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Interchangeable Roles for E2F
Transcriptional Repression by the
Retinoblastoma Protein and p27KIP1–
Cyclin-Dependent Kinase Regulation in
Cell Cycle Control and Tumor
Suppression

Michael J. Thwaites,a,c Matthew J. Cecchini,a,c Daniel T. Passos,a,c Ian Welch,d

Frederick A. Dicka,b,c

London Regional Cancer Program,a Children's Health Research Institute,b Department of Biochemistry,c and
Veterinary Services,d Western University, London, Ontario, Canada

ABSTRACT The mammalian G1-S phase transition is controlled by the opposing
forces of cyclin-dependent kinases (CDK) and the retinoblastoma protein (pRB). Here,
we present evidence for systems-level control of cell cycle arrest by pRB-E2F and
p27-CDK regulation. By introducing a point mutant allele of pRB that is defective for
E2F repression (Rb1G) into a p27KIP1 null background (Cdkn1b�/�), both E2F tran-
scriptional repression and CDK regulation are compromised. These double-mutant
Rb1G/G; Cdkn1b�/� mice are viable and phenocopy Rb1�/� mice in developing pitu-
itary adenocarcinomas, even though neither single mutant strain is cancer prone.
Combined loss of pRB-E2F transcriptional regulation and p27KIP1 leads to defective
proliferative control in response to various types of DNA damage. In addition,
Rb1G/G; Cdkn1b�/� fibroblasts immortalize faster in culture and more frequently than
either single mutant genotype. Importantly, the synthetic DNA damage arrest defect
caused by Rb1G/G; Cdkn1b�/� mutations is evident in the developing intermediate
pituitary lobe where tumors ultimately arise. Our work identifies a unique relation-
ship between pRB-E2F and p27-CDK control and offers in vivo evidence that pRB is
capable of cell cycle control through E2F-independent effects.

KEYWORDS cell cycle, DNA damage, tumor suppressor, CDK, E2F, DNA damage
checkpoints, cyclin-dependent kinases, tumor suppressor genes

Regulation of the cell cycle is critical to maintaining cellular homeostasis and to
prevent the development of cancer (1). Mammalian cell division is primarily con-

trolled at the G1-S phase transition, and the moment of commitment is often described
as the restriction point (2). Commitment to entering the cell cycle is controlled by two
opposing forces, the retinoblastoma protein family (including pRB), which blocks entry,
and cyclin-dependent kinases (CDKs), which drive advancement into S phase (3). The RB
protein antagonizes S-phase entry by repressing E2F-regulated genes necessary for
DNA replication (4). Working in opposition to pRB are CDKs (5), in particular cyclin D-
and E-associated kinases, that phosphorylate and inactivate upstream regulators of cell
cycle entry, including pRB and p27KIP1, as well as stimulate the activation of down-
stream effectors of DNA replication (6, 7). While this suggests CDKs control pRB, a key
target gene that is repressed by pRB-E2F is CCNE1, which encodes cyclin E, and this
creates a regulatory loop whereby cyclin E/CDK2 becomes maximally active at almost
the same time pRB is maximally phosphorylated and finally releases all E2Fs (4). In
addition, CDK2’s principal negative regulator, p27KIP1, is phosphorylated and targeted

Received 11 October 2016 Accepted 1
November 2016

Accepted manuscript posted online 7
November 2016

Citation Thwaites MJ, Cecchini MJ, Passos DT,
Welch I, Dick FA. 2017. Interchangeable roles
for E2F transcriptional repression by the
retinoblastoma protein and p27KIP1– cyclin-
dependent kinase regulation in cell cycle
control and tumor suppression. Mol Cell Biol
37:e00561-16. https://doi.org/10.1128/
MCB.00561-16.

Copyright © 2017 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Frederick A. Dick,
fdick@uwo.ca.

RESEARCH ARTICLE

crossm

January 2017 Volume 37 Issue 2 e00561-16 mcb.asm.org 1Molecular and Cellular Biology

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

cb
 o

n 
22

 J
un

e 
20

22
 b

y 
72

.1
42

.1
7.

13
7.

http://orcid.org/0000-0002-3530-2821
https://doi.org/10.1128/MCB.00561-16
https://doi.org/10.1128/MCB.00561-16
https://doi.org/10.1128/ASMCopyrightv1
mailto:fdick@uwo.ca
http://crossmark.crossref.org/dialog/?doi=10.1128/MCB.00561-16&domain=pdf&date_stamp=2016-11-7
http://mcb.asm.org


for degradation at virtually the same time (8). Due to this interplay between pRB and
CDK activity, it has been difficult to place one upstream of the other in a regulatory
pathway (4). Numerous studies suggest that either pRB-E2F or p27KIP1-CDK2 interac-
tions are essential for controlling quiescence or cell cycle entry commitment (9–17). For
this reason, control of the G1-S phase transition remains unclear. Furthermore, since
much of the literature investigating G1-S regulation focuses on regulatory events
during cell cycle entry (4, 18), the roles for pRB-E2F and p27KIP1-CDK interactions in cell
cycle exit have been much less explored.

Cell cycle arrest by pRB has long been attributed to E2F regulation, because the
minimal deletion mutant of pRB that is capable of binding E2Fs can block proliferation
of Saos-2 cells (19, 20). These studies revealed a close correlation between pRB-E2F
binding, transcriptional repression, and cell cycle arrest (20, 21). However, E2F binding
mutants of pRB have a surprising retention of growth control activity in this assay
(22–24), suggesting that other mechanisms contribute. Given that cell cycle control
ultimately impinges on CDK regulation, a number of studies have connected pRB
growth arrest activity in Saos-2 cells to CDK regulation through p27KIP1 (25–27). First,
E2F binding-deficient mutants of pRB induce p27KIP1 expression in Saos-2 cell cycle
arrest assays, and p27 expression is required for these mutants of pRB to induce arrest
(27). Second, pRB stabilizes p27KIP1 expression during induction of a G1 arrest quite
rapidly, and this precedes the decline in E2F-regulated targets by at least 24 h,
suggesting CDK regulation occurs first (26). Moreover, Ji et al. also demonstrated that
pRB is capable of binding and inhibiting the function of Skp2, the E3 ligase-targeting
subunit responsible for polyubiquitination of p27 (26). Consistent with this, the in-
creases in p27 levels seen following pRB expression in Saos-2 cells correlate with a
decrease in Skp2 levels (25). Binne et al. showed that APC complexes containing Cdh1
are capable of using pRB as an adaptor for Skp2 binding and ubiquitination, thereby
stimulating Skp2 degradation and promoting the stabilization of p27 (25). Collectively,
these studies connect pRB regulation of the cell cycle to p27. However, the shortcom-
ing of this work is its dependence on ectopic pRB expression, a physiological context
in which pRB regulation of p27 genuinely contributes to proliferative control decisions
has yet to emerge. A number of genetic crosses indicate that Skp2 loss can suppress
pituitary tumorigenesis in Rb1�/� mice (28), even in combination with p53 deficiency
(29). However, efforts to find p27-dependent growth arrest in tissues of these mice have
been confounded by other cellular effects, such as apoptosis in the intermediate lobe
of the pituitary (28). This has prevented the observation of proliferative control deci-
sions in these cells that use a pRB-p27 axis. For this reason the pRB-p27 connection in
proliferative control remains compelling, but its lack of detection in an endogenous
scenario is a critical gap in our knowledge.

In order to study E2F-independent functions of pRB at an endogenous level, we
developed a mutant mouse model in which pRB binding to E2Fs is disrupted by R461E
and K542E mutations (called Rb1G) (30). Importantly, the Rb1G mutant protein is
expressed at wild-type (WT) levels and makes normal interactions with LXCXE motif-
containing proteins (30). Surprisingly, we found that this mutation had little effect on
control of cell proliferation, as Rb1G/G fibroblasts are capable of responding to serum
starvation, p16 expression, DNA damage, and myogenic differentiation and in all cases
show wild-type responses (30). In this study, we find that p27 expression is higher in
Rb1G/G fibroblasts. In addition, double-mutant Rb1G/G and p27-deficient cells are de-
fective for growth arrest in response to DNA damage in a manner that resembles
Rb1�/� cells, including misregulation of CDK2 activity. Furthermore, while develop-
mentally unremarkable, Rb1G/G; Cdkn1b�/� mice display a highly penetrant tumor
phenotype. Together our study demonstrates systems-level redundancy between pRB-
E2F regulation and p27-CDK2 control, as the combined loss displays cell cycle defects
that are absent from either mouse single mutant. In addition, this work provides proof
of principle for transcription-independent coordination between the RB and the CDK
pathways in endogenous growth control.
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RESULTS
Posttranslational stabilization of p27 in Rb1G/G fibroblasts during quiescence.

Our previously published analysis of Rb1G/G primary fibroblasts and mice indicates that
loss of pRB-E2F repression fails to bypass cell cycle exit signals (30). Figure 1 shows an
example of a serum starvation arrest in which wild-type, Rb1G/G, and knockout cells
were serum starved for 60 h. Under these culture conditions, wild-type and Rb1G/G cells
reduce bromodeoxyuridine (BrdU) incorporation equivalently, while Rb1�/� cells are
defective (Fig. 1A). However, analysis of mRNA levels of common E2F target genes
shows that Rb1G/G displays a defect in repression similar to that of Rb1�/� (Fig. 1B).
Importantly, while cell cycle exit is normal in this scenario, pRB’s well-studied role for

FIG 1 Increased expression of p27 in serum-starved Rb1G/G MEFs. (A) Fibroblast cells of the indicated genotypes
were serum starved for 60 h and pulse-labeled with BrdU for 2 h, followed by staining for BrdU incorporation. The
proportion of cells incorporating BrdU was determined by flow cytometry. (B) Fibroblasts were serum starved as
described for panel A, and the relative mRNA levels of the indicated genes were determined. (C) Following serum
starvation for 60 h, cells were restimulated to enter the cell cycle. Cultures were pulse-labeled with BrdU, harvested
at the indicated time points, and analyzed by flow cytometry. (D) Whole-cell extracts were prepared from
serum-starved (SS) wild-type and Rb1G/G MEFs. Western blot (WB) analyses were performed to assess relative
expression of pRB and E2F3. Anti-E2F3 immunoprecipitations were blotted for pRB. (E) Immunoblotting of nuclear
extracts isolated from serum-deprived MEFs using antibodies raised against p27 and histone H3. (F) Real-time
quantitative PCR using primers to detect Cdkn1b. Values are presented relative to GAPDH. All error bars represent
one standard deviation from the mean. An asterisk indicates a significant difference from the wild-type control
using a t test (P � 0.05).
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restraining E2F activation during cell cycle entry following serum stimulation is com-
promised in Rb1G/G cells, and they enter the cell cycle with kinetics similar to those of
knockout controls (Fig. 1C). Consistent with these findings, the R461E and K542E
mutations encoded by the Rb1G allele prevent stable interactions with E2Fs. We used
immunoprecipitation (IP) and Western blot assays to evaluate pRB-E2F3 interactions in
serum-starved cells, and these reveal a robust defect (Fig. 1D) (30). Since Rb1G/G cells are
functional for cell cycle arrest in assays where Rb1�/� cells are not (30), we searched for
growth control mechanisms parallel to pRB-E2F repression that are pRB dependent.
Building on previous findings of p27 stabilization in cancer cells and Rb1�/� mouse
embryonic fibroblasts (MEFs), we sought to determine if this same effect was seen in
our mutant Rb1G/G cells. Following serum deprivation of asynchronously proliferating
cultures, Rb1G/G MEFs demonstrated a modest increase in p27 protein levels coincident
with G1 arrest (Fig. 1E). Importantly, p27 mRNA levels quantitated by quantitative
reverse transcription-PCR (qRT-PCR) remain the same as those of wild-type cells during
serum deprivation, indicating that the change observed is likely due to a posttransla-
tional effect (Fig. 1F). This finding is consistent with the posttranslational stabilization
of p27 observed in Saos-2 cells induced to arrest following expression of E2F binding-
deficient mutants of pRB (27). The increased p27 in response to loss of E2F regulation
may be related to the ability of Rb1G/G MEFs to maintain proliferative control despite
defective E2F binding.

Rb1G/G; Cdkn1b�/� mice are highly cancer prone. To determine if p27 expression
in Rb1G/G cells is responsible for the maintenance of cell cycle control, we crossed
Rb1G/G mice with p27-deficient (Cdkn1b�/�) animals. Compound mutant mice display
viability at weaning similar to that of the Rb1G/G genotype alone and without obvious
anatomical defects, suggesting the combination of Rb1G/G and Cdkn1b�/� deficiency is
no different than either single mutant alone (Fig. 2A and Table 1) (30). While double-
mutant Rb1G/G; Cdkn1b�/� mice show normal development, we aged cohorts of
double- and single-mutant mice and discovered that Rb1G/G; Cdkn1b�/� mice succumb
to pituitary tumors with an average tumor-free survival of 214 days (Fig. 2B). Necropsies
of these mice revealed pituitary tumor masses characteristic of Rb1-deficient animals
(Fig. 2C). By comparison, neither Rb1G/G nor Cdkn1b�/� mice displayed cancer suscep-
tibility (Fig. 2B and C), and this is consistent with prior reports of mixed 129/B6
Cdkn1b�/� mice (31). Interestingly, Rb1G/�; Cdkn1b�/� mice also succumb to pituitary
tumor formation with a delayed latency compared to double mutants and with
approximately 75% penetrance (Fig. 2B and C). PCR genotype analysis revealed that
loss of the wild-type copy of Rb1 is ubiquitous in these tumors (Fig. 2D). The Rb1G/�;
Cdkn1b�/� tumor phenotype is highly reminiscent of Rb1�/�; Cdkn1b�/� tumors in
terms of latency and the requirement for loss of heterozygosity of Rb1 (31). Based on
this observation, the Rb1G allele appears to be the functional equivalent of an Rb1 null
allele when combined with p27 deficiency in this context. These genetic data also imply
that p27 function is required for pRB-dependent tumor suppression when pRB is
defective for E2F binding, and that pRB-E2F control is critical in the absence of p27.

Compound mutant Rb1G/G; Cdkn1b�/� MEFs enter quiescence following serum
deprivation. The normal development of double-mutant animals suggests that pRB-
mediated repression of E2Fs, as well as deficiency for p27, are dispensable for a variety
of cell cycle exit decisions that occur as part of a normal mammalian developmental
program. However, emergence of pituitary adenocarcinomas indicates that this com-
bination is important in some contexts for the mitigation of tumorigenesis. We there-
fore sought to understand if specific cell cycle control functions are lost in Rb1G/G;
Cdkn1b�/� cells. Since both pRB and p27 are implicated in quiescence, we assessed
their separate and combined contributions to serum deprivation-induced arrest (2).
Asynchronously proliferating cultures of primary fibroblasts for each of the wild-type,
Rb1G/G, Cdkn1b�/�, double-mutant Rb1G/G; Cdkn1b�/�, and Rb1�/� mice were analyzed
for their proliferative state by BrdU labeling and flow cytometry. Figure 3A shows
baseline levels of BrdU incorporation for each genotype while actively proliferating, and
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it shows Rb1G/G; Cdkn1b�/� and Rb1�/� have statistically elevated BrdU incorporation
levels. Cells were subsequently washed and transferred to 0.1% serum to induce arrest
for 60 h before pulse-labeling with BrdU. While asynchronously cycling, double-mutant
Rb1G/G; Cdkn1b�/� MEFs exhibit an increase of cells in S phase while proliferating, and
these cells were able to restrict S-phase entry following serum deprivation to a level
equivalent to that of wild-type fibroblasts (Fig. 3B). Importantly, the incomplete re-
sponse in Rb1�/� cells indicates that this is a pRB-dependent process that Rb1G/G;
Cdkn1b�/� cells are capable of executing. Similarly, analysis of CDK2 activity by

FIG 2 Cancer susceptibility in Rb1G/G; Cdkn1b�/� mice. (A) Picture of young adult double-mutant Rb1G/G; Cdkn1b�/�

mouse. (B) Kaplan-Meyer analysis of tumor-free survival for mice of the indicated genotypes. Mice were monitored
until natural endpoint, and those having tumors are shown. Rb1G/G; Cdkn1b�/�, Rb1G/�; Cdkn1b�/�, and Rb�/� mice
are significantly different from one another and from all single-mutant controls using the log rank test (P � 0.05).
(C) Macroscopic images of pituitaries of mice from the indicated genotypes at necropsy. Scale bars are 1 cm. (D)
Genotyping of tumor and tail DNA isolated from Rb1G/�; Cdkn1b�/� (G) mice demonstrating loss of heterozygosity
in the tumor tissue.

TABLE 1 Rb1G/G; Cdkn1b�/� mice are produced at ratios similar to those of Rb1G/G micea

Genotype No. of live animals observedb (expected)

Rb1�/�; Cdkn1b�/� 25 (15)
Rb1�/�; Cdkn1b�/� 27 (29)
Rb1�/�; Cdkn1b�/� 12 (15)
Rb1G/�; Cdkn1b�/� 40 (29)
Rb1G/�; Cdkn1b�/� 72 (59)
Rb1G/�; Cdkn1b�/� 22 (29)
Rb1G/G; Cdkn1b�/� 11 (15)
Rb1G/G; Cdkn1b�/� 19 (30)
Rb1G/G; Cdkn1b�/� 8 (15)

Total 236
aCompound heterozygous mice were crossed (Rb1G/�; Cdkn1b�/� � Rb1G/�; Cdkn1b�/�), and the resulting
progeny were genotyped.

bThe number of live animals obtained at 2 weeks is shown for each genotype, and the expected number
based on Mendelian inheritance is displayed in parentheses.
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IP-kinase assays reveals that single-mutant Rb1G/G and Cdkn1b�/� cells were also
capable of inhibiting CDK2 kinase activity (Fig. 3C), as were double-mutant Rb1G/G;
Cdkn1b�/� MEFs. Some residual CDK2 activity was also observed in the Rb1�/� cells
following serum deprivation, reflecting the defect in G1 arrest observed in Rb1�/� MEFs
(Fig. 3C). Maintenance of quiescence and CDK2 inhibition in double-mutant Rb1G/G;
Cdkn1b�/� MEFs agrees with the developmental milestones observed in Rb1G/G;
Cdkn1b�/� mice, as quiescence induction is a component of normal development (32).

Compound mutant Rb1G/G; Cdkn1b�/� cells display defective cell cycle control
in response to DNA damage. The detection of malignancies later in life in Rb1G/G;
Cdkn1b�/� mice likely indicates that additional mutations occur prior to tumorigenesis.
Therefore, we next looked at the ability of single- and double-mutant Rb1G/G;
Cdkn1b�/� MEFs to arrest the cell cycle in response to DNA damage, as a defect in this
response could facilitate the acquisition of new mutations. We subjected asynchro-
nously proliferating cells to three different DNA-damaging agents, gamma irradiation
(IR), cisplatin, and hydrogen peroxide, and pulse-labeled cells with BrdU 48 h later. The
percentage of BrdU-positive cells was then determined by flow cytometry (Fig. 4A).
With each treatment, double-mutant Rb1G/G; Cdkn1b�/� and Rb1�/� cells failed to
block BrdU incorporation. Interestingly, some single mutants showed modest defects in
their response to cisplatin and hydrogen peroxide (Fig. 4A). However, analysis of DNA
content by propidium iodide staining following IR showed that both double-mutant
Rb1G/G; Cdkn1b�/� and Rb1�/� MEFs exhibit a high proportion of cells with 8N DNA
content, implying a strong defect in the regulation of DNA replication following

FIG 3 Compound mutant Rb1G/G; Cdkn1b�/� MEFs enter quiescence. (A) Asynchronously growing MEFs were
pulsed-labeled with BrdU for 2 h, followed by staining for BrdU incorporation and analysis by flow cytometry. (B)
Proliferating cells were serum deprived for 60 h and pulse-labeled with BrdU for 2 h, followed by staining for BrdU
incorporation and flow cytometry. All error bars represent one standard deviation from the mean. An asterisk
indicates a significant difference from the wild-type control using a t test (P � 0.05). (C) CDK2 kinase activity was
determined by incubation of immunoprecipitated CDK2 complexes isolated from the indicated genotypes of cells
under asynchronous growth conditions (AS) or serum-starved conditions (SS). Proteins isolated by immunopre-
cipitation with anti-CDK2 antibodies (IP) or the control (IgG) were mixed with recombinant histone H1 and
[�-32P]ATP, incubated, and resolved by gel electrophoresis and exposed to a phosphosensitive plate. Coomassie
staining of the recombinant histone H1 serves as a loading control.
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damage (Fig. 4B). This suggests that loss of both pRB-E2F binding and p27 together
results in a defective DNA damage checkpoint, leading to endoreduplication in a
manner that is very similar to complete Rb1 deficiency. We also tested CDK2 activity
from extracts of IR-treated cells using an IP-kinase assay. Once again, Rb1G/G and
Cdkn1b�/� single-mutant MEFs were able to reduce CDK2 kinase activity down to
background levels, whereas double-mutant Rb1G/G; Cdkn1b�/� and Rb1�/� MEFs were
only able to partially restrict CDK2 kinase activity, mirroring the result seen by BrdU
incorporation analysis (Fig. 4C). The failure of double-mutant Rb1G/G; Cdkn1b�/� MEFs
to arrest in response to DNA damage provides a possible framework to explain the
eventual development of pituitary adenocarcinomas in older mice. Therefore, in the
context of DNA damage, Rb1G/G; Cdkn1b�/� animals may be unable to respond
appropriately to the insult, allowing for the development of further mutations and the
clonal expansion of tumorigenic cells.

Compound mutant Rb1G/G; Cdkn1b�/� fibroblasts undergo rapid immortaliza-
tion in culture. We also modeled the acquisition of cancer-enabling mutations over
time using a 3T3 immortalization assay to assess the different Rb1 and Cdkn1b mutant

FIG 4 Mutant Rb1G/G; Cdkn1b�/� MEFs display defective cell cycle control in response to DNA damage. (A) MEFs
were treated with the indicated dose of DNA damaging agents. Forty-eight hours later, cells were pulsed with BrdU,
stained, and analyzed by flow cytometry. All error bars represent one standard deviation from the mean. An asterisk
indicates a significant difference from the wild-type control using a t test (P � 0.05). (B) Propidium iodide (PI)
staining of MEFs treated with 15 Gy of ionization radiation showing DNA content of cells. Red boxes outline an area
of �4N DNA content, with the number representing the percentage of cells in that box. (C) Kinase assays were
performed using CDK2 kinases isolated from asynchronously growing (AS) cells or following treatment with
ionizing radiation (�IR). Kinase activity was determined by incubation of immunoprecipitated CDK2 complexes with
recombinant histone H1 and with [�-32P]ATP, followed by gel electrophoresis and exposure to a phosphosensitive
plate. Coomassie staining of recombinant histone H1 served as a loading control.
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genotypes. By passaging primary MEFs in a 3T3 protocol, we were able to subject them
to long-term oxidative stress (33) and its resultant DNA damage (33) and determined
genotype-specific responses. We categorized entry into senescence in this assay as the
first passage that displays a negative population increase. Furthermore, we categorized
immortalization as the first passage where positive population increases resumed and
continued uninterrupted for the remainder of the 20-passage experiment. From this
analysis we note that all attempts to immortalize Rb1G/G; Cdkn1b�/� and Rb1�/� MEFs
were successful (Fig. 5A), whereas at least half of the single mutants or wild-type
controls entered senescence and never resumed proliferation. All wild-type, single-
mutant, and Rb1G/G; Cdkn1b�/� double-mutant cells entered senescence, as evidenced
by negative growth trends (Fig. 5B to F). In this assay, only Rb1�/� cells spontaneously
immortalized without entering senescence (Fig. 5F). Notably, double-mutant Rb1G/G;
Cdkn1b�/� cells demonstrated a longer period of positive growth than single mutants
(Fig. 5E), and they spent fewer passages in senescence before resuming continual
expansion. A similar profile of brief arrest before rapid expansion was exhibited by most
Rb1�/� cell cultures (Fig. 5F), and this further emphasizes the similarity between the
Rb1G/G; Cdkn1b�/� and Rb1�/� genotypes in this assay. This result demonstrates that
cells containing mutations to abolish pRB-E2F repression and loss of p27 are poised to
immortalize, and this property is consistent with their inability to arrest the cell cycle
following DNA damage.

Compound mutant Rb1G/G; Cdkn1b�/� cells in the embryonic intermediate
pituitary demonstrate radioresistant DNA synthesis. Given the propensity of Rb1G/G;
Cdkn1b�/� mice to develop pituitary tumors, as demonstrated in this report, and the

FIG 5 Rb1G/G; Cdkn1b�/� MEFs undergo rapid immortalization in response to oxidative stress. (A)
Percentage of cultures that immortalized within 20 passages of 3T3 culture. Immortalization was defined
as continued positive population growth following a decline in cell number at intermediate passages. (B
to F) Population growth of MEFs of the indicated genotypes was plotted against passage number. Cells
were plated at a density of 1 � 106 cells per 10-cm plate, and they were reseeded at the same density
every 3 days. Population increase was calculated according to the formula log10 (recovered/seeded)/log10

2 and plotted cumulatively over 20 passages or until no viable cells were left in the culture.
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long history of Rb1 null alleles to predispose mice to this tumor type, we sought to
assess cell cycle regulation in this tissue. As the intermediate lobe of the pituitary gland
gives rise to the adenocarcinomas previously reported in Rb1 mutant mice (34, 35), we
chose to investigate the DNA damage response specifically in these cells. In order to
analyze acute response to DNA damage in the pituitary, embryos at 13.5 days of
gestation (E13.5) were used, as the peak proliferation of the pituitary occurs at this time
and postnatal proliferation is largely undetectable (36). Pregnant mothers were ex-
posed to a dose of 10 Gy of ionizing radiation 4 h prior to injection with BrdU and
sacrificed 2 h later. Tissue sections of embryos were cut to expose the developing
pituitary, and sections were stained to detect BrdU (Fig. 6A). Wild-type as well as
single-mutant Rb1G/G and Cdkn1b�/� embryos displayed a robust reduction in BrdU
incorporation following DNA damage, as determined by counting BrdU-positive
nuclei in the intermediate lobe of the pituitary (Fig. 6B). Similar to our findings in
cell culture, both Rb1G/G; Cdkn1b�/� and Rb1�/� embryos failed to display a
significant reduction of BrdU incorporation following irradiation (Fig. 6B). Terminal
deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining
of parallel sections was performed to quantitate double-stranded DNA breaks and
revealed similar levels of damage among all genotypes (Fig. 6C). This outcome indicates
that the cell cycle arrest defect following DNA damage in double-mutant Rb1G/G;
Cdkn1b�/� cells is evident in both cell culture and in vivo settings, and it occurs in the
cell population that eventually gives rise to the tumor phenotype seen in these mice.
Thus, the regulation of E2Fs by pRB as well as the CDK control via p27 are each
individually dispensable for cell cycle control, and simultaneous loss of both leads to an
insensitivity to DNA damage signaling and a predisposition to cancer.

DISCUSSION

Our findings support the existence of a link between pRB-mediated growth control
and CDK regulation that is independent of pRB-E2F control of transcription. The similar

FIG 6 Double-mutant Rb1G/G; Cdkn1b�/� embryonic pituitaries exhibit radioresistant DNA synthesis. (A)
Representative images of E13.5 pituitaries stained for BrdU from control or irradiated embryos. The
intermediate lobe of the pituitary is outlined in dashed lines. (B) The percentage of BrdU-positive cells
in the intermediate lobe of the pituitary was determined from the indicated genotypes of mice from
control or irradiated groups. All error bars represent one standard deviation from the means. An asterisk
indicates a significant difference from the wild-type control using a t test (P � 0.05). (C) Tissue sections
were stained with TUNEL, and positive cells within the intermediate lobe of the pituitary were quanti-
tated for in the indicated genotypes either with or without irradiation. All error bars represent one
standard deviation from the mean, and there are no significant differences among the treated groups.
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defect in DNA damage-induced growth arrest between Rb1G/G; Cdkn1b�/� and Rb1�/�

cells implies that E2F-independent growth control by pRB is dependent on CDK
regulation by p27. In addition, we find that defective E2F binding by pRB or loss of p27
is individually tolerated in most arrest assays, suggesting their functions are somewhat
interchangeable. Lastly, cancer incidence and latency of our Rb1G/�; Cdkn1b�/� mice
are very similar to those of previously published Rb1�/�; Cdkn1b�/� mice (31), and this
suggests that in the absence of p27, the Rb1G allele is approximately equivalent to an
Rb1 null. Collectively, these data point to a strong interdependence of CDK and E2F
regulation.

Previous studies of endogenous pRB function in mice have typically relied on
knockout alleles. This approach to mechanistic understanding is constrained by several
limitations that are overcome in our targeted knock-in approach. First, other pRB family
members, p107 and p130, increase in expression in pRB’s absence (3, 37). Additionally,
pRB is reported to interact with over 100 proteins (38), so complete loss of pRB disrupts
all of these binding partners, obscuring the roles of individual interactions. For these
reasons, our Rb1G/G model specifically mitigates these problems, allowing us to dem-
onstrate a role for pRb-E2F interactions in vivo in tumor suppression. Surprisingly, these
studies and our previous report of these mice reveal that loss of pRB-E2F transcriptional
repression functions in parallel with p27 in growth control and tumor suppression (30).

We have found that disruption of pRB-E2F interactions acts synergistically with p27
deletion to bring about a loss of cell cycle control. The degree of disruption is similar
to complete pRB knockout, and this implies that p27 lies downstream of pRB in an
E2F-independent growth arrest pathway. A number of previous reports have identified
a link between pRB and p27 as a means of cross talk between the RB pathway and the
CDK regulatory pathway (25, 26). pRB has been shown to interact with Skp2 as well as
the APCCdh1 complex (25, 26). These interactions allow pRB to reduce available Skp2
either through facilitation of Skp2 ubiquitination by APCCdh1 or through Skp2 seques-
tration. Ultimately, these interactions stabilize p27 expression and block CDK activity
independent of pRB-E2F transcriptional repression. However, each of these reports
relies on overexpression of pRB as the growth-arresting stimulus, leaving in question
the physiological circumstances where this mechanism works. We think this report
offers proof of principle for a pRB-p27 regulatory axis; in addition to showing that it
functions in DNA damage-induced arrest, its inactivation renders mice cancer prone.
This argues that the pRB-p27 connection is critical to what makes pRB a tumor
suppressor.

The interplay between pRB and p27 identified in this study may also provide
important insights into the utilization of targeted therapies aiming to restore cell cycle
control. A number of CDK4/6 inhibitors have been developed in attempts to reestablish
the G1 checkpoint in cancer cells (39–41). Since CDK4/6 inhibition is known to arrest
proliferation only when pRB is functional, these inhibitors are generally given to
patients with pRB-positive cancers. However, pRB status alone does not indicate the
effectiveness of these treatments (42). Our analysis of G1 checkpoint control may
provide some insight into ways to maximize the effectiveness of these treatments. We
suggest that reactivation of the pRB pathway by CDK4/6 inhibitors is more effective in
cancers with inherently high p27 expression or whose p27 stabilization pathways
remain active.

Overall, our findings reveal a role for pRB in DNA damage-induced cell cycle arrest
beyond repression of E2F transcriptional activity that utilizes p27 and CDK inhibition.
Furthermore, our work suggests a functional context for the regulation of p27 by pRB
that has been elusive.

MATERIALS AND METHODS
Cell culture methods. Mouse embryonic fibroblasts (MEFs) were derived from E13.5 embryos of the

indicated genotypes. Asynchronous cells were cultured using standard methods in Dulbecco’s modified
Eagle’s medium containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 50 U/ml penicillin, and 50
�g/ml streptomycin. Cells subjected to serum deprivation were cultured in the above-described medium,
except it only contained 0.1% FBS.
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DNA damage induction. MEFs subjected to gamma irradiation were plated at low density at
passage 4. The next day, medium was changed prior to exposure to a cobalt 60 source until a dose of
15 Gy was received. Medium was changed again the next morning, and cells were harvested 48 h after
treatment. Cells treated with DNA-damaging agents cisplatin and H2O2 were plated at low density at
passage 4 and then the next day were switched to medium containing the indicated drug at a
concentration of 1 �M for cisplatin and 250 �M for H2O2. Cells were incubated in the drug containing
medium for 48 h before harvest for downstream applications.

Cell cycle analysis. Cells were pulsed with BrdU under different growth conditions: asynchronous
culture, serum deprived, serum stimulated, or various sources of DNA damage for a duration of 2 h. Cell
cycle analysis was then carried out by following previously published protocols (43).

mRNA quantitation. RNA isolation was carried out using TRIzol reagent according to the manufac-
turers’ instructions and previously published protocols (30). mRNA levels of p27 were analyzed by
qRT-PCR using iQ Sybr green supermix (Bio-Rad) and the following primers against p27 and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH): p27 Fwd (5=AGATACGAGTGGCAGGAGGT 3=), p27 Rev (5= ATGCC
GGTCCTCAGAGTTTG 3=), GAPDH Fwd (5= GCACAGTCAAGGCCGAGAAT 3=), and GAPDH Fwd. (5= GCCTT
CTCCATGGTGGTGAA 3=). Expression levels of common E2F target genes Pcna1, Ccne1, Ccna2, Tyms, Rbl1,
and Mcm3 were determined using the Quantigene Plex 2.0 reagent system from Affymetrix as previously
described (44). Expression levels were normalized to actin.

3T3 assay. Passage 3 MEFs were plated at a density of 1 � 106 cells per 10-cm culture dish in
Dulbecco’s modified Eagle’s medium containing 10% calf serum, 2 mM L-glutamine, 50 U/ml penicillin,
and 50 �g/ml streptomycin. Three days after plating, cells were counted and replated at the same
density, 1 � 106 cells per 10-cm dish. This procedure was repeated until passage 20. Population increase
was calculated according to the following formula: log10 (recovered/seeded)/log10 2. Cells were consid-
ered successfully immortalized if the population growth was positive at the end of the 20 passages.

Protein interaction analysis and Western blotting. Nuclear extracts were prepared from MEFs, and
Western blotting was carried out using previously described protocols (30). Antibodies raised against p27
(C-19; sc-528) and histone H3 (ab70550) were used for Western blotting. pRB-containing complexes were
immunoprecipitated from whole-cell extracts using anti-E2F3 C-18 (Santa Cruz) bound to G-Sepharose
beads (GE Healthcare). IPs were rocked for 1 h at 4°C and then washed twice with IP wash buffer (10 mM
Tris, pH 7.5, 200 mM NaCl, 1.5 mM MgCl2, 2 mM EDTA, 0.1% NP-40) and boiled in SDS-PAGE sample
buffer. Samples were Western blotted using standard techniques. E2F3 was detected by PG37 (Upstate),
pRB was detected by G3-245 (BD Pharmingen), and actin was detected with monoclonal antibody AC-74
(Sigma).

Phenotypic analysis of animals. Cdkn1b�/� mice (B6.129S4-Cdkn1btm1Mlf/J) have been described
previously and were obtained from the Jackson Laboratory and genotyped as recommended (45). Rb1G/G

mice were genotyped as previously described (30). All animals were housed and handled as approved
by the Canadian Council on Animal Care. Mice were monitored for tumor development. Mice were
sacrificed at natural endpoint. Survival data were subjected to Kaplan-Meier analysis, and significant
differences were compared using a log rank test. For DNA damage experiments, pregnant mothers at day
13.5 of gestation were subjected to 10 Gy IR followed by a 2-h pulse of BrdU 4 h after IR treatment.

Histology and microscopy. E13.5 embryos treated with 10 Gy of IR were removed from the uterus
and fixed whole in phosphate-buffered saline (PBS) containing 4% paraformaldehyde (PFA) for 24 h. They
were next placed in PBS containing 30% sucrose to dehydrate the samples for a minimum of 3 days.
Embryos were then dried and mounted in Cryomatrix (6769006; Thermo Scientific), frozen using liquid
nitrogen, and stored at �80°C (46). Sagittal pituitary sections were cut using a Leica cryostat (CM 3050S)
in 8-�m sections and mounted on slides which were stored at �80°C. Slides were acclimated to room
temperature prior to staining.

For BrdU staining, slides were rehydrated in PBS and inserted into a Shandon Sequenza cassette
holder (73310017; Thermo Scientific). Five hundred microliters of 2N HCl was added to the slides and
incubated for 20 min at room temperature. Slides were washed twice with 0.1 M Na2B4O7, pH 8.5, for 5
min per wash. Slides were then put into a Coplin jar containing 10 mM sodium citrate, pH 6, and
microwaved for 10 min on a low power level, followed by a 20-min incubation at room temperature.
Slides were washed again with PBS and reinserted into the Shadon Sequenza holder (73310017; Thermo
Scientific). Slides were then washed twice with PBS containing 0.3% Triton X-100. Anti-BrdU antibody
(347580; BD) was diluted 1:50 in PBS– 0.3% Triton X-100 and incubated on slides overnight. The next day
slides were washed three times with PBS– 0.3% Triton X-100, and then secondary anti-mouse antibody–
fluorescein (FI-2000; Vector) was added at a dilution of 1:800 in PBS– 0.3% Triton X-100. Slides were then
incubated in secondary antibody for 1 h in the dark. Slides were washed 3 times in PBS– 0.3% Triton
X-100 and then counterstained with 4=,6-diamidino-2-phenylindole (DAPI) for 5 min in the dark. Finally,
slides were washed twice with PBS– 0.3% Triton X-100, twice with PBS, mounted with Slowfade (S36937;
Thermo Scientific), and sealed.

TUNEL staining was carried out according to the manufacturer’s instructions using an in situ cell
death detection kit (1168479510; Roche). Briefly, cells were rehydrated with PBS, permeabilized with
PBS– 0.3% Triton X-100 for 2 min on ice, and then incubated for 1 h with TUNEL reagent. After incubation,
slides were washed 3 times with PBS and counterstained with DAPI for 5 min, followed by 2 washes with
PBS– 0.3% Triton X-100 and 2 washes with PBS. Slides were then mounted with Slowfade (S36937;
Thermo Scientific) and sealed.

Images were acquired using a Zeiss Axioskop 40 microscope and Spot flex camera and quantified
using velocity image analysis software (PerkinElmer).
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CDK2 kinase activity assays. Nuclear extracts were spun down at 14,000 rpm for 30 min to separate
protein from cellular debris. Protein (250 �g) from each sample was precleared for 1 h using Dynabeads
rotating at 4°C. Samples were then split in half and incubated for an hour with Dynabeads prebound with
either IgG or anti-CDK2 (Millipore). Complexes were then washed twice with IP wash buffer (10 mM Tris,
pH 7.5, 200 mM NaCl, 1.5 mM MgCl2, 2 mM EDTA, 0.1% NP-40) and twice with kinase buffer (50 mM Tris,
pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol [DTT]) and then resuspended in 49 �l of kinase buffer
containing 4 �g of recombinant histone H1 (Santa Cruz). 32P-radiolabeled ATP (10 �Ci) was incubated
with immunoprecipitates for 20 min at 30°C, followed by boiling in SDS-PAGE buffer to stop the reaction.
Samples were then run out on a 15% gel, stained with Coomassie to check for loading, and dried and
exposed to a phosphosensitive plate to determine 32P incorporation.
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