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s u m m a r y

Objective: Mechanical stimulation is a widely used method to enhance the formation and properties of
tissue-engineered cartilage. While this approach can be highly successful, it may be more efficient and
effective to harness the known underlying mechanotransduction pathways responsible. With this aim,
the purpose of this study was to assess the effect of directly stimulating the purinergic receptor pathway
through exogenous adenosine 50-triphosphate (ATP) in absence of externally applied forces.
Methods: Isolated bovine articular chondrocytes were seeded in high density, 3D culture and supple-
mented with varying doses of ATP for up to 4 weeks. The effects on biosynthesis, extracellular matrix
accumulation and mechanical properties were then evaluated. Experiments were also conducted to
assess whether exogenous ATP elicited any undesirable effects, such as: inflammatory mediator release,
matrix turn-over and mineralization.
Results: Supplementation with ATP had a profound effect on the growth and maturation of the developed
tissue. Exogenous ATP (62.5e250 mM) increased biosynthesis by 80e120%, and when stimulated for
a period of 4 weeks resulted in increased matrix accumulation (80% increase in collagen and 60% increase
in proteoglycans) and improved mechanical properties (6.5-fold increase in indentation modulus). While
exogenous ATP did not stimulate the release of inflammatory mediators or induce mineralization, high
doses of ATP (250 mM) elicited a 2-fold increase in matrix metalloproteinase-13 expression suggesting
the emergence of a catabolic response.
Conclusions: Harnessing the ATP-purinergic receptor pathway is a highly effective approach to improve
tissue formation and impart functional mechanical properties. However, the dose of ATP needs to be
controlled as not to elicit a catabolic response.

� 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

The formation of cartilaginous tissue in vitro is a promising
alternative approach for the repair of damaged articular cartilage.
However, it has been challenging to engineer articular cartilage that
possesses similar properties to native tissue1e4. While engineered
cartilaginous tissue constructs can accumulate substantial amounts
of proteoglycans, the engineered tissues are typically deficient in
collagen2e4 and display inferior mechanical performance1e5. As the
mechanical environment is involved in the development and
maintenance of articular cartilage in vivo6, much attention has

focused on the use of mechanical stimuli as a means to upregulate
matrix synthesis and to improve tissue properties5,7e11. Although
this method has been highly successful in bench-scale investiga-
tions, there may be potential limitations to translate this approach
to stimulate anatomically shaped constructs12e14. Direct mechan-
ical stimulation of tissue constructs with irregular geometry and/or
high radii of curvature may be problematic and limit the types of
forces that can be effectively applied. However, by harnessing the
known molecular pathways involved in the mechanotransduction
cascade, it may be possible to elicit the same response in the
absence of externally applied forces and overcome such limitations.

Recently, it has been demonstrated that chondrocytes release
adenosine 50-triphosphate (ATP) in response to mechanical loading
which is then utilized as an autocrine and/or paracrine signal15e17.
This pathway, termed the purinergic receptor pathway, is not
limited to chondrocytes as other cells of the mesenchymal
lineage18,19 also utilize extracellular ATP as a signalling molecule
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during mechanotransduction. These cells express purinergic
membrane receptors (P2 receptors) which are stimulated by
extracellular nucleotides (e.g., ATP, uridine diphosphate e

UDP)15e19. In response to mechanical loading, ATP is believed to be
released from matrix vesicles16 and/or connexin hemi-channels
(e.g., connexion 43)20 into the extracellular space where it can bind
to the P2 receptor. While several different P2 membrane receptors
have been identified on chondrocytes (e.g., P2Y1, P2Y2, P2Y4 and
P2Y6)16 the predominant receptor implicated in ATP binding is the
P2Y2 receptor15e17. Following binding, there is an associated
increase in intracellular calcium ([Ca2þ]i) leading to the stimulation
of extracellular matrix (ECM) gene expression and protein
synthesis16,17. This pathway appears to be tightly regulated as
extracellular ATP is not exclusively utilized as a mechano-
transduction signalling molecule. High doses of ATP can also elicit
undesirable effects, including stimulating the release of inflam-
matory mediators (e.g., nitric oxide (NO) and prostaglandin E2
(PGE2))21,22 as well as initiating matrix turn-over23,24 and miner-
alization25. Thus, in this study, we hypothesized that the direct
stimulation of the purinergic receptor pathway by exogenous ATP
would enhance cartilaginous matrix synthesis and improve tissue
mechanical properties as a means to facilitate the development of
functional engineered cartilage constructs.

Materials and methods

Cell isolation and high-density 3D culture

Tissue-engineered cartilage constructs were generated from
isolated chondrocytes harvested from calf (12e18 months old)
metacarpalephalangeal articular cartilage by sequential enzymatic
digestion, as described previously4,26. Tissue was obtained from
several joints (up to 4 per experiment) and pooled together to
collect a sufficient cell population. The cells were seeded on the
surface of type II collagen-coated Millicell� filters (Millipore,
Billerica, MA, USA) in high-density 3D culture (2�106 cells/filter or
35,000 cells/mm2)26 and maintained in Ham’s F12 media contain-
ing 10 mM glucose supplemented with 20% fetal bovine serum
(FBS), 100 mg/mL ascorbate and 20 mM HEPES (N-2-hydrox-
yethylpiperazine-N0-ethanesulfonic acid) (SigmaeAldrich Ltd.,
St. Louis, MI, USA). The cultures were grown in an incubator
maintained at 37�C and 95% relative humidity supplemented with
5% CO2: 95% atmospheric air. The culture medium (1 mL per filter)
was changed every 2e3 days and fresh ascorbic acid was added
with each change after day 7 of culture. All experiments were
repeated three-times using separate cell isolations.

Exogenous ATP supplementation and assessment of ECM synthesis

Two days after seeding, cultures were supplemented with
varying doses of freshly prepared ATP (SigmaeAldrich Ltd.) (250,
62.5 or 0 mM) and incubated in the presence of both [35S]SO4 (5 mCi/
culture) to label proteoglycans and [3H]proline (5 mCi/culture) to
label collagen for a period of 24 h. Although proline can be incor-
porated into different proteins, in chondrocyte cultures approxi-
mately 90% of proline becomes incorporated into collagen27,28. The
unincorporated isotope from the tissue cultures was removed by
gently washing the samples three-times in phosphate-buffered
saline with 10 min incubations between each wash28. Using this
method, the amount of incorporated isotope ([35S]SO4 and [3H]
proline) was between 5 and 10% of the original isotope dose (5 mCi)
supplied to the cultures in these experiments. Cultures were then
digested by papain (40 mg/ml in 20 mM ammonium acetate, 1 mM
ethylenediaminetetraacetic acide EDTA, and 2 mMdithiothreitole
DTT) for 48 h at 65�C. The accumulation of newly synthesized

proteoglycan and collagen in the matrix was then estimated by
quantifying radioisotope incorporation from aliquots of the papain
digest using a b-liquid scintillation counter. The amounts of
synthesized molecules were calculated relative to the DNA content
of the tissue, determined from aliquots of the papain digest using
the Hoechst dye 33258 assay29 and expressed as a percentage of the
unstimulated controls. Similar experiments were conducted with
the addition of the P2 receptor antagonist Reactive Blue 230

(100 mM; SigmaeAldrich Ltd.).

Long-term culture and assessment of tissue properties

Tissue constructs were supplemented with ATP (250, 62.5 or
0 mM; as described previously) at each media change for a period of
4 weeks to assess the effect of exogenous ATP on tissue formation
and resulting properties. After long-term culture, tissues were
removed from the filter units and weighed (wet weight). The
tissues were lyophilized overnight, and weighed again (dry
weight). Tissues were then digested by papain (as described earlier)
and stored at �20�C until analysis. Aliquots of the digest were
assayed separately for proteoglycan, collagen and DNA contents.
The proteoglycan content was estimated by quantifying the
amount of sulphated glycosaminoglycans using the dimethyl-
methylene blue dye binding assay31,32. Collagen content was
estimated from the determination of the hydroxyproline content.
Aliquots of the papain digest were hydrolyzed in 6 N HCl at 110�C
for 18 h and the hydroxyproline content of the hydrolyzate was
then determined using chloramine-T/Ehrlich’s reagent assay33.
Collagen content was estimated assuming hydroxyproline accounts
for 10% of the total collagen mass in cartilage34. The DNA content
was also determined from aliquots of the papain digest (as
described earlier).

Separate cultures were established for the determination of
tissue mechanical properties. Immediately following long-term
culture, tissue thickness was measured using the needle probe
method reported by Hoch et al.35. Briefly, a 25 Ga. needle (Bectone
Dickinson, Franklin Lakes, NJ, USA) was attached to a 1 kg load cell
of a Mach-1 mechanical tester (Biosyntech Canada Inc., Laval, PQ,
Canada)whichwas then displaced into the tissue at a rate of 5 mm/s.
Abrupt changes in forcewere interpreted as needle contact with the
tissue and the underlying support surface to determine the tissue
thickness. Thickness measures were taken at two random locations
and the average value was recorded. Compressive stiffness of the
cartilaginous tissues was then determined by uniaxial, unconfined
indentation tests36 with a plane-ended indenter (2 mm diameter)
in conjunctionwith aMach-1mechanical tester (Biosyntech Canada
Inc.). The diameter of the indentation probe was selected such that
ratio of the indentor radius-to-tissue thickness were within
acceptable limits of this technique (0.2e836). Tissues were pre-
loaded to 5 mN which was then defined as the zero-strain state.
Compression was then applied in incremental steps of 2% strain to
a maximum of 20% strain. Each compressive step was held until
equilibriumwas reached, which was defined as a change in force of
less than 2 mN/min. Equilibrium modulus was determined at 20%
strain using the expression derived by Hayes et al. for indentation
testing of cartilage36. All thickness and mechanical measurements
were conducted in culture media at 37�C.

Histological and immunohistochemical assessment

Selected cultures (from each experimental group and not
subjected to mechanical testing) were also collected for histological
and immunohistochemical evaluation. Upon harvest, tissue
constructs were fixed overnight in 4% paraformaldehyde (Sigmae
Aldrich Ltd.) and embedded in paraffin. Undecalcified, thin sections
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(5 mm thick) were cut and stained with hemotoxylineeosin (H&E),
toluidine blue (TB) and von Kossa (VK). All sections were examined
by light microscopy. Immunohistochemistry with antibodies
against type I and II collagen was performed according to a stan-
dard ABC protocol (Vector Laboratories Inc., Burlingame, CA, USA)
with diaminobenzidine for colour development37. Prior to incuba-
tion with the primary antibody, sections were pre-digested with
0.25% trypsin (SigmaeAldrich Ltd.) and 2.5% hyaluronidase
(SigmaeAldrich Ltd.) to facilitate immunostaining38. The following
primary antibodies and dilutions were used: rabbit polyclonal type
I collagen antibody (T40113R: Biodesign International, Saco, ME,
USA), 1:200 dilution; mouse monoclonal type II collagen antibody
(II-II6B3: Developmental Studies Hybridoma Bank, University of
Iowa, IA, USA), 1:10 dilution. Non-specific staining was assessed
(for each section) by omission of the primary antibody.

Release of inflammatory mediators

During long-term culture, conditioned culture media was
collectedweekly to determine the potential effect of exogenous ATP
on the subsequent release of inflammatory mediators (NO and
PGE2). The concentration of nitrate, a stable end-product of NO, in
the conditioned culture media was determined using the Griess
assay39. Concentration of PGE2 in the conditioned media was
determined using a commercially available enzyme immunoassay
(EIA) (Cayman Chemical Co., Ann Arbor, MI, USA) according to the
manufacturer’s instructions (minimumdetection limit of 15 pg/mL).

Expression of catabolic matrix turn-over genes

The expression of catabolic matrix turn-over genes and their
associated inhibitors as a result of exogenous ATP was determined
by semi-quantitative end-point polymerase chain reaction (PCR).
After 4 weeks of culture, tissue constructs were snap-frozen in
liquid N2 and total RNA was extracted using the TRI reagent
(SigmaeAldrich Ltd.). The concentration and purity of extracted
RNA were measured using a NanoDrop Spectrophotometer
(ND1000; Nanodrop Products, Wilmington, DE, USA) and the
260/280 ratio generally ranged between 1.9 and 2.0. First strand
cDNA was synthesized using the Multiscribe� Reverse Transcrip-
tase Kit (Applied Biosystems Inc., Foster City, CA, USA) from 1 mg of

total RNA using oligo (dT)15 primers (Integrated DNA Technologies
Inc., Coralville, IA, USA). PCR primer sets specific for catabolic genes
associated with cartilage turn-over and 18S ribosomal RNA
(housekeeping gene) (Table I) were constructed using published
sequences (basic local alignment search tool e BLAST) and Primer3
software40 (Integrated DNATechnologies Inc). The primer sets were
engineered to span introneexon boundaries in order to detect
genomic contamination. Studies were undertaken for all primers to
determine the appropriate conditions (cycle number, annealing
temperatures) for amplification (Table I). PCR was performed using
2 mL of diluted cDNA (w2 ng of input RNA) in a 20 mL reaction
volume using Taq Polymerase (UBI Life Sciences Inc., Saskatoon, SK,
Canada) on a Bio-Rad C1000 thermal cycler (Bio-Rad Laboratories
Ltd., Mississauga, ON, Canada). Minus-reverse transcription (RT)
and no template controls were included in every run. Semi-quan-
titative gene expression levels41 were determined by densitometry
of PCR-product agarose gels (2.5%), visualized using ethidium
bromide staining detected under ultraviolet light (G:Box Chemi
HR16, Syngene, Cambridge, UK). All expression values were
normalized to the expression of 18S ribosomal RNA (housekeeping
gene).

Statistical analyses

All resultswere expressed as themean� 95% confidence interval
for themean (95%CI). Collected datawas analyzed statistically using
a one-wayanalysis of variance (ANOVA) and the Fisher’s least square
differences (LSD) post-hoc test (SPSS version 16, SPSS Inc., Chicago,
IL, USA) to determine the effect of ATP dose. The data was checked
prior to performing statistical tests for both normality and equal-
variance. Significance was associated with P-values less than 0.05.

Results

Effect of exogenous ATP on ECM synthesis

To determine the effect of ATP stimulation on the synthesis of
cartilaginous ECMmacromolecules, isolated articular chondrocytes
were seeded in high-density 3D culture supplemented with
varying doses of ATP 2 days after seeding. As determined
by radiolabel incorporation, stimulation by ATP significantly

Table I
Oligonucleotide primers used for semi-quantitative end-point PCR

Gene Accession number Primer sequence Size Number of cycles Annealing temperature

MMP-1 NM_174112 Fwd: 50 e TCCCTTGGACTTGCTCATTC e 30 143 bps 40 55�C
Rev: 50 e ACTGGCTGAGTGGGATTTTG e 30

MMP-3 XM_586521 Fwd: 50 e CTTGTCCTTCGATGCAGTCA e 30 213 bps 40 56.5�C
Rev: 50 e CTGATGGCCCAGAACTGATT e 30

MMP-13 NM_1744389 Fwd: 50 e CCCAGGAGCACTCATGTTTC e 30 138 bps 40 55�C
Rev: 50 e GGCGTTTTGGGATGTTTAGA e 30

ADAMTS-1 NM_001101080 Fwd: 50 e AGCCCTGGTCTCCCTGTAGT e 30 109 bps 40 55�C
Rev: 50 e AGATCGGAGGGGAGCTGTAT e 30

ADAMTS-4 NM_181667 Fwd: 50 e AGCAGTCTGGCTCCTTCAAA e 30 165 bps 38 56�C
Rev: 50 e ATTCACCGTTGAGGGCATAG e 30

ADAMTS-5 XM_589193 Fwd: 50 e GACGTGTGCAAACTGACCTG e 30 94 bps 38 55�C
Rev: 50 e TGTATGGCCTGCACTCTGTC e 30

TIMP-1 NM_174471 Fwd: 50 e GATGTTCAAAGGGTTCAGTGC e 30 201 bps 35 55�C
Rev: 50 e GCAGAACTCATGCTGTTCCA e 30

TIMP-2 NM_174472 Fwd: 50 e TACCAGATGGGCTGTGAGTG e 30 207 bps 35 55�C
Rev: 50 e GTCCAGAAACTCCTGCTTGG e 30

TIMP-3 NM_174473 Fwd: 50 e ATCGATATCACCTGGGCTGT e 30 144 bps 33 55�C
Rev: 50 e TGCAAGCGTAGTGTTTGGAC e 30

TIMP-4 NM_001045871 Fwd: 50 e GCCTTTTGATTCCTCCCTCT e 30 132 bps 38 55�C
Rev: 50 e TTCTCCCAGGGCTCAATGTA e 30

18S DQ222453 Fwd: 50 e ATGGCCGTTCTTAGTTGGTG e 30 136 bps 21 55�C
Rev: 50 e ATGGCCGTTCTTAGTTGGTG e 30
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affected ECM synthesis (P< 0.05, Fig. 1). The synthesis of collagen
and proteoglycans appeared to be similarly affected by ATP
supplementation with an increase in synthesis between 70e81%
(relative to control) observed under the low dose (62.5 mM) and
118e122% (relative to control) under the high dose (250 mM). ATP
supplementation also had no apparent effect on tissue cellularity
under the dose range investigated (data not shown). To confirm
whether these changes were due to directly stimulating the
purinergic receptor pathway, similar experiments were conducted
in the presence of the P2 receptor antagonist Reactive Blue 2. In the
presence of the inhibitor (100 mM), therewas no significant effect of
exogenous ATP on ECM synthesis (P< 0.05) and the level of inhi-
bition ranged from 45 to 55% for both collagen and proteoglycan
synthesis (Fig. 2).

Effect of ATP supplementation on tissue formation and properties

Todetermine the long-termeffectof ATP supplementationon the
growth and properties of cartilaginous tissue formed in vitro, tissue-
engineered cartilage constructs were cultured in the presence of
exogenous ATP for a period of 4weeks. In response to long-termATP
supplementation, there was an approximate 40% decline in the wet

weight of the tissue (independent of dose) without a corresponding
decline in tissue dry weight (Table II). This resulted in an apparent
decrease in tissue water content to a level of approximately 70%
(Table II). ATP-stimulated constructs were also significantly thicker
(by 50e55%; P< 0.05) than the unstimulated controls (independent
of dose) (Table II). Further analysis of the accumulated ECM revealed
that ATP stimulation resulted in a significant increase in collagen (by
50e80%; P< 0.05) and proteoglycans (by 30e60%; P< 0.05)
compared to the unstimulated controls (independent of dose)
(Fig. 3). The substantial effect on collagen accumulation (with
respect to proteoglycan accumulation) also resulted in an associated
increase in the collagen-to-glycosaminoglycan ratio (by 30e40%;
P< 0.05) (Table II). In contrast to the short-term studies, long-term
stimulation with exogenous ATP appeared to elicit a proliferative
response with the stimulated cultures having an approximately
20e60% higher DNA content (P< 0.05) compared to the unstimu-
lated controls (independent of dose) (Table II). Histological assess-
ment of the developed tissues indicated that all of the cultures
stainedpositive for sulphated proteoglycans anddisplayed the same
trends in tissue thickness as a result of long-term ATP stimulation
(Fig. 4). Similarly, long-term supplementation with ATP elicited no
adverse effects on tissue formation or induced evidence of matrix
mineralization (Fig. 4). Immunohistochemical evaluation confirmed
that the increased collagen accumulation as a result of ATP stimu-
lation was primarily type II with no detectable presence of type I
collagen synthesized by the cells (Fig. 5). Stimulation by exogenous
ATP resulted in substantially improvedmechanical properties of the

Fig. 1. Effect of exogenous ATP on collagen and proteoglycan synthesis determined
24 h after exposure to the nucleotide. Data expressed as the mean� 95% CI for the
mean (n¼ 6e8 for all groups). * Denotes a significance difference between all other
groups (P< 0.05).

Fig. 2. Effect of exogenous ATP (250 mM) on collagen and proteoglycan (PG) synthesis
in presence, or absence, of the P2 receptor inhibitor Reactive Blue 2 (RB2; 100 mM)
determined 24 h after exposure. Synthesis data was normalized to the no-ATP controls
and expressed as the mean� 95% CI for the mean (n¼ 6 for all groups). * Denotes
a significance difference between the ATP stimulated and corresponding no-ATP
control group (P< 0.05); ** denotes a significant difference between inhibitor groups
(ATP stimulated and no-ATP control) and corresponding ATP-stimulated group (no
inhibitor) (P< 0.05).

Table II
Effect of the exogenous ATP on cartilaginous tissue formation and properties

Control
(n¼ 8)

62.5 mM ATP
(n¼ 8)

250 mM ATP
(n¼ 8)

Wet weight [mg] 11� 2y 9.4� 0.6 7.9� 0.4
Dry weight [mg] 1.0� 0.4 2.0� 0.4y 1.4� 0.4
Water content [%] 86� 2y 70� 2 72� 2
Thickness [mm] 230� 9y 354� 69 346� 15
DNA [mg] 3.7� 0.6y 6� 2 4.5� 0.8
GAG/dry weight [mg/mg] 96� 4y 128� 15 138� 4
GAG/DNA [mg/mg] 28� 8 34� 12 28� 4
Collagen/dry weight [mg/mg] 154� 16y 262� 12 264� 15
Collagen/DNA [mg/mg] 40� 8y 58� 4y 72� 11y
Collagen-to-GAG ratio 1.3� 0.5y 1.7� 0.6 1.8� 0.4
Indentation modulus* [kPa] 54� 25y 352� 152 277� 122

Data presented as mean� 95% CI for the mean.
* Indentation modulus determined at 20% compressive strain.
y Significantly different from all other experimental groups (P< 0.05).

Fig. 3. Effect of long-term ATP stimulation on collagen and proteoglycan accumulation
determined after exposure to the nucleotide for 4 weeks. Data expressed as the
mean� 95% CI for the mean (n¼ 8 for all groups). * Denotes a significance difference
between all other groups (P< 0.05).
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developed tissues. Constructs grown in the presence of ATP dis-
played a 5- to 6.5-fold increase (P< 0.01) in indentation modulus
(independent of dose) (Table II).

Release of inflammatory mediators

As extracellular ATP has been shown to stimulate the release of
inflammatory mediators, the conditioned culture media was
collected and assayed for the presence of NO and PGE2. While both
nitrate (the stable end-product of NO) and PGE2 were detected in
the conditioned culture media at all time points investigated, there
was no apparent effect of ATP stimulation on their release (Fig. 6).
Both nitrate and PGE2 media concentrations were at high levels
early in the culture period and appeared to stabilize to lower levels
after 1e2 weeks of culture (Fig. 6).

Expression of catabolic matrix turn-over genes

The expression of catabolic matrix turn-over genes and their
associated inhibitors was determined after long-term ATP supple-
mentation as extracellular ATP has also been implicated to induce
cartilage resorption. Of the 10 genes investigated, the only gene
that was differentially expressed as a result of long-term ATP
stimulation was matrix metalloproteinase-13 (MMP-13) (P< 0.05,
Fig. 7). In response to the high dose of ATP (250 mM), MMP-13

expression was over 2-fold compared to both the low dose
(62.5 mM) and the unstimulated controls (Fig. 7). Although not
statistically significant, there were slight increases in the expres-
sion of MMP-1 (1.4-fold over control) and TIMP-2 (1.4- to 1.6-fold
over control) with ATP stimulation.

Discussion

This study demonstrates that by harnessing the molecular
pathways involved in the mechanotransduction cascade, the
anabolic effects ofmechanical stimuli canbeachieved in theabsence
of externally applied forces. While several different mechano-
transduction pathways have been identified in chondrocytes42,43,
here we investigated the effect of directly stimulating the ATP-
purinergic receptor pathway. Previous studies have shown that
chondrocytes release ATP in response to mechanical loading15e17

where it can then bind to the P2 receptor leading to the stimula-
tion of ECM gene expression andmatrix synthesis16,17. Although the
amount of released ATP appears to be dependent on the magnitude
of the applied loads15, the concentration of ATP in the vicinity of the
cells as a result ofmechanical loadinghas been suggested tobe in the
order of 10�5 M15. In contrast, higher doses of ATP, of the order of
10�4 to 10�3 M, have previously been shown to elicit the release of
inflammatory mediators21,22 or induce matrix mineralization25. For
this reason in thepresent study, the upper boundATPdose (250 mM)

Fig. 4. Histological assessment of cartilaginous tissue constructs after 4 weeks of ATP stimulation. Tissue sections were stained with H&E, TB and VK. Original magnification of
100� and the scale bar represents 100 mm.

Fig. 5. Immunolocalization of collagen types II and I in the cartilaginous tissue constructs after 4 weeks of ATP stimulation. Original magnification of 100� and the scale bar
represents 100 mm.
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was selected to be well below this limit and the lower bound dose
(62.5 mM) was then arbitrarily selected as 25% of the upper bound
dose. In response to exogenous ATP, cartilaginous matrix synthesis
(collagen and proteoglycans) was increased within the dose range
investigated (62.5e250 mM). While there was no differential effect
on synthesis of collagen as opposed to proteoglycans, ATP supple-
mentation resulted in an increase in matrix synthesis of approxi-
mately 80e120% (relative to control). This effect appeared to be
stimulated through the purinergic receptor pathway, as the
response was abolished in the presence of a P2 receptor antagonist
(Reactive Blue 2). A previous study also investigated the effect of
extracellular nucleotides (ATP, uridine 50-triphosphate e UTP) on
the synthesis of ECMmacromolecules in abovine chondrocytepellet
culture system44. Although the effect of dose was not investigated,
supplementationwith 500 mMofUTP resulted in similar, but slightly
lower changes in matrix synthesis (50e70% increase).

Long-term stimulation with exogenous ATP for a period of
4 weeks had a profound affect on both the growth and maturation
of the developed tissue. Not only were the ATP-stimulated tissues
significantly thicker, they also displayed a decreased water content
(relative to control) that was similar to the values reported for
native articular cartilage (w70% overall)4,45. Similarly, supplemen-
tation with ATP further stimulated the accumulation of ECM with
a far greater influence on collagen compared to proteoglycans.
Proteoglycan levels in the stimulated tissues appeared to approach
that reported for native articular cartilage (w200 mg/mg dry
weight4) whereas the levels of collagen were still substantially
lower (w700 mg/mg dry weight4). Interestingly, these changes in
ECM accumulation as a result of ATP stimulation also resulted in an
associated increase in the collagen-to-glycosaminoglycan ratio that
also appeared to approach that of native cartilage (ranging from 2:1
to 3:1 overall)4,45. In the previous study involving bovine chon-
drocyte pellet cultures, a single dose of extracellular nucleotides
(500 mM ATP or UTP) also resulted in the greater accumulation
of collagen as opposed to proteoglycans determined 21 days
after exposure44. Paralleling the changes in ECM accumulation,
ATP-stimulated tissues displayed substantial increases in indenta-
tion modulus (by 5- to 6.5-fold over control) which again appeared
to approach the level of native bovine cartilage (ranging from 490
to 630 kPa)46e48. The improvements in physical properties aremost
likely attributable to the observed increase in collagen content
which has been previously shown to correlate with decreased
hydration49 and improved mechanical properties10. Histological
and immunohistochemical assessment of the tissue constructs
revealed no detectable changes in phenotype as a result of ATP

stimulation. The ECM of the developed tissues stained positive for
the presence of sulphated proteoglycans and type II collagen
without the detectable presence of type I collagen expression.

As extracellular ATP can induce a variety of undesirable
responses21e25 (in terms of engineering cartilaginous tissue), the
effect of long-term exposure to exogenous ATP on inflammatory
mediator release and matrix mineralization was also assessed.
While both NO and PGE2 were present in the conditioned culture
media, there was no observable influence of exogenous ATP under
the dose range investigated. Similarly, no evidence of matrix
mineralization was observed upon long-term stimulation by ATP.
This suggests that the dose range investigated in the present study
(up to 250 mM) was well below that which has been previously
shown to elicit the release of inflammatory mediators
(w500 mM)21,22 or induce matrix mineralization (w1 mM)25.

In the long-term ATP stimulation study, there was no effect of
nucleotide dose on ECM accumulation where a significant dose
effect was observed on ECM synthesis. As previous work has shown
that exogenous ATP can also initiate matrix turn-over23,24, this led
to an investigation of the expression of matrix turn-over genes in
response to long-term exposure to ATP. Of the 10 genes investi-
gated (MMP-1, -3, -13, ADAMTS-1, -4, -5, TIMP-1, -2, -3, -4), only
MMP-13 was differentially expressed as a result of ATP stimulation.
Under the high dose of ATP (250 mM), MMP-13 expressionwas over
2-fold that of the low dose (62.5 mM) or control cultures. The
change in MMP-13 expression could account for the lack of a dose
effect observed after long-term stimulation with ATP; however,
additional experiments on MMP-13 protein expression and activity
are required to confirm this assertion. MMP-13 (also known as
collagenase-3) is highly expressed in osteoarthritic cartilage and is
well known for its role in cartilage matrix turn-over50. Recent work
has shown that MMP-13 can also be expressed in response to
mechanical loading as part of the remodelling process51. This
peptidase cleaves fibrillar collagen and is more effective at cleaving
collagen type II than either type I or III52. In addition, as with most
MMPs, MMP-13 can also cleave the Asn341ePhe342 bond of aggre-
can (the MMP site)53. This result could also account for the lack of
ECM accumulation observed upon repeated ATP doses (500 mM) in
bovine chondrocyte pellet culture observed previously44, assuming
that the trend of MMP-13 expression continues with increasing
doses of exogenous ATP. While it is not exactly known why only
MMP-13 was expressed in response to elevated concentrations of
ATP, previous studies have suggested that this responsemay be due
to an excess of inorganic pyrophosphate (PPi)54. ATP can be
catabolized by both soluble (e.g., tissue non-specific alkaline
phosphatase, tissue transglutaminase) and membrane-bound (e.g.,
nucleotide pyrophosphatase/phosphodiesterases, ecto-50 nucleo-
tidase) nucleotide degrading enzymes leading to the generation of
PPi. Excess PPi (as little as 100 nM) has been shown to directly elicit
the expression of MMP-13 in chondrocyte cultures observed within
2 h after exposure55. Thus, these results taken together suggest that
extracellular ATP most likely serves multiple roles depending on
concentration. At low concentrations the nucleotide acts as an
anabolic mediator whereas at higher concentrations the nucleotide
can initiate a catabolic response.

The results of this study demonstrate that it can be possible to
influence the growth andmaturation of tissue-engineered cartilage
through the direct stimulation of the ATP-purinergic receptor
pathway in absence of externally applied forces. Recently, the
purinergic receptor pathway has been implicated in the mecha-
notransduction cascade of chondrocytes and other cells of the
mesenchymal lineage15e19. ATP is released in response to
mechanical forces and is utilized as an autocrine and/or paracrine
signal15e19. While exogenous extracellular ATP had a profound
effect, the dose of the nucleotide needs to be controlled as the

Fig. 6. Inflammatory mediator concentration (NO and PGE2) in the conditioned media
as a function of culture time during long-term ATP stimulation over a 4 week period.
Data expressed as the mean� 95% CI for the mean (n¼ 6 for all groups).
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emergence of a catabolic response (increased MMP-13 expression)
was observed with higher doses (250 mM). Future studies will be
undertaken to assess MMP protein expression and activity as well
as to determine the threshold catabolic response in order to
maximize cartilaginous tissue growth and maturation.
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