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In this paper we analyze policies for optimally disposing inventory using online auctions. We
assume a seller has a fixed number of items to sell using a sequence of, possibly overlapping,
single-item auctions. The decision the seller must make is when to start each auction. The
decision involves a trade-off between a holding cost for each period an item remains unsold,
and a higher expected final price the fewer the number of simultaneous auctions underway.
Consequently the seller must trade-off the expected marginal gain for the ongoing auctions
with the expected marginal cost of the unreleased items by further deferring their release.
We formulate the problem as a discrete time Markov Decision Problem and consider two
cases. In the first case we assume the auctions are guaranteed to be successful, while in the
second case we assume there is a positive probability that an auction receives no bids. The
reason for considering these two cases are that they require different analysis. We derive
conditions to ensure that the optimal release policy is a control limit policy in the current
price of the ongoing auctions, and provide several illustration of results. The paper focuses
on the two item case which has sufficient complexity to raise challenging questions.

Key words: Online Auctions; Price Cannibalization; Strategic Auction Release; Markov
Decision Process

1. Introduction

Though Internet based auctions, or online auctions, have been around since the early dot-

com era, it is not until rather recently that their importance in eCommerce has developed.

From being mainly regarded as Internet based flea-markets for the Consumer-to-Consumer

(C2C) markets, their importance and presence in the Business-to-Consumer (B2C) markets

has and continues to rapidly grow. Today many well-established firms operate online auc-

tions not only as complementary sales channels but also as strategic tools in pricing and

product introduction decisions. One common use of online auctions is as alternative salvage
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channels. Dell, IBM, Sharp, Sears, and Fujitsu-Siemens, use their eBay stores to sell leased

and returned items, as well as any excess inventory. Some companies and organizations, such

as Toshiba, Dell, CompUSA, and Major League Baseball, host their own online auctions.

Though there are a plethora of web-sites that host online auctions, the most dominant online

auction ‘house’ is ebay.com. In 2005, eBay had 181 million registered users, and 1.9 billion

listings for a total sales volume of over $44 billion, up from 135 million users, 1.4 billion

listings and sales volume of $34 billion in 2004 (eBay Annual Report 2005, 2004). To put

this in perspective, the US Census Bureau estimated the 2005 eCommerce segment of US

retail sales to account for close to $88 billion (about 2.4% of total US retail sales; US Census

Bureau News CB06-66). In 2005, the 7th largest retailer, Lowe’s, had an annual sales totaling

$43.2 billion (stores.org Top 100 Retailers 2006).

The motivation for this paper stems from discussions with Truition and Marketworks; two

companies that assist established firms develop eCommerce strategies and infrastructure for

setting up online auctions. One of the main question raised in these discussions was: ‘How

should a company optimally release items for auction in order to maximize their profit?’ The

objective of this paper is to provide a model for selling a fixed inventory of goods using a

sequence of single item auctions, and to provide structural results regarding the optimal re-

lease policy. More specifically, how should a seller, given N identical items, optimally release

each individual item for auction in order to maximize the total profit. We assume all auction

parameters, such as auction length, starting price, and bid increment, have been pre-set and

that the only decision to make regards the timing of releasing each item for auction. The

trade-off that makes the problem interesting is that, on the one hand, the seller incurs a

holding cost for each period an item remains unsold, while on the other hand, the more on-

going auctions the seller has, the lower the expected final price in each of those auctions. In

other words, competing auctions ‘cannibalize’ each other. Figure 1 displays the final price of

115 laptop auctions at the eBay store Dell Financial Services. It shows that the final price

is on average decreasing in the number of auctions, suggesting some extent of cannibalization.

The holding cost represents, in addition to the usual components such as cost of capital,

insurance, and space, the value deprecation of an item. For example, over the first half of

2006 the average selling price for the specific Dell laptop shown in Figure 1 decreased with

about $200, or about $1 per day. When the holding cost is ‘low’ it will never be optimal
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Figure 1: Final price as a function of the number of ongoing auctions of 115 Dell laptop (512MB,
30GB, 1.8MhZ, Intel Pentium 4) auctions at the eBay store Dell Financial Services. All auctions
lasted for three days and took place between 15th of December, 2005, and 30th of June, 2006. The
line represents the least square linear regression.

to have more than one auction underway. This is because the fewer the number of ongoing

auctions the higher the expected final price for each of the auctions, due to cannibalization.

Therefore, the optimal release policy is to wait until the current auction is completed before

releasing the next item; that is, to hold N non-overlapping sequential auctions. On the other

hand, if the holding cost is ‘high’ then it will never be optimal to delay the release of an

item and instead all items should be released simultaneously. The reason for this is that the

additional holding cost from deferring will exceed the gain in expected final price by having

fewer ongoing auctions. The optimal release policy is to hold Nsimultaneous auctions (all

overlapping and note that this is different from one N -item auction). We will mainly be

interested in situations where the holding cost has some strategic implication and the opti-

mal policy is not one of the extreme policies. Furthermore, we will provide conditions that

show that the optimal release policy is dependent on the state of the ongoing auctions or

closed loop, in contrast to a state independent or open loop policy. The two extreme open

loop policies are the sequential respectively simultaneous release policies discussed above.

Figure 2 below highlights the above discussion. The figure depicts the expected total profit

as a function of the per period per item holding cost for a numerical example of two items

and auction length of three periods (see Section 3.4). We see that for low holding costs the

optimal policy is to release the auctions sequentially, while for high costs, the optimal policy
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is to release the auctions simultaneously. For cases in between, the optimal policy depends

on the price in the current auction and dominates the open loop policies.
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Figure 2: Two item, three period numerical example of expected total profit as a function of
the per item per period holding cost. The four dashed lines represent the open loop policies;
non-overlapping sequentially release (A), release with two day overlap (B), release with one day
overlap (C), and simultaneously release (D). The solid line that lays above them represents the total
expected profit for the optimal policy, which is closed loop. See Section 3.4 for details regarding
formulation and computation.

The problem we are addressing falls into one of the four categories of open research areas

described by Pinker, Seidmann, and Vakrat (2003). Namely how could (or should) a firm

integrate online auctions into their business model. Similarly, the Internet auctions review

by Bajari and Hortacsu (2004) states that more research needs to be done regarding ‘the

analysis of markets with multiple simultaneous auctions’. Our hope is that this paper can

provide a structural framework, insights and results regarding this issue.

Though it may appear to be an oversimplification, this paper considers the two item

case. The two item case provides sufficient complexity to be both interesting and give rise to

some surprising results. Furthermore, this will enable the discussion to focus on the trade-off

between releasing and deferring the release and not become convoluted by the combinatorial
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complexity of the N item case. It should also be noted that this problem has not yet

been addressed in the existing auction theory or inventory literature. Previous research has

mainly focused on the analysis of an isolated single auction, either single-item or multi-item

auctions, and in the case of multiple auctions only considered non-overlapping sequential

auctions. And in particular, most research questions have been with regard to the impact

of various auction parameters, such as, starting price, reserve price, bid increment, auction

length, and lot size. The novelty of this paper is that it provides a framework for analyzing

the issue of strategic timing of auctions when auctions compete or ‘cannibalize’ on each

other.

1.1 Related Literature

In recent years auction theory has come to play an important role in the management sci-

ence and revenue management field, resulting in a wide spectrum of applications of auction

theory. However, given the voluminous literature on inventory management and dynamic

pricing, relatively little has been written with regards to inventory management using online

auctions. Two papers that consider the impact auctions have on the inventory re-ordering

policy are Vulcano and van Ryzin (2004), and Huh and Janakiraman (2006). Vulcano and

van Ryzin focus on how a seller should optimally choose the auction format and how this

decision will affect the optimal inventory re-ordering policy. They formulate the problem as

an infinite horizon dynamic program and show what the joint auction-format and replen-

ishment policy is. Huh and Janakiraman show that using auctions as a sales channel will

satisfy conditions to ensure that (s, S) policies are optimal. Vulcano and van Ryzin have

previously analyzed a problem that is similar to the one we address (Vulcano, van Ryzin,

and Maglaras 2003). There they consider a seller, who given a fixed inventory and fixed

time-horizon, has to optimally ‘auction’ off the goods . The underlying ‘auction’ mechanism

they consider is in the spirit of priceline.com where people place ‘bids’ and sellers can choose

to accept or reject the offers. They model each multi-item ‘auction’ as a separate period

and perform the symmetric equilibrium analysis for each period (auction). Another related

paper is Pinker, Seidmann, and Vakrat (2001), where they analyze the problem of optimally

disposing a given inventory using a sequence of non-overlapping multi-item online auctions,

and solve for the symmetric equilibrium analysis given uniform valuations. Their objective

is to categorize the optimal number of multi-item auctions and the optimal unit to release

in each auction. In contrast to these papers, we permit the auctions to overlap and analyze
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the auction dynamics as a Markov chain.

The above four papers all use a game theoretic approach. A paper which uses a dif-

ferent analysis methodology is Bertsimas, Hawkins and Perakis (2003). The problem they

address is how a seller should optimally set the auction control parameters starting price,

reserve price and auction length, in order to maximize revenue. They model the problem

as a Markov Decision Problem and with empirical data from over 17,000 eBay auctions de-

termine the optimal parameters. Bapna, Goes, and Gupta (2003) also address the issue of

optimal auction control parameters in a revenue management context. The main focus of

their analysis is to highlight the importance and structural implication of the bid increment

in a first-price multi-item auction. Using data from 90 online auctions they empirically val-

idate their findings. The two common elements of the above literature is that they focus on

the optimal setting of auction parameters and analyze each auction in isolation. In contrast,

we model the optimal release or timing of auctions given fixed auction parameters and a

dynamic interaction between competing auctions.

A paper that does analyze the dynamics between competing auctions is Peters and Severi-

nov (2002). They take the other extreme case and consider all auctions to be simultaneously

released. They present a model with M bidders and N single-item auctions, where both M

and N are fixed, and derive the Bayesian-Nash equilibrium for the final price of the N auc-

tions. In particular they show that the final price will be the same for all auctions. Though

they are implicitly assuming an online setting, there is nothing explicit in their model that

incorporates the special dynamics of online auctions, such as the arrival rate of bidders or

fixed auction dead-line.

Overview of Paper

The remaining paper is organized as follows. In Section 2 we state the problem and formulate

it as an MDP model. In Section 3 we discuss the case when the auctions are guaranteed to be

successful, and hence the seller only has to list an item once. While in Section 4 we discuss

the case when there is a positive probability an auction receives zero bids and the seller

has to re-list items from unsuccessful auctions. In Section 5 we summarize our conclusions

and provide ideas for future research. All proofs are included in Appendix 1. For ease of

discussion, both the seller and bidders will be referred to as he, with no gender bias intended.
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We write increasing (decreasing) instead of non-decreasing (non-increasing). In addition, we

will refer to non-overlapping sequentially released auctions as simply sequentially released

auctions, and write auction instead of online auction.

2. Model Formulation

Before we formulate the MDP model we begin with a brief description of the underlying

auction dynamics. We will not provide a rigors framework for how auctions can be mod-

eled as stochastic processes, but only sketch out the main ideas regarding the stochastic

elements driving the price transitions. For a detailed discussion regarding modeling auctions

by stochastic processes, see Segev, Beam, and Shantikumar (2001), and the PhD thesis Ode-

gaard (2007). Though we are not explicitly modeling a specific online auction or seller, it

may be illustrative to consider the eBay auction format and, for instance, the eBay store

Dell Financial Services.

2.1 A General Framework for Modeling Online Auctions

We assume a seller has two auctions underway. Each auction i, i = 1, 2, is at time t defined

by its current price (or bid) Xi,t and its elapsed auction time Yi,t. The state of the auctions at

time t will be written as [X1, Y1; X2, Y2]t. The auctions are ordered according to elapsed time

(Y1 ≥ Y2). We assume potential bidders arrive according to a non-stationary Poisson process

with rate λt. After arriving, a bidder observes the state of the auctions. If an arriving bidder’s

valuation V ≤ min{X1, X2} he leaves the auction site. If min{X1, X2} < V ≤ max{X1, X2}

he places a bid bt(V, (Xj, Yj)) in the lower priced auction j, j = argmin{X1, X2}. If V >

X2 ≥ X1 he places a bid bt(V, [X1, Y1]) > X1 in the first auction, since it will end sooner

and has a lower price. If, however, V > X1 > X2 then a fraction α of the bidders will place

a bid bt(V, [X1, Y1]) > X1 in auction 1, while 1 − α will place a bid bt(V, [X2, Y2]) > X2 in

auction 2. The reason why some bidders will choose to participate in the more expensive

auction 1 is because they prefer to receive the item sooner and thus trade-off the expected

final price and time between the two auctions. After a bidder places a bid, the current price

of that auction is updated according to the governing auction rules. When the next bidder

arrives, s time-units later, he observes either [X ′
1, Y

′
1 ; X2, Y

′
2 ]t+s or [X1, Y

′
1 ; X

′
2, Y

′
2 ]t+s. Where

Y ′
i = min{Yi + s, τ}, τ the fixed auction length, and X ′

i = f(bt(V, [Xi, Yi])), i = 1, 2, for a

well-defined function f(·). This process continues until the first auction is over, Y1 = τ , at
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which point the seller announces the winner of that auction, awards the item, and collects

the payment. The dynamics for the remaining time of the second auction follows a similar

but much simpler structure. For the remainder of the paper we assume that the transitions of

Xi can be summarized by either a transition probability matrix or a conditional cumulative

distribution function, that may be the result of the above process. Though we are considering

a general auction setting there are some specific ‘behavioral’ assumptions we impose. These

assumptions, or rather their mathematical translation, will ensure that certain structural

results will follow. A more detail discussion regarding the specifics of this will follow.

2.2 The Problem

We are considering a seller who, over a planning horizon T , intends to sell two identical

items using a pair of single-item auctions. Each auction is assumed to have the same fixed

time-length τ < ∞. We divide τ into a sequence of discrete periods such that each auction

period coincide with the length of the discrete time periods that constitute T . The seller

decides at the start of each period whether or not to release an item for auction. It is

important to emphasize that an ongoing auction does not have to be completed before the

next auction is started; auctions may overlap each other. We model the seller’s problem as

a discrete time Markov Decision Problem (MDP) with the objective of maximizing expected

total profit. Two cases will be considered. In the first case we assume the auctions are

guaranteed to be successful and hence the seller only has to list an item once. Since the

seller only has two items, the seller is faced with a finite planning horizon 2τ . In the second

case, we assume there is a positive probability that an auction is unsuccessful, meaning that

no bids arrived, and that the seller has to re-list unsold items. Consequently the seller is

faced with an infinite planning horizon. The reason for separating the two cases is that they

require different models and analyses.

We will throughout the paper assume two fundamental aspects regarding the seller. The

first is that the seller would only be interested in selling via auctions if the accumulated

holding cost over the duration of an auction is compensated by the expected final price. We

summarize this in the following lemma and refer to it as the positive expected profit assump-

tion.

Lemma If the expected revenue from an auction does not compensate the holding cost accu-

mulated over the auction duration, then it is optimal to immediately dispose of the items.
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The second assumption is that the seller is vigilant in keeping track of how many items he has

released for auction and how many are remaining, and that he has no reason to speculatively

hold inventory. Summarized as follows and referred to as the vigilant seller assumption.

Lemma If the price dynamics of an auction are independent of time and the holding cost is

positive then it will always be optimal to have at least one auction underway while there still

is remaining inventory.

In other words, if there are no auctions underway but the seller still has items remaining

he should always start at least one auction. Thus at the start of the planning horizon, he

should always start at least one auction. This lemma is equivalent to Lemma 1 in Pinker,

Seidmann and Vakrat (2001), where a proof is provided.

2.3 Markov Decision Problem Formulation

To formulate the seller’s problem as an MDP, we require the following elements.

Decision Epochs, t = 0, 1, . . . , T

We assume discrete time periods of equal length and that decisions are made at the beginning

of each period. We are implicitly regarding T as a fixed number of days and assume decisions

are made at the start of each day. However, for a general framework where, for instance,

decisions are made more frequently, say hourly, T could be increased to reflect the appropriate

planning horizon. We consider two cases, T < ∞ and T = ∞.

State Space

At each decision epoch t, the system state, S = ([X1, Y1; X2, Y2], Z), consists of the state of

each auction, [Xi, Yi]i=1,2, and the number of ongoing auctions Z. Each auction i, i = 1, 2, is

defined by the pair of random variables current price (bid), Xi, and elapsed auction time, Yi.

We will consider both discrete and continuous prices. For the discrete case Xi ∈ {0, p, p +

k, p+2k, . . . , P}, where p, k and P are positive, finite integers. While for the continuous case

Xi ∈ {0} ∪ [p, P ], where [p, P ] ⊂ <+. In both cases, p is the starting price of the auction, P

the upper limit of what any bidder would be willing to bid, and for discrete prices, k is the

price-increment. We assume Yi is discrete and finite, Yi ∈ {0, 1, . . . , τ} ∪ {δ}, where τ < ∞.

The symbol δ is used to indicate that the auction is completed and the item awarded. We

will interchangeably use the notation Xi,Yi
and (Xi, Yi) to denote the state of an auction.

For instance, Xi,τ is the final price of auction i.

At the start of an auction Yi = 0 and Xi = 0. For each additional period an auction is

underway Yi increases by one. When an auction has successfully been completed, that is
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Xi,τ ≥ p, the item is awarded and payment received. In this case, the state of the auction

evolves as follows, for p ≤ pi ≤ p′i,

. . . =⇒ (pi, τ − 1) =⇒ (p′i, τ) =⇒ ∆i =⇒ ∆i =⇒ . . .

where ∆i = (Xi, δ). If an auction is unsuccessful, that is Xi,τ = 0, the auction returns to the

initial state (0, 0), that is the transitions follow,

. . . =⇒ (0, τ − 1) =⇒

{

(q, τ) w. prob. Pr{Xi,τ = q | Xi,τ−1 = 0}

(0, τ) ≡ (0, 0) w. prob. Pr{Xi,τ = 0 | Xi,τ−1 = 0}

The reader familiar with auctions or auction theory, may notice that we have not included

a reserve price. Including a reserve price will not change our analysis, and omitting it

simplifies matters. We let ∆ denote the (absorbing) state when both items have been sold,

∆ = ([∆1; ∆2], 0).

Though it may appear redundant we include a counter Z of the number of ongoing auctions.

The number of ongoing auctions at time t will be defined by Zt. In order to avoid issues with

Zt in decision epochs where an auction will be started by the vigilant seller assumption, we

define Zt to be the number of ongoing auctions in the instantenous moment before decision

epoch t, before any price jumps have occurred and before the seller has made a non-trivial

or relevant decision. For instance, at the start of the planning horizon Z0 = 1.

As a minor notational convention, we will avoid double parenthesis for functions where the

state space is the only argument, that is we write f([X1, Y1; X2, Y2], Z) instead of the strictly

correct f(([X1, Y1; X2, Y2], Z)).

Actions

The only non-trivial decision facing the seller is to decide when to release an item provided

that the current auction has not yet been successfully completed. In other words, in states

when Yi < τ and Yj = 0, i 6= j. Under all other conditions, the seller either does not have

any decision to make or will release an item due to the vigilant seller assumption. At each

decision epoch, the actions a = 1 corresponds to releasing the remaining item, and a = 0 not

to release it. Furthermore, because the items are identical, one can without loss of generality,

define the remaining item to be item 2. Consequently the action space is,

A([p1,t1;p2,t2],z) =

{

{0, 1} t1 < τ and t2 = 0

{0} t1 = τ, δ or t2 > 0
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In Figure 3 a simple example, with Xi = 0, 1 and τ = 2, illustrates how the sys-

tem state may evolve. States enclosed in a box indicate situations with non-trivial deci-

sions. Transitions due to the non-trivial decision of releasing the second item are repre-

sented by the dotted lines. Transitions due to not releasing or releasing due to the vigi-

lant seller assumption are represented by the solid lines. Note that there are four possi-

ble loops: ([0, 0; 0, 0], 1) ⇀↽ ([0, 1; 0, 1], 2), ([0, 0; 0, 0], 1) ⇀↽ ([0, 1; 0, 0], 1), ([0, 1; 0, 0], 1) ⇀↽

([0, 1; 0, 0], 1), and ([1, δ; 0, 0], 1) ⇀↽ ([1, δ; 0, 1], 1). And that there is one absorbing state

∆ = ([1, δ1; 1, δ2], 0).

([0,0;0,0],1)

([1,1;0,1],2) ([0,1;0,1],2) ([1,1;0,0],1) ([0,1;0,0],1)

([1, ;1, ],0)

([1, ;1, 1],1)

([0,1;1,1],2)([1,1;1,1],2)

([1,2;0,0],1) ([1,2;0,1],1)

([1, ;0, 1],1) ([1, ;0, 0],1)

([1,2;1,2],0) ([1,2;1,1],1)

([1, ;1, 2],0)

Figure 3: Example of system state transitions when Xi = 0, 1 and τ = 2. States enclosed in a box
indicate situations with non-trivial decisions. Solid lines represents transitions due to not releasing
or release by vigilant seller assumption; dotted lines represents transitions due to non-trivial release
decisions; dashed line represent absorbing cycle.

Rewards

For each period in which an item has not been sold, the seller incurs a positive holding cost

h. When an auction is successfully completed the seller receives the payment and awards

the item. After an item has been sold and the state (Xi, Yi) = ∆i, i = 1, 2, the seller will

in perpetuity neither incur any cost nor receive any payment for that item. Let rt(s) denote

the reward in period t given a state s ∈ S. It is given by,

rt([p1, t1; p2, t2], z) = p11{t1=τ} − h1{t1<τ} + p21{t2=τ} − h1{t2<τ}
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Transition Probabilities

Each period in which an auction is underway the price increments follow the dynamics of

an exogenously given stochastic process. In other words, we assume that there is some

underlying bidder behavior model, such as the one described above, and more importantly

that one can summarize the distribution of the one period price transitions. For discrete

prices, these are represented by the following transition probability matrices,

Π1 =



















π0,0|1 π0,p|1 · · · π0,P |1

0 πp,p|1 · · · πp,P |1

...
...

. . .
...

0 0 · · · πP,P |1



















Π2 =



















π0,0|2 π0,p|2 · · · π0,P |2

0 πp,p|2 · · · πp,P |2

...
...

. . .
...

0 0 · · · πP,P |2



















Πz, z = 1, 2, is the one-period transition probability matrix for an individual auction

when there are z auctions underway, for Yi = ti < τ , z = 1, 2, and pi ≤ q,

Pr{Xi,ti+1 = q | Xi,ti = pi, Z = z} = πpi,q|z (1)

In the case of continuous prices, we assume the price transition dynamics can be represented

by a conditional cumulative distribution function, for Yi = ti < τ , z = 1, 2, and w ≤ x,

Pr{Xi,ti+1 ≤ x | Xi,ti = w, Z = z} = F z
Xi,ti+1|Xi,ti

(x|w) =

∫ x

w

f z
Xi,ti+1|Xi,ti

(q|w)dq (2)

Where f z
Xi,ti+1|Xi,ti

(·|w), z = 1, 2, is the one-period conditional transition probability density

function for an individual item when there are z auctions underway and Xi,ti = w.

Using the Chapman-Kolmogorov equations (cf.Chapter 4.2, Ross 1996), the n-period

transition probabilities for a single auction can be derived. To illustrate, assume prices are

discrete and we are interested in the two- and three-period transition probability of auction

1, and that there are z1, z2, and z3 auctions underway in the first, second, and third period

respectively, for Y1 = t1 ≤ τ − 3,

Pr{X1,t1+2 = q | X1,t1 = p1, Zt = z1, Zt+1 = z2} =

q
∑

j=p1

πp1,j|z1
πj,q|z2

Pr{X1,t1+3 = q | X1,t1 = p1, Zt = z1, Zt+1 = z2, Zt+2 = z3} =

q
∑

j=p1

q
∑

k=j

πp1,j|z1
πj,k|z2

πk,q|z3

12



Consequently, to derive the probability distribution of the final price we simply multiply the

transition probability matrices accordingly. For instance, suppose τ = 3 then the top row

in Πz1Πz2Πz3 ≡ Πz1·z2·z3 provides the unconditional probability distribution of the final price

for an item with z1, z2, and z3 auctions in the first, second, and third period respectively.

For continuous prices and Y1 = t1 ≤ τ − 3,

f z1·z2

X1,t1+2|X1,t1
(x|w) =

∫ x

w

f z2

X1,t1+2|X1,t1+1
(x|u)f z1

X1,t1+1|X1,t1
(u|w)du

f z1·z2·z3

X1,t1+3|X1,t1
(x|w) =

∫ x

w

∫ v

w

f z3

X1,t1+3|X1,t1+2
(x|v)f z2

X1,t1+2|X1,t1+1
(v|u)f z1

X1,t1+1|X1,t1
(u|w)dudv

2.4 Bidding Behavior Assumptions

We will next provide some additional assumptions regarding the transition probabilities.

These assumptions, which represents some specific bidding behavior, will ensure that certain

structural results will follow. The assumptions should not be regarded as categorical state-

ments about all bidders, but rather as a statistical reflection of what the bidding behavior

is like in the majority of auctions. In order to validate our assumptions we collected auction

data at the eBay store Dell Financial Services from December 2005 to August 2006. Dell

Financial Services (DFS), a sub-sidary of Dell, provides leasing programs for Dell products.

After products are returned DFS will refurbish them and sell via their own auction site as

well as their eBay store. Due to space limitations will we not provide detailed statistical

validation and refer the reader to the PhD thesis Odegaard (2007).

When two auctions are underway we assume that the auction prices evolve independently.

That is, the price in one auction does not affect the transition dynamics of the other auction.

In other words, for discrete prices and Yi = ti < τ , i = 1, 2,

Pr{Xi,ti+1 = q | X1,t1 = p1, X2,t2 = p2, Z = 2} = Pr{Xi,ti+1 = q | Xi,ti = pi, Z = 2}

= πpi,q|2

While for continuous prices and Yi = ti < τ , i = 1, 2,

Pr{Xi,ti+1 ≤ x | X1,t1 = w1, X2,t2 = w2, Z = 2} = Pr{Xi,ti+1 ≤ x | Xi,ti = wi, Z = 2}

= F 2
Xi,ti+1|Xi,ti

(x|wi)

13



Implicitly this assumes that bidders choose a bid-amount only based on the current price

and elapsed auction time of the auction they are placing a bid in. Consequently, with two

auctions underway, the transition probability for the system state is simply the product of

the individual transition probabilities. For discrete prices and t1, t2 < τ , we have Pr{([q, t1 +

1; r, t2 + 1], z′) | ([p1, t1; p2, t2], 2)} = (πp1,q|2)(πp2,r|2). Therefore the main interesting system

state transition probabilities, π(s′|s, a), are for those states s ∈ S such that As = {0, 1}. For

discrete prices, s = ([p1, t1; 0, 0], 1) and t1 < τ ,

π(s′|s, a) =







πp1,q|1 a = 0 s′ = ([q, t1 + 1; 0, 0], 1)

(πp1,q|2)(π0,r|2) a = 1 s′ = ([q, t1 + 1; r, 1], 1 + 1{t1+1<τ})

The case for continuous prices is defined similarly.

We assume bids are non-retractable, which for the case of discrete prices implies that Πz,

z = 1, 2, are upper-triangular (πq,pi|z = 0 for q < pi). While for continuous prices, we require

that F z
Xi,ti+1|Xi,ti

(x|w) = 0 for x < w, z = 1, 2. Consequently, the current price of an auction

is increasing. Though strictly speaking on, for instance, eBay, bidders may retract a bid, it

is very rare.

Transition probabilities are assumed to be stationary with respect to both: 1) calender time

t, and 2) elapsed auction time Yi, i = 1, 2. We make this simplifying assumption in order

to ensure the model is tractable. In reality, the dynamics of Xi may depend on calender

time. For instance, at night and weekends there tends to be less bidding activity. We will for

simplicity ignore this and strictly consider stationary transition probabilities with regard to

calender time. Likewise we will ignore non-stationary transitions with regard to the elapsed

auction time. A well-established phenomena of online auctions, is that the price dynamics

or bidding behavior is dramatically different toward the end of auctions. Our model can be

easily modified to account for this. One reason for this, is because some bidders try to place

their bids as close as possible to the end of the auction, thereby leaving no time for others to

counter-bid. This is referred to as sniping. Roth and Ockenfels (2004), and Shmueli, Russo,

and Wolfgang (2004) analyze different aspects regarding non-stationary bidding activity.

The next set of assumptions play a more crucial role in the ensuing analysis. Each is

stated in the discrete and continuous prices case.

14



Assumption 2.1. The probability of making a jump to the higher prices is increasing in the

current price.

Discrete prices: for pi < P , i = 1, 2, z = 1, 2,

P
∑

q=r

πpi,q|z ≤
P

∑

q=r

πpi+1,q|z ∀r ≤ P (3)

Continuous prices: for w ≤ x ≤ P , i = 1, 2, z = 1, 2,

F z
Xi,ti+1|Xi,ti

(x|w) =

∫ x

w

f z
Xi,ti+1|Xi,ti

(q|w)dq is decreasing in w (4)

Equivalently,

∂

∂w
F z

Xi,ti+1|Xi,ti
(x|w) =

∫ x

w

∂

∂w
f z

Xi,ti+1|Xi,ti
(q|w)dq − f z

Xi,ti+1|Xi,ti
(w|w) ≤ 0

Assumption 2.1 means that bids are increasing in the current price. In other words, the

likelihood of placing a ‘high’ bid is increasing in the current price. This holds for example

if bid increments were independent of the current price. In reality, however, bid increments

tend to be decreasing in the current price, and it is therefore not immediate that Assumption

2.1 holds. Empirical evidence supporting Assumption 2.1 and showing that bid increments

are decreasing in the current price, can be seen in the sub-figures A through E in Figure 4

below. They depict the price-jumps at 12 hour intervals for the 115 auctions discussed in

the Introduction. Each circle represents an individual auction. Auctions along the 45 degree

angle are auctions in which the price remained unchanged 12 hours later (no transition

took place). The feature supporting our assumption is that in all figures the price-jumps

form an upward sloping ‘band’. A counter indication to our claim would be if there was a

large number of auctions that at low prices (≈ $0 − $150) made jumps to the high prices

(≈ $500 − $600).

Assumption 2.2. The probability of making a jump to higher prices decreases when there

are two ongoing auctions.

Discrete prices: for pi ≤ P , i = 1, 2

P
∑

q=r

πpi,q|2 ≤
P

∑

q=r

πpi,q|1 ∀r ≤ P (5)

Continuous prices: for w ≤ P , i = 1, 2

F 1
Xi,ti+1|Xi,ti

(x|w) ≤ F 2
Xi,ti+1|Xi,ti

(x|w) ∀x ≤ P (6)
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(A) (B)

(C) (D)

(E)

Figure 4: Price transitions at 12 hour intervals for 115 Dell laptop (512MB, 30GB, 18.MhZ, Intel
Pentium 4) auctions. The horizontal axis represents the price at various 12 hour intervals, while
the vertical axis represents the price 12 hours later. Each circle represents a three day auction that
took place at the eBay store Dell Financial Services between 15th of December, 2005, to 30th of
June, 2006.

This assumption formalizes how we model the cannibalization effect. In other words,

with two ongoing auctions, each auction will experience more ‘modest’ price-transitions.

Empirical evidence for this claim appeared in Figure 1 of the Introduction, where we saw

that when there are more ongoing auctions the final price tends to be lower.
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Assumption 2.3. The difference, in probability of making jumps to the higher prices, be-

tween having one versus two ongoing auctions, is decreasing in the current price.

Discrete prices: for pi < P , i = 1, 2

P
∑

q=r

(πpi,q|1 − πpi,q|2) ≥
P

∑

q=r

(πpi+1,q|1 − πpi+1,q|2) ∀r ≤ P (7)

Continuous prices: for w ≤ P , i = 1, 2

F 2
Xi,ti+1|Xi,ti

(x|w) − F 1
Xi,ti+1|Xi,ti

(x|w) is decreasing in w (8)

Equivalently,
∂

∂w
F 2

Xi,ti+1|Xi,ti
(x|w) ≤

∂

∂w
F 1

Xi,ti+1|Xi,ti
(x|w)

This states that the cannibalization effect is diminishing in the current price. In other

words the closer the current price is to the upper bound P the less of a difference there will be

between having one or two auctions underway. Qualitatively, we see in the graphs of Figure

4, that the closer the price is to P ≈ 620 the less ‘room’ there is for the price-transitions,

and hence the less cannibalization there can be.

2.5 Examples

At this point it may be natural to inquire about the existence of transition probability ma-

trices and conditional cumulative distribution functions, that satisfy the above assumptions.

We next provide conditions under which of some common probability distributions satisfy

them. Namely, Uniform - discrete and continuous, Bernoulli, and Exponential. In addition,

we later illustrate the assumptions and implications with numerical examples.

Discrete Uniform

Without loss of generality let p = k = 1. Suppose that in periods when there is only one

auction underway there is an equal probability of jumping to any of the remaining prices,

for pi ≤ P , πpi,q|1 = πpi
= 1/(P + 1 − pi) for all q ∈ [pi, P ]. Furthermore, suppose when two

auctions are underway the probability of remaining at the same price increase with κ and

that the probability of jumping to P decrease with κ, as shown in the transition probability

matrices below.
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ΠU
1 =





















1
P+1

1
P+1 · · · 1

P+1
1

P+1

0 1
P

· · · 1
P

1
P

...
...

. . .
...

...

0 0 · · · 1
2

1
2

0 0 · · · 0 1





















ΠU
2 =





















1
P+1 + κ 1

P+1 · · · 1
P+1

1
P+1 − κ

0 1
P

+ κ · · · 1
P

1
P
− κ

...
...

. . .
...

...

0 0 · · · 1
2 + κ 1

2 − κ

0 0 · · · 0 1





















It can be verified that the above transition probability matrices support Assumptions

2.1, 2.2, and 2.3. A modification to ΠU
2 is to have κ be dependent on the price. In which

case for Assumption 2.3 to hold we require 1
P+1

≥ κ0 ≥ κ1 ≥ . . . ≥ κP−1.

Continuous Uniform

A continuous Uniform version can be constructed as follows. Assume the starting price is 0

and the upper bound is one, Xi ∈ [0, 1]. Assume that when there is only one ongoing auction

that the price-jump is uniformly distributed between the current price and the upper limit.

And that the ‘cannibalization’ effect is such that with two ongoing auctions, the price-jump

is only uniformly distributed between the current price and half-way to the upper limit.

Formally, if

f 1
Xi,ti+1|Xi,ti

(x|w) =

{

1
1−w

w ≤ x ≤ 1

0 o/w
f 2

Xi,ti+1|Xi,ti
(x|w) =

{

2
1−w

w ≤ x ≤ 1+w
2

0 o/w

then it can be verified that Assumptions 2.1, 2.2, and 2.3 are satisfied.

Bernoulli

Suppose that for each period and every price level there are only two possible transitions

- remain at same price or jump up one increment. This bidding process is the core of the

auction dynamics analyzed by Segev, Beam, and Shantikumar (2001). In this scenario the

upper price bound P ≡ τ , and consequently the size of the transition probability matrices

are (τ + 1) × (τ + 1). Let Π1 and Π2 be defined as follows,

ΠBe
1 =

0BBBBBBBB@ 1 − π0 π0 · · · 0 0

0 1 − π1 · · · 0 0

.

..
.
..

. . .
.
..

.

..

0 0 · · · 1 − πτ−1 πτ−1

0 0 · · · 0 1

1CCCCCCCCA ΠBe
2 =

0BBBBBBBB@ 1 − ρ0 ρ0 · · · 0 0

0 1 − ρ1 · · · 0 0

..

.
..
.

. . .
..
.

..

.

0 0 · · · 1 − ρτ−1 ρτ−1

0 0 · · · 0 1

1CCCCCCCCA
18



In other words, Pr{Xi,ti+1 = q + 1|Xi,ti = q, Z = 1} = πq, and Pr{Xi,ti+1 = q + 1|Xi,ti =

q, Z = 2} = ρq. In order for ΠBe
1 and ΠBe

2 to satisfy Assumptions 2.1, 2.2, and 2.3, we require,

πτ−1 ≥ πτ−2 − πτ−1 ≥ . . . ≥ π0 − π1 ≥ 0 and ρτ−1 ≥ ρτ−2 − ρτ−1 ≥ . . . ≥ ρ0 − ρ1 ≥ 0 (9)

π0 − ρ0 ≥ π1 − ρ1 ≥ . . . ≥ πτ−1 − ρτ−1 ≥ 0 (10)

Note that (9) implies that the probability of making a price jump is decreasing in the current

price, that is, π0 ≥ π1 ≥ . . . ≥ πτ−1 ≥ 0 and ρ0 ≥ ρ1 ≥ . . . ≥ ρτ−1 ≥ 0. The intuition of

this is that as the current price increases, fewer and fewer bidders are actually willing to pay

above the current price, or that for each price-jump bidders ‘opt out’ of the auction. Un-

der inequalities (10), which reflects the diminishing ‘cannibalization’ effect, Assumption 2.3

holds. A special case of ΠBe
z , z = 1, 2, are when the transition probabilities are independent

of the current price, that is, when πq = π and ρq = ρ for all q = 0, 1, . . . , τ − 1. This special

case has some interesting consequences which are discussed in Section 3.3.

Exponential

Assume prices are positive and unbounded, Xi ∈ <+, and that the conditional one-period

price-increments, C, given Xi = w, are exponentially distributed with rate λz(w), z = 1, 2.

That is, for w, x ∈ <+,

Pr{Xi,ti+1 ≤ x|Xi,ti = w, Z = z} = Gz
C(x − w|w) =

{

1 − exp(−λz(w)(x − w)) w ≤ x

0 o/w

(11)

The rate λz(·) is a function both of the current price and the number of ongoing auctions, and

that expected price increment is 1/λz(w). In order for the price increments to be decreasing

in the current price, we will assume λz(w) to be increasing in w. In other words, the higher

the current price the smaller the expected price increment. In order for Gz
C(·|·), z = 1, 2, to

satisfy Assumptions 2.1, 2.2, and 2.3, we assume that,

1. λz(w)(x− w) is decreasing in w, z = 1, 2 (equivalently ∂λz(w)
∂w

(x − w) − λz(w) ≤ 0)

2. λ1(w) ≤ λ2(w)

3. λ2(w) − λ1(w) is decreasing in w (equivalently ∂
∂w

λ2(w) ≤ ∂
∂w

λ1(w))
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Stated in this form, Assumptions 2.1, 2.2, and 2.3 can be validated using models fitted to

data. For a discussion regarding this, the reader is referred to the PhD thesis Odegaard

(2007). Though we assume prices to be unbounded one can constrain the rate-functions,

λz(·), such that Pr{Xi,ti+1 > P |Xi,ti = w, Z = z} ≤ ε, z = 1, 2. The following illustrates

how this can be done. Let P be the upper bound of bidders’ valuation, choose an ε > 0 and

K > 0, then define the rate-functions as follows,

λ1(w) =

{

− ln(ε) P ≤ w
ln(ε)

−(P−w)
0 ≤ w < P

λ2(w) =

{

− ln(ε) P ≤ w

λ1(w) + K 0 ≤ w < P
(12)

Note that the three assumptions listed above are satisfied. A graphical illustration of the

resulting conditional distribution functions G1
C(c|w) and G2

C(c|w), for P = 10, ε = .001,

and K = 1, appears in Figure 5 below. Each graph shows, for a given current price w the

conditional distribution function of the price increments c (= x − w). The graph to the left

shows when there is only one auction underway, while the graph to the right shows when

there are two auctions underway.
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Figure 5: Numerical example of Exponentially distributed price increments given rate functions
defined according to (12), with P = 10, ε = 0.001, and K = 1. Each graph displays the conditional
distribution function for the price increments c = x − w given a current price w.

3. Guaranteed Successful Auctions: The Single Listing

Case

The first case we consider is when the auctions are guaranteed to be successful, and hence the

seller only has to list an item once. This could occur when the items are such that it is certain
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a positive bid will arrive (π0,0|z = 0, z = 1, 2), or when the seller decides in advance to imme-

diately salvage items remaining from unsuccessful auctions. As an illustration of the former

case is the 4500 laptop and desktop auctions at the eBay store Dell Financial Services. Out

of all the auctions held between December 2005 and August 2006, with a starting price of

$.99, not a single auction was unsuccessful. Due to the additional assumption that auctions

are guaranteed to be successful, we can make some modifications to the MDP model in this

case.

Decision Epochs As a consequence of the vigilant seller assumption there is no reason to

consider a planning horizon beyond two sequential auctions, hence T = 2τ . Furthermore,

provided the second item has not been released, non-trivial decisions can only be made in

periods t = 0, 1, 2, . . . , τ −1. At t = τ the vigilant seller assumption requires that the second

item is released immediately.

State Space Since we assume the items will at least sell for p, we will omit the 0 state.

Thus for the discrete case Xi ∈ {p, p + 1, . . . , P} while for the continuous case Xi ∈ [p, P ].

Rewards In order to facilitate the ‘accounting’, and since we are not assuming discounting,

we assume the seller receives the payment at t = T . Therefore, the reward rt(s) for a given

s ∈ S and period t is as follows,

rt([p1, t1; p2, t2], z) =

{

−h1{t1<τ} − h1{t2<τ} t = 0, 1, . . . , T − 1

p1 + p2 t = T

Before we discuss the optimality equations we introduce some notation. When both items

have been released we define E[Xi,τ |([X1, Y1; X2, Y2], Z)] to be the conditional expected final

price of auction i, i = 1, 2,

Discrete prices: E[Xi,τ |([p1, t1; p2, t2], z)] =

P
∑

q=pi

q Pr{Xi,τ = q|([p1, t1; p2, t2], z)}(13)

Continuous prices: E[Xi,τ |([w1, t1; w2, t2], z)] =

∫ P

wi

qf z
Xi,τ |Xi,ti

(q|wi)dq (14)

Where Pr{Xi,τ = q|([p1, t1; p2, t2], z)} and f z
Xi,τ |Xi,ti

(q|wi) are derived using the Chapman-

Kolmogorov equations discussed earlier. Note that as a consequence of the assumptions that

auctions progress independently and that the current price is increasing,

E[Xi,τ |([X1, Y1; X2, Y2], Z)] is increasing in Xi and independent of Xj , for i 6= j. We de-

fine R([X1, Y1; X2, Y2], Z) to represent the total expected profit when both items have been
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released, for s = ([p1, t1; p2, t2], z),

R([p1, t1; p2, t2], z) ≡ −h(2τ − t1 − t2) + E[X1,τ |([p1, t1; p2, t2], z)] + E[X2,τ |([p1, t1; p2, t2], z)]

Note that R(·) is not necessarily increasing or decreasing in the elapsed time of the

auctions. Though the incurred holding cost will decrease, the expected final price of the

items will also decrease. It is this trade-off that is the crux of the problem regarding when

to start the second auction. We define g2([X1, Y1; p, 0]) to be the gain in expected final price

of auction 2 by delaying the release one period, for t1 < τ ,

g2([p1, t1; p, 0]) ≡ E[X2,τ |([p1, t1 + 1; p, 0], z)] − E[X2,τ |([p1, t1; p, 0], 2)]

where z = 2 if t1 < τ−1, and 1 otherwise. Due to Assumption 2.2 and that auctions progress

independently, g2([X1, Y1; p, 0]) ≥ 0 and independent of X1.

For the remainder of this section we will only consider discrete prices. All results will hold

for the continuous case as well, with the only change required is to replace the summation

with an integral.

3.1 Auction Release Policies

A Markov deterministic policy is a sequence of decision rules which determine what action

to take in each decision epoch, possibly contingent on the state of the system but not on

the past. Let γt(s) be the decision rule in period t given a state s ∈ S. As a consequence

of the vigilant seller assumption, we only need to consider decision rules for t = 0, 1, . . . , τ ,

and hence, a policy γ is defined as follows,

γ = (γ0(s), γ1(s), . . . , γτ(s)) γt(s) ∈ {0, 1}, ∀s ∈ S, t = 0, 1, . . . , τ

If all the decision rules, γt(s), are independent of the price components of state s we refer

to the policy γ as an open loop policy, while if the decision rules depend on both the price

and time components of state s the resulting policy is referred to as a closed loop policy.

Note that there are only τ + 1 open loop policies of interest. We write VO(j) to denote the

total expected profit of releasing the second item j periods after the first, j = 0, 1, 2, . . . , τ .

In Table 1 the four open loop policies and their respective total expected profit for the case

when τ = 3 are provided. In the table we see that although we incur an additional unit
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of h for each additional period we hold the second item, the expected final price for both

items increase since there is an additional period when both auctions evolve according to Π1

instead of Π2.

γ Release item 2 Total expected profit - VO(j)

j periods
after item 1

(1,0,0,0) j = 0 −6h + 2
PP

l=p

Pl
q=p

Pl
r=q l(πp,q|2)(πq,r|2)(πr,l|2)

(0,1,0,0) j = 1 −7h +
PP

l=p

Pl
q=p

Pl
r=q l(πp,q|1)(πq,r|2)(πr,l|2) +

PP
l=p

Pl
q=p

Pl
r=q l(πp,q|2)(πq,r|2)(πr,l|1)

(0,0,1,0) j = 2 −8h +
PP

l=p

Pl
q=p

Pl
r=q l(πp,q|1)(πq,r|1)(πr,l|2) +

PP
l=p

Pl
q=p

Pl
r=q l(πp,q|2)(πq,r|1)(πr,l|1)

(0,0,0,1) j = 3 −9h + 2
PP

l=p

Pl
q=p

Pl
r=q l(πp,q|1)(πq,r|1)(πr,l|1)

Table 1: The four open loop policies and their total expected profit for τ = 3.

3.2 Optimality Equations

Let Vt(s) denote the expected total future reward (expected total profit) given the system is

in state s ∈ S in period t. Then Vt(s) satisfies the following optimality equations,

Vt(s) =

{

rt(s) + maxa∈A(s)

∑

s′∈S Vt+1(s
′)π(s′|s, a) t = 0, 1, . . . , T − 1

rT (s) t = T
(15)

Due to the vigilant seller assumption, the structure of the transition probabilities, and

that auctions are guaranteed to be successful, the value function (15) can be summarized

and explicitly evaluated according to the three cases listed in the following lemma.

Lemma 3.1. If we assume a vigilant seller and that auctions are guaranteed to be successful

then the value functions of interest are as follows,

Vt([p1, t1; p2, t2], z) = p1 + p2 t = T

Vt([p1, t1; p2, t2], z) = R([p1, t1; p2, t2], z) t = τ

Vt([p1, t1; p2, t2], z) = max{−2h +

P
∑

q=p1

Vt+1([q, t1 + 1; p, 0], 1)πp1,q|1 , R([p1, t1; p, 0], 2)}

t ≤ τ − 1 and z = 1

The above value functions are computed using backward induction. An example for

discrete prices and τ = 3 is presented in Table 2 below.
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V6([p1, 3; p2, 3], 0) = p1 + p2

V3([p1, 3; p, 0], 1) = R([p1, 3; p, 0], 1)

V2([p1, 2; p, 0], 1) = max{−2h +
∑P

q=p1
V3([q, 3; p, 0], 1)πp1 ,q|1, R([p1, 2; p, 0], 2) }

V1([p1, 1; p, 0], 1) = max{−2h +
∑P

q=p1
V2([q, 2; p, 0], 1)πp1 ,q|1, R([p1, 1; p, 0], 2) }

V0([p, 0; p, 0], 1) = max{−2h +
∑P

q=p V1([q, 1; p, 0], 1)πp,q|1, R([p, 0; p, 0], 2) }

Table 2: Optimality equations of interest for τ = 3.

3.3 Structural Results

Given the above MDP and the assumption that auctions are guaranteed to be successful, we

derive three monotonicity properties: the value equation is increasing in the current price of

the two auctions, the optimal policy is a threshold policy, and the threshold is decreasing in

the holding cost. Note that though the proofs are for the case of discrete prices, the results

holds for continuous prices as well.

Proposition 3.2. If Assumptions 2.1 holds and auctions are guaranteed to be successful, then

the optimal value function, V ?
t ([p1, t1; p2, t2], z), is increasing in p1 and p2, for t = 0, 1, . . . , T .

In other words an increase in the current price of either item 1 or item 2 will increase the

optimal expected total reward. Though this might seem natural and ‘obvious’ it is a result

of the assumptions made, most notably that at a higher price-level the auction is more likely

to advance to the higher prices than at a low price-level.

Theorem 3.3. If Assumptions 2.1, 2.2, and 2.3 hold and auctions are guaranteed to be

successful, then there exist optimal decision rules, γ?
t ([p1, t1; p, 0], 1), which are increasing in

p1, for t = 0, 1, . . . , τ − 1. Consequently, the optimal policy is a threshold policy in p1.

Theorem 3.3 states that, for each t there exists a p?
t such that if X1 ≥ p?

t then it is optimal

to release the second item for auction, while if X1 < p?
t it is optimal to hold the second item

at least one more period. The reason we are only considering t = 0, 1, . . . , τ − 1 is because

we are only interested in those periods where non-trivial decision can be made. For t = τ the

decision to release is immediate by the vigilant seller assumption. Also note that if Y2 > 0

the second item has already been released and no further decision needs to be made. The

main assumption driving the result of Theorem 3.3 is the diminishing cannibalization effect.

Our next result summarizes the effect the holding cost has on p?
t .

Corollary 3.4. The control limit in Theorem 3.3, p?
t , is decreasing in the holding cost h.
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Given these three properties it may be natural to ask if the threshold price, p?
t , is mono-

tone in t (or Y1). With only the three assumptions stated above the answer is no. And

it turns out that monotonicity over time will also depend on the holding cost h. In other

words, depending on the holding cost p?
t ≤ p?

t+1 or p?
t ≥ p?

t+1 (see the example below). We

can, however, derive the following lower bound on h to ensure the optimal policy is to release

the items sequentially.

Proposition 3.5. The optimal policy is to release the second item after the first auction has

been completed if and only if

h ≤ min
t1<τ

{g2([p1, t1; p, 0])} (16)

Similarly, if h is ‘too high’ then the optimal closed loop policy is to release them simulta-

neously. However, the condition for h to be ‘too high’ is more complicated than the condition

for ‘too low’. For instance, it is not sufficient that h is such that the best open loop policy

is to release them simultaneously, to ensure that this is also the optimal policy (see example

below). A ‘lower bound’ for h to be ‘too high ’ is VO(1) − VO(0) ≤ 0. The implication on the

holding cost h is better illustrated by the following modified inequality,

(VO(1) + (2τ + 1)h) − (VO(0) + 2τh) ≤ h (17)

In other words, if the minimum gain in revenue by deferring the release one period is greater

than h, then the optimal policy can never be to release item 2 immediately. Therefore in

order for h to be ‘too high’ it has to be large enough that the open loop policy of simultaneous

release is better than the open loop policy of deferring the release by one period. In other

words, that inequality (17) holds. Note though that this is only a necessary condition, it

could be optimal to defer the release despite that the above inequality holds. To determine

the threshold on h for which the optimal closed loop policy is to release the two items

simultaneously one has to solve the dynamic program when (17) holds. The numerical

example below illustrates these.

3.4 Examples

In Section 2.5 we provided four common probability distributions and conditions on their

parameters that support Assumptions 2.1, 2.2, and 2.3. Consequently, we have the following

results.
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Corollary 3.6. If price increments are distributed as discrete or continuous Uniform random

variables, as specified in Section 2.5, then Proposition 3.2 and Theorem 3.3 holds.

Corollary 3.7. If price increments are distributed as Exponential random variables, as spec-

ified by (11) and the rate functions satisfies the three additional assumptions stated in Section

2.5, then Proposition 3.2 and Theorem 3.3 holds.

Corollary 3.8. If price increments are distributed as Bernoulli random variables as specified

in Section 2.5, and (9) and (10) holds, then Proposition 3.2 and Theorem 3.3 holds.

In the Bernoulli case with price-independent transition probabilities, πq = π and ρq = ρ

for all q = 0, 1, . . . , τ − 1, the optimal policies simplify further. First note that due to the

special structure of the transition probability matrices the n-period transition matrices are

symmetric in the following sense, for τ = 3, Π1·2·2 = Π2·2·1 and Π1·1·2 = Π2·1·1. As a result

the expected value for the open loop policy of releasing the second item j periods after the

first item has been released is given by,

VO(j) = −(2τ + j)h + 2(p + jπ + (τ − j)ρ) j = 0, 1, 2, . . . , τ (18)

Furthermore, the total marginal gain by deferring the release one period, 2(π − ρ), is

independent of X1 and as a result closed loop policies are not required.

Proposition 3.9. In the case of price-independent Bernoulli increments, the optimal policy

is to release both items simultaneously if and only if h ≥ 2(π − ρ). If h < 2(π − ρ) then

releasing the two auctions sequentially is the optimal policy.

The two policies stated in Proposition 3.9 are the only optimal policies - open and closed

loop policies included. The interpretation of the condition h ≥ 2(π−ρ), is that if the holding

cost exceeds the expected one-period gain for both auctions by deferring the release it will

never be optimal to defer the release of item 2.

Numerical Example

We now provide a numerical example which demonstrates the increase in expected value that

can be achieved through a closed loop price dependent policy, compared to a non-adaptive

open loop policy. It also shows that depending on the holding cost, the price threshold may

be increasing or decreasing over time. Assume prices are discrete, τ = 3, p = k = $10,

P = $60, and that the transition probabilities are as follows,
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Π1 =























10 20 30 40 50 60

10 .25 .25 .2 .1 .1 .1

20 0 .25 .3 .25 .1 .1

30 0 0 .25 .4 .25 .1

40 0 0 0 .4 .45 .15

50 0 0 0 0 .6 .4

60 0 0 0 0 0 1























Π2 =























10 20 30 40 50 60

10 .3 .3 .25 .1 .05 0

20 0 .35 .35 .2 .1 0

30 0 0 .4 .35 .2 .05

40 0 0 0 .5 .4 .1

50 0 0 0 0 .65 .35

60 0 0 0 0 0 1























It can be verified that the matrices satisfy Assumptions 2.1, 2.2, and 2.3, so that a

threshold policy is optimal. The expected profit for the four open loop policies satisfies,

VO(0) = −6h + 2 × 40.76

VO(1) = −7h + 43.69 + 43.40

VO(2) = −8h + 46.09 + 45.82

VO(3) = −9h + 2 × 47.93

While for the closed loop or optimal policy we use backward induction to find the action

that maximizes the value equations. In Figure 2 of the Introduction and Table 3 below, the

value of each policy with respect to various holding costs appears. The last two columns

of Table 3 display the difference between the optimal policy and the best and worst open

loop policy for a given h. As illustrated in Figure 2, if the holding cost is ‘low’ then it is

better to release the two auctions sequentially, while if the holding cost is ‘high’ then it will

never be worth holding the second item an additional period so that the optimal policy is

to release both immediately. The interesting aspect are the cases in between where we see

that the optimal policy performs better than any of the open loop policies. Though the gain

at a given h for the optimal policy over the best open loop policy is not that drastic, the

gain versus the other open loop policy can be quite large. For instance, if h = $2.30 then

the difference between using the optimal policy and open loop policy of simultaneous release

is more than $7 (11% improvement). Furthermore, in a setting where a seller has a large

inventory of items to dispose of, even incremental gains on each item may accumulate to

large total gains.

Table 4 gives the critical price thresholds p?
t for various h. For instance, if h = 4.00 and

t = 1 then for X1 < 40 it is optimal to defer the release of item 2, while for X1 ≥ 40 it is

optimal to start the second auction; that is p?
1 = 40. Note that when h is ‘low’ then p?

t > P
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h VO(0) VO(1) VO(2) VO(3) V ?
0 Max Gain(%) Min Gain(%)

.10 80.93 86.39 91.10 94.97 94.97 17.9 0
1.00 75.53 80.09 83.90 86.87 86.87 15.0 0
2.00 69.53 73.09 75.90 77.87 77.87 12.0 0

2.30 67.73 70.99 73.50 75.17 75.21 11.0 .1
4.00 57.53 59.09 59.90 59.87 60.99 6.0 1.8
5.00 51.53 52.09 51.90 50.87 53.01 4.2 1.8
5.80 46.73 46.49 45.50 43.67 46.85 7.3 .3

6.00 45.53 45.09 43.90 41.87 45.53 8.7 0
9.00 27.53 24.09 19.90 14.87 27.53 85.1 0
10.00 21.53 17.09 11.90 5.87 21.53 266.8 0
15.00 −8.47 −17.91 −28.10 −39.14 −8.47 - -

Table 3: Expected total profit of the open loop policies and the optimal policy as a function
of the holding cost evaluated at the start of the planning horizon.

and hence it is always optimal to wait one more period before releasing the second item.

Similarly, if h is ‘high’ then it is never optimal to defer the release. Furthermore, note that

depending on the holding cost, the price threshold could be either increasing or decreasing.

For instance, if h = 2.75 then p?
0 = 60, while p?

1 = p?
2 = 50. On the other hand, if, for

instance, h = 5.50 then p?
0 = 20, while p?

1 = p?
2 = 30. This means that depending on the

holding cost, the manager may become more or less ‘sensitive’ when to release the second

item as the first auction evolves. For instance, when h is relatively low, in which case p?
t is

decreasing in t, then the manager will lower his release threshold for each period and hence

be less sensitive to the current price. On the other hand, when h is relatively high, such

that p?
t is increasing in t, then the manager becomes more sensitive to the current price and

requires a higher release threshold.

h p?
t

t = 0 t = 1 t = 2

1.00 n/a n/a n/a
2.50 n/a 60 60
2.75 60 50 50
4.00 40 40 40
5.00 30 30 40
5.50 20 30 30
6.00 10 20 30
8.00 10 10 10

Table 4: Threshold price level as a function of holding cost (‘n/a’ indicates that p?
t > P ).
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With regards to the bounds on h, we have that if h ≤ mint1<τ{g2([X1, t1; p, 0])} =

47.93 − 45.81 = 2.12, then the optimal closed loop policy is to release the second item after

the first auction is over; if h ≤ 2.12 then p?
t > P for all t < τ . To find the upper limit of

h for which the optimal closed loop policy is to release the two auctions simultaneously we

solve for h by backward induction given that h ≥ (43.69 + 43.40) − (2 × 40.76) = 5.57, this

results in that if h ≥ 5.88 then the optimal policy is to release the second item immediately;

if h ≥ 5.88 then p?
0 = p = 10.

4. Possibly Unsuccessful Auctions: The Multiple Re-

Listing Case

We now consider the case when there is a positive probability an auction is unsuccessful,

meaning that there is some chance an auction receives no bids (π0,0|z > 0,z = 1, 2), and

that the seller does not have any alternative salvage channel. Reasons why an auction may

not receive any bids include that the seller perhaps posted a too high starting price or that

the items simply do not generate enough interest. For instance, a quick search on the com-

pleted listing of the eBay stores Pokerstores (poker chips), The Sharper Image (consumer

electronics), uptempoair (Nike sportswear), GlobalGolfUSA (used golf clubs) reveal that a

large quantity of their listings do not attract a single bid. In contrast, to the 4500 auctions

from Dell Financial Services’s eBay store we have data on, where not a single auction with a

starting price of $.99 was unsuccessful. Bertsimas, Hawkins and Perakis (2003) discuss and

provide empirical evidence regarding optimal control of starting price and reserve price. For

our purposes, even if the sample of companies listed above are doing something wrong in

their administration of auction control parameters, we include this section for mathematical

completeness. And it turns out that the managerial consequence is both important and inter-

esting, since unlike the single listing case the optimal policy need not be a control limit policy.

By the positive expected profit assumption, even though the seller at the end of an

unsuccessful auction has incured a total cost of τh, it is still optimal to try and auction off

the item once again. Therefore the seller has to decide when to re-list items that remain from

previous unsuccessful auctions. The main effect of this is that the system state transitions

may form loops, as illustrated in Figure 3. And in particular may loop back to the initial

starting state. Consequently the time when auction i is successfully completed is not known.
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To address this issue, we formulate the problem as an expected total-reward MDP (cf.Chapter

7, Puterman 1994). However, the problem involves some subtleties such that neither the

properties of positive or negative dynamic programs directly apply. In particular, there need

not be unique solutions to the optimality equations, and policy or value iteration need not

converge without further assumptions (cf.Chapter 7, Puterman 1994, Bertsekas and Tsitsiklis

1991). Our model has the following relevant structural properties,

1. The state space and actions are finite.

2. The expected one-period reward in each state is bounded (above and below).

3. There is a single absorbing state ∆ under all policies.

The third property holds due to the vigilant seller assumption, without which there would be

an additional absorbing state, ([0, 0; 0, 0], 0), with total reward of negative infinity, resulting

from the policy of never releasing an item for auction. Given these three properties, the

problem can be converted to a negative dynamic problem with the following transformation.

In each transient state subtract 2P from the one-period reward. As a consequence all rewards

in the transformed problem are less than or equal to zero (cf.Proof of Theorem 8.10.1.,

Puterman 1994). Therefore, optimal solutions exists, and value iteration and policy iteration

converges (though a modification to policy iteration may be required, cf.Chapter 10.4.2,

Puterman 1994). Alternatively Assumption 1 and 2 of Bertsekas and Tsitsiklis (1991) holds

(even without the vigilant seller assumption).

4.1 Auction Release Policies

For the multiple re-listing (infinite horizon) case a Markov deterministic policy γ is defined

as the following,

γ = (γ0(s), γ1(s), γ2(s), . . .) γt(s) ∈ {0, 1}, ∀s ∈ S, t ≥ 0

If γt(s) = γt′(s), for all t 6= t′, and for a given s ∈ S, the policy is referred to as stationary.

In the multiple re-listing case, we only need to consider stationary policies and therefore

use the notation γ(s), and interchangeable refer to it as both the decision rule and policy

(cf.Theorem 7.3.6., Puterman 1994, Proposition 2, Bertsekas and Tsitsiklis 1991). In the

multiple re-listing case, open loop policies do not apply. Instead we define two types of

closed loop policies. We refer to a policy that only depends on Y1 as time-based closed loop,
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and policies that depends on (X1, Y1) as price-based closed loop. The reason we need this

distinction is because, unlike the single listing case, it is necessary to consider decisions even

after the first decision to release item 2 has been made. The reason for this is that auctions

may get out of ‘sync’ with each other. We illustrate with an example, suppose τ = 5 and

the seller decides to start the second auction 2 periods after the first. And suppose further

that the first auction is unsuccessful, which means that the seller must now decide whether,

after the second auction has elapsed three periods, to re-list item 1, and if the decision is

not to release what to do when the second auction has elapsed four periods. This reasoning

generalizes for any τ , and any policy which specify not to release if Y1 < x and release if

Y1 = x, where x < τ/2, must also specify what to do when Y1 ≥ τ − x. For policies defined

such that the first release should occur when Y1 = x > τ/2, the issue of what decision to

make if the first auction is unsuccessful has already been addressed.

4.2 Optimality Equation

Before analyzing the optimality equations for two items we begin by only considering one

item. Let the pair of random variables (X, Y ) denote the state of an auction, where X ∈

{0, p, p + k, . . . , P} and Y ∈ {0, 1, . . . , τ} or δ, and E[Xτ |Xu = q] denotes the expected final

price given X = q and Y = u. Let v(q, u) denote the total expected future reward given the

system is in state (q, u). By the positive expected profit and vigilant seller assumptions, the

item should be immediately re-listed following an unsuccessful auction. Therefore the value

of an item in state (q, u) is,

v(q, u) =

{

−h(τ − u) + E[Xτ |Xu = q] + (πq,0|1)(π0,0|1)
(τ−(u+1))v(0, 0) u 6= δ

0 u = δ

Note that πq,0|1 = 0 for all q > 0, and that we are not considering discounting. Consequently

the expected value of an item continuously re-listed until the auction is successful is,

v(0, 0) =
−hτ + E[Xτ |X0 = 0]

1 − (π0,0|1)τ
(19)

We now return to the two item case. In total there are 19 different cases for which the

optimality equation needs to be evaluated for. These appear in Table A2 of Appendix 2. Note

that there are only non-trivial decisions in those periods for which Y1 < τ and Y2 = 0, namely

cases 16, 17, and 19. Furthermore, note that under cases 13, 15 and 17 there is a positive

probability of looping back to the initial state ([0, 0; 0, 0], 1). However, due to the positive
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expected profit assumption, we have that π0,0|z < 1, z = 1, 2, and therefore with probability

one the system state will eventually reach the recurrent state ∆ = ([∆1, ∆2], 0). Recall that

∆i = (Xi, δ) is the state of item i, i = 1, 2, when it has been awarded and hence will not

incur any additional cost or generate any further revenue. From the discussion above, we

note that any solution satisfying the optimality equations in Table A2 is an optimal solution

(cf.Proposition 7.3.4, Puterman 1994, Proposition 2, Bertsekas and Tsitsiklis 1991). Though

the optimal policy need in general not be a control limit policy (see the example below),

under some of the cases the optimal policy is a control limit.

4.3 Structural Results

Similarly to the single listing case the optimality equations can be simplified and explicitly

evaluated for some of the cases.

Lemma 4.1. If we assume a vigilant seller and that the first auction has received a bid, then

the value functions for those states can be evaluated as follows,

1. If p1 > 0, t1 = τ, δ and z = 0, 1, or p1 > 0, t1, t2 < τ and z = 2, then

V ([p1, t1; p2, t2], z) = R′([p1, t1; p2, t2], z)

2. If p1 > 0, t1 < τ, t2 = 0, z = 1 then

V ([p1, t1; p2, t2], z) = max{−2h +

P
∑

q=p1

V ([q, t1 + 1; 0, 0], 1)πp1,q|1 , R′([p1, t1; 0, 0], 2)}

where R′(·) represents the value of having both items released and a positive current price in

the first auction, p1 > 0, and z = 0, 1, 2,

R′([p1, t1; p2, t2], z) ≡ −h(2τ − t1 − t2) + E[X1,τ |([p1, t1; p2, t2], z)]

+E[X2,τ |([p2, t1; p2, t2], z)] + (πp2,0|z)(π0,0|z)
τ−t1−1(π0,0|1)

t1−t2v(0, 0)

where E[Xi,τ |([p1, t1; p2, t2], z)] is defined by (13) (or (14)) and v(0, 0) is defined by (19).

The implication of Lemma 4.1 is that once a bid arrives in the first auction, there are no

loops back to the initial state, and hence the problem is reduced to the case of guaranteed

successful auctions. Consequently the optimal decision when X1 > 0 and Y2 = 0 follows a

control limit policy. This result also holds when both auctions are underway but the second

auction has received a bid.
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Lemma 4.2. If we assume a vigilant seller and that both auctions are underway but only

the second auction has received a bid, then the value functions can be evaluated as follows,

for t1, t2 < τ, p1 = 0, p2 > 0, z = 2,

V ([p1, t1; p2, t2], z) = R′′([0, t1; p2, t2], 2)

where R′′(·) represents the value of having both auctions underway and a positive current

price in the second auction, t1, t2 < τ , p1 = 0, p2 > 0, and z = 2,

R′′([p1, t1; p2, t2], z) ≡ −2h(τ − t1) + E[X1,τ |([p1, t1; p2, t2], z)]

+(1 − (πp1,0|z)
τ−t1)(−h(t1 − t2) + E[X2,τ |([p1, t1; p2, t2], z)] )

+(πp1,0|z)
τ−t1(E[V ([X2, t2 + τ − t1; 0, 0], 1) | ([p1, t1; p2, t2], z) ] )

where E[Xi,τ |([p1, t1; p2, t2], 2)] is defined by (13) (or (14)) and the conditional expectation of

V ([X2, t2 + τ − t1; 0, 0], 1) is defined according to Lemma 4.1 since X2 > 0.

The implication of Lemma 4.2 is that the possible decision to re-list item 1, which happens

with probability (π0,0|2)
τ−t1 , follows a control limit policy. For all other cases, in order to

determine the optimal solution and policy, one has to solve the optimality equations either

using value iteration or policy iteration. In Table 5 the resulting 8 cases of the optimality

equation are summarized. In the table the value function for those states where a positive

bid has arrived have been separated from the states where neither auction has received a

bid. The issue with the multiple re-listing case is exactly when no bid has arrived and the

potential for looping back to the starting state exist. We will next illustrate with a numerical

example.

4.4 Numerical Example

This example shows that the optimal policy in the multiple re-listing case might not be a

threshold policy. Let prices be discrete, τ = 2, p = k = 10, P = 30 and the transition

probability matrices be defined as follows,

Π1 =













0 10 20 30

0 .5 .2 .2 .1

10 0 .6 .3 .1

20 0 0 .6 .4

30 0 0 0 1













Π2 =













0 10 20 30

0 .6 .2 .2 0

10 0 .7 .3 0

20 0 0 .65 .35

30 0 0 0 1












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Case item 1 item 2 z V ([p1, t1; p2, t2], z)
t1 = δ or τ 0,1

1) = R′([p1, t1; p2, t2], z)
t1 < τ t2 < τ 2

& p1 > 0

2) t1 < τ t2 = 0 1 = max{−2h +
∑P

q=p1
V ([q, t1 + 1; 0, 0], 1)πp1,q|1 ,

& p1 > 0 R′([p1, t1; 0, 0], 2)}

3) t1 < τ t2 < τ 2 = R′′([0, t1; p2, t2], 2)
& p1 = 0 & p2 > 0

4) τ − 1 τ − 1 2 = −2h +
∑P

q=p

∑P

r=p R′([q, τ ; r, τ ], 0)π0,q|2π0,r|2

& p1 = 0 & p2 = 0 +
∑P

q=p R′([q, τ ; 0, 0], 1)π0,q|2π0,0|2

+
∑P

r=p R′([r, τ ; 0, 0], 1)π0,0|2π0,r|2

+π0,0|2π0,0|2V ([0, 0; 0, 0], 1)

5) τ − 1 < τ − 1 2 = −2h +
∑P

q=p

∑P

r=0
R′([q, τ ; r, t2 + 1], 1)π0,q|2π0,r|2

& p1 = 0 & p2 = 0 +
∑P

r=p V ([r, t2 + 1; 0, 0], 1)π0,0|2π0,r|2

+π0,0|2π0,0|2V ([0, t2 + 1; 0, 0], 1)

6) τ − 1 0 1 = −2h + max{
∑P

q=p V ([q, τ ; 0, 0], 1)π0,q|1 + π0,0|1V ([0, 0; 0, 0], 1) ,

& p1 = 0
∑P

q=p

∑P

r=0
R′([q, τ ; r, 1], 1)πp,q|2π0,r|2

+
∑P

r=p V ([r, 1; 0, 0], 1)π0,0|2π0,r|2

+π0,0|2π0,0|2V ([0, 1; 0, 0], 1) }

7) < τ − 1 < τ − 1 2 = −2h +
∑P

q=p

∑P

r=0
R′([q, t1 + 1; r, t2 + 1], 2)π0,q|2π0,r|2

& p1 = 0 & p2 = 0 +
∑P

r=p R′′([0, t1 + 1; r, t2 + 1], 2)π0,0|2π0,r|2

+V ([0, t1 + 1; 0, t2 + 1], 2)π0,0|2π0,0|2

8) < τ − 1 0 1 = −2h + max{
∑P

q=p V ([q, t1 + 1; 0, 0], 1)πp1,q|1

& p1 = 0 +V ([0, t1 + 1; 0, 0], 1)π0,0|1 ,
∑P

q=p

∑P

r=0
R′([q, t1 + 1; r, 1], 2)π0,q|2π0,r|2

+
∑P

r=p R′′([0, t1 + 1; r, 1], 1)π0,0|2π0,r|2

+π0,0|2π0,0|2V ([0, t1 + 1; 0, 1], 2) }

Table 5: Resulting optimality equation of interest for multiple re-listing case.

In Table 6 below the optimal policy, derived using policy iteration with V (∆) = 0, for

various holding costs is shown. Note in particular that there are instances when it may be

optimal to release the second item when X1 = 0 yet defer if X1 > 0. For example, if h = 2.75

and the first auction elapsed one period, Y1 = 1, then we see that it is optimal to release

the item 2 if X1 = 0 (or X1 ≥ $20), but optimal to defer the release if X1 = $10. Note that

this scenario can occur since at the start of the first auction it is optimal to defer the release

of the item 2 and π0,0|1 > 0, but that this can not occur if, for instance, h = 3, since then
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the optimal decision at the start of the first auction is to release item 2, and hence there

is no decision to be made when Y1 = 1. If, however, both auctions are unsuccessful, which

happens with probability (.6)2∗2 = .1296 then the problem is back to its original state at

which it was optimal to release both items.

Y1 = 0 Y1 = 1
X1 = 0 X1 = 0 X1 = 10 X1 = 20 X1 = 30

3.6 ≤ h Release Release Release Release Release
2.9 ≤ h ≤ 3.5 Release Release Defer Release Release
2.7 ≤ h ≤ 2.8 Defer Release Defer Release Release
1.9 ≤ h ≤ 2.6 Defer Defer Defer Release Release
1.3 ≤ h ≤ 1.8 Defer Defer Defer Defer Release

h ≤ 1.2 Defer Defer Defer Defer Defer

Table 6: Optimal decision as a function of various holding costs for numerical example.

5. Conclusions and Future Research

In this paper we have analyzed the problem of strategically releasing items for auction in

order to maximize profit. Our objective has been to provide a framework for modeling the

dynamics of competing auctions and derive structural properties on the optimal auction re-

lease policy. The two main underlying assumptions that formed the basis for our analysis

were: 1) each period an item remains unsold it incurs a holding cost, and 2) competing

auctions ‘cannibalize’ on each other and therefore decrease the expected final price of each

auction. Two scenarios were analyzed - guaranteed successful auctions and possibly un-

successful auctions. For the first case the problem reduces to a finite horizon MDP, while

the second case results in an infinite horizon negative dynamic program. Given behavioral

assumptions on the bidding dynamics of ongoing auctions, we were able to show that in

the first case the optimal release policy is a control limit policy in the current price of the

ongoing auction. Furthermore, we showed that the control limit is decreasing in the holding

cost. However, for the case when there is a positive probability that an auction may be

unsuccessful, the optimal policy does not have to be a control limit policy. The problem

that arises is that the optimal decision when the ongoing auction has not received any bids

may or may not be consistent with a control limit policy.
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The main managerial insight and contribution of this paper is that there is a significant

value of understanding the special dynamics of online auctions. And that by using a price

adaptive or closed loop policy a seller can improve his expected total profit. Because online

auctions are rather inexpensive to conduct and administer, they are becoming more and

more popular as alternative salvage channels. In industries where the value of ‘old’ items

depreciates quickly, such as consumer electronics or fashion goods, being able to optimally

sell excess inventory quickly can be of great importance. In addition, even though the gain

on each individual item may be small, the overall impact can be quite substantial as the size

of the inventory grows.

There are many open research questions to pursue. The perhaps most obvious and

important regards the general N item case. This paper has been restricted to the two

items case. Though the model formulation and optimality equations remains the same for

the general N item case, it is not immediate how to define and derive optimal monotone

policies. Our current research efforts concern this. Another direction for future research is

to model the problem in continuous time. In this paper, we assumed the seller makes the

decision at the beginning of a period. A perhaps more realistic scenario is where the seller

tracks his ongoing auctions and each time a bid arrives decides whether to release another

item. A third direction for future research is to combine the ideas presented here with the

results from previous research. Namely to consider a seller that not only has to decide on the

optimal timing, or release, of each auction, but also has to determine the optimal auction

control parameters. Our hope is that the framework presented in this paper provides a basis

for analyzing such a problem.
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Appendix 1: Proofs

Proof of Lemma 3.1 Due to the vigilant seller assumption and that we are considering

the case when auctions are guaranteed to be successful we can explicitly write out the value

function (15) according to Table A1 below. Note that there are only non-trivial decisions

to be made for t < τ and z = 1. Consequently once the second auction has started, we

can evaluate the expected total future reward (= total remaining cost - expected final price

for both items). The implication of this is summarized in following two lemmas which will

facilitate the ‘book keeping’ and establish Lemma 3.1.

Period Condition Vt([p1, t1; p2, t2], z)

t = T z = 0 = p1 + p2

τ ≤ t < T z = 0 = Vt+1([p1, t1; p2, t2], z)

z = 1 = −h +
∑P

q=p2
Vt+1([p1, t1; q, t2 + 1], z′)πp2,q|z

t < τ z = 2 = −2h +
∑P

q=p1

∑P

r=p2
Vt+1([q, t1 + 1; r, t2 + 1], z′)πp1,q|2πp2,r|2

z = 1 = −2h + max{
∑P

q=p1
Vt+1([q, t1 + 1; p2, t2], z)πp1,q|1 ,

∑P
q=p1

∑P
r=p Vt+1([q, t1 + 1; r, t2 + 1], z′)πp1,q|2πp2,r|2 }

Table A1: Optimality equations for the single listing case.

Lemma A 1. If we assume a vigilant seller and each auction is guaranteed to be successful,

then once item 2 has been released we can explicitly evaluate the value function, for 1)

τ ≤ t ≤ T, z = 0, 1, or 2) t < τ, z = 2,

Vt([p1, t1; p2, t2], z) = R([p1, t1; p2, t2], z) (20)

Comment: Recall that R([p1, t1; p2, t2], z) ≡ −h(2τ − t1 − t2)+E[X1,τ |([p1, t1; p2, t2], z)]+

E[X2,τ |([p1, t1; p2, t2], z)], and note that there is a slight abuse of notation for the cases when

ti = δ. In these cases we implicitly assume that τ − ti = 0 and E[Xi,τ |([p1, t1; p2, t2], z)] = pi,

i = 1, 2.

Proof of Lemma A1 - There are three cases to consider.
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1) For τ ≤ t ≤ T and z = 0, proof by backward induction on t. Let t = T then t1 = δ

and t2 = τ or δ, and therefore Vt([p1, t1; p2, t2], z) = −h0 + p1 + p2 = −h(2τ − δ − δ) +

E[X1,τ |([p1, δ; p2, δ], 0)] + E[X2,τ |([p1, δ; p2, δ], 0)], and the result holds. Assume the result

holds for t = l + 1, l + 2, . . . , T . Let τ ≤ t = l, then t1 = τ or δ and t2 = τ or δ, and there-

fore Vt([p1, t1; p2, t2], z) = Vt+1([p1, δ; p2, δ], 0) = −h(2τ − δ − δ) + E[X1,τ |([p1, δ; p2, δ], 0)] +

E[X2,τ |([p1, δ; p2, δ], 0)], where the second equality holds due to the induction hypothesis.

Therefore the result holds for all τ ≤ t ≤ T and z = 0.

2) For τ ≤ t ≤ T and z = 1, proof by backward induction on t. Let t = T − 1 and z = 1,

then t1 = δ and t2 = τ − 1, therefore Vt([p1, t1; p2, t2], z) =

= −h +

P
∑

q=p2

VT ([p1, δ; q, τ ], 0)πp2,q|1 = −h +

P
∑

q=p2

p1πp2,q|1 +

P
∑

q=p2

qπp2,q|1

= −h + p1 +
P

∑

q=p2

qπp2,q|1

= −h(2τ − δ − (τ − 1)) + E[X1,τ |([p1, δ; p2, τ − 1], 1)] + E[X2,τ |([p1, δ; p2, τ − 1], 1)]

And the result holds (note that if t = T then due to the vigilant seller assumption all auctions

are completed and z 6= 1). Assume the result holds for t = l + 1, l + 2, . . . , T . Let τ ≤ t = l

and z = 1, then t1 = τ or δ, therefore Vt([p1, t1; p2, t2], z) =

= −h +
P

∑

q=p2

Vt+1([p1, δ; q, t2 + 1], z′)πp2,q|1

= −h − h(2τ − δ − (t2 + 1)) +

P
∑

q=p2

E[X1,τ |([p1, δ; q, t2 + 1], z′)]πp2,q|1

+
P

∑

q=p2

E[X2,τ |([p1, δ; q, t2 + 1], z′)]πp2,q|1

= −h(2τ − δ − t2+) + E[X1,τ |([p1, δ; p2, t2], 1)] + E[X2,τ |([p1, δ; p2, t2], 1)]

Where the second equality holds due to the induction hypothesis when z′ = 1, or case 1)

above when z′ = 0. Therefore the result holds for all τ ≤ t ≤ T and z = 1.

3) For t < τ and z = 2, proof by backward induction on t. Let t = τ − 1 and z = 2, then

38



t1 = τ − 1, therefore Vt([p1, t1; p2, t2], z) =

= −2h +

P
∑

q=p1

P
∑

r=p2

Vt+1([q, τ ; r, t2 + 1], z′)πp1,q|2πp2,r|2

= −2h − h(2τ − τ − (t2 + 1)) +
P

∑

q=p1

P
∑

r=p2

E[X1,τ |([q, τ ; r, t2 + 1], z′)]πp1,q|2πp2,r|2

+

P
∑

q=p1

P
∑

r=p2

E[X2,τ |([q, τ ; r, t2 + 1], z′)]πp1,q|2πp2,r|2

= −h(2τ − (τ − 1) − t2) +
P

∑

q=p1

E[X1,τ |([q, τ ; p2, t2 + 1], z′)]πp1,q|2

+

P
∑

r=p2

E[X2,τ |([p1, τ ; r, t2 + 1], z′)]πp2,r|2

= −h(2τ − (τ − 1) − t2) + E[X1,τ |([p1, τ − 1; p2, t2], 2)] + E[X2,τ |([p1, τ − 1; p2, t2], 2)]

Where the second equality follows from case 1) above when z′ = 0, or case 2) above when z′ =

1, while the third equality follows from that we assume each auction progress independently

of the price of the other auction. Therefore the result holds for t = τ −1 and z = 2. Assume

the result holds for t = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t = τ − l and z = 2, then

t1 = τ − l and Vt([p1, t1; p2, t2], z) =

= −2h +
P

∑

q=p1

P
∑

r=p2

Vt+1([q, τ − (l − 1); r, t2 + 1], z′)πp1,q|2πp2,r|2

= −2h − h(2τ − (τ − (l − 1)) − (t2 + 1))

+

P
∑

q=p1

P
∑

r=p2

E[X1,τ |([q, τ − (l − 1); r, t2 + 1], z′)]πp1,q|2πp2,r|2

+
P

∑

q=p1

P
∑

r=p2

E[X2,τ |([q, τ − (l − 1); r, t2 + 1], z′)]πp1,q|2πp2,r|2

= −h(2τ − (τ − l) − t2) +

P
∑

q=p1

E[X1,τ |([q, τ − (l − 1); p2, t2 + 1], z′)]πp1,q|2

+
P

∑

r=p2

E[X2,τ |([p1, τ − (l − 1); r, t2 + 1], z′)]πp2,r|2

= −h(2τ − (τ − l) − t2) + E[X1,τ |([p1, τ − l; p2, t2], 2)] + E[X2,τ |([p1, τ − l; p2, t2], 2)]

Where the second equality follows from the induction hypothesis when z′ = 2, case 1) above

when z′ = 0, or case 2) above when z′ = 1, and the third equality holds due to the assump-
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tion that each auction progress independently of the price in the other auction. Therefore

the result holds for all t < τ and z = 2. 2

Lemma A 2. If we assume a vigilant seller and each auction is guaranteed to be successful

then for t < τ and z = 1,

Vt([p1, t1; p2, t2], z) = max{−2h +

P
∑

q=p1

Vt+1([q, t1 + 1; p, 0], 1)πp1,q|1 , R([p1, t1; p, 0], 2)} (21)

Proof of Lemma A2 - Proof by backward induction on t. Let t = τ − 1 and z = 1, then

t1 = τ − 1 and

−2h +
∑P

q=p1

∑P
r=p Vt+1([q, τ ; r, 1], 1)πp1,q|2πp2,r|2 =

= −2h +

P
∑

q=p1

P
∑

r=p

(−h(2τ − τ − 1) + E[X1,τ |([q, τ ; r, 1], 1)]

+E[X2,τ |([q, τ ; r, 1], 1)])πp1,q|2πp2,r|2

= −h(2τ − (τ − 1) − 0) +

P
∑

q=p1

E[X1,τ |([q, τ ; p, 1], 1)]πp1,q|2

+
P

∑

r=p

E[X2,τ |([p1, τ ; r, 1], 1)]πp2,r|2

= −h(2τ − (τ − 1) − 0) + E[X1,τ |([p1, τ − 1; p, 0], 2)] + E[X2,τ |([p1, τ − 1; p, 0], 2)]

= R([p1, τ − 1; p, 0], 2)

where the first equality holds due to Lemma A1 with z′ = 1, and the second equality holds

due to that each auction progress independently of the price in the other auction. Assume

the result holds for t = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t = τ − l and z = 1, then

t1 = τ − l and
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−2h +
∑P

q=p1

∑P

r=p Vt+1([q, τ − (l − 1); r, 1], 2)πp1,q|2πp2,r|2 =

= −2h +

P
∑

q=p1

P
∑

r=p

(−h(2τ − (τ − (l − 1)) − 1) + E[X1,τ |([q, τ − (l − 1); r, 1], 2)]

+E[X2,τ |([q, τ − (l − 1); r, 1], 2)])πp1,q|2πp2,r|2

= −h(2τ − (τ − l) − 0) +
P

∑

q=p1

E[X1,τ |([q, τ − (l − 1); p, 1], 2)]πp1,q|2

+

P
∑

r=p

E[X2,τ |([p1, τ − (l − 1); r, 1], 2)]πp2,r|2

= −h(2τ − (τ − l) − 0) + E[X1,τ |([p1, τ − l; p, 0], 2)] + E[X2,τ |([p1, τ − l; p, 0], 2)]

= R([p1, τ − l; p, 0], 2)

where the first equality holds due to Lemma A1 with z′ = 2, and the second equality holds

due to that each auction progress independently of the price in the other auction. 2

Due to Lemma A1 and A2, and that we mainly are interested in states s ∈ S such that

A(s) = {0, 1}, we have the value functions listed in Lemma 3.1. 2

For the proofs of Proposition 3.2 and Theorem 3.3 we require the following corollaries.

Corollary A 3. If Assumption 2.1 holds then, in period t with Zt = z ongoing auctions,

the n-period conditional expected final price, E[Xi,τ |Xi,τ−n = pi, Zt = z], is increasing in pi,

that is for ti = τ − n and pi < P ,

E[Xi,τ |Xi,ti = pi, Zt = z] ≤ E[Xi,τ |Xi,ti = pi + 1, Zt = z] (22)

Proof of Corollary A3 - By induction on the number of remaining periods n. For

n = 1, E[Xi,τ |Xi,τ−n = pi, Zt = z] =
∑P

q=pi
qπpi,q|z ≤

∑P

q=pi+1 qπpi+1,q|z = E[Xi,τ |Xi,τ−n =

pi + 1, Zt = z], which holds due to (3). Assume (22) holds for n = 1, 2, . . . , l − 1. For

n = l, ti + 1 = τ − (l − 1), and therefore from the induction assumption and (3) we have

E[Xi,τ |Xi,τ−n = pi, Zt = z] =
∑P

q=pi
E[Xi,τ |Xi,τ−(l−1) = q, Zt+1]πpi,q|z ≤

∑P

q=pi+1 E[Xi,τ |Xi,τ−(l−1) = q, Zt+1]πpi+1,q|z =

E[Xi,τ |Xi,τ−n = pi + 1, Zt = z]. 2
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Corollary A 4. If Assumption 2.1 holds then R([p1, t1; p2, t2], z) is increasing in p1 and p2,

for all t1, t2, and z = 0, 1, 2.

Proof of Corollary A4 - Each auction progress independently of the price in the other

auction, the result is therefore immediate by Corollary A3. 2

Proof of Proposition 3.2 - By Lemma A1 and A2 there are only two cases to consider.

Case 1) If t < τ and z = 2, or τ ≤ t ≤ T , then by Lemma A1, V ?
t ([p1, t1; p2, t2], z) =

R([p1, t1; p2, t2], z), and the result follows from Corollary A4.

Case 2) For t < τ and z = 1, by Lemma A2,

V ?
t ([p1, t1; p2, t2], z) = max{−2h +

P
∑

q=p1

πp1,q|1V
?
t+1([q, t1 + 1; p, 0], 2) , R([p1, t1; p, 0], 2)}

Proof by backward induction on t. Note that for t < τ and z = 1, p2 = p. Let t = τ − 1 and

hence t1 + 1 = τ , by Case 1) above and (3),
∑P

q=p1
πp1,q|1V

?
t+1([q, τ ; p, 0], 1) is increasing in

p1, and by Corollary 4, R([p1, t1; p, 0], 2) is increasing in p1. Since V ?
t ([p1, t1; p2, t2], z) is the

maximum of two increasing functions it is also increasing in p1 and the result holds. Assume

Proposition 3.2 holds for t = τ − (l − 1), . . . , τ − 2, τ − 1. Let t = τ − l and hence t1 + 1 =

τ−(l−1), and again by Case 1) above and (3),
∑P

q=p1
πp1,q|1V

?
t+1([q, t1+1; p, 0], 2) is increasing

in p1, and by Corollary 4, R([p1, t1; p, 0], 2) is increasing in p1. Since V ?
t ([p1, t1; p2, t2], z) is

the maximum of two increasing functions it is also increasing in p1 and the result holds. 2

Corollary A 5. If Assumption 2.1, 2.2, and 2.3 holds, then

V ?
t ([p1, t1; p, 0], 1) − R([p1, t1; p, 0], 2) is decreasing in p1, for all t < τ .

Proof of Corollary A5 - Note that by Corollary A4 and Proposition 3.2, R([p1, t1; p, 0], 2)

and V ?
t ([p1, t1; p, 0], 1) are increasing in p1. Also note the following relationship,

R([p1, t1; p2, t2], 2) = −h +

P
∑

q=p1

R([q, t1 + 1; p2, t2], z)πp1,q|2 − g2([p1, t1; p2, t2]) (23)

Proof by backward induction on t.

Induction Step - Let t = τ − 1, then t1 = τ − 1 and by Lemma A1, A2, and (23),

V ?
t ([p1, t1; p, 0], 1) − R([p1, t1; p, 0], 2) =

= max{−h +
P

∑

q=p1

R([q, τ ; p, 0], 1)(πp1,q|1 − πp1,q|2) + g2([p1, τ − 1; p, 0]) , 0}
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Since g2([p1, τ − 1; p, 0]) is independent of p1, and by Corollary A4 and Assumption 2.3,
∑P

q=p1
R([q, τ ; p, 0], 1)(πp1,q|1 − πp1,q|2) is decreasing in p1. And the result holds.

Induction Hypothesis - Assume Corollary A5 holds for t = τ − (l − 1), τ − (l − 2), . . . , τ − 1.

Induction Argument - Let t = τ − l. Then by Lemma A1, A2, and (23),

V ?
t ([p1, t1; p, 0], 1) − R([p1, t1; p, 0], 2) =

= max{−h+
P

∑

q=p1

V ?
t+1([q, t1+1; p, 0], 1)πp1,q|1−R([q, t1 +1; p, 0], 2)πp1,q|2 +g2([p1, t1; p, 0]) , 0}

Where g2([p1, t; p, 0]) is independent of p1. And by Corollary A4, Proposition 3.2, and the

induction hypothesis V ?
t+1([q, t + 1; p, 0], 1)−R([q, t + 1; p, 0], 1) is decreasing in q, and there-

fore by Assumption 2.3 the result holds. 2

Proof of Theorem 3.3 Let t < τ , then t1 = t and by Lemma A2 and (23),

V ?
t ([p1, t1; p, 0], 1) =

max{−h +

P
∑

q=p1

V ?
t+1([q, t + 1; p, 0], 1)πp1,q|1 − R([q, t + 1; p, 0], 2)πp1,q|2 + g2([p1, t1; p, 0]) , 0}

By Corollary A5, V ?
t ([p1, t1; p, 0], 1)− R([p1, t1; p, 0], 2) is decreasing in p1 for all t < τ (note

that at the border case for t = τ − 1, V ?
t+1([q, t + 1; p, 0], 1) = R([q, t + 1; p, 0], 1)), and since

g2([p1, t; p, 0]) is independent of p1. Therefore by Assumption 2.3,
∑P

q=p1
V ?

t ([q, t; p, 0], 1)πp1,q|1 − R([q, τ ; p, 0], 1)πp1,q|2 is decreasing in p1. And the result fol-

lows. 2

Proof of Corollary 3.4 For a given decision epoch t we know that for X1 ≥ p?
t any addi-

tional holding cost by deferring the release is not compensated by the gain in expected final

price for the two items. Therefore, if h increases and since the expected final prices remains

the same, then any additional holding cost will still not be compensated (in fact it is even

less compensated), and the result follows. 2

Proof of Proposition 3.5 (⇐) If (16) holds then the additional gain in expected final price

for item 2, by deferring the release one period, alone compensates for the additional holding

cost. Since that gain holds for all periods that the first auction is still ongoing and indepen-

dently of X1, it is always optimal to release the second auction after the first is finished.
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(⇒) If (16) does not hold then there exist a period for which the gain in expected final price

for item 2 does not compensate the additional holding cost. Consequently, in order for it

to be optimal to defer the release in that period, there must be some gain in expected final

price of item 1. However, this gain is dependent on the current price and hence the optimal

policy is not independent of the current price. Therefore, the optimal policy might not be

to release the items sequentially. 2

Proof of Proposition 3.9 From equation (18) we can compare various open loop policies

and determine when each one dominates another. Let OPj and OP(j + m) be the open

loop policies of releasing the second auction j and (j + m) periods respectively after the

first auction. We then have, VO(j) ≥ VO(j+m) ⇔ −(2τ + j)h + 2(p + jπ + (τ − j)ρ) ≥

−(2τ + j + m)h + 2(p + (j + m)π + (τ − j − m)ρ) ⇔ h ≥ 2(π − ρ).

Since this condition is independent of j and j + m the result is that simultaneous release is

optimal iff h ≥ 2(π − ρ). By symmetry (non-overlapping) sequential release is optimal iff

h < 2(π − ρ) and there are no other optimal Open Loop policies. 2

Proof of Corollary 3.6, 3.7, and 3.8 - For each of the cases we have that Assumptions

2.1, 2.2, and 2.3 holds, it therefore follows that Proposition 3.2 and Theorem 3.3 holds. 2

Proof of Lemma 4.1

Comment: Recall that R′([p1, t1; p2, t2], z) = −h(2τ − t1 − t2) + E[X1,τ |([p1, t1; p2, t2], z)] +

E[X2,τ |([p1, t1; p2, t2], z)] + (πp2,0|z)(π0,0|z)
τ−t1−1(π0,0|1)

t1−t2v(0, 0), and note that there is a

slight abuse of notation for the cases when ti = δ. In these cases we implicitly assume that

τ − ti = 0 and E[Xi,τ |([p1, t1; p2, t2], z)] = 0, i = 1, 2.

1) p1 > 0, t1 = τ, δ and z = 0, 1, or p1 > 0, t1, t2 < τ , and z = 2.

1a) For p1 > 0, t1 = δ and z = 0, 1, R′([p1, δ; p2, t2], z) = −h(τ − t2)+E[X2,τ |([p1, δ; p2, t2], z)]

+(πp2,0|z)(π0,0|z)
τ−t1−1(π0,0|1)

t1−t2v(0, 0).

Let p1 > 0, t1 = δ, and z = 0. If t2 = δ then V ([p1, t1; p2, t1], z) = 0 = R′([p1, δ; p2, δ], 0). If

t2 = τ then z = 0 and V ([p1, t1; p2, t1], z) = p2+V (∆) = −h(τ−τ)+E[X2,τ |([p1, δ; p2, τ ], 0)] =

R′([p1, δ; p2, τ ], 0).

Let p1 > 0, t1 = δ, and z = 1, that is t2 < τ . Proof by backward induction on t2. Let
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t2 = τ − 1 and p2 > 0 then V ([p1, t1; p2, t1], z) =

= −h +
P

∑

q=p2

V ([p1, δ; q, τ ], 0)πp2,q|1 = −h +
P

∑

q=p2

R′([p1, δ; q, τ ], 0)πp2,q|1

= −h +

P
∑

q=p2

(−h(τ − τ) + E[X2,τ |([p1, δ; q, τ ], 0)])πp2,q|1

= −h(τ − (τ − 1)) + E[X2,τ |([p1, δ; p2, τ − 1], 1)]) = R′([p1, δ; p2, τ − 1], 1)

Where the second equality holds due to the case above with t1 = δ, z = 0.

Let t2 = τ − 1 and p2 = 0 then V ([p1, t1; p2, t1], z) =

= −h +
P

∑

q=p

V ([p1, δ; q, τ ], 0)π0,q|1 + V ([p1, δ; 0, 0], 1)π0,0|1

= −h +

P
∑

q=p2

R′([p1, δ; q, τ ], 0)πp2,q|1 + v(0, 0)π0,0|1

= −h +
P

∑

q=p2

(−h(τ − τ) + E[X2,τ |([p1, δ; q, τ ], 0)])πp2,q|1 + v(0, 0)π0,0|1

= −h(τ − (τ − 1)) + E[X2,τ |([p1, δ; p2, τ − 1], 1)]) + v(0, 0)π0,0|1

= R′([p1, δ; 0, τ − 1], 1)

Where the second equality holds due to the case above with t1 = δ and z = 0, and that

V ([p1, δ; 0, 0], 1) = v(0, 0), since the first item has been awarded and by the vigilant seller

assumption the second item will be continuously re-listed until the auction is successful.

Assume the result holds for t2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t2 = τ − l then

V ([p1, t1; p2, t1], z) =

−h +
P

∑

q=p2

V ([p1, δ; q, τ − (l − 1)], 1)πp2,q|1 = −h +
P

∑

q=p2

R′([p1, δ; q, τ − (l − 1)], 1)πp2,q|1

= −h +

P
∑

q=p2

(−h(τ − (τ − (l − 1))) + E[X2,τ |([p1, δ; q, τ − (l − 1)], 1)])πp2,q|1

= −h(τ − (τ − l)) + E[X2,τ |([p1, δ; p2, τ − l], 1)]) = R′([p1, δ; p2, τ − l], 1)

Where the second equality holds due to induction hypothesis.

Therefore Lemma 4.1 holds for the case 1a) p1 > 0, t1 = δ and z = 0, 1.
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1b) For p1 > 0, t1 = τ and z = 0, 1, R′([p1, τ ; p2, t2], z) =

−h(2τ − τ − t2) + E[X1,τ |([p1, τ ; p2, t2], z)] + E[X2,τ |([p1, τ ; p2, t2], z)]

+(πp2,0|z)(π0,0|z)
τ−t1−1(π0,0|1)

t1−t2v(0, 0).

Let p1 > 0, t1 = τ , and z = 0, that is t2 = τ . Therefore V ([p1, t1; p2, t1], z) = p1+p2+V (∆) =

R′([p1, τ ; p2, τ ], 0).

Let p1 > 0, t1 = τ , and z = 1, that is t2 < τ . Proof by backward induction on t2. Let

t2 = τ − 1 and p2 > 0 then V ([p1, t1; p2, t1], z) =

= −h + p1 +

P
∑

q=p2

V ([p1, δ; q, τ ], 0)πp2,q|1 = −h + p1 +

P
∑

q=p2

R′([p1, δ; q, τ ], 0)πp2,q|1

= −h + E[X1,τ |([p1, τ ; q, τ − 1], 1) +
P

∑

q=p2

(−h(τ − τ) + E[X2,τ |([p1, δ; q, τ ], 0)])πp2,q|1

= −h(2τ − τ − (τ − 1)) + E[X1,τ |([p1, τ ; p2, τ − 1], 1)]) + E[X2,τ |([p1, τ ; p2, τ − 1], 1)])

= R′([p1, τ ; p2, τ − 1], 1)

Where the second equality holds due to case 1a) above.

Let t2 = τ − 1 and p2 = 0 then V ([p1, t1; p2, t1], z) =

= −h + p1 +

P
∑

q=p

V ([p1, δ; q, τ ], 0)π0,q|1 + V ([p1, δ; 0, 0], 1)π0,0|1

= −h + p1 +

P
∑

q=p2

R′([p1, δ; q, τ ], 0)πp2,q|1 + v(0, 0)π0,0|1

= −h + E[X1,τ |([p1, τ ; q, τ − 1], 1)]) +
P

∑

q=p2

(−h(τ − τ) + E[X2,τ |([p1, δ; q, τ ], 0)])πp2,q|1

+v(0, 0)π0,0|1

= −h(2τ − τ − (τ − 1)) + E[X1,τ |([p1, τ ; p2, τ − 1], 1)]) + E[X2,τ |([p1, τ ; p2, τ − 1], 1)])

+v(0, 0)π0,0|1

= R′([p1, τ ; 0, τ − 1], 1)

Where the second equality holds due to case 1a) above and that V ([p1, δ; 0, 0], 1) = v(0, 0),

which holds since the first item has been awarded and by the vigilant seller assumption the

second item will be continuously re-listed until the auction is successful.

Assume the result holds for t2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t2 = τ − l then
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V ([p1, t1; p2, t1], z) =

= −h + p1 +
P

∑

q=p2

V ([p1, δ; q, τ − (l − 1)], 1)πp2,q|1

= −h + p1 +

P
∑

q=p2

R([p1, δ; q, τ − (l − 1)], 1)πp2,q|1

= −h + E[X1,τ |([p1, τ ; q, τ − (l − 1)], 1)])

+
P

∑

q=p2

(−h(τ − (τ − (l − 1))) + E[X2,τ |([p1, δ; q, τ − (l − 1)], 1)])πp2,q|1

= −h(2τ − τ − (τ − l)) + E[X1,τ |([p1, τ ; p2, τ − l], 1)]) + E[X2,τ |([p1, τ ; p2, τ − l], 1)])

= R′([p1, τ ; p2, τ − l], 1)

Where the second equality holds due to case 1a) above.

Therefore Lemma 4.1 holds for the case 1b) p1 > 0, t1 = τ and z = 0, 1.

Note that for p1 > 0, t1, t2 < τ and z = 2, R′([p1, t1; p2, t2], z) = −h(2τ − t1 − t2) +

E[X1,τ |([p1, t1; p2, t2], 2)] + E[X2,τ |([p1, t2; p2, t2], 2)] + (πp2,0|z)(π0,0|z)
τ−t1−1(π0,0|1)

t1−t2v(0, 0).

1c) Let t1 = τ − 1. Proof by backward induction on t2. Let t2 = τ − 1 and p2 > 0, then

V ([p1, t1; p2, t1], z) =

= −2h +
P

∑

q=p1

P
∑

r=p2

V ([q, τ ; r, τ ], 0)πp1,q|2πp2,r|2

= −2h +

P
∑

q=p1

P
∑

r=p2

R′([q, τ ; r, τ ], 0)πp1,q|2πp2,r|2

= −2h +
P

∑

q=p1

E[X1,τ |([q, τ ; p2, τ ], 2)]πp1,q|2 +
P

∑

q=p2

E[X2,τ |([p1, τ ; q, τ ], 2)]πp1,q|2

= −h(2τ − (τ − 1) − (τ − 1)) + E[X1,τ |([p1, τ − 1; p2, τ − 1], 2)]

+E[X2,τ |([p1, τ − 1; q, τ − 1], 2)]

= R′([p1, τ − 1; p2, τ − 1], 2)

Where the second equality holds due to case 1b) above, and the third equality holds due to

that each auction progress independently of the price in the other auction.
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Let t2 = τ − 1 and p2 = 0, then V ([p1, t1; p2, t1], z) =

= −2h +
P

∑

q=p1

P
∑

r=p

V ([q, τ ; r, τ ], 0)πp1,q|2πp2,r|2 +
P

∑

q=p1

V ([q, τ ; 0, 0], 1)πp1,q|2π0,0|2

= −2h +

P
∑

q=p1

πp1,q|2(

P
∑

r=p

R′([q, τ ; r, τ ], 0)π0,r|2 + R′([q, τ ; 0, 0], 1)π0,0|2)

= −2h +

P
∑

q=p1

πp1,q|2(

P
∑

r=p

(E[X1,τ |([q, τ ; r, τ ], 0)] + E[X2,τ |([q, τ ; r, τ ], 0)])π0,r|2

+(−h(2τ − τ − 0) + E[X1,τ |([q, τ ; 0, 0], 1)] + E[X2,τ |([q, τ ; 0, 0], 1)]

+(π0,0|1)
τv(0, 0))π0,0|2)

= −h(2τ − (τ − 1) − (τ − 1)) +

P
∑

q=p1

E[X1,τ |([q, τ ; p2, τ ], 0)]πp1,q|2

+

P
∑

r=p

E[X2,τ |([p1, τ ; r, τ ], 0)])π0,r|2 + ((1 − (π0,0|1)
τ )v(0, 0) + (π0,0|1)

τv(0, 0))π0,0|2

= −h(2τ − (τ − 1) − (τ − 1)) + E[X1,τ |([p1, τ − 1; p2, τ − 1], 2)]

+E[X2,τ |([p1, τ − 1; 0, τ − 1], 2)] + v(0, 0)π0,0|2

= R′([p1, τ − 1; 0, τ − 1], 2)

Where the second equality holds due to case 1b) above, and the fourth equality holds due

to (19). Assume the result holds for t2 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t2 = τ − l

then V ([p1, t1; p2, t1], z) =

= −2h +
P

∑

q=p1

P
∑

r=p2

V ([q, τ ; r, τ − (l − 1)], 1)πp1,q|2πp2,r|2

= −2h +

P
∑

q=p1

P
∑

r=p2

R′([q, τ ; r, τ − (l − 1)], 1)πp1,q|1πp2,r|2

= −2h +
P

∑

q=p1

P
∑

r=p2

(−h(2τ − τ − (τ − (l − 1))) + E[X1,τ |([q, τ ; r, τ − (l − 1)], 1)]

+E[X2,τ |([q, τ ; r, τ − (l − 1)], 1)] + (πr,0|1)(π0,0|1)
τ−(τ−(l−1))−1v(0, 0))πp1,q|2πp2,r|2
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= −h(2τ − (τ − 1) − (τ − l)) +

P
∑

q=p1

E[X1,τ |([q, τ ; p2, τ − (l − 1)], 1)]πp1,q|2

+
P

∑

r=p2

E[X2,τ |([p1, τ ; r, τ − (l − 1)], 1)]πp2,r|2 + (πp2,0|1)(π0,0|1)
τ−(τ−(l−1))v(0, 0)

= −h(2τ − (τ − 1) − (τ − 1)) + E[X1,τ |([p1, τ − 1; p2, τ − l], 2)]

+E[X2,τ |([p1, τ − 1; q, τ − l], 2)] + (πp2,0|1)(π0,0|1)
τ−(τ−(l−1))v(0, 0)

= R′([p1, τ − 1; p2, τ − l], 2)

Where the second equality holds due to the case above with t1 = τ , and the third equality

holds due to that each auction progress independently of the price in the other auction and

that πp2,r|z = 0 for r < p2.

Therefore Lemma 4.1 holds for the case 1c) p1 > 0, t1 = τ − 1, t2 < τ , and z = 2.

1d) Let t1 < τ − 1. Proof by backward induction on t1. Let p1 > 0, t1 = τ − 2, and z = 2,

then V ([p1, t1; p2, t2], 2) =

= −2h +
P

∑

q=p1

P
∑

r=p2

V ([q, τ − 1; r, t2 + 1], 2)πp1,q|2πp2,r|2

= −2h +

P
∑

q=p1

P
∑

r=p2

R′([q, τ − 1; r, t2 + 1], 2)πp1,q|2πp2,r|2

= −2h +

P
∑

q=p1

P
∑

r=p2

(−h(2τ − (τ − 1) − (t2 + 1)) + E[X1,τ |([q, τ − 1; r, t2 + 1], 2)]

+E[X2,τ |([q, τ − 1; r, t2 + 1], 2)]

+(πr,0|2)(π0,0|1)
τ−1−t2+1v(0, 0) )πp1,q|2πp2,r|2

= −h(2τ − (τ − 2) − t2) +
P

∑

q=p1

E[X1,τ |([q, τ − 1; p2, t2 + 1], 2)]πp1,q|2

+

P
∑

r=p2

E[X2,τ |([p1, τ − 1; r, t2 + 1], 2)]πp2,r|2 + (πp2,0|2)(π0,0|2)(π0,0|1)
τ−1−t2+1v(0, 0)

= −h(2τ − (τ − 2) − t2) + E[X1,τ |([p1, τ − 2; p2, t2], 2)]

+E[X2,τ |([p1, τ − 2; p2, t2], 2)] + (πp2,0|2)(π0,0|2)(π0,0|1)
τ−1−t2+1v(0, 0)

= R′([p1, τ − 2; p2, t2], 2)
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Where the second equality holds from case 1c) above, and the third equality holds due to

that each auction progress independently of the price in the other auction and that πp2,r|z = 0

for r < p2. Assume the result holds for t1 = τ − (l− 1), τ − (l− 2), . . . , τ − 2. Let t1 = τ − l,

p1 > 0, and z = 2, then V ([p1, t1; p2, t2], 2) =

= −2h +

P
∑

q=p1

P
∑

r=p2

V ([q, τ − (l − 1); r, t2 + 1], 2)πp1,q|2πp2,r|2

= −2h +
P

∑

q=p1

P
∑

r=p2

R′([q, τ − (l − 1); r, t2 + 1], 2)πp1,q|2πp2,r|2

= −2h +

P
∑

q=p1

P
∑

r=p2

(−h(2τ − (τ − (l − 1)) − (t2 + 1))

+E[X1,τ |([q, τ − (l − 1); r, t2 + 1], 2)]

+E[X2,τ |([q, τ − (l − 1); r, t2 + 1], 2)]

+(πr,0|2)(π0,0|1)
τ−(l−1)−t2+1v(0, 0) )πp1,q|2πp2,r|2

= −h(2τ − (τ − l) − t2) +
P

∑

q=p1

E[X1,τ |([q, τ − (l − 1); p2, t2 + 1], 2)]πp1,q|2

+

P
∑

r=p2

E[X2,τ |([p1, τ − (l − 1); r, t2 + 1], 2)]πp2,r|2

+(πp2,0|2)(π0,0|2)(π0,0|1)
τ−(l−1)−t2+1v(0, 0)

= −h(2τ − (τ − l) − t2) + E[X1,τ |([p1, τ − l; p2, t2], 2)]

+E[X2,τ |([p1, τ − l; p2, t2], 2)] + (πp2,0|2)(π0,0|2)(π0,0|1)
τ−l−t2+1v(0, 0)

= R′([p1, τ − l; p2, t2], 2)

where the second equality holds from the induction hypothesis, and the third equality holds

due to that each auction progress independently of the price in the other auction and that

πp2,r|z = 0 for r < p2.

Therefore Lemma 4.1 holds for the case 1d) p1 > 0, t1 < τ − 1, t2 < τ , and z = 2.

And consequently Lemma 4.1 holds for 1) p1 > 0, t1 = τ, δ and z = 0, 1, or p1 > 0, t1, t2 < τ

and z = 2.

It remains to show that Lemma 4.1 also holds for 2) p1 > 0, t1 < τ, t2 = 0, z = 1. Proof

by backward induction on t1. Let t1 = τ − 1 and z = 1, then
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−2h +
∑P

q=p1

∑P

r=0 V ([q, τ ; r, 1], 1)πp1,q|2π0,r|2 =

= −2h +
P

∑

q=p1

P
∑

r=0

R′([q, τ ; r, 1], 1)πp1,q|2π0,r|2 =

= −2h +

P
∑

q=p1

P
∑

r=0

{−h(2τ − τ − 1) + E[X1,τ |([q, τ ; r, 1], 1)]

+E[X2,τ |([q, τ ; r, 1], 1)] + (πr,0|1)
τ−1v(0, 0)}πp1,q|2π0,r|2

= −h(2τ − (τ − 1) − 0) +

P
∑

q=p1

E[X1,τ |([q, τ ; 0, 1], 1)]πp1,q|2

+
P

∑

r=0

(E[X2,τ |([p1, τ ; r, 1], 1)] + (πr,0|1)
τ−1v(0, 0))π0,r|2

= −h(2τ − (τ − 1) − 0) + E[X1,τ |([p1, τ − 1; 0, 0], 2)]

+E[X2,τ |([p1, τ − 1; 0, 0], 2)] + (π0,0|2)(π0,0|1)
τ−1v(0, 0)

= R([p1, τ − 1; 0, 0], 2)

where the first equality holds due to case 1) above, and the second equality holds due to

that each auction progress independently of the price in the other auction. Assume the

result holds for t1 = τ − (l − 1), τ − (l − 2), . . . , τ − 1. Let t1 = τ − l and z = 1, then

−2h +
∑P

q=p1

∑P

r=0 Vt+1([q, τ − (l − 1); r, 1], 2)πp1,q|2π0,r|2 =

= −2h +

P
∑

q=p1

P
∑

r=0

R′([q, τ − (l − 1); r, 1], 2)πp1,q|2π0,r|2

= −2h +

P
∑

q=p1

P
∑

r=0

{−h(2τ − (τ − (l − 1)) − 1) + E[X1,τ |([q, τ − (l − 1); r, 1], 2)]

+E[X2,τ |([q, τ − (l − 1); r, 1], 2)]

+π2(0|[q, τ − (l − 1); r, 1], 2)v(0, 0) }πp1,q|2π0,r|2

= −h(2τ − (τ − l) − 0) +

P
∑

q=p1

E[X1,τ |([q, τ − (l − 1); 0, 1], 2)]πp1,q|2

+
P

∑

r=0

E[X2,τ |([p1, τ − (l − 1); r, 1], 2)]π0,r|2 + (π0,0|2)
l−1(π0,0|1)

τ−(l−1)v(0, 0)

= −h(2τ − (τ − l) − 0) + E[X1,τ |([p1, τ − l; 0, 0], 2)] + E[X2,τ |([p1, τ − l; 0, 0], 2)]

+(π0,0|2)
l−1(π0,0|1)

τ−(l−1)v(0, 0)

= R([p1, τ − l; 0, 0], 2)
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where the first equality holds due to case 1) above, and the second equality holds due to that

each auction progress independently of the price in the other auction. Therefore Lemma 4.1

holds for the case 2) p1 > 0, t1 < τ, t2 = 0 and z = 1. 2

Proof of Lemma 4.2

Comment: Recall that

R′′([p1, t1; p2, t2], z) = −h(τ − t1) + E[X1,τ |([p1, t1; p2, t2], z)]

+(1 − (πp1,0|2)
τ−t1)(−h(t1 − t2) + E[X2,τ |([p1, t1; p2, t2], z)])

+(πp1,0|2)
τ−t1E[V ([X2, t2 + τ − t1; 0, 0], 1)|([p1, t1; p2, t2], 2)]

Let t1 = τ − 1, p1 = 0, p2 > 0 and z = 2. Proof by backward induction on t2. Let
t2 = τ − 1, then V ([p1, t1; p2, t2], z) =

= −2h +

P
∑

r=p2

(

P
∑

q=p

V ([q, τ ; r, τ ], 0)π0,q|2 + π0,0|2V ([r, τ ; 0, 0], 1))πp2 ,r|2

= −2h +
P

∑

r=p2

P
∑

q=p

R′([q, τ ; r, τ ], 0)π0,q|2πp2,r|2 + π0,0|2

P
∑

r=p2

V ([r, τ ; 0, 0], 1)πp2 ,r|2

= −2h +
P

∑

r=p2

P
∑

q=p

(E[X1,τ |([q, τ ; r, τ ], 0)]) + E[X2,τ |([q, τ ; r, τ ], 0)]))π0,q|2πp2,r|2

+π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1; p2, τ − 1], 2)]

= −2h +

P
∑

r=p2

P
∑

q=p

qπ0,q|2πp2,r|2 +

P
∑

r=p2

P
∑

q=p

rπ0,q|2πp2,r|2

+π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1; p2, τ − 1], 2)]

= −2h +

P
∑

q=p

qπ0,q|2 +

P
∑

q=p

π0,q|2

P
∑

r=p2

rπp2,r|2

+π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1; p2, τ − 1], 2)]

= −2h + E[X1,τ |([0, τ − 1; p2, τ − 1], 2)] + (1 − π0,0|2)E[X1,τ |([p1, τ − 1; p2, τ − 1], 2)]

+π0,0|2E[V ([X2, τ ; 0, 0], 1)|([0, τ − 1; p2, τ − 1], 2)]

= R′′([0, τ − 1; p2, τ − 1], 2)

Where the second equality holds due to Lemma 4.1 above, the fifth equality holds because
∑P

r=p2
πp2,r|2 = 1, and the sixth equality holds because

∑P

q=p π0,q|2 = 1 − π0,0|2. Assume the

result holds for t2 = τ −(l−1), τ −(l−2), . . . , τ −1. Let t2 = τ − l, then V ([p1, t1; p2, t2], z) =
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= −2h +
P

∑

r=p2

(
P

∑

q=p

V ([q, τ ; r, t2 + 1], 1)π0,q|2 + π0,0|2V ([r, t2 + 1; 0, 0], 1))πp2 ,r|2

= −2h +
P

∑

r=p2

P
∑

q=p

R′([q, τ ; r, t2 + 1], 1)π0,q|2πp2,r|2 + π0,0|2

P
∑

r=p2

V ([r, t2 + 1; 0, 0], 1)πp2 ,r|2

= −2h +

P
∑

r=p2

P
∑

q=p

{−h(2τ − τ − (t2 + 1) + E[X1,τ |([q, τ ; r, t2 + 1], 1)])

+E[X2,τ |([q, τ ; r, t2 + 1], 0)])}π0,q|2πp2,r|2

+π0,0|2E[V ([X2, t2 + 1; 0, 0], 1)|([0, τ − 1; p2, t2], 2)]

= −2h + E[X1,τ |([0, τ − 1; p2, t2], 2)])

+
P

∑

q=p

{−h(2τ − τ − (t2 + 1) + E[X2,τ |([0, τ − 1; p2, t2], 2)])}π0,q|2

+π0,0|2E[V ([X2, t2 + 1; 0, 0], 1)|([0, τ − 1; p2, t2], 2)]

= −2h(τ − (τ − 1)) + E[X1,τ |([0, τ − 1; p2, t2], 2)])

+(1 − π0,0|2)(−h(τ − 1 − t2) + E[X2,τ |([0, τ − 1; p2, t2], 2)])

+π0,0|2E[V ([X2, t2 + 1; 0, 0], 1)|([0, τ − 1; p2, t2], 2)]

= R′′([0, τ − 1; p2, t2], 2)

Where the second equality holds due to Lemma 4.1 above, the fourth equality holds be-

cause
∑P

r=p2
πp2,r|2 = 1, and the fifth equality holds because

∑P
q=p π0,q|2 = 1−π0,0|2. Therefore

Lemma 4.2 holds for t1 = τ − 1, p1 = 0, p2 > 0, and z = 2.

For t1 < τ − 1, p1 = 0, p2 > 0, z = 2, proof by backward induction on t1. Let t1 = τ − 2,

then V ([p1, t1; p2, t2], z) =

= −2h +
P

∑

q=0

P
∑

r=p2

V ([q, τ − 1; r, t2 + 1], 2)π0,q|2πp2,r|2

= −2h +

P
∑

q=0

P
∑

r=p2

R′′([q, τ − 1; r, t2 + 1], 2)π0,q|2πp2,r|2

= −2h +

P
∑

q=0

P
∑

r=p2

{−2h(τ − (τ − 1)) + E[X1,τ |([q, τ − 1; r, t2 + 1], 2)]

+(1 − (πq,0|2)
τ−(τ−1))(−h(τ − 1 − (t2 + 1)) + E[X2,τ |([q, τ − 1; r, t2 + 1], 2)])

+(πq,0|2)
τ−(τ−1)(E[V ([X2, t2 + 1 + τ − (τ − 1); 0, 0], 1)|([q, τ − 1; r, t2 + 1], 2)])

}π0,q|2πp2,r|2
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= −2h(τ − (τ − 2))) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

+

P
∑

q=0

P
∑

r=p2

{(1 − (πq,0|2)
τ−(τ−1))(−h(τ − 1 − (t2 + 1))

+E[X2,τ |([q, τ − 1; r, t2 + 1], 2)]) }π0,q|2πp2,r|2

+π0,0|2(π0,0|2)
τ−(τ−1)

P
∑

r=p2

E[V ([X2, t2 + 1 + τ − (τ − 1); 0, 0], 1)|([0, τ − 1; r, t2 + 1], 2)]πp2 ,r|2

= −2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

+

P
∑

q=p

P
∑

r=p2

{−h(τ − 1 − (t2 + 1))

+E[X2,τ |([q, τ − 1; r, t2 + 1], 2)])}π0,q|2πp2,r|2

+

P
∑

r=p2

{(1 − (π0,0|2)
τ−(τ−1))(−h(τ − 1 − (t2 + 1))

+E[X2,τ |([0, τ − 1; r, t2 + 1], 2)])}π0,0|2πp2,r|2

+(πq,0|2)
τ−(τ−2)E[V ([X2, t2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2; p2, t2], 2)]

= −2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

+(1 − π0,0|2)(−h(τ − 1 − (t2 + 1)) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+π0,0|2(1 − (π0,0|2)
τ−(τ−1))(−h(τ − 1 − (t2 + 1)) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+(πq,0|2)
τ−(τ−2)E[V ([X2, t2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2; p2, t2], 2)]

= −2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

+(1 − π0,0|2)(−h(τ − 2 − t2) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+π0,0|2(1 − π0,0|2)(−h(τ − 2 − t2) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+(πq,0|2)
τ−(τ−2)E[V ([X2, t2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2; p2, t2], 2)]

= −2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

+(1 + π0,0|2)(1 − π0,0|2)(−h(τ − 2 − t2) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+(πq,0|2)
τ−(τ−2)(E[V ([X2, t2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2; p2, t2], 2)])

= −2h(τ − (τ − 2)) + E[X1,τ |([0, τ − 2; p2, t2], 2)]

(1 − π0,0|2)
τ−(τ−2))(−h(τ − 2 − t2) + E[X2,τ |([0, τ − 2; p2, t2], 2)])

+(πq,0|2)
τ−(τ−2)E[V ([X2, t2 + τ − (τ − 2); 0, 0], 1)|([0, τ − 2; p2, t2], 2)]

= R′′([0, τ − 2; p2, t2], 2)

Where the second equality holds due to the case above with t1 = τ−1, the fourth equality

holds because the expected final price of the first auction is independent of the price in the

second auction and that πq,0|2 = 0 for q > 0, the fifth equality holds because πq,0|2 = 0 for

q > 0 and the second auction progress independently of the price in the first auction, and the

sixth equality holds due to that
∑P

q=p π0,q|2 = 1−π0,0|2 and that the second auction progress
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independently of the price in the first auction.

Assume the result holds for t1 = τ − (l − 1), τ − (l − 2), . . . , τ − 2. Let t1 = τ − l, then

V ([p1, t1; p2, t2], z) =

= −2h +

P
∑

q=0

P
∑

r=p2

V ([q, τ − (l − 1); r, t2 + 1], 2)π0,q|2πp2,r|2

= −2h +
P

∑

q=0

P
∑

r=p2

R′′([q, τ − (l − 1); r, t2 + 1], 2)π0,q|2πp2,r|2

= −2h +
P

∑

q=0

P
∑

r=p2

{−2h(τ − (τ − (l − 1))) + E[X1,τ |([q, τ − (l − 1); r, t2 + 1], 2)]

+(1 − (πq,0|2)
τ−(τ−(l−1)))(−h(τ − (l − 1) − (t2 + 1)) + E[X2,τ |([q, τ − (l − 1); r, t2 + 1], 2)])

+(πq,0|2)
τ−(τ−(l−1))(E[V ([X2, t2 + 1 + τ − (τ − (l − 1)); 0, 0], 1)|([q, τ − (l − 1); r, t2 + 1], 2)])

}π0,q|2πp2,r|2

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l; p2, t2], 2)]

+
P

∑

q=0

P
∑

r=p2

{(1 − (πq,0|2)
τ−(τ−(l−1)))(−h(τ − (l − 1) − (t2 + 1))

+E[X2,τ |([q, τ − (l − 1); r, t2 + 1], 2)])}π0,q|2πp2,r|2

+π0,0|2(π0,0|2)
τ−(τ−(l−1))(

P
∑

r=p2

{E[V ([X2, t2 + 1 + τ − (τ − (l − 1)); 0, 0], 1)|([0, τ − (l − 1); r, t2 + 1], 2)]}πp2 ,r|2)

= −2h(τ − (τ − (l − 1))) + E[X1,τ |([0, τ − (l − 1); p2, t2], 2)]

+
P

∑

q=p

P
∑

r=p2

(−h(τ − (l − 1) − (t2 + 1)) + E[X2,τ |([q, τ − (l − 1); r, t2 + 1], 2)])π0,q|2πp2,r|2

+
P

∑

r=p2

{(1 − (π0,0|2)
τ−(τ−(l−1)))(−h(τ − (l − 1) − (t2 + 1))

+E[X2,τ |([0, τ − (l − 1); r, t2 + 1], 2)])}π0,0|2πp2,r|2

+(πq,0|2)
τ−(τ−l)E[V ([X2, t2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; p2, t2], 2)]
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= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l; p2, t2], 2)]

+(1 − π0,0|2)(−h(τ − (l − 1) − (t2 + 1)) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+π0,0|2(1 − (π0,0|2)
τ−(τ−(l−1)))(−h(τ − (l − 1) − (t2 + 1)) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+(πq,0|2)
τ−(τ−l)E[V ([X2, t2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; p2, t2], 2)]

= −2h(τ − (τ − l))) + E[X1,τ |([0, τ − l; p2, t2], 2)]

+(1 − π0,0|2)(−h(τ − l − t2) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+π0,0|2(1 − π0,0|2)(−h(τ − l − t2) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+(πq,0|2)
τ−(τ−l)E[V ([X2, t2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; p2, t2], 2)]

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l; p2, t2], 2)]

+(1 + π0,0|2)(1 − π0,0|2)(−h(τ − l − t2) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+(πq,0|2)
τ−(τ−l)E[V ([X2, t2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; p2, t2], 2)]

= −2h(τ − (τ − l)) + E[X1,τ |([0, τ − l; p2, t2], 2)]

(1 − π0,0|2)
τ−(τ−l))(−h(τ − l − t2) + E[X2,τ |([0, τ − l; p2, t2], 2)])

+(πq,0|2)
τ−(τ−l)E[V ([X2, t2 + τ − (τ − l); 0, 0], 1)|([0, τ − l; p2, t2], 2)]

= R′′([0, τ − l; p2, t2], 2)

Where the second equality holds due to the induction hypothesis, and the other equalities

due to the same reasoning as above. Therefore Lemma 4.2 holds for t1 < τ−1, p1 = 0, p2 > 0,

and z = 2. 2
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Appendix 2: Optimality Equations - Infinite Horizon

Case Item 1 Item 2
t1 t2 z V ([p1, t1; p2, t2], z)

1) δ δ 0 = 0

2) δ τ 0 = p2 + V (∆)

δ τ − 1 1

3) p2 > 0 = −h +
PP

r=p2
V ([p1, δ; r, τ ], 0)πp2,r|1

4) p2 = 0 = −h +
PP

r=p V ([p1, δ; r, τ ], 0)π0,r|1 + V ([p1, δ; 0, 0], 1)π0,0|1

5) δ < τ − 1 1 = −h +
PP

r=p2
V ([p1, δ; r, t2 + 1], 1)πp2,r|1

6) τ τ 0 = p1 + p2 + V (∆)

τ τ − 1 1

7) p2 > 0 = p1 − h +
PP

r=p2
V ([p1, δ; r, τ ], 0)πp2,r|1

8) p2 = 0 = p1 − h +
PP

r=p V ([p1, δ; r, τ ], 0)π0,r|1 + V ([p1, δ; 0, 0], 1)π0,0|1

9) τ < τ − 1 1 = p1 − h +
PP

r=p2
V ([p1, δ; r, t2 + 1], 1)πp2,r|1

τ − 1 τ − 1 2

10) p1 > 0 p2 > 0 = −2h +
PP

q=p1

PP
r=p2

V ([q, τ ; r, τ ], 0)πp1,q|2πp2,r|2

11) p1 > 0 p2 = 0 = −2h +
PP

q=p1
(
PP

r=p V ([q, τ ; r, τ ], 0)π0,r|2 + π0,0|2V ([q, τ ; 0, 0], 1))πp1,q|2

12) p1 = 0 p2 > 0 = −2h +
PP

r=p2
(
PP

q=p V ([q, τ ; r, τ ], 0)π0,q|2 + π0,0|2V ([r, τ ; 0, 0], 1))πp2,r|2

13) p1 = 0 p2 = 0 = −2h +
PP

q=p

PP
r=p V ([q, τ ; r, τ ], 0)π0,q|2π0,r|2 + π0,0|2π0,0|2V ([0, 0; 0, 0], 1)

+
PP

q=p V ([q, τ ; 0, 0], 1)π0,q|2π0,0|2 +
PP

r=p V ([r, τ ; 0, 0], 1)π0,0|2π0,r|2

τ − 1 < τ − 1 2

14) p1 > 0 = −2h +
PP

q=p1

PP
r=p2

V ([q, τ ; r, t2 + 1], 1)πp1,q|2πp2,r|2

15) p1 = 0 = −2h +
PP

r=p2
(
PP

q=p V ([q, τ ; r, t2 + 1], 1)π0,q|2 + π0,0|2V ([r, t2 + 1; 0, 0], 1))πp2,r|2

τ − 1 0 1

16) p1 > 0 = −2h + max{
PP

q=p1
V ([q, τ ; 0, 0], 1)πp1,q|1 ,

PP
q=p1

PP
r=0 V ([q, τ ; r, 1], 1)πp1,q|2π0,r|2}

17) p1 = 0 = −2h + max{
PP

q=p V ([q, τ ; 0, 0], 1)π0,q|1 + π0,0|1V ([0, 0; 0, 0], 1) ,PP
r=0(

PP
q=p V ([q, τ ; r, 1], 1)πp,q|2 + π0,0|2V ([r, 1; 0, 0], 1))π0,r|2}

18) < τ − 1 < τ − 1 2 = −2h +
PP

q=p1

PP
r=p2

V ([q, t1 + 1; r, t2 + 1], 2)πp1,q|2πp2,r|2

19) < τ − 1 0 1 = −2h + max{
PP

q=p1
V ([q, t1 + 1; 0, 0], 1)πp1,q|1 ,PP

q=p1

PP
r=0 V ([q, t1 + 1; r, 1], 2)πp1,q|2π0,r|2}

Table A2: Optimality equations for multiple re-listing case (infinte planning horizon)
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