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Cystatin C Reduction Ratio Depends on Normalized
Blood Liters Processed and Fluid Removal during
Hemodialysis
Shih-Han S. Huang,* Guido Filler,† Abeer Yasin,† and Robert M. Lindsay*

Summary
Background and objectives A negative correlation between the weekly standard Kt/V (urea) and serum cys-
tatin C level (CysC) in functionally anephric dialysis patients has been previously demonstrated. Our objec-
tive was to measure the per dialysis CysC reduction ratio (CCRR) and to compare it with other indices of
dialytic functions.

Design, setting, participants, & measurements In a pilot cross-sectional study of 15 functionally anephric pa-
tients on conventional high-flux high-efficiency hemodialysis three times per week, CysC levels were
drawn pre-, mid-, and postdialysis over 1 week. CCRR was compared with single-pool Kt/V (Sp Kt/V) us-
ing urea kinetic modeling, urea reduction ratio (URR), creatinine reduction ratio (CRR), normalized liters
processed (LP/kg), and ultrafiltration volume (UF). Normally distributed data (Shapiro-Wilks test) were
described as mean � SD, otherwise as median and interquartile range.

Results The mean pre- and post-CysC levels were 6.0 � 1.0 and 4.7 � 1.1 mg/L. The Sp Kt/V and Std
Kt/V were 1.5 � 0.2 and 2.6. The URR, CRR, and CCRR were 70.2% � 9.0%, 64.5% � 8.2%, and 26.1% �
11.8%, respectively. There was no correlation between the CCRR, and the Sp Kt/V, URR, and CRR,
whereas CCRR correlated with LP/kg and UF. Multiple regression analysis with these two parameters pro-
vided a model that explained 81% of the variance.

Conclusions Our data suggest that normalized liters processed and ultrafiltration volume explain most of
the variance of CCRR. Therefore, CCRR may be an excellent method to monitor dialysis efficiency of low
molecular weight proteins.

Clin J Am Soc Nephrol 6: 319–325, 2011. doi: 10.2215/CJN.05290610

Introduction
Serum creatinine and urea are small molecules that
are commonly measured to monitor renal function in
patients with chronic kidney disease (CKD). Serum
creatinine (SCr) is the most commonly used surrogate
marker for assessing kidney function in patients with
CKD stages I through IV. It has molecular weight of
113 D. It is a metabolic product of creatine and phos-
phocreatine (1). The use of serum urea (SUr) is rec-
ommended by the Kidney Disease Outcomes Quality
Improvement (KDOQI) clinical practice guideline to
assess dialysis clearance (2). It has molecular weight
of 60 D (3).

The preferred assessment of hemodialysis (“dose”)
efficiency is by urea kinetic modeling (UKM) calcu-
lating the dimensionless parameter Kt/V (urea)
(where K � clearance in ml/min, t � time in minutes,
and V � volume of distribution in ml). Kt/V values
may be given for single-pool (Sp Kt/V) or double-
pool (equilibrated or eKt/V) volumes of distribution;
they depend upon the urea reduction ratio (URR)
over a single hemodialysis treatment (4). To assess
dialysis efficiency over a period of 1 week, Gotch

derived a new dialysis assessment index named the
weekly “standardized” Kt/V (Std Kt/V) (5,6). Std
Kt/V allows comparison of different dialysis modal-
ities (e.g., peritoneal versus hemodialysis) and weekly
treatment frequencies.

Cystatin C (CysC) is a low molecular weight pro-
tein (13 kD, 121 amino acid residues) that is produced
by all nucleated cells (7). It is positively charged with
an isoelectric point of 9.3. CysC has attractive charac-
teristics as a marker for assessing native kidney or
dialysis clearance. Its plasma level is not influenced
by age, sex, and body mass index (8). It is distributed
mainly extracellularly (9). Its production is relatively
constant and it is freely circulating (10). However, it
may be affected by conditions that alter cell turnover
rate, such as inflammation or thyroid dysfunction
(11,12). It remains controversial whether glucocorti-
coid medications may change the serum CysC level
(9,13). Estimated GFR (eGFR) by CysC has shown to
be superior to eGFR by SCr with patients with CKD
(14–16).

There have been few studies of CysC in dialysis. In
peritoneal dialysis patients, the study by Delaney et al.
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showed that CysC levels are mainly related to the
residual renal function, rather than the dialysis clear-
ance (17). Furthermore, the study by Hoek et al. dem-
onstrated a good correlation between 1/CysC and
residual renal function (18). To obviate the effect of
residual renal function, we examined predialysis or
steady state serum CysC levels and found these to be
influenced by the dialytic treatment modality and the
Std Kt/V and hence were lowest in patients receiving
5 to 7 nights per week of hemodialysis as compared
with conventional hemodialysis and peritoneal dial-
ysis (19). There are a few studies using CysC reduc-
tion ratio (CCRR) to assess CysC hemodialysis clear-
ance. Thysell et al. demonstrated that with low-flux
hemodialysis, CysC concentrations rose after dialysis
by 4% � 6.3% (20). Furthermore, Lindström et al.
compared CCRR after hemodiafiltration, hemofiltra-
tion, and low-flux hemodialysis (21). The posttreat-
ment CysC concentrations were lowest after hemofil-
tration and highest after low-flux hemodialysis. A
recent study by Park et al. showed a more effective
CysC clearance by high-flux hemodialysis compared
with low-flux hemodialysis (10). Although these stud-
ies have demonstrated the potential value of CysC as
an indicator of middle molecule clearance, the vari-
ables affecting CCRR were not identified.

In this study, we aimed at assessing the CysC he-
modialysis clearance and handling compared with
the two small molecules urea and creatinine. Given a
largely extracellular distribution of CysC and a pre-
sumed slow equilibration between the intravascular
and the extravascular volume because of its size, we
hypothesized that CysC clearance by high-flux hemo-
dialysis treatment would largely depend on the dial-
ysis dose but could be negatively influenced by the
ultrafiltration volume.

Materials and Methods
In this cross-sectional, single-center, open study of

patients with ESRD receiving hemodialysis therapy, a
total of 15 patients were recruited. All patients pro-
vided written informed consent. All patients were on
three times weekly high-flux high-efficiency hemodi-
alysis therapies. Only functionally anephric patients,
defined as urine output �250 ml per day, were in-
cluded in the study. Patients were excluded if they
did not consent to the study, or if during the previous
3 months hospitalization or dialysis prescription
changes occurred. The study was approved by the
Ethic Review Board at the University of Western On-
tario (HSREB#16599E).

All patients were dialyzed using high-flux high-
efficiency polysulphone membrane dialyzers (Opti-
flux F160NR or F200NR; Fresenius Inc., Toronto, Can-
ada). Either central venous catheters or fistulas served
as dialysis access. The blood flow was between 300
and 400 ml/min and the dialysate flow was at 500
ml/min. The blood samples were taken through the
patients’ dialysis access at the beginning, at the mid-
dle, and at the end of their dialysis sessions. The
blood samples were taken at all three hemodialysis

sessions over a 1-week period. In addition to CysC,
SCr, and SUr, the predialysis blood samples prior to
the first hemodialysis session included thyroid func-
tion (TSH) and C reactive protein (CRP) measure-
ments to exclude their possible influence on CysC
levels. Blood samples were taken at mid-dialysis for
CysC measurements. Finally, additional blood sam-
ples for CysC, SCr, and SUr were taken postdialysis.
The postdialysis blood samples utilized the 15-second
slow-flow methodology to obviate urea dilution by
recirculation (4). For the analyses, the averages of all
three pre-, mid-, and postdialysis measurements were
used.

CysC was measured by immune nephelometry us-
ing an N-latex cystatin C kit (Dade Behring, Missis-
sauga, Canada) on a Behring BN ProSpec analyzer
(Dade Behring, Marburg, Germany) at the reference
laboratory at the Children’s Hospital of Eastern On-
tario in Ottawa. The coefficient of variation (CV) of
the CysC measurements in blood has been previously
established at 3.1% at 1.06 mg/L, 3.5% at 2.04 mg/L,
and 6.7% at 5.26 mg/L (22). CysC was reported as an
absolute level in mg/L, rather than as eGFR. SCr was
measured by modified Jaffe’s reaction, using the Syn-
chron System Kits on a Beckman Coulter LX20 Pro
(Beckman Coulter Inc., Brea, CA) with a normal adult
reference interval of 55 to 120 �mol/L. CRP was
measured by immunonephelometry (Dade Behring
BN Prospec, Mississauga, Canada) with CV of 4.02%
at the level of 12.79 mg/L and 4.48% at 50.87 mg/L.
TSH was measured by direct chemiluminescence as-
say (Bayer Centaur Instrument, Germany).

The single hemodialysis treatment efficacy was
taken as the Sp Kt/V calculated by UKM. It was
carried out during the second hemodialysis session of
the week. The Std Kt/V also calculated from UKM
based on Gotch’s initial paper (5). Reduction ratios for
CysC (CCRR), urea (URR), and creatinine (CRR) were
calculated by taking the difference between pre- and
postdialysis levels, and divided by predialysis levels.
We assumed that the volume of distribution of CysC
is different from that of urea and creatinine yet still
related to body weight. We also assumed the dialyzer
clearance of CysC is mainly related to the dialysis
circuit blood flow and total amount removed by time
(surface area being similar for all). We, thus, hypoth-
esized that CCRR will be related to the liters of blood
processed (LP; L) during dialysis normalized by the
target postdialysis weight (LP/kg). LP (L) � dialyzer
blood flow (Qb) (ml/min) � time (minutes). LP val-
ues were obtained at the end of each dialysis directly
from the dialysis machine. The amount of ultrafiltra-
tion (L) during dialysis was recorded as it was also
felt to influence CCRR by (a) convective removal ver-
sus (b) hemoconcentration of CysC.

Statistical Analyses
Statistical analysis was performed using the Graph-

Pad Prism software version 4.03 for Windows
(GraphPad Software, San Diego). For the multiple
stepwise regression analysis, Medcalc version 11.2.1.0
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(Medcalc Software bvba, Mariakerke, Belgium) was
used. Contiguous data were analyzed for normal dis-
tribution with the Shapiro-Wilk normality test. Mean
and SD were reported for normally distributed data;
otherwise, median, 25th percentile, and 75th percen-
tile (interquartile range) were given. The paired t test
for normally distributed variables and the Mann-
Whitney test for non-normally distributed variables
were used to compare between the pre- and postdi-
alysis CysC, SCr, and SUr levels. We also compared
predialysis levels from the three dialysis sessions to
assess the intrapatient variability. Depending on
whether or not data were normally distributed, Pear-
son’s correlation or the nonparametric (Spearman’s
rank) correlation analysis was used to assess the
strength of relationship between CCRR, and URR,
CRR, Sp Kt/V, Std Kt/V, TSH, and CRP as well as
LP/kg and UF. Pearson correlation coefficients were
expressed as r values and the significance level of the
P value was also recorded. A P value of �0.05 was
considered significant. For the multiple regression
analysis, we calculated the correlation coefficients r2:
this is the proportion of the variation in the depen-
dent variable explained by the regression model. It
can range from 0 to 1 and is a measure of the good-
ness of fit of the model.

Results
A total of 15 patients were enrolled into the study,

all functionally anephric with urine output �250
ml/d. All patients met the inclusion criteria without
violating exclusion criteria with unchanged conven-
tional three times weekly in center high-efficiency and
high-flux hemodialysis prescription and without hos-
pitalizations over the last 3 months. The mean age �
SD was 67.3 � 11.2 years. The most common cause of
ESRD was diabetes mellitus (53.3%). The median di-
alysis time was 3.75 (3,4) hours per session. The mean
pre- and postdialysis CysC concentrations were
5.96 � 0.94 and 4.66 � 1.09 mg/L, respectively
(Figure 1). All the patients had nine CysC values over

the 1-week interval except one patient who had a
single missing postdialysis CysC value. The mean Sp
Kt/V was 1.51 � 0.24, whereas the median Std Kt/V
was 2.63 (2.15, 2.71). The median TSH (normal range
0.27 to 4.20 mIU/L) was 1.62 (1.31, 3.16) mIU/L. The
mean CRP concentration (normal range �5.0 mg/L)
was 20.51 � 15.13 mg/L. The mean LP/kg and UF
were 0.89 � 0.21 L/kg and 2.84 � 1.06 L. Clinical
results are summarized in Table 1. The URR, CRR,
and CCRR were 70.2% � 9.0%, 64.5% � 8.2%, and
26.1% � 11.8% (P � 0.002), respectively (Figure 2).

There were no statistically significant correlations
between the CCRR and Sp Kt/V, URR, and CRR (P �
0.151). The correlation coefficient between CCRR and
LP/kg was r � 0.678 (P � 0.006). There also was a
significant but negative correlation between CCRR
and UF (r � �0.724, P � 0.002). Multiple regression
analysis with these two parameters provided a model
that explained 81% of the variance (r2 � 0.811, P �
0.001), CCRR � 0.127 � 0.331 � LP/kg � 0.072 � UF.
The correlation between the measured CCRR and that
calculated by this model is shown in Figure 3. There
was no correlation between predialysis CysC, and Std
Kt/V, TSH, and CRP (P � 0.166). As expected, there
were strong correlations between Sp Kt/V, and URR
(r � 0.770, P � 0.001) and CRR (r � 0.727, P � 0.002).
URR and CRR correlated weakly with LP/kg but not
with UF. The results of correlation analyses are sum-
marized in Table 2.

There were no significant differences between the
three predialysis CysC levels (paired t test, P � 0.115)
of the three dialysis sessions in the 1 week. For the
predialysis SUr, however, there was a significant dif-
ference between session 1 and session 3 (Mann-Whit-
ney test, P � 0.029). For the predialysis SCr, there
were significant differences between session 2 and
session 3 (paired t test, P � 0.001), and session 1 and
session 3 (paired t test, P � 0.005).

Discussion
The purpose of this study was to evaluate the dial-

ysis clearance and handling of CysC and the variables
that affect its clearance in a single high-flux high-
efficiency hemodialysis session. It is a continuation of
the Al-Malki et al. study (19). There was significant
CysC reduction through a single high-flux high-effi-
ciency hemodialysis session. The CCRR was 26.1% �
11.8%. This is lower than the small solutes clearance,
with URR and CRR being 70.2% � 9.0% and 64.5% �
8.2%, respectively. There was no significant correla-
tion between CCRR and the small-solute clearance
(Sp Kt/V, URR, and CRR). Multiple regression anal-
ysis with the LP/kg and UF provided a model that
explained 81% of the variance (r2 � 0.811, P � 0.001),
CCRR � 0.127 � 0.331 � LP/kg � 0.072 � UF. To the
best of our knowledge, this is the first description of
the parameters that influence CCRR.

Thysell et al. showed a paradoxical increase in post-
dialysis CysC level in low-efficiency hemodialysis
(20). This was likely due to hemoconcentration and
slow equilibration of CysC between intravascular and
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Figure 1. | Mean cystatin C levels during hemodialysis ses-
sions. This figure shows for each of the 15 patients the cystatin
C levels at the start, the middle, and the end of dialysis. Each
value represents the average of three dialysis treatments.
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extravascular spaces. A previous study demonstrated
that CysC elimination was more efficient by hemo-
diafiltration compared with low-flux hemodialysis
(21). Park et al. showed a significant difference be-
tween low- and high-flux dialyzers in CysC clearance
(10). CCRR results were 11.5% � 16.2% with low-flux
dialyzers and 42.4% � 6.3% with high-flux dialyzers,

respectively, with a significant difference in CCRR
between dialyzers (P � 0.0001). The lower CCRR of
26% in our study despite very high blood flows may
be explained by differences in UF rates, although no
details were provided in the Park manuscript. Park et
al. also demonstrated a weak correlation between
CCRR, and URR and eKt/V. By contrast, there was a

Table 1. Baseline characteristics

Baseline Characteristics Meana/Medianb/Totalc SD Interquartile Range (25%
Minimum, 75% Maximum)

Age (years) 67.33 11.20
Dialysis time (hours) 3.75 3.00, 400
Sp Kt/V 1.51 0.24
Std Kt/V 2.63 2.15, 2.71
Predialysis cystatin C (mg/L) 5.95 0.94
Postdialysis cystatin C (mg/L) 4.66 1.09
TSH (mIU/L) 1.62 1.31, 3.16
CRP (mf/L) 20.51 15.13
LP/kg (L/kg) 0.89 0.21
UF (L) 2.84 1.06
Cause of renal failure: N (%)

diabetes 8 (53.3) NA
hypertension 1 (6.6) NA
renal cancer 1 (6.6) NA
glomerularnephritis 2 (13.3) NA
acute renal failure 1 (6.6) NA
polycystic kidney disease 1 (6.6) NA
reflux nephropathy 1 (6.6) NA

aExpressed as mean if the variable is normally distributed by Shapiro-Wilk normality test.
bExpressed as median if the variable is not normally distributed by Shapiro-Wilk normality test.
cExpressed in total number and percentage.
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Figure 2. | Cystatin C, urea, and creatinine reduction ratios.
The reduction ratio for each of the biomarkers is shown. The
values for URR, CRR, and CCRR were 70.2% � 9.0%, 64.5% �
8.2%, and 26.1% � 11.8%, respectively. By paired t test, each
postdialysis biomarker concentration was significantly lower
than the predialysis value (P � 0.002).
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p<0.0001
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Figure 3. | Correlation analysis of the measured CCRR and the
calculated CCRR based on a model using the ultrafiltration
volume (UF [L]) and the normalized liters processed (LP/kg
[L/kg]). The model explained 81% of the variance. This figure
shows a highly significant linear correlation between the pre-
dicted CCRR and the measured CCRR (r2 � 0.811, P � 0.001).
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strong correlation with CCRR and �2-microglobulin
clearance. These studies have demonstrated a signif-
icant reduction of CysC through hemodialysis but the
variables that affect the CysC clearance were not as-
sessed (10).

The results of our study suggest a very different
handling of CysC compared with the small solutes
clearances of urea and creatinine, in a single high-flux
high-efficiency hemodialysis treatment. All patients
were functionally anephric, which eliminates the ef-
fects of residual renal function on CysC clearance.
Three factors should affect CysC clearance: diffusive
clearance, albeit small, convective clearance, and the
ultrafiltration volume. So what do we know about
cystatin C clearance to explain our findings?

CysC is a middle molecule that distributed mainly
extracellularly (9). It is also minimally protein bound
with presumed slow redistribution between intravas-
cular space and extravascular space because of its
size. Unfortunately, little is known about the equili-
bration of CysC between the intra- and extravascular
space; however, in view of what is known about other
middle molecule redistribution, we can assume a
slow equilibration (23). Zingraff et al. compared the
clearance of radioiodinated serum amyloid P compo-
nent (125I-SAP), a constituent for systemic amyloid-
osid deposits, in the healthy subjects and the chronic
hemodialysis patients. In the hemodialysis patients,
the decline was in a biexponential mode, rather than
a single-exponential slope. There was also evidence of
“tissue retention” of 125I-SAP in the extravascular
space. This was enhanced in patients with symptom-
atic dialysis–related amyloidosis (23). By contrast, SUr
and SCr are distributed both in extracellular (both
intra- and extravascular) and intracellular spaces (24),
with presumed rapid equilibration between all three
compartments during hemodialysis. It is presumed
that small molecules are mostly affected by diffusive
clearance and relatively unaltered by UF because of

rapid equilibration. By contrast, CCRR is affected by a
combination of diffusive and convective clearance.
Park’s data suggest that convective clearance is much
more important for CysC (10). Removal of some cys-
tatin C by membrane adbsorbtion as does occur with
�2-microglobulin (25) must also be considered. There
is, as yet, no published information on this. This pos-
sibility needs to be explored.

Given these facts and after establishing the inverse
correlation between UF and CCRR, we hypothesize
that the different volumes of distribution and differ-
ing equilibration times between compartments for
CysC, creatinine, and urea explain our findings. We
hypothesize that urea and even more so creatinine
equilibrate quickly between the intra- and extravas-
cular space, thereby remaining unaffected by UF. By
contrast, CysC is altered only in the intravascular
space by the dialysis, equilibrates slowly, and is
largely affected by the sometimes substantial UF ob-
served in our patients (maximum 5 L) in this study.
Figure 4 presents a hypothetical model for the differ-
ent handling of the two molecule classes. This model
is highly supported by the fact that we can explain
81% of the variance by UF and liters processed (nor-
malized per kg).

Our study had limitations. It was a small pilot
study of only 15 patients. All the patients used high-
flux dialyzers. The study results are not applicable
to low-flux hemodialysis treatments. The previous
study by Al-Malki et al. demonstrated a significant
negative correlation between Std Kt/V and predialy-
sis CysC in functionally anephric patients (19). We
did not find such a correlation and did not expect to

Table 2. Correlation analysis and the multivariable
analysis between CCRR, URR, and CRR, and other
variables

Variable 1 Variable 2 Variable 3 Correlation
Coefficients P

CCRR Sp Kt/V 0.212a 0.447
CCRR URR 0.390a 0.151
CCRR CRR 0.363a 0.184
CCRR LP/kg 0.678a 0.006
CCRR UF �0.724a 0.002
UUR Sp Kt/V 0.770a �0.001
URR LP/kg 0.650a 0.009
URR UF 0.029a 0.920
CRR Sp Kt/V 0.727a 0.002
CRR LP/kg 0.641a 0.010
CRR UF �0.024a 0.933
Pre-CysC Std Kt/V �0.377a 0.166
Pre-CysC TSH �0.196a 0.485
Pre-CysC CRP 0.339a 0.216
CCRR UF LP/kg 0.811b �0.001
URR UF LP/Kg 0.359b 0.072
CRR UF LP/kg 0.327b 0.067

aPearon correlation coeffecient (r).
bCorrelation coefficient (r2).

Fluid 
Removal 

Urea/crea�nine 
Rapid equilibra�on 

Cysta�n C 
Slow equilibra�on 

Figure 4. | Kinetic model of creatinine, urea, and cystatin C
during hemodialysis. Cystatin C is a middle molecule that is
distributed mainly extracellular and minimally protein bound.
It was presumed to have slow redistribution between intravas-
cular space and extravascular space because of its size. By
contrast, urea and creatinine are distributed both in extracel-
lular (both intra- and extravascular) and intracellular spaces,
with presumed rapid equilibration between all three compart-
ments during hemodialysis. As a result, it is presumed that
small molecules are mostly affected by diffusive clearance and
relatively unaltered by UF because of rapid equilibration. By
contrast, CCRR is affected by a combination of diffusive and
convective clearance and by ultrafiltration, which may con-
centrate the intravascular content of cystatin C.
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because of the small sample size and the narrow
range of Std Kt/V values obtained from patients on
identical dialysis modalities. We did not assess CysC
rebound posthemodialysis. This was previously dem-
onstrated by the Lindström study; there was a rise in
CysC level by 12% in the hemodiafiltration group
(21). Further studies comparing rebound after dialysis
with no ultrafiltration and ultrafiltration without di-
alysis are planned. A further limitation is the fact that
the cystatin C assay used is not validated for mea-
surements in aqueous solution. Thus, actual clearance
or removal measurements could not be made.

Why is CysC an attractive dialysis adequacy
marker? By increasing small-molecule clearance be-
yond that established as thresholds for adequacy in
conventional hemodialysis and peritoneal dialysis,
the HEMO and the ADEMEX studies have failed to
show any mortality benefit (26,27). By contrast, there
is evidence that CysC levels associate with clinical
outcome. CysC levels have been shown to correlate
with cardiac mortality in patients with coronary heart
disease (28). In patients with stage III or IV CKD, the
CysC level is associated with all-cause and cardiovas-
cular disease mortality (29). If CysC level correlates
with clinical outcome in the dialysis population re-
gardless of the residual renal function, it may become
an important dialysis adequacy parameter. As a re-
sult, further studies remain to assess this association
and the target of a satisfactory CysC level.

Conclusions
This study is the first to define the parameters that

determine CCRR. The total dialysis dose measured as
normalized liters processed plus the ultrafiltration
rate are the most important determinants for Cystatin
C reduction ratio. This is novel. On the basis of mo-
lecular characteristics, we hypothesize on the differ-
ences that explain the different handling of SCr and
SUr on the one hand and CysC on the other. The
current study provides a first model for the kinetics of
cystatin C removal by dialysis. Further studies are
indicated.

Disclosures
None.
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