31 January 2009; After: November 1, 2010, to January 31, 2011	Adults; all OHCA resulting in calls to the EMCC, not due to trauma or asphyxia	Retrospective before-after	DI vs. no DI	ссо	B-CPR, Survival to hospital discharge, no flow time
Canada, Ottawa	Vaillancourt 2007 ⁴⁶	529	Before: 1 July 2003-April 2004; After: April 2004 - 31 December 2004	Age>16; presumed cardiac origin, not witnessed by EMS; received CPR	Retrospective before-after	DI vs. no DI	CC + Ventilation	B-CPR, first recorded rhythm VF/VT, ROSC, survival to hospital admission, survival to hospital discharge
Denmark, Capital Region	Viereck 2017 ⁴⁷	548	01 January 2013– 31 December 2013	All OHCA treated by EMS, not witnessed by EMS, received CPR	Prospective cohort	DA-CPR vs. Bystander CPR	Not reported	ROSC, Survival at 1 month
Finland	Kuisma 2005 ³²	373	1 Jan 1997-31 Dec 2002	Witnessed VF; cardiac origin CPR; CPR attempted	Retrospective cohort	DI vs. no DI	1 January 1997 to September 2000 : CC + Ventilation September 2000 tp December 2002: CCO	Survival to hospital discharge

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Finland, southern and eastern Finland	Hiltunen 2015 ²⁹	164	1 March 2010- 31Aug 2010	All OHCA before hospital admission;	Prospective cohort	DI vs. no DI; DA-CPR vs. Bystander CPR vs. NO CPR	ссо	B-CPR, ROSC, survival at HD and 1 year, (CPC) status at 6 months
France, Rouen	Besnier 2015 ¹⁷	245	Before: from 1 January 2009 - 15 August 2009. After: 1 July 2011 to 30 June 2012.	All non-traumatic, <90 years, patient not at end of life, no flow time < 10 min, CPR possible, regulated by EMS centre	Retrospective before-after	DI vs. no DI	CCO or CCO+Ventilation , to the discretion of the dispatcher	Survival to hospital admission, favorable neurologic outcome at discharge
Austria, Graz	Gotz 2017 ²⁷	173	01 Sep 2014 to 30 Oct 2015	All nonclinical cardiac arrest cases	Retrospective cohort	DA-CPR vs. Bystander CPR / NO CPR	CCO (73.3%) or CC + Ventilation	Survival at 1 month
Ireland, 1 National Ambulance Service region	Oman 2016 ³⁶	145	1 January 2011 -31 December 2012.	Potential rescuer nearby who could deliver CPR.	Retrospective cohort	DA-CPR vs. Bystander CPR / NO CPR	Adults CCO, PAEDS CC + Ventilation	Survival to hospital discharge
Japan, Iwaki	Fujie 2014 ²³	559	1 Jan 2004-31 Dec 2009	Adults; not because of trauma, asphyxia, drowning, drugs, or fire; received CPR by EMS; transported to hospital	Retrospective cohort	DI vs. no DI	CCO or CC + Ventilation according to the local protocols	B-CPR, favorable neurologic outcome at 1 month

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Japan, Nara	Fukushima 2015 ²⁴	283	1 Jan 2007-31 Dec 2012	Adults; witnessed; collapse before emergency call	Retrospective cohort	DI vs. no DI	CCO or CC + Ventilation according to the local protocols	B-CPR, ROSC, survival to hospital admission, favorable neurological outcome at 1 month
Japan, Nara, Chuwa, Yamato- Koriyama	Fukushima 2017 ²⁵	368	1 November 2013 - 31 March 2015	Adults; non-traumatic; not witnessed by EMS; no DNAR orders; not in medical facilities	Retrospective cohort	DI vs. no DI	CCO or CC + Ventilation according to previous training of callers	Ongoing CPR, quality of CPR
Japan, Nationwide	Akahane 2012	1780	Jan 2005-Dec 2008	Age < 20 years; not witnessed by EMS; call to the EMS to arrival on the scene of <60 min; known etiology; no malignancy	Retrospective cohort	DI vs. no DI	CCO or CC+V according to previous training of callers	B-CPR, first recorded rhythm VT/VF, Survival at 1 month, favorable neurologic outcome at 1 month
Japan, Nationwide	Goto 2014 ²⁶	5009	Jan 2008-Dec2010	Age <18;received EMS; received CPR; not witnessed by EMS	Prospective cohort	DI vs. no DI; DA-CPR vs. Bystander CPR / NO CPR	CCO or CC + Ventilation according to previous training of callers	B-CPR, first recorded rhythm VT/VF, Survival at 1 month, favorable neurological outcome at 1 month, time to first CPR

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Japan, Nationwide	Moriwaki 2016 ³⁵	803	Sep 2007-Feb 2010	Non-traumatic; not witnessed by EMS	Retrospective cohort	DI vs. no DI	CCO or CC + Ventilation according to the will of callers	B-CPR, ROSC, Survival to hospital admission, Survival at 7 days, Survival at 7 days with good recovery & mild neurological deficits
Japan, Nationwide	Takei 2016 ⁴⁵	193914	2007-2012	Witnessed (not by EMS); no pre-hospital involvement of a physician	Prospective cohort	DA-CPR vs. Bystander CPR / NO CPR	CCO or CC + Ventilation according to previous training and will of callers	First recorded rhythm VT/VF, survival with favorable neurological outcome at 1Month, time to CPR
Japan, Nationwide	Takahashi 2017 ⁴⁴	37899	Jan 2005-Dec 2012	Age >15; Cardiogenic; witnessed (not by EMS)	Cross- sectional	DI vs. no DI;DA- CPR vs. Bystander CPR / NO CPR	CCO or CC + Ventilation	B-CPR, ROSC, first recorded rhythm VT/VF, favorable neurologic outcome at 1 month
Japan, Nationwide	Japanese Circulation Society Resuscitation Science Study Group (JCSRSSG) ³¹ 2013	173565	1 Jan 2006-31 Dec 2010	Age ≥ 18witnessed (not by EMS); confirmed by EMS; received CPR by EMS; transported to hospital	Prospective cohort	DA-CPR vs. Bystander CPR	CCO or CC + Ventilation according to previous training and will of callers	B-CPR, Public defibrillation with failed ROSC, first recorded rhythm VT/VF, ROSC on arrival to hospital, favorable neurological outcome at 30 days, survival at 30 days, time to CPR

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Japan, Saga	lwamura 2013 ³⁰	800	1 July 2010-31 June 2011	Transported to hospital, received CPR, carotid pulse could be checked	Retrospective cohort	DI vs. no DI		B-CPR
Korea, Nationwide	Chang 2018 ¹⁸	1953	Jan 2012- Dec 2016	Age<19 but > 1 year; not witnessed by EMS, received CPR by EMS	Cross- sectional	DA-CPR vs. Bystander CPR / NO CPR	The dispatcher follows the American Heart Association guidelines	First recorded rhythm VT/VF,ROSC , survival to discharge, favorable neurologic outcome at discharge
Korea, Nationwide	Lee 2017 ³³	1013	Jan 2012- Dec 2013	Age<19; not witnessed by EMS, received CPR by EMS	Cross- sectional	DA-CPR vs. Bystander CPR / NO CPR	CCO for general OHCA caused by cardiac etiology, trauma, and poisoning, and CC + Ventilation for respiratory OHCA caused by asphyxia, hanging, and drowning	ROSC, first recorded rhythm VT/VF, ROSC, survival to discharge, favorable neurologic outcome at discharge
Korea, Nationwide	Park 2018 ³⁷	53240	Jan 2012-Dec2015	Age ≥18; presumed cardiac cause, received CPR, non EMS witnessed,	Cross- sectional	DA-CPR vs. Bystander CPR / NO CPR	According to the 2010 American Heart Association guidelines	First recorded rhythm VT/VF,ROSC to arrival at the ED, survival to discharge, favorable neurologic outcome at discharge

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Korea, Nationwide	Ro 2017 ⁴⁰	37924	2012-2013	Age ≥18; presumed cardiac cause, received CPR, non EMS witnessed,	Cross- sectional study	DA-CPR vs. Bystander CPR / NO CPR	According to 2010 American Heart Association guidelines	First recorded rhythm VT/VF,ROSC, Survival to discharge, favorable neurologic outcome at discharge, Time to CPR
Korea, Nationwide	Ro 2016 ³⁹	1529	Jan 2012-Dec 2014	Age ≤18 ; not witnessed by EMS; received CPR by EMS	Cross- sectional study	DA-CPR vs. Bystander CPR / NO CPR	 -Two-finger chest compression technique and rescue ventilation in infants (aged 1 year or younger) - One- hand chest compression and rescue ventilation in children (aged 1- 8 years) Two-hand chest- compression-only technique in adolescents (aged 9 years or older). 	B-CPR, first recorded rhythm VT/VF, ROSC , survival and good neurological recovery at discharge from the hospital, time to CPR

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Korea, Seoul	Song 2014 ⁴²	8144	Before: Jan 2009- Dec 2010; After: Jan 2012-Dec 2012	Age >15; presumed cardiac cause	Retrospective before-after	DI vs. no DI	CCO for cardiac aetiology; CC + Ventilation for non-cardiac and pediatric victims.	B-CPR, first recorded rhythm VT/VF, ROSC, survival to hospital admission and discharge, favorable neurologic outcome at discharge
Singapore, City of Singapore	Harjanto 2016 ²⁸	2968	Before: April 2010- Dec 2011; After: Jan 2012-feb 2013	Adults; transported by ambulance, presumed to be of cardiac origin, no DNAR orders, received CPR by EMS,	Retrospective before-after	DI vs. no DI; DA-BCPR vs. non DA-CPR / no CPR	CCO: For adult victims and children > 8 year old CCO + Ventilation for: children 1-8 years old OR adults whose SCA has a respiratory cause such as drowning OR people who collapsed > 15 minutes before	B-CPR, ROSC, first recorded rhythm VT/VF, Survival to hospital admission, survival at 30 days, favorable neurologic outcome at 1 month
Sweden, Gothenburg	Bang 1999 ¹⁶	475	1 Jan 1994-31 March 1996	All arrests; death was not anticipated	Prospective cohort	DI vs. no DI; DA-CPR vs. Bystander CPR / NO CPR	CC+ Ventilation	Survival to hospital discharge

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
Switzerland.	Dami 2015 ²⁰	683	1 January 2011 -31 December 2013.	Age ≥18; non- traumatic, not witnessed by EMS,	Prospective cohort	DA-CPR vs. NO CPR	Not reported	Survival to hospital admission and hospital discharge and favorable neurologic outcome at discharge
USA, 20 State based registries (CARES)	Shah 2017 ⁴¹	3335	1 Jan 2014 to 31 Dec 2015	Age >19; not witnessed by EMS, no CPR prior to 911 call, caller transferred to a dispatcher trained to perform CPR instruction, the caller physically present with the patient	Prospective cohort	DA-CPR vs. NO CPR	Not reported	Survival to hospital discharge
USA, Arizona	Wu 2018 ⁴⁸	2310	1 January 2011- 31 December 2014	Age ≥18 years; presumed cardiac origin	Retrospective cohort	DA-CPR vs. Bystander CPR / NO CPR	75% according to American Heart Association (AHA) guidelines [2,7]	First recorder rhythm VT/VF, ROSC, Survival to hospital admission, survival to hospital discharge, favorable neurologic outcome at discharge.
USA, King County	Culley 1991 ¹⁹	4899	Before=1976- 1981; After=1982- 1988	Witnessed (not by EMS);non-traumatic; outside nursing homes or physicians' offices	Retrospective before-after	DI vs. no DI	CC+ Ventilation	B-CPR, Survival to hospital discharge

Country, region	Author/Year	Sample Size	Study duration	Patient characteristics	Design	Comparisons	CPR instructions as reported in paper	Outcomes
USA, King County	Eisenberg 1985 ²²	446	6 May 1981 -31 December 1982	Underlying heart disease; received cardiopulmonary resuscitation; not witnessed by EMS	Retrospective before-after	DI vs. no DI	CC + Ventilation	B-CPR, survival to hospital discharge
USA, King County	Lewis 2013 ³⁴	304	1 January 2011- December 31, 2011	Age > 17; not witnessed by EMS	Retrospective cohort	DA-CPR vs. NO CPR	Children CC + Ventilation ; Adults: CCO	First recorded rhythm VT/VF, survival to hospital admission, survival and good neurological recovery at hospital discharge
USA, King County	Rea 2001 ³⁸	7265	1983 - 2000.	Age ≥ 18; cardiac causes, not witnessed by EMS	Prospective cohort	DA-CPR vs. Bystander CPR / NO CPR	CC + Ventilation	Survival to hospital discharge; time to CPR

Table 2 – Risk of Bias Assessment Listed Alphabetically by Author

			Quality assessment (GRADE handbook)							
Study #	Study (Author/year)	Primary Outcome	Risk of Bias							
			Eligibility Criteria	Exposure & Outcome Measurement	Control for Confounding	Incomplete Follow-up				
1	Akahane 2012 (Paeds)	Survival at 1 month & survival w CPC 1,2	Low	Low	High	Low				
2	Bang 1999	Undetermined	Unclear	High	High	Low				
3	Besnier	favorable neurologic outcome at discharge	Unclear	High	High	High				
4	Chang 2018	Survival to HD & good neurologic outcome	Low	Unclear	Low*	Low				
5	Culley 1991	Rate of Bystander CPR	High	High	High	Low				

Study #	Study (Author/year)	Primary Outcome	Risk of Bias			
			Eligibility Criteria	Exposure & Outcome Measurement	Control for Confounding	Incomplete Follow-up
6	Dami 2015	Survival	Unclear	High	High	Unclear
7	Eisenberg 1985	Rate of Bystander CPR; survival	Low	Unclear	High	Unclear
8	Fujie 2014	Rate of bystander CPR	Unclear	High	High	Unclear
9	Fukushima 2015	Survival at 1 month & survival with CPC 1,2	Unclear	High	High	Unclear
10	Fukushima 2017	Survival at 1 month & survival with CPC 1,2	Low	High	High	N/a
11	Goto 2014 (Paeds)	Survival at 1 month & survival with CPC 1,2	Low	Unclear	Unclear*	Low
12	Harjanto 2016	Survival to admission; 30 day and good neurologic outcome	Unclear	Low	Unclear*	Low
13	Hiltunen 2015	Survival at 1 year	Unclear	High	High	Unclear
14	Iwamura 2013	Rate of ROSC	High	High	High	High

Study #	Study (Author/year)	Primary Outcome	Risk of Bias			
			Eligibility Criteria	Exposure & Outcome Measurement	Control for Confounding	Incomplete Follow-up
15	JCSRSSG 2013	Survival at 1 month & survival with CPC 1,2	Unclear	Unclear	Unclear*	Low
16	Kuisma 2005	Survival to hospital discharge	High	Unclear	High	High
17	Lee 2017	Survival to hospital discharge	Low	Unclear	Unclear	Low
18	Lewis 2103	Recognition of Cardiac Arrest	Low	Low	High	High
19	Moriwaki 2016	Bystander CPR rate	Low	High	High	High
20	Oman 2016	Frequency of TCPR and call times	Low	Unclear	High	High
21	Park 2018	Survival with CPC 1,2 at hospital discharge	Low	Unclear	Low*	Low
22	Rea 2001	Survival to hospital discharge	Low	Low	Low*	Low
23	Ro 2016 (Paeds)	Survival to HD & good neurologic outcome	Low	Unclear	Low*	Low

Study #	Study (Author/year)	Primary Outcome	Risk of Bias					
			Eligibility Criteria	Exposure & Outcome Measurement	Control for Confounding	Incomplete Follow-up		
24	Ro 2017	Survival with CPC 1,2 at hospital discharge	Low	Unclear	Low*	Low		
25	Shah 2017	Survival to hospital discharge	Unclear	Unclear	Low*	Low		
26	Song 2014	Survival to hospital discharge	Low	Unclear	Low*	Low		
27	Stipulante	FLow time; survival to admission	Unclear	Low	High	High		
28	Takahashi 2017	Rate of shockable rhythm on initial ECG; field ROSC	Low	Unclear	Low*	Unclear		
29	Takei 2016	Survival with CPC 1,2 at 1 month	Low	Unclear	Unclear	Unclear		
30	Vaillancourt	Recognition of Cardiac Arrest	Low	Low	High	Low		
31	Viereck 2017	ROSC; Survival at 1 month	Low	Unclear	Unclear*	Low		

Study #	Study (Author/year)	Primary Outcome	Risk of Bias					
			Eligibility Criteria	Exposure & Outcome Measurement	Control for Confounding	Incomplete Follow-up		
32	Wu 2018	Survival to hospital discharge	Unclear	Low	Low*	Low		
33	Gotz 2017 (In German)	Survival at 1 month	Low	High	High	Low		

* Assessment is relevant for outcomes where adjusted estimates for effect size are provided. Risk of bias for confounding high in case of unadjusted estimates for effect size.

	UNADJUSTE	D ANALYSI	S	ADJUSTED A	NALYSIS	
	Studies (n patients)	Evidence quality	Odds ratio [95% CI]	Studies (n patients)	Evidence quality	Odds ratio [95% CI]
Systems Compariso				-		
Survival with GNO- 1 month	3 (44698)	Very Low	1.10 [1.03, 1.17]	2 (6799)	Very Low	1.47 [1.03, 2.09]
Survival with GNO- hospital discharge	2 (5533)	Very Low	1.70 [1.21, 2.37]	1 (5288)	Very Low	1.67 [1.13, 2.47]
Survival– 1 month	2 (6799)	Very Low	1.20 [0.99, 1.45]	2 (6799)	Very Low	1.40 [1.07, 1.85]
Survival– hospital discharge	7 (14139)	Very Low	1.23 [0.99, 1.53]	1 (5288)	Very Low	1.33 [1.07, 1.66]
Survival- hospital admission	6 (9548)	Very Low	1.08 [0.95, 1.23]	1 (2493)	Very Low	0.97 [0.70, 1.34]
ROSC	5 (49229)	Very Low	1.17 [1.08, 1.27]	1 (2493)	Very Low	1.14 [0.88, 1.48]
Initial Shockable Rhythm	5 (53371)	Very Low	1.13 [1.03, 1.23]			lo data
Time to CPR	1 (4306)		Median 4 min	(IQR 1-9) vs. 11	min (IQR 7-10	6); p<0.0001
DA-CPR versus Bys	tander CPR					
Survival with GNO- 1 month	2 (90889)	Low	0.73 [0.68,0.77]	1 (78112)	Very Low	1.0 [0.91,1.08]
Survival with GNO- hospital D/C	3 (28618)	Low	0.83 [0.70,0.98]	1 (17209)	Very Low	1.12 [0.94,1.34]
Survival – 1 month	5 (82295)	Low	0.76 [0.60, 0.95]	2 (78697)	Very Low	1.13 [1.06, 1.20]
Survival– hospital discharge	9 (34528)	Low	0.73 [0.67,0.81]	1 (17209)	Very Low	0.95 [0.83-1.09]
Survival– hospital admission	1 (821)	Very Low	0.71 [0.31,1.60]			lo data
ROSC	7 (38271)	Low	0.79 [0.63, 0.98]	3 (34811)	Very Low	1.04 [0.94, 1.14]
Initial Shockable Rhythm	4 (118686)	Very Low	0.74 [0.61,0.90]	1 (17054)	Very Low	1.02 [0.95, 1.09]
Time to CPR	2 (82198)	Very Low	Mean differer	nce 1.47 [0.37, 2.	53] mins more	with DA-CPR)
DA-CPR versus No	CPR					
Survival with GNO- 1 month	2 (164371)	Very Low	1.45 [1.38, 1.53]	1 (4306)	Very Low	1.81 [1.23, 2.67]
Survival with GNO- hospital discharge	5 (50895)	Moderate	2.21 [1.44, 3.40]	3 (35921)	Very Low	1.54 [1.35, 1.76]
Survival– 1 month	3 (6619)	Very Low	1.68 [0.63, 4.45]	1 (4306)	Very Low	1.63 [1.32, 2.01]
Survival- hospital discharge	11 (59250)	Low	1.67 [1.39,2.0]	5 (43550)	Very Low	1.40 [1.09,1.78]
Survival – hospital admission	3 (3186)	Very Low	1.54 [0.62,3.83])			lo data
ROSC	6 (69495)	Very Low	1.63 [1.22, 2.18]	1 (32506)	Very Low	1.51 [1.32, 1.73]
ROSC (hospital arrival)	1 (46487)	Very Low	2.03 [1.87,2.20]			lo data
Initial Shockable Rhythm	6 (85787)	Very Low	1.51 [1.36, 1.67]			lo data
Time to CPR	4 (43194)	Very Low	Ro 2016 n=1 Ro 2017 n=3 min (IQR 0 -5	265, 4 min (0-13 2506: 3 min (0- min) vs. mediar 5072- reported	3 min), vs 10 m 11 min) vs 12 1 time 11 (IQR	in) vs 11 (7-15); in (6-18), reported p<0.01; min (7-22 min): median time 1 7-15 min); reported p<0.0001. 2.9 [2.4] vs. 6.4 [3.1]); MD [95%

TABLE 3 – Brief Table of Findings by Analysis

Table 3 - Summary of findings: Systems Based Comparisons

EMS systems where dispatch assisted CPR is offered compared to EMS systems where dispatch assisted CPR is not offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Setting:

month)

follow up:

1 months

61 per 1,000

ms where dispatch assisted CPR is offered

Outcomes	Anticipated absolute effects* (95% CI)		Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with EMS systems where dispatch assisted CPR is not offered	Risk with EMS systems where dispatch assisted CPR is offered	(93 % 01)	(suules)	(GRADE)	
Survival with CPC 1-2 or mRS (Survival with CPC 1-2 or mRS) follow up: 1 months	102 per 1,000	111 per 1,000 (105 to 118)	OR 1.10 (1.03 to 1.17)	44698 (3 observational studies) Harjanto 2016 Takahashi, 2017 Goto 2014	⊕⊖⊖⊖ VERY LOW ^a	Prespecified subgroup analysis for the PAEDs group: 1 study, (Goto 2014); NO heterogeneity compared to 2 adult studies (I2:0%). PAEDS OR: 1.03 (0.72, 1.48), AMPS: 1.10 (1.03, 1.17). Prespecified analysis of studies reporting adjusted ORs (2 studies 6799 patients), yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.47 (1.03 to 2.09),
Survival with CPC 1-2 or mRS (Survival with CPC 1-2 or mRS) follow up: to hospital discharge	21 per 1,000	35 per 1,000 (25 to 48)	OR 1.70 (1.21 to 2.37)	5533 (2 observational studies) Besnier 2015 Song 2014		Prespecified analysis of studies reporting adjusted ORs (1 study 5288 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.67 (1.13 to 2.47)
Survival (Survival to hospital admission) follow up: to hospital admission	183 per 1,000	195 per 1,000 (175 to 216)	OR 1.08 (0.95 to 1.23)	9548 (6 observational studies) Besnier 2015 Fukushima2015 Harjanto 2016 Moriwaki,2016 Song 2014 Vaillancourt 2007	⊕⊖⊖⊖ VERY LOW a.cd	Prespecified analysis of studies reporting adjusted ORs (1 study 2493 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, VERY SERIOUS IMPRECISION); OR 0.97 (0.70 TO 1.34)
Survival (Survival at 1		72 per 1,000 (60 to 86)	OR 1.20 (0.99 to 1.45)	6799 (2 observational studies)	⊕⊖⊖⊖ VERY LOW a,c	Prespecified subgroup analysis for the PAEDs group: 1 study, (Goto 2014); NO heterogeneity compared to 1 adult study

Harjanto 2016

Goto 2014

(I2:0%). PAEDS OR: 1.17 (0.95, 1.45),

AMPS OR: 1.30 (0.84, 2.02). Prespecified

analysis of studies reporting adjusted ORs

(2 studies, 6799 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF

BIAS); OR 1.40 (1.07 to 1.85)

Table 3 - Summary of findings: Systems Based Comparisons

EMS systems where dispatch assisted CPR is offered compared to EMS systems where dispatch assisted CPR is not offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: EMS systems where dispatch assisted CPR is offered

Comparison: EMS systems where dispatch assisted CPR is not offered

Outcomes	Anticipated absolu	ute effects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with EMS systems where dispatch assisted CPR is not offered	Risk with EMS systems where dispatch assisted CPR is offered	(3378 01)	(30003)	(GRADE)	
Survival follow up: to hospital discharge	186 per 1,000	219 per 1,000 (184 to 259)	OR 1.23 (0.99 to 1.53)	14139 (7 observational studies) Bang 1999 Culley 1991 Hilltunen 2015 Kuisma 2005 Song 2014 Stipulante 2014 Vaillancourt 2007	€ VERY LOW c,e,f	Prespecified Analysis of studies reporting adjusted ORs (1 study 5288 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.33 (1.07 to 1.66)
Sustained ROSC (Sustained ROSC)	204 per 1,000	231 per 1,000 (217 to 246)	OR 1.17 (1.08 to 1.27)	49229 (5 observational studies) Harjanto 2016 Hilltunen 2015 Song 2014 Takahashi, 2017 Vaillancourt 2007	⊕⊖⊖⊖ VERY LOW ª	Prespecified Analysis of studies reporting adjusted ORs (1 study 2493 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 1.14 (0.88 to 1.48)
Bystander CPR (Bystander CPR)	289 per 1,000	558 per 1,000 (478 to 633)	OR 3.10 (2.25 to 4.25)	192734 (9 observational studies) Culley 1991 Harjanto 2016 Hilltunen 2015 JCSRSSG 2013 Song 2014 Stipulante Vaillancourt 2007 Akahane 2012 Ro 2016	⊕⊖⊖⊖ VERY LOW ª	Prespecified subgroup analysis for the PAEDs group: 2 studies, (Akahane 2012,Ro 2016); LOW heterogeneity (due to magnitude-not direction of effect)compared to 7 adult and mixed studies (I2:12%). PAEDS OR: 4.05 (2.43, 6.75), AMPS OR: 2.84 (1.91, 4.23). Prespecified Analysis of studies reporting adjusted ORs (3 studies, 9877 patients) yielded VERY LOW quality evidence (VERY SERIOUS RISK OF BIAS, STRONG ASSOCIATION); OR 5.74 (2.40 to 13.72)
Shockable rhythm	329 per 1,000	357 per 1,000 (342 to 377)	OR 1.13 (1.03 to 1.23)	53371 (5 observational studies) Harjanto 2016 Song 2014 Takahashi 2017 Vaillancourt Goto 2014	⊕⊖⊖⊖ VERY LOW af	Prespecified subgroup analysis for the PAEDs group: 1 study, (Goto 2014); CONSIDERABLE heterogeneity compared to 4 adult and mixed population studies (I2:79%); Different directions of effects. PAEDS OR: 0.81 (0.60, 1.10), AMPS OR: 1.15 (1.10, 1.14)

Table 3 - Summary of findings: Systems Based Comparisons

EMS systems where dispatch assisted CPR is offered compared to EMS systems where dispatch assisted CPR is not offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: EMS systems where dispatch assisted CPR is offered Comparison: EMS systems where dispatch assisted CPR is not offered

Outcomes	Anticipated absolu	ute effects* (95% CI)	Relative effect (95% CI)	№ of participants	Certainty of the evidence	Comments
	Risk with EMS systems where dispatch assisted CPR is not offered	Risk with EMS systems where dispatch assisted CPR is offered		(studies)	(GRADE)	
Time to CPR (Time to CPR)		ients; reporting medians (IQR); Shorter CPR is offered: 4 (1-9) vs. 11 (7-16);		(1 observational study) Goto 2014	⊕OOO VERY LOW ª	
Survival follow up: 1 years	315 per 1,000	322 per 1,000 (190 to 488)	OR 1.03 (0.51 to 2.07)	164 (1 observational study) Hiltunen 2015	⊕OOO VERY LOW e,g	
Survival with CPC 1-2 or mRS (Survival with CPC 1-2 or mRS) follow up: 90 days	207 per 1,000	264 per 1,000 (143 to 370)	OR 1.37 (0.64 to 2.25)	164 (1 observational study) Hiltunen 2015	⊕⊖⊖⊖ VERY LOW e.g.h	

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds ratio

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

- a. Crucial limitation for 1 criterion; some limitations for other criteria
- b. Crucial limitation for 1 criterion
- c. 95% CI for effect size includes null effect
- d. Lag bias; asymmetry in funnel plot
- e. Crucial limitation for multiple criteria
- f. Substantial heterogeneity; differences in the direction of effects
- g. Few events; 95% CI for effect size includes both appreciable benefit and harm
- h. Follow up duration: 6 months

Summary of findings: DA-CPR versus Bystander CPR

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where bystander CPR without dispatch assist is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Setting:

Intervention: Patients/cases where dispatch assisted CPR is offered

Comparison: patients/cases where bystander CPR without dispatch assist is offered

Outcomes	Anticipated absolu	ute effects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with patients/cases where bystander CPR without dispatch assist is offered	Risk with Patients/cases where dispatch assisted CPR is offered	(5078 01)	(studies)	(GRADE)	
Survival with CPC 1-2 or mRS follow up: 1 months	60 per 1,000	44 per 1,000 (42 to 47)	OR 0.73 (0.68 to 0.77)	90889 (2 observational studies) Harjanto 2016 Takei 2016	⊕⊕⊖⊖ LOW ª	Prespecified Analysis of studies reporting adjusted ORs (1 study, 78112 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 1 (0.91 to 1.08)
Survival with CPC 1-2 or mRS (follow up: to hospital discharge)	63 per 1,000	52 per 1,000 (45 to 61)	OR 0.83 (0.70 to 0.98)	28618 (3 observational studies) Park 2018 Wu 2018 Chang 2018		Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); NO heterogeneity compared to 2 adult studies (I2:0%). PAEDS OR: 0.97 (0.58-1.62), ADULTS OR: 0.79(0.61-1.02). Prespecified Analysis of studies reporting adjusted ORs (1 study, 17209 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 1.12 (0.94 TO 1.34)
Survival follow up: to hospital admission	181 per 1,000	135 per 1,000 (64 to 261)	OR 0.71 (0.31 to 1.60)	821 (1 observational study) Harjanto 2016		
Survival follow up: 1 months	93 per 1,000	72 per 1,000 (58 to 89)	OR 0.76 (0.60 to 0.95)	82295 (5 observational studies) Gotz Harjanto 2016 JCSRSSG 2013 Viereck 2017 Goto 2014	⊕⊕⊖⊖ LOW ª	Prespecified subgroup analysis for the PAEDs group: 1 study (Goto 2014); NO heterogeneity compared to 4 adult / mixed population studies (AMPS),(I2:0%). PAEDS OR: 0.74 (0.58-0.95), AMPS OR: 0.71 (0.47-1.08). Prespecified Analysis of studies reporting adjusted ORs (2 studies, 78697 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.13 (1.06 to 1.20)
Survival follow up: to hospital discharge	129 per 1,000	97 per 1,000 (90 to 107)	OR 0.73 (0.67 to 0.81)	34528 (9 observational studies) Bang 1999 Eisenberg 1985 Hiltunen 2015 Oman 2016 Rea 2001 Park 2018 Shah 2017 Wu 2018 Chang 2018	⊕⊕⊖⊖ Low ª	Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); MODERATE heterogeneity compared to 8 adult and mixed population studies (AMPS), (I2:49%). PAEDS OR: 0.98 (0.65-1.48), AMPS OR: 0.73 (0.67-0.79). Prespecified Analysis of studies reporting adjusted ORs (1 study, 17209 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 0.95 (0.83 TO 1.09)

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where bystander CPR without dispatch assist is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: Patients/cases where dispatch assisted CPR is offered

Comparison: patients/cases where bystander CPR without dispatch assist is offered

Outcomes	Anticipated absolu	ute effects* (95% CI)	Relative effect (95% CI)	Nº of participants (studies)	Certainty of the evidence	Comments	
	Risk with patients/cases where bystander CPR without dispatch assist is offered	Risk with Patients/cases where dispatch assisted CPR is offered	(99% CI)	(studies)	(GRADE)		
Sustained ROSC	173 per 1,000	142 per 1,000 (116 to 170)	OR 0.79 (0.63 to 0.98)	38271 (7 observational studies) Harjanto 2016 Hiltunen 2015 Ro 2017 Takahashi 2017 Viereck 2017 Wu 2018 Chang 2017	⊕⊕⊖⊖ LOW ª	Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); NO heterogeneity compared to 6 adult / mixed population studies (AMPS) (I2:0%). PAEDS OR: 0.82 (0.56-1.19), AMPS OR: 0.79 (0.62-1). Prespecified analysis of studies reporting adjusted ORs (3 studies, 34811 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 1.04 (0.94 TO 1.14)	
ROSC to hospital arrival	115 per 1,000	110 per 1,000 (106 to 114)	OR 0.95 (0.91 to 0.99)	104246 (2 observational studies) JCSRSSG 2013 Park 2018	⊕⊕⊖⊖ Low♭	Prespecified analysis of studies reporting adjusted ORs (1 study 78150 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.09 (1.04- 1.14)	
Shockable rhythm	516 per 1,000	441 per 1,000 (394 to 490)	OR 0.74 (0.61 to 0.90)	118686 (4 observational studies) Park 2018 Takei 2016 Wu 2018 Chang 2018	⊕⊖⊖⊖ VERY LOW ad	Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); LOW heterogeneity compared to 3 adult and mixed population studies (AMPS), (I2:8.4%). PAEDS OR: 0.61 [0.43, 0.88] AMPS: 0.77 (0.62-0.94). Prespecified analysis of studies reporting adjusted ORs (1 study, 17054 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS, SERIOUS IMPRECISION); OR 1.02 (0.95 TO 1.09)	
Time to CPR- continuous	The mean time to CPR-continuous was 0 min	The mean time to CPR-continuous in the intervention group was 1.47 min more (0.37 more to 2.53 more)	-	82198 (2 observational studies) JCSRSSG 2013 Rea 2001	⊕⊖⊖⊖ VERY LOW d,e		
Time to CPR- narrative	medians for DA-CP 3 (0 to 11) vs. 2 (0- 2 (0-10); Goto 2014	median (IQR). All report increased R compared to B-CPR: Ro 2017 n=17209 9); Ro 2016 (PAEDS): n=766, 4 (0-13) vs. :: n=4306, 2 (0-5) VS. 1 (0-5). Another n=88068) reported longer time from call to 2,3)		(3 observational studies) Goto 2014 Ro 2016 Ro 2017 Takei 2016	⊕⊖⊖⊖ VERY LOW®		
Survival follow up: 1 years	375 per 1,000	322 per 1,000 (182 to 505)	OR 0.79 (0.37 to 1.70)	117 (1 observational study) Hiltunen 2015	⊕⊖⊖⊖ VERY LOW c.e		

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where bystander CPR without dispatch assist is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Setting: Intervention: Patients/cases where dispatch assisted CPR is offered

Comparison: patients/cases where bystander CPR without dispatch assist is offered

Outcomes	Anticipated absolu	Anticipated absolute effects* (95% CI)		№ of participants (studies)	Certainty of the evidence	Comments
	Risk with patients/cases where bystander CPR without dispatch assist is offered	Risk with Patients/cases where dispatch assisted CPR is offered		((GRADE)	
Survival with CPC 1-2 or mRS follow up: 90 days	188 per 1,000	265 per 1,000 (130 to 463)	OR 1.56 (0.65 to 3.73)	117 (1 observational study) Hiltunen 2015	⊕⊖⊖⊖ VERY LOW c,e,f	

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds ratio; MD: Mean difference

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Crucial limitation for 1 criterion; some limitations for other criteria

b. Some limitations for multiple criteria

c. 95% CI for effect size includes both appreciable benefit and harm

d. Considerable heterogeneity; differences in the direction of effects

e. Crucial limitation for multiple criteria

f. Follow up duration: 6 months

Summary of findings: DA-CPR versus NO CPR

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where no bystander CPR is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: Patients/cases where dispatch assisted CPR is offered Comparison: patients/cases where no bystander CPR is offered

Outcomes	Anticipated absolu	ute effects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with patients/cases where no bystander CPR is offered	Risk with Patients/cases where dispatch assisted CPR is offered	(30 / 01)	(Suules)	(GRADE)	
Survival with CPC 1-2 or mRS follow up: 1 months	31 per 1,000	44 per 1,000 (42 to 46)	OR 1.45 (1.38 to 1.53)	164371 (2 observational studies) Harjanto 2016 Takei 2016	⊕⊖⊖⊖ VERY LOW ª	Prespecified analysis of studies reporting adjusted ORs (1 study,4306 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.81 (1.23 to 2.67)
Survival with CPC 1-2 or mRS (follow up: to hospital discharge)	24 per 1,000	51 per 1,000 (34 to 76)	OR 2.21 (1.44 to 3.40)	50895 (5 observational studies) Dami 2015 Lewis 2103 Park 2018 Wu 2018 Chang 2018		Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); SUBSTANTIAL heterogeneity (I2:65.7%) compared to with 4 AMPS. PAEDS OR: 3.63 (2.18-6.03), AMPS OR: 1.96 (1.19- 3.24). Prespecified analysis of studies reporting adjusted ORs (3 studies, 35921 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.54 (1.35 to 1.76)
Survival follow up: to hospital admission	143 per 1,000	204 per 1,000 (94 to 390)	OR 1.54 (0.62 to 3.83)	3186 (3 observational studies) Dami 2015 Harjanto 2016 Lewis 2103	URRY LOW	
Survival follow up: 1 months	57 per 1,000	93 per 1,000 (37 to 213)	OR 1.68 (0.63 to 4.45)	6619 (3 observational studies) Gotz Harjanto 2016 Goto 2014	⊕⊖⊖⊖ VERY LOW a.d.e	Prespecified subgroup analysis for the PAEDs group: 1 study, (Goto 2014); NO heterogeneity with 2 adult and mixed population studies (I2:0%). PAEDS OR: 1.42 (1.16-1.74), AMPS OR: 2.14 (0.18- 2.25) Prespecified analysis of studies reporting adjusted ORs (1 study, 4306 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.63 (1.32 to 2.01)
Survival follow up: to hospital discharge	57 per 1,000	92 per 1,000 (78 to 108)	OR 1.67 (1.39 to 2.00)	59250 (11 observational studies) Bang 1999 Dami 2015 Eisenberg 1985 Hiltunen 2015 Lewis 2103 Oman 2016 Rea 2001 Park 2018 Shah 2017 Wu 2018 Chang 2018	⊕⊕⊖⊖ Low ª	Prespecified subgroup analysis for the PAEDs group: 1 study, (CHANG 2018); CONSIDERABLE heterogeneity for PAEDs compared with 10 adult and mixed population studies (I ² = 92.3%); effect size larger for PAEDS 3.14 (2.16, 4.58) vs. 1.50 (1.31, 1.73). Prespecified analysis of studies reporting adjusted ORs (5 studies, 43550 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.40 (1.09 to 1.78)

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where no bystander CPR is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: Patients/cases where dispatch assisted CPR is offered Comparison: patients/cases where no bystander CPR is offered

Outcomes	Anticipated absolute effects* (95% CI)		Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with patients/cases where no bystander CPR is offered	Risk with Patients/cases where dispatch assisted CPR is offered	(93% 61)	(suules)	(GRADE)	
Sustained ROSC	98 per 1,000	150 per 1,000 (117 to 191)	OR 1.63 (1.22 to 2.18)	69495 (6 observational studies) Harjanto 2016 Hiltunen 2015 Ro 2017 Takahashi 2017 Wu 2018 Chang 2018	⊕⊖⊖⊖ VERY LOW ª	Prespecified subgroup analysis for the PAEDs group: 1 study, (Chang 2018); CONSIDERABLE heterogeneity compared to 5 adult and mixed population studies (I2:89%). PAEDS OR: 2.95 (2.07-4.20), AMPS OR: 1.45 (1.07-1.96). Prespecified analysis of studies reporting adjusted ORs (1 study, 32506 patients) yielded VERY LOW quality evidence (SERIOUS RISK OF BIAS); OR 1.51 (1.32 to 1.73)
ROSC to hospital arrival (ROSC HA)	38 per 1,000	74 per 1,000 (69 to 80)	OR 2.03 (1.87 to 2.20)	46487 (1 observational study) Park 2018	⊕⊖⊖⊖ VERY LOW ª	
Shockable rhythm	226 per 1,000	306 per 1,000 (284 to 328)	OR 1.51 (1.36 to 1.67)	85787 (6 observational studies) Lewis 2103 Park 2018 Takahashi 2017 Wu 2018 Goto 2014 Chang 2018	⊕⊖⊖⊖ VERY LOW ª	Prespecified subgroup analysis for the PAEDs group: 2 studies, (GOTO 2014, Chang 2018); NO heterogeneity for PAEDs compared to 4 adult and mixed population studies (I ² = 0). PAEDS OR: 1.59 (0.78- 3.21), AMPS OR: 1.53 (1.40-1.66)
Time to CPR	means (SD) indicat vs. 6.4 (3.1). Mean studies reporting m CPR for DA-CPR: 0 (7-15); Ro 2016 n=	dentified: Rea 2001 N=5072: reporting ing shorter time to CPR with DA 2.9 (2.4) difference =-3.5 95% CI [-3.7, -3.3]; And 3 edians (IQR) indicating shorter time to Soto 2014 n=4306, 2min (0-5min) vs 11 :1265, 4 min (0-13 min), vs 10 min (6-18), o 2017n=32506: 3 min (0-11 min) vs 12		(4 observational studies)	⊕⊖⊖⊖ VERY LOW ª	
Survival follow up: 1 years	234 per 1,000	321 per 1,000 (164 to 535)	OR 1.55 (0.64 to 3.76)	100 (1 observational study) Hiltunen 2015	⊕⊖⊖⊖ VERY LOW	
Survival with CPC 1-2 or mRS follow up: 90 days	234 per 1,000	263 per 1,000 (126 to 472)	OR 1.17 (0.47 to 2.92)	100 (1 observational study) Hiltunen 2015	⊕⊖⊖⊖ VERY LOW	

Patients/cases where dispatch assisted CPR is offered compared to patients/cases where no bystander CPR is offered in adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data)

Patient or population: adults and children with presumed cardiac arrest in out-of-hospital settings (unadjusted data) Setting:

Intervention: Patients/cases where dispatch assisted CPR is offered Comparison: patients/cases where no bystander CPR is offered

Outcomes	Anticipated absolute effects* (95% CI)		Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	Comments
	Risk with patients/cases where no bystander CPR is offered	Risk with Patients/cases where dispatch assisted CPR is offered		(50005)	(GRADE)	

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

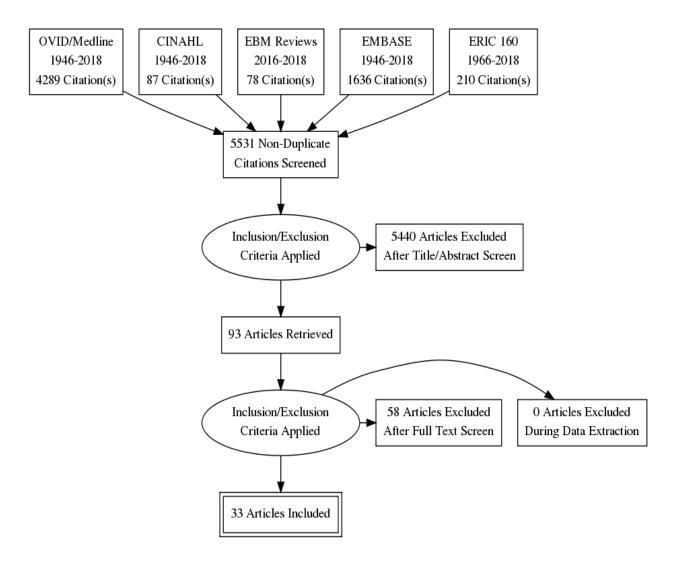
CI: Confidence interval; OR: Odds ratio

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect


Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

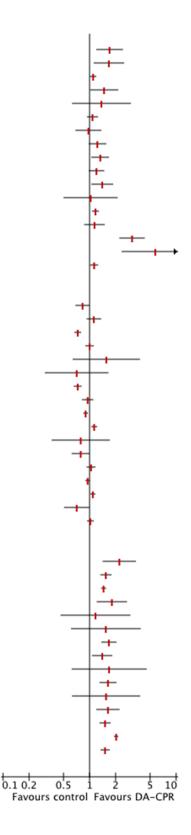
- a. Crucial limitation for 1 criterion; some limitations for other criteria
- b. Crucial limitation for multiple criteria
- c. Considerable heterogeneity; differences in the direction of effects
- d. 95% CI for effect size includes both appreciable benefit and harm
- e. Moderate heterogeneity; differences in the direction of effects
- f. Few events; 95% CI for effect size includes both appreciable benefit and harm

g. Follow up duration: 6 months

Figure 1 – PRISMA Diagram

Figure 2 – Caterpillar Plot Diagram

System comparison


Survival with GNO- Hospital D/C- unadjusted Survival with GNO- Hospital D/C- adjusted Survival with GNO- 1-month- unadjusted Survival with GNO- 1-month- adjusted Survival with GNO- 90-days- unadjusted Survival- hospital admission- unadjusted Survival- hospital admission- adjusted Survival- hospital discharge- unadjusted Survival- hospital discharge- adjusted Survival- 1-month- unadjusted Survival- 1-month- adjusted Survival- 1-year- unadjusted **ROSC- unadjusted ROSC-** adjusted Bystander CPR- unadjusted Bystander CPR- adjusted Shockable rhythm- unadjusted

DA-CPR versus bystander CPR

Survival with GNO- Hospital D/C- unadjusted Survival with GNO- Hospital D/C- adjusted Survival with GNO- 1-month- unadjusted Survival with GNO- 1-month- adjusted Survival with GNO- 90-days- unadjusted Survival- hospital admission- unadjusted Survival- hospital discharge- unadjusted Survival- hospital discharge- adjusted Survival- 1-month- unadjusted Survival- 1-month- adjusted Survival- 1-year- unadjusted ROSC- unadjusted **ROSC-** adjusted ROSC to hospital admission- unadjusted ROSC to hospital admission- adjusted Shockable rhythm- unadjusted Shockable rhythm- adjusted

DA-CPR versus no CPR

Survival with GNO- Hospital D/C- unadjusted Survival with GNO- Hospital D/C- adjusted Survival with GNO- 1-month- unadjusted Survival with GNO- 90-days- unadjusted Survival- hospital admission- unadjusted Survival- hospital discharge- unadjusted Survival- hospital discharge- adjusted Survival- hospital discharge- adjusted Survival- 1-month- unadjusted Survival- 1-month- adjusted Survival- 1-month- adjusted Survival- 1-year- unadjusted ROSC- unadjusted ROSC- adjusted ROSC to hospital admission- unadjusted Shockable rhythm- unadjusted

Appendix A - Outcomes from Task Force Click here to download Supplemental files for online publication only: Appendix A Outcomes from Task Force -010818.pdf

Appendix B - Final Search Strategies Click here to download Supplemental files for online publication only: Appendix B - Final Search Strategies.pdf

Appendix C - Hierarchy for including studies with overlapping da Click here to download Supplemental files for online publication only: Appendix C - Hierarchy for including studies with overlap

Appendix D - Sensitivity analyses- System based comparisons Click here to download Supplemental files for online publication only: Appendix D - Sensitivity analyses- System based comparisons

Appendix E - Sensitivity analyses- DA-CPR vs BCPR Click here to download Supplemental files for online publication only: Appendix E - Sensitivity analyses- DA-CPR vs BCPR.pdf

Appendix F - Sensitivity analyses- DA-CPR vs NOCPR Click here to download Supplemental files for online publication only: Appendix F - Sensitivity analyses- DA-CPR vs NOCPR.pd

Appendix G - Additional Outcomes Click here to download Supplemental files for online publication only: Appendix G - Additional Outcomes.pdf

*Conflict of Interest Statement

Click here to download Conflict of Interrest Statement: Gonflict of Interest Form - Resuscitation Feb 6-2019 2.pdf

as potential conflicts of interest and to significant financial contributions to this work.

- This Systematic Review was funded by the American Heart Association, on behalf of The International Liaison Committee on Resuscitation (ILCOR). The following authors received payment from this funding source to complete this systematic review: Nikolaos Nikolaou as Expert Systematic Reviewer and David Lightfoot as Information Services, St Michael's Hospital
- CV has received peer-reviewed funding to study the topic of Dispatcher-Assisted CPR from the Canadian Institutes of Health Research, Heart & Stroke Foundation of Canada and the Canadian Arrhythmia Network.
- KC is supported by an NIHR post-doctoral research fellowship award.
- KND is supported by a Research Chair from North York General Hospital

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author.

Submitted by Nikolaos Nikolaou on behalf:

Katie N. Dainty, PhD Research & Innovation, North York General Hospital and Institute of Health Policy, Management and Evaluation, University of Toronto

Keith Couper, RN, PhD Warwick Medical School, University of Warwick, Coventry, UK. University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.

Peter Morley, MBBS, GCertClinTeach, FRACP, FANZCA, FCICM, AFRACMA, FERC, FAHA Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne,

Royal Melbourne Hospital Clinical School, The University of Melbourne, Melbourne, Australia

Janice Tijssen, MD, MSc, FRCPC Department of Pediatrics, Schulich School of Medicine & Dentistry, Western University, and Pediatric Intensive Care Unit, London Health Sciences Centre, London, ON, Canada

Christian Vaillancourt, MD, MSc, FRCPC, CSPQ Department of Emergency Medicine, University of Ottawa and Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.

And on behalf of the International Liaison Committee on Resuscitation's (ILCOR) Basic Life Support and Pediatric Task Forces