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Abstract
The utilization of parallel imaging permits increased MR acquisition speed and efficiency;
however, parallel MRI usually leads to a deterioration in the signal-to-noise ratio when compared
with otherwise equivalent unaccelerated acquisitions. At high accelerations, the parallel image
reconstruction matrix tends to become dominated by one principal component. This has been
utilized to enable substantial reductions in g-factor-related noise. A previously published
technique achieved noise reductions via a computationally intensive search for multiples of the
dominant singular vector which, when subtracted from the image, minimized joint entropy
between the accelerated image and a reference image. We describe a simple algorithm that can
accomplish similar results without a time-consuming search. Significant reductions in g-factor-
related noise were achieved using this new algorithm with in vivo acquisitions at 1.5 T with an
eight-element array.

Keywords
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INTRODUCTION
The scan time reductions afforded by parallel imaging are well known to come at the cost of
noise amplifications characterized by the g-factor (1). Noise amplification can corrupt image
quality and effectively limit maximal practical acceleration. Methods such as noise
normalization and regularization techniques for reducing g-factor-related noise have been
proposed in the past, but with mixed results. Noise normalization decreases noise by
adaptively adjusting the amount of filtering for MR images acquired with inhomogeneous
coils at the cost of nonuniform noise amplifications (2). Automatic Tikhonov regularization
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balances tolerance to noise against additive bias to the result, improving image quality at the
expense of potential changes to underlying image content (3).

Recently, a promising method was proposed for the reduction of g-factor-related noise (4),
taking advantage of the fact that, for acceleration factors approaching the number of coils,
the parallel image reconstruction matrix tends to be dominated by one singular value and
vector. Larkman et al. (4) suggested that a search should be made for a multiple of the
dominant singular vector which, when subtracted from the image, minimized the joint
entropy (JE) between the accelerated image and a reference image. This algorithm is
attractive because its ability to reduce noise improves as the acceleration factor increases,
while preventing simple replication of the reference image; however, the JE method is
computationally intensive, with reconstructions that can occupy several hours. We propose a
method that uses a similar principal component approach, but eliminates the need for an
exhaustive search, yielding results similar to the JE approach in a single straightforward
step. This simple algorithm, which may be executed in real time as images are acquired and
reconstructed, should allow significant reductions in g-factor-related noise for highly
accelerated scans with the aid of a reference image of similar contrast.

THEORY
Principal component-based noise reduction

Appendix A provides a derivation of the sensitivity encoding (SENSE) method and the
factorization of the encoding matrix (Equations [11]–[15]). The technique proposed by
Larkman et al. (4,5) used an exhaustive search to find the value of the single dominant δSk,
defined in Appendix A, which minimized JE between the resultant image and a reference
image. We propose that, by algebraically solving for δSk, using least-squares fitting to a
reference image, we can obtain similar results to the JE search, but in a fast and
computationally efficient manner (6). In particular, for one dominant singular value, we can
write:

[1]

By substituting a known low-resolution reference image xref to approximate the unknown x
′Noise Reduced, we can arrive at the Moore-Penrose least-squares solution:

[2]

Thus, we can calculate the final expression for our least-squares noise-reduced (LSNR)
image as:

[3]

Generalization to multiple values of δSk is trivial, with v1 being replaced by a weighted sum
over a larger subset of the columns of V.

For either the exhaustive search or the algebraic solution for the value of δSk, there is a
legitimate concern that the noise reduction method will simply replicate prior knowledge of
the object as reflected in the reference image. This occurrence is protected against by the
coupling of pixel intensities at aliasing positions; however, artifacts from the reference
image may still enter the target image based on the derivations below. The pixel intensities
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in the reference image-dependent vector  subtracted from the reconstructed
image are weighted by a single value, so that pixel intensities may not be manipulated
independently and pixel-by-pixel replication of the reference image will not occur. Indeed,
the precise degree to which reference image information can enter into the LSNR
reconstruction may be obtained by substituting Equation [2] into Equation [3] and, from
Equations [11] and [14], we arrive at the following form:

[4]

Here, we can see that the projection u1 · sref of the aliased reference signal sref against the
singular vector u1 directly replaces the true, but noisy, signal projection u1 · s as a multiple
of the singular vector v1. We note that sref is characterized in a manner similar to s as seen in
Equation [13]. Subtracting the true image x′ from the LSNR-reconstructed image x′LSNR in
Equation [4] yields a difference:

[5]

The first term in curly brackets in Equation [5] represents an artifact term, resulting from the
projection of the difference between the reference and the true aliased signals against u1.
The second term in curly brackets represents the residual noise, which is made up of any
noise in the reference signal projected against u1 plus the remaining noise terms for
uncorrected principal components. If the reference image is taken to be noise free (i.e. dSref
= 0), the LSNR reconstruction may be seen to entail a simple substitution of an ideally
modest artifact term for the leading noise term. By comparison, because of its global nature,
the JE search of Larkman et al. effects a more complex transformation than the difference s
′ref − s′ in order to align the information content of the reference and reconstructed images. It
should be noted that the use of a larger set of singular values/vectors for noise reduction in
either the LSNR or JE technique will allow additional components of the reference image to
enter into the reconstructed image, and will necessarily reduce the protection against
replication of prior information.

Relation to Tikhonov regularization
Given the balance just described between noise reduction and replication of prior
information, the LSNR technique may be classed as a regularization technique. Here, we
identify the precise relationship between LSNR and the more familiar Tikhonov
regularization strategy for the linear inverse problem of parallel image reconstruction.

A Tikhonov-regularized parallel image reconstruction takes the following form:

[6]

where λ is the regularization parameter.

Now assume that there is a λ such that λ2 ⪡ sk, k ≠ 1 and λ2 ⪢ s1, and the reference image is
noise free. Under these assumptions, it can be shown that the Tikhonov regularization result
is:
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[7]

whereas LSNR yields a result of:

[8]

It is clear that Tikhonov regularization has an additional term s1λ−2(v1⊗(u1·(s′−sref)))
containing the difference between the original image and the reference image, as well as an
additional noise term s1λ−2(v1⊗(u1·ds)).

The first term can be further combined with the projected reference contribution term
 to have a signal component in the first principal component of

. In other words, unlike LSNR, which
purely uses the projected signal component from the reference image, Tikhonov
regularization balances noise reduction and artifact generation by retaining a portion
(multiplied by s1λ− 2) of the original signal and noise, and reducing by a similar amount the
presence of the corrupting signal from the reference. The additional noise contribution is a
byproduct of seeking a balance in the signal component between the original image and the
reference image.

It should be noted that, under the assumption λ2 ⪡ sk, k ≠ 1 and λ2 ⪢ s1, the information
associated with the first principal component

 will still be
dominated by . In other words, LSNR may also be understood as a rapid
and automatic method for the selection of the optimal Tikhonov regularization parameter λ
in the case of high accelerations, for which the control of noise is generally most critical.

METHODS
Effective noise reduction in accelerated images using our proposed LSNR approach was
demonstrated for both phantom and in vivo image data (7). LSNR was demonstrated in vivo
utilizing low-resolution reference images. Various acceleration schemes were explored and
the performance of the proposed method was investigated for large numbers of coil
elements. These studies were used to verify that the LSNR method does not replicate the
reference image, and that small lesions which are conspicuous in a high-resolution image,
but not discernible in a lower resolution reference image, were preserved after the
application of the LSNR algorithm.

In vivo images
In vivo images were acquired in volunteers after obtaining written informed consent with the
approval of our institutional review board. All images were acquired on a 1.5-TGE Excite
HD-x scanner (GE Healthcare, Waukesha, WI, USA). Two-dimensional axial images of the
brain were acquired using a head coil array with eight elements circumferentially
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distributed. Brain images were acquired with T1-weighted contrast by a spin-echo sequence
with a single signal average and with T2-weighted contrast by a fast spin-echo sequence with
an echo train length of eight and with two signal averages. Acquisition parameters included:
field of view, 22 cm; slice thickness, 5 mm; image matrix, 256 × 256; acquisition
bandwidth, ±15.63 kHz; TR/TE = 500/20 ms for T1 weighting; TR/TE = 2500/85 ms for T2
weighting. Coil sensitivity maps for parallel imaging were obtained from the data in an
autocalibrating manner (8,9). Low-resolution sensitivity estimates were obtained by Fourier
transformation of the k-space center after filtering with a Kaiser-Bessel window (β = 2),
before normalization by the square root of the sum of squares combination of the separate
coil images. Low-resolution reference images were obtained in a similar fashion from a
second equivalent acquisition, which therefore has independent noise content. In order to
simulate accelerated acquisitions whilst still providing exact unaliased references for
comparison, images were acquired fully sampled and later decimated with various
acceleration factors. Undersampling in one direction and in two dimensions was
investigated. To simulate two-dimensional acceleration, the frequency-encoded direction
was undersampled after acquisition, mimicking the case of a section from a volumetric
image acquisition. Maximal undersampling with acceleration factor R equal to the number
of coils was investigated, using R = Rphase × Rfreq equal to 4 × 2 and 2 × 4. In addition, the
performance of the LSNR approach with submaximal acceleration was explored with
various acceleration factors. Discrete lesions were simulated by setting the pixel intensities
of four small regions to unity in a single two-dimensional axial SENSE-reconstructed image.
These lesions were chosen in order to maximize their distribution throughout the
parenchyma to fully explore whether the LSNR method leads to the disappearance or
creation of new lesions as a result of aliasing and artifact creation.

Image reconstruction
Images were reconstructed using the Cartesian SENSE approach as described by
Pruessmann et al. (1). Regularly undersampled data were reconstructed into aliased images
by fast Fourier transformation. Unfolding was then achieved using the inverse of the
sensitivity matrix found by singular value decomposition (SVD) for groups of aliased pixels
(Equation [15]). SENSE image reconstruction was implemented with a coil sensitivity
image mask, which was fully automatically constructed by Otsu's method (10), which
chooses the threshold to minimize the intraclass variance of the black and white pixels,
followed by morphological filling and dilation. Such a mask identifies the dark space or null
content of the coil sensitivity image and allows for the pixels in this region to be set to zero
value. The g-factor noise amplification is thereby reduced by eliminating aliased pixel
positions from the reconstruction which are known to contribute no signal intensity from the
object.

The LSNR algorithm was implemented on a pixel-by-pixel basis. The sensitivity matrix was
formed from the known coil sensitivities and decomposed via SVD. The principal singular
value and vector were then used to find δS1 with the vector of unfolded image pixels and the
corresponding vector of pixels in the reference image. Additional singular vectors could be
used by finding noise reduction vectors for the singular vectors corresponding to the scaling
parameters δSk (Equation [15]) with k > 1.

Tikhonov regularization was also implemented in a similar manner to the LSNR algorithm,
except that the regularization parameter λ was chosen ad hoc to be optimized at 0.01 after
searching for a parameter ranging from 1 to 1 × 10−4 and examining g-factor data,
difference images and visual quality.
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Image evaluation
For the original SENSE images, the g-factor was calculated according to the analytical
formula provided by Pruessmann et al. (1). For the LSNR method, noise reduction was
calculated in a similar fashion, with reconstruction matrix elements modified as described in
the Theory section above. In general, the g-factor for SENSE can be computed as:

[9]

with ρ denoting the index of the voxel under consideration within the set of voxels to be
separated, and ψ denoting the sample noise matrix.

For the LSNR method, Equation [9] basically takes the same form, except that the encoding
matrix C is replaced by the new matrix, assuming a noise-free reference image:

[10]

Joint entropy
Comparison was performed between the LSNR approach and the JE search approach for
identical datasets. All JE reconstructions were performed from coil sensitivity-masked
SENSE-reconstructed images, with the same low-resolution reference image used in LSNR
reconstructions. It should be noted that the JE method only converges to meaningful minima
if the input SENSE and reference images are masked. The implementation of the JE search
followed the general method described by Larkman et al. with some minor modifications.
Specifically, for each set of aliased voxels x, δSRef was first calculated as described above.
δSRef was then set as the center of a complex space whose real axis was bound from
−2Re{δSRef} to +2Re{δSRef}, and whose imaginary axis was bound in a similar manner
from −2Im {δSRef} to +2Im{δSRef}, defined by upper and lower bounds that were equal to
the real and imaginary parts of δSRef, respectively. The space was distributed into a 22 × 22
grid of discrete coordinates. Each combination of real and imaginary values in this complex
plane was then chosen as the δS1 value, and the set of aliased voxels was noise reduced
according to Equation [1]. The SENSE image was then updated with these new noise-
reduced voxels, and a joint histogram, with a bin size of 40, of this updated SENSE image
and the low-resolution reference image was then constructed using the `hist3' function in the
Matlab Statistics Toolbox. JE was then calculated in the usual manner (4). The real and
imaginary coordinate leading to the minimum JE was then chosen as the δS1 value used in
Equation [1] for the final JE noise-reduced image. This iterative process was continued for
each x vector. It should be noted that certain parameters, such as the number of coordinates
in the complex search space and joint histogram bin size, were determined in an ad hoc
manner in an attempt to minimize algorithm runtime, as even small increments in these
parameters would lead to significantly larger runtimes.

All image reconstruction and processing were performed on a standard PC laptop computer
with a 1.7-GHz processor and 2 GB RAM using the Matlab programming environment (The
Math-works, Natick, MA, USA).
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RESULTS
In all noise reduction experiments, the LSNR algorithm required roughly 30 s to produce the
noise-reduced image, approximately four orders of magnitude less time than the 95 h
required for JE minimization.

Figure 1 shows T1-weighted In vivo brain images which were acquired with an eight-
element head array and reconstructed at various acceleration rates from 1 × 1 to 4 × 2 with
reference images reconstructed with 96 k-space lines without further image-based artifact
reduction. Significant noise reduction was achieved by the LSNR method without apparent
direct replication of the reference image at a maximal acceleration rate of 4 × 2, as well as at
submaximal acceleration rates, e.g. 3 × 2 and 4 × 1. By contrast, the original SENSE
reconstruction was significantly degraded by noise amplification. At lower acceleration
rates, noticeable artifacts caused by the difference of the original image and the low-
resolution reference appeared, although, in these cases, the original SENSE reconstruction
had a high signal-to-noise ratio as a result of data redundancy. These findings were
confirmed by the g-factor maps, as shown in Fig. 2. The g-factors for LSNR reconstruction
were much lower than for SENSE reconstruction alone, especially at high acceleration rates.
It should be noted that LSNR yielded an average g-factor of 0.71 in the 3 × 1 case,
demonstrating the noise suppression ability of the method. In Fig. 3, the error maps for the
images in Fig. 1 are shown. The error maps were calculated by taking the absolute
difference of the noise-free image and either the SENSE or LSNR image. It is noted that, for
accelerations of 3 × 2 and 4 × 2, the average difference was less for the LSNR image
compared with the SENSE image. For the 3 × 1 and 4 × 1 cases, the average difference was
either increased or similar to the SENSE image. For Fig. 4, the studies were repeated in T2-
weighted brain images with 2 × 4 acceleration, yielding similar results. In order to examine
how dominant the inverse encoding matrix was at different accelerations, in Fig. 5, the
condition number, which is the ratio of the largest to smallest singular value, of the inverse
encoding matrix (see Appendix A, Equation [11]) for the SENSE images in Fig. 1 was
plotted against the acceleration factor. The condition number is a well-known metric of
matrix stability, particularly during inversion. Next, four discrete simulated lesions were
added to the SENSE-reconstructed image from Fig. 4, without adding lesions to the
reference image, in order to further test the versatility of the LSNR method using a reference
image of different features. A corresponding LSNR reconstruction was performed, and is
shown in Fig. 6. The resulting LSNR image preserves the lesions without creating any
visually appreciable artifacts. It should be noted that LSNR was also successful when using
a reference image slightly displaced from the image slice, an observation that may have
practical importance for situations in which sensitivity calibration scans are not perfectly
aligned with accelerated scans.

A JE reconstruction, in Fig. 7, resulted in improved noise reduction, but increased aliasing
artifacts, when compared with the LSNR image in the center of the figure. JE between the
reference image and the noise-reduced image was reduced by 41% when compared with JE
between the reference image and the input SENSE-reconstructed image; 20% of all JE
searches during the reconstruction converged to a minimum δS value that was equal to δSRef
calculated by the LSNR method. Moreover, in Fig. 7, a Tikhonov regularization was
performed which did not yield significant noise reduction compared with either LSNR or JE
methods.

In Fig. 8, the effect of reference image resolution on LSNR image quality is illustrated. The
use of the LSNR method with a reference image with 32 phase-encoded lines resulted in
noise reduction, but at the cost of introducing a noticeable edge aliasing artifact compared
with a reference image of 96 phase-encoded lines. This artifact was derived chiefly from
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high-intensity edge regions of the SENSE image, such as the pericalvarial tissues (PCTs);
these are defined as the tissues surrounding the skull, which consist of the scalp and its five
layers, and the bony cranium. In general, by lowering the resolution of the reference image,
edges are blurred as high-frequency data are decimated, leading to the broadening of high-
intensity areas, such as the PCTs. This can be conceptualized by considering that, if the
reference and target images were superimposed, there would be overlap of the blurred edges
of the reference image, such as the high-intensity regions of the skull, on nonedge, lower
intensity areas of the target image, leading to an increase in the value of the difference
between the reference and the true aliased signals, as shown in Equation [5], thereby causing
an aliasing artifact when the target image is unfolded. As shown in Fig. 8, removal of these
high-intensity regions from the LSNR process resulted in the elimination of most of the
residual artifacts. PCT removal was performed by an automated segmentation method in
which: (i) masked SENSE images were used to identify the brain parenchyma without
PCTs; (ii) our LSNR technique was performed on the remaining image without PCTs; and
(iii) PCTs from the original masked SENSE images were added back to the LSNR-
reconstructed image. Specifically, following the masked SENSE reconstruction as described
above, an extended minima transform was performed on each masked SENSE image using a
connectivity of eight points to create a binary image differentiating the total image (PCT and
brain parenchyma) from nontissue (image nullspace). The brain parenchyma was isolated
from the masked SENSE reconstruction by exploiting the fact that the PCT in the image is
surrounded at its exterior and interior by an area of low intensity that has greater than four-
point connectivity. By excluding the image nullspace and the PCT, the LSNR technique was
performed on only the brain parenchyma from the masked SENSE image. Finally, using
simple image addition, the PCT from the masked SENSE image was reintroduced to this
brain tissue LSNR image, resulting in an LSNR hybrid image. LSNR images showed a
marked reduction in edge artifact after removal of PCT (middle right in Fig. 8) or increasing
the reference image resolution (right image in Fig. 8).

DISCUSSION AND CONCLUSIONS
Using the LSNR method, we were able to reduce g-factor-related noise in highly accelerated
scans when reference and target images were of similar contrast. Although the method relies
on prior information in the form of a reference image, the algorithm remains substantially
protected against simple replication of reference image content, as aliased sets of voxels
may only be changed in fixed ratios as defined by the singular vectors vk. This prevents
unrestricted modification of any given pixel value to match prior information. Moreover,
lesions added to the SENSE image, but not to the reference image, were preserved in LSNR
reconstructions. Noise reduction using our least-squares approach was, on average, four
orders of magnitude faster than the algorithmically challenging JE approach, but yielded
similar results for a single δS1 value. Like our LSNR implementation, our JE
implementation used uncompiled Matlab code, and some significant reductions in
reconstruction time are expected to be possible. However, JE reconstructions would still be
expected to occupy hours rather than seconds. Moreover, the inefficiency of the JE method
was further confirmed by the fact that 20% of all the JE search iterations converged on the
same δS1 value as the LSNR method, although this may be confounded by the fact that the
iteration centered around δS1.

Moreover, as shown in Fig. 7, the results obtained by implementing a Tikhonov
regularization are slightly improved from the SENSE image, but are not as effective in noise
reduction as either the LSNR or JE methods. It should also be noted that the regularization
parameter λ, as a well-known issue, is not easy to determine for each simulation, depending
on the image and acceleration factor. Given the choice of parameter and optimization
difficulties, the Tikhonov method appears to be the lesser choice for noise reduction, as it is
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not as simple as the LSNR method, nor is it as versatile as the JE method in its ability to use
a reference image of different contrast. Further, the Tikhonov method importantly showed
significantly less noise reduction when compared with both the LSNR and JE techniques.
Based on the formulation of the Tikhonov regularization and its relationship to the LSNR
technique as outlined in the Theory section, it would appear that the LSNR method is a rapid
and automatic method for choice of the Tikhonov regularization parameter.

Despite the efficacy of the LSNR method for highly accelerated data where SENSE
reconstruction is poorly conditioned, in better conditioned cases, the LSNR method using
one singular value showed a less satisfactory performance (Figs 1 and 3). As expected from
theory, in Fig. 5, as the acceleration factor increases, the condition number of the inverse
encoding matrix (defined in Appendix A, Equation [11]) increases exponentially. This is
confirmed empirically by our results, which show that, unless the inverse encoding matrix is
poorly conditioned, such as the eight-fold acceleration case, there will not be a sufficiently
dominant singular value, and thus, although the single-value LSNR method will still yield
noise reduction, it will be at the expense of an increased artifact. At the same time, as the
number of aliased voxels decreases, the protection against the replication of prior
information is reduced, which also accounts for increased levels of artifact at lower
acceleration factors. This is a clear limitation of the LSNR method.

The LSNR approach allows for the incorporation of multiple singular values/vectors for
each set of aliased voxels, with the important caveat that, as more components are used, the
result is less effectively protected against the replication of prior information from the
reference image. If all components are used then, as shown in Equation [3], the terms cancel
and x′LSNR = xref. Also of note, due to the dramatically increased computational burden for a
multidimensional search, the JE method is currently practical only for the determination of a
single δS1.

It should be stated that the LSNR method works best when target and reference images are
of the same contrast, which is intuitive based on theory, as the method involves a subtraction
between the reference image and the SENSE image. Thus, it is conceivable that a reference
image of different contrast would skew the LSNR calculation. This stipulation is in
distinction from the JE method, which is more global, in that it can technically operate with
a reference image of any contrast, as the algorithm is based on image structures rather than
image intensity.

A major source of residual artifact in the brain images when using a low-resolution
reference image is the PCT, which produces characteristic edge artifacts across the image.
These edge artifacts are mainly a result of omitted high-frequency data, especially for bright
edges, in the undersampled low-resolution reference images used by LSNR. These artifacts
are introduced by the LSNR method from the reference image based on aliasing patterns of a
given acceleration. This is a limitation of the method, which can be solved by two
approaches.

The first and most straightforward method is to increase the resolution of the reference
images. This approach can be easily adopted in applications in which a series of images are
acquired to study the dynamics of the subject, such as functional MRI.

The second approach is to utilize image analysis techniques to segment and remove the
regions with sharp bright edges, such as PCT, and then apply the LSNR technique on the
image without PCT. It should be noted that this generally does not lead to a severe
compromise in noise reduction for the areas of the image with sharp bright edges, such as
PCT, given that the signal intensity in these regions is higher than in the rest of the image.
Figure 8 illustrates these two approaches on a 3 × 2 accelerated T1-weighted image. Clearly,
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without the segmentation method, the artifacts in the LSNR image using a 32-line reference
image are severe. However, both the image with brain parenchyma masking using a 32-line
reference, and the image without brain parenchyma masking using a 96-line reference image
exhibit effective noise removal without the introduction of significant edge artifacts in the
reconstructed images.

At present, the LSNR method has only been applied for regular Cartesian undersampling,
although the algorithm is sufficiently efficient that other sampling trajectories might also be
considered. As the LSNR approach is highly effective at reducing noise for any image that is
poorly conditioned, the method could provide a means for automatic noise reduction when
applied to a maximally accelerated SENSE reconstruction. Moreover, the approach could
also be applied selectively to areas of an image (i.e. to subsets of aliased voxels) for which
the condition number of the reconstruction matrix rises above a defined threshold.

In conclusion, the principal component LSNR approach proposed here is a promising
candidate for rapid noise reduction in highly accelerated images or dynamic imaging, and a
rapid alternative method to the JE approach with slightly increased constraints on the
reference images.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A
Cartesian sensitivity encoding (SENSE) image reconstruction with regular undersampling
involves the inversion of an encoding matrix C composed of complex coil sensitivities at
each set of aliased positions in the target image. C can be factorized using a singular value
decomposition (SVD) as C = USV+, with U and V as unitary matrices and S as a diagonal
matrix. The superscript `+' indicates Hermitian conjugation. By generalizing the notation of
Larkman et al., the inverse matrix, or reconstruction matrix, can be written as:

[11]

where vk and uk are columns and rows of the V and U+ matrices, respectively, sk is the kth
diagonal element of the diagonal S matrix and the sum over k runs from unity to the
acceleration factor. If the unfolded pixels are represented in a complex vector:

[12]

with true pixel intensity x and noise contribution dx, and the folded pixels are represented in
a complex vector:

[13]

once again separating the true pixel intensity s′ from the noise contribution ds, the SENSE-
reconstructed image (i.e. the complete image with amplified noise) is:
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[14]

and the true noise-free image intensity is:

[15]

Here, δSk is an unknown scalar value defined by the inner product of the kth vector uk with
the unknown noise vector ds. It should be noted that, when all singular values are equal,
slight perturbations in the measured data do not impact significantly on the reconstructed
image. In this case, C is well conditioned, with a condition number (defined as the ratio
between the largest and smallest singular values) equal to the ideal value of unity. However,
if one of the singular values of C is much smaller than the others, the corresponding singular
value of Cinv will be very large. In this case, Cinv is considered to be ill-conditioned and will
have a condition number much greater than unity. Thus, even a small perturbation in the
data, in the form of noise, will result in a large difference in the reconstructed image,
provided that the perturbation has some component along the direction of the singular vector
associated with this large singular value (5). It is known that, at high accelerations, the
encoding matrix C becomes ill-conditioned. As a result, Cinv is dominated by the first few
singular values and singular vectors. Thus, only one or a small number of complex
quantities δSk need to be found to estimate the noise-free image intensities.

Abbreviations used

JE joint entropy

LSNR least-squares noise-reduced

PCT pericalvarial tissue

SENSE sensitivity encoding

SVD singular value decomposition
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Figure 1.
In vivoT1-weighted brain images (matrix size, 256 × 256) obtained with an eight-element
head array. Top row: standard sensitivity encoding (SENSE) reconstruction. Bottom row:
least-squares noise-reduced (LSNR) reconstruction. From left to right: various acceleration
rates from 1 × 1 (i.e. unaccelerated gold standard) to 4 × 2. A reference image of matrix size
96 × 96 was used for LSNR reconstruction.

Patel et al. Page 13

NMR Biomed. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
In vivog-factor maps corresponding to the accelerated images of Fig. 1. Top row: standard
sensitivity encoding (SENSE) reconstruction. Bottom row: least-squares noise-reduced
(LSNR) reconstruction. From left to right: various acceleration rates from 3 × 1 to 4 × 2.
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Figure 3.
In vivo difference images corresponding to the accelerated images of Fig. 1. Top row:
standard sensitivity encoding (SENSE) reconstruction. Bottom row: least-squares noise-
reduced (LSNR) reconstruction. From left to right: various acceleration rates from 3 × 1 to 4
× 2.
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Figure 4.
In vivoT2-weighted brain images obtained with the eight-element head array. Top left:
unaccelerated gold standard (matrix size, 256 × 256). Top middle: 2 × 4 sensitivity encoding
(SENSE) reconstruction (matrix size, 256 × 256). Top right: SENSE g-factor map. Bottom
left: low-resolution reference image (matrix size, 96 × 96). Bottom middle: least-squares
noise-reduced (LSNR) reconstruction (matrix size, 256 × 256). Bottom right: LSNR g-factor
map.

Patel et al. Page 16

NMR Biomed. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Condition number of the inverse encoding matrix for the sensitivity encoding (SENSE)
images in Fig. 1 plotted against the acceleration factor.
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Figure 6.
In vivoT2-weighted brain images (matrix size, 256 × 256) with artificially added `lesions'.
Left: 2 × 4 sensitivity encoding (SENSE) reconstruction with four lesions added. Right:
least-squares noise-reduced (LSNR) reconstruction, preserving lesions not present in the 96
× 96 reference image.
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Figure 7.
Comparison of reconstruction strategies for in vivoT1-weighted brain images (matrix size,
256 × 256): Left: 4 × 2-accelerated masked sensitivity encoding (SENSE) reconstruction.
Middle left: Tikhonov reconstruction. Middle right: least-squares noise-reduced (LSNR)
reconstruction. Right: joint entropy (JE) reconstruction using the same 64 × 64 reference
image.
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Figure 8.
In vivoT1-weighted brain images obtained with an eight-element head array at 3 × 2
acceleration. Left: full-resolution source image. Center left: least-squares noise-reduced
(LSNR) reconstruction using a 32 × 32 reference image. Center right: LSNR reconstruction
using a 32 × 32 reference image combined with pericalvarial tissue masking. Right: LSNR
reconstruction using a 96 × 96 reference image.
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