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SUMMARY

Purpose: Presurgical language mapping in dominant

hemisphere epilepsy to evaluate the risk of postoperative

deficit is particularly difficult in children. Extraoperative

invasive cortical stimulation can show some areas critical

to language, but not all of them, due to scarce sampling,

poor cooperation, cortical immaturity, or network reor-

ganization, whereas functional magnetic resonance imag-

ing (fMRI) displays entire networks involved in, but not

necessarily critical to, language. In a homogeneous series

of children with epilepsy, we compared the contributions

of language fMRI and depth electrode stimulations to opti-

mize language mapping.

Methods: Eight children (7.5–15.5 years) with left frontal

or temporal epilepsy underwent language fMRI and lan-

guage stimulation with depth electrodes as part of their

comprehensive presurgical workup. fMRI data collected

during sentence generation were analyzed using statisti-

cal parametric mapping (SPM2) (false discovery rate

[FDR] p < 0.05). Bipolar stimulations were performed

during language production tasks. By coregistering fMRI

and postimplantation computed tomography (CT)

images, we were able to directly compare the cortical

areas identified by both investigations.

Key Findings: fMRI during sentence generation robustly

showed activation in the whole perisylvian regions with lit-

tle reorganization (left hemisphere dominant in 7). Of the

184 electrode contacts tested for language, only 8 were

positive (language disruption) in three of the seven

patients with periictal language impairment and left lan-

guage dominance. All of the positive contacts colocalized

with an fMRI activated cluster, that is, fMRI did not miss

any region critical to language (sensitivity = 100%). How-

ever, 54 of the 176 negative contacts were within activated

clusters (low specificity).

Significance: In children with epilepsy, the sensitivity of

fMRI during sentence generation allows for the detection

of all critical regions displayed by cortical stimulation

within the large perisylvian language network, but with a

low specificity. It is, therefore, useful to optimize the place-

ment of intracranial electrodes when language mapping is

necessary. Systematic planning of the electrode place-

ment according to language fMRI maps should increase

the yield of extraoperative cortical stimulation, which

appears rather low in children when compared to adults.

KEY WORDS: Epilepsy, Pediatric, Functional magnetic

resonance imaging, Depth electrode stimulation,

Language.

Because of the progress in both presurgical investigations
and surgical techniques, epilepsy surgery is more often per-
formed for pharmacoresistant focal epilepsies in children,

where seizure control leads to better cognitive development
(Lendt et al., 2002; Sinclair et al., 2003). The goal of sur-
gery is to achieve complete resection of the epileptogenic
zone while preserving cortical function and avoiding any
postsurgery deficit. Focal brain pathology may lead to reor-
ganization of language networks through multifactorial
age-dependent cerebral plasticity. Atypical language repre-
sentation (right-sided or bilateral) is more frequent in adult
patients with left hemisphere epilepsy than in the control
population (Springer et al., 1999). Intrahemispheric reorga-
nization of language cortex has been demonstrated in adults
(Ojemann, 1979), and in children (Duchowny et al., 1996;

Accepted September 30, 2011; Early View publication November 29,
2011.

Address correspondence to Lucie Hertz-Pannier, INSERM U663 and
Neurospin, I2BM, DSV, CEA, Bat 145, PC 156, Gif sur Yvette 91191,
France. E-mail: lucie.hertz-pannier@cea.fr

Study done in the Pediatric Neurosurgery Unit, Fondation Ophtalmolog-
ique A de Rothschild, Paris, and Frederic Joliot Hospital and Neurospin,
I2BM, DSV, CEA, Gif sur Yvette, France.

Wiley Periodicals, Inc.
ª 2011 International League Against Epilepsy

Epilepsia, 53(1):67–78, 2012
doi: 10.1111/j.1528-1167.2011.03329.x

FULL-LENGTH ORIGINAL RESEARCH

67



Ojemann et al., 2003; Yuan et al., 2006). Some authors sug-
gest a pattern whereby developmental lesions and early
onset seizures do not always displace language cortex from
prenatally determined sites (Duchowny et al., 1996; Ander-
son et al., 2006), whereas others have shown different lan-
guage patterns in patients with epilepsy (Saltzman et al.,
2002; Ojemann et al., 2003; Yuan et al., 2006). However,
he potential for language relocalization decreases after the
age of 5 years (Vargha-Khadem et al., 1985). Therefore, the
perilesional localization of language in patients with dysem-
bryoplastic neuroepithelial tumor (DNET)/focal dysplasias
remains a controversy in refractory epilepsy.

Current techniques for localizing eloquent cortex, how-
ever, have specific limitations in children, making precise
cortical mapping a challenge in this population.

Intracarotid sodium amobarbital, or WADA, testing with
selective intracarotid amobarbital injection has been used to
assess language, but its localizing power is limited to the
determination of hemispheric dominance (Hajek et al.,
1998). Cortical stimulations have been used in the past to
map eloquent cortices (Penfield & Rasmussen, 1950).
Although intraoperative cortical stimulation has been
restricted to cooperative patients who were able to cope with
awake surgery, subdural grids or depth electrodes have
enabled cortical mapping outside the operating room, espe-
cially in children (Duchowny et al., 1996; Kurjak et al.,
2007). Such preoperative cortical stimulation is currently
considered the reference technique for language mapping
because of its high specificity: It shows areas that are criti-
cal for speech (Stanojevic et al., 2002). The choice between
depth and subdural electrodes is based on the surgeon’s pref-
erence, since both techniques are associated with different
risks and benefits. Many factors, however, make language
cortical stimulation a challenge in children, such as develop-
mental delay and insufficient attention or cooperation. In
addition, incomplete myelination is known to decrease the
sensitivity of stimulation techniques and requires age-
adapted stimulation protocols (Alvarez & Jayakar, 1990;
Jayakar et al., 1992).

Single proton emission computed tomography (SPECT)
and positron emission tomography (PET) have also been
used to map language or motor areas (Vinas et al., 1997;
Tatlidil et al., 2000; Borbely et al., 2003). However, these
modalities lack both spatial and temporal resolution, and
radiation exposure is a concern in children. Functional mag-
netic resonance imaging (fMRI) has now replaced these
techniques thanks to its noninvasiveness and better spatial
and temporal resolution.

Language fMRI has demonstrated excellent correlation
with the WADA test (Binder et al., 1996; Hertz-Pannier
et al., 1997; Lehericy et al., 2000; Balsamo & Gaillard,
2002; Sabsevitz et al., 2003; Woermann et al., 2003),
which validates its use for the assessment of hemispheric
language dominance in adults as in children. However,
fMRI shows the activation of all networks involved in a

given task, not just those areas critical to language func-
tions. Therefore, it cannot currently delineate language
cortex during surgery.

Although stimulations and fMRI do not directly assess
the same process, they both help in the quest for effective
language mapping. Clinically relevant issues for children
undergoing operation include the following: (1) whether an
area is implicated in language function and (2) whether its
removal might affect the child’s capacity to speak and
understand speech. However, the yield of stimulations is
highly dependent upon the placement of electrodes, which
is currently mostly driven by hypotheses on the epilepto-
genic zone, rather than on language cortex. Although both
issues can be tested in cases of overlap between both cortic-
es, electrodes only minimally misplaced may miss eloquent
cortex abutting the epileptogenic zone.

Comparison between cortical stimulations and fMRI has
been attempted in both isolated cases and case series (Fitz-
Gerald et al., 1997; Ruge et al., 1999; Rutten et al., 2002;
Roux et al., 2003) in adults, with a fair concordance of
localization of the eloquent regions, but not in children.

The aim of this clinical report was to describe the con-
cordance/complementarity of both techniques in a small
series of epilepsy children, using a precise colocalization
method of the relevant cortical areas. More specifically,
we aimed at questioning the clinical usefulness of lan-
guage fMRI mapping beyond the establishment of lan-
guage dominance in children with epilepsy: (1) to assess
the sensitivity of language fMRI in detecting critical areas
revealed by electrical stimulation, and (2) to question the
role of fMRI in the optimization of electrode placement
for cortical stimulation.

Patients and Methods

Patients
Among the children operated on at our epilepsy surgery

institution (�120 per year), we included all children who
had been investigated during three consecutive years for
intractable left frontal or temporal lobe epilepsy and who
had undergone language mapping with both fMRI and depth
electrode stimulation (Table 1 and Fig. 1). This patient pop-
ulation is scarce and particularly difficult to study.

We selected the nine children in whom a postimplanta-
tion computed tomography (CT) scan was available in a dig-
ital format, a mandatory condition for the imaging process
of the present study. A 9-year-old girl was excluded from
the series because her fMRI was inconclusive (no activated
clusters). Among the remaining eight children (seven boys;
8–16 years, median age 11.25 years, seven right-handed),
seven had clinical evidence of left language dominance as
demonstrated by language impairment during or after sei-
zures (see Table 1). One patient (Patient 4, right-handed)
did not exhibit any language impairment either ictally or
interictally.
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Methods

fMRI paradigm
After having obtained parental consent and child assent,

according to our institutional review board approval,
language fMRI was performed on a 3-Tesla research mag-
net (Bruker, Erlangen, Germany) using a modified gradi-
ent-echo echo-planar sequence (22 axial slices, resolution
3.7 · 3.7 · 5 mm3, TR = 5 s). Children were especially
trained before testing to optimize comprehension and per-
formance, after careful explanation was given about the
covert condition that they would perform during fMRI
using the same timing and paradigm as in MRI, but in
overt condition and with different words. Among the four
expressive and receptive tasks performed in our local pro-
cedure (Hertz-Pannier et al., 2001), the candidate task for
the present study consisted of generation of sentences,
performed covertly to minimize the risk of head and facial
movements. In our experience, this expressive language
task, close to the widely used verb generation task, and
strongly lateralizing, has several major advantages in chil-
dren, although no control of performance can be obtained
during scanning: it is amenable to children with IQs down

to 50, does not require much in the way of attentional
resources or heavy working memory load, and optimizes
the yield of fMRI in terms of assessment of hemispheric
dominance, when compared to other language paradigms.
In this series, our pragmatic goal with fMRI was to screen
the entire language network (as well as its lateralization),
rather than to find specific language areas. Patients were
presented with a concrete word via headphones every 5 s.
They were then asked to silently generate a simple sen-
tence (subject-verb-object) using the presented word. Sub-
jects were instructed not to vocalize their sentences in
order to minimize artifacts from face movements. They
were given five nouns in each activation block, and acti-
vation blocks alternated with blocks of rest of the same
duration (total 3 min 35 s). To ensure good comprehen-
sion of the auditory stimuli, these were presented during
the silent interval formed by the grouping of the slice
acquisition gradients (loud beeps) over 1.4 s within each
TR of 5 s. During rest, patients were asked to stop think-
ing of words and to listen to the magnet noise.

In one child who failed the sentence generation (Patient
1), word repetition was used instead, with the presentation
of concrete words through the headphones in the magnet.

Figure 1.

Surface rendering of fMRI during sentence generation (p < 0.05 per cluster) in the patients. Robust activation in the prefrontal regions

is seen in all patients. Temporal activation is detected in six patients. Numbers on the left indicating the patient number. HLI,

hemispheric laterality index. *In Patient 1, word repetition was used because the child failed the sentence generation task.

Epilepsia ILAE
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Two words were presented in each activation block, and
activation blocks alternated with blocks of rest of the same
duration. The patient was asked to silently repeat the words
immediately after hearing them. During rest, he was to
remain quiet and listen to the magnet noise.

Each child underwent a three-dimensional (3D) inversion
recovery (IR)-prepped T1 acquisition for anatomic localiza-
tion of activated clusters.

Electrodes implantation and stimulation
Depth electrode implantation had been planned for sei-

zure monitoring after careful review of video–electroen-
cephalography (EEG) and MRI, and was performed within
a mean interval of 6 months around the fMRI. As all but one
child had periictal language impairment, we expected a
proximity between critical language cortex and the epilepto-
genic zone. We slightly modified the implantation design in
the last child included in the series (Patient 2) to place some
electrodes within the fMRI activated clusters, surrounding
the hypothetical epileptogenic zone. Depth electrodes were
implanted using a frameless stereotactic robotic system
(NeuroMate; Schaerer-Mayfield, Venissieux, France) com-
bined with an imaging workstation for trajectory planning
and electrode positioning (Voxim software; IVS Solutions,
Chemnitz, Germany). Following the implantation, all chil-
dren underwent a CT scan to confirm each electrode’s exact
position.

The electrodes were stimulated using the Jayakar proto-
col during 1 week of EEG-recording (Jayakar et al., 1992).
Square pulses of current were applied either to two adjacent
contacts or to two contacts separated by a third one (bipolar
stimulation). The stimulations began at an intensity of
1 mA, a high frequency of 50 Hz, a 0.3 ms pulse of alternat-
ing polarity and a train duration of 3–5 s. Stimulation inten-
sity was increased by steps of 1 mA until either
poststimulation discharges were seen on EEG, a clinical
response with speech arrest occurred, or a seizure was trig-
gered.

In the children who also had electrodes in either the motor
cortex or the sensorimotor area (SMA; n = 3, 8–16 years), a
positive response was obtained at an average of 2 mA. Post-
stimulation discharges were observed with intensities vary-
ing from 1.6–10 mA. Therefore, the maximal stimulation
intensity was 10 mA.

The language tasks used for stimulations all involved
‘‘ecologic’’ language production, and consisted of counting,
reading a book aloud, or spontaneously generating speech,
depending on child’s abilities and the site of stimulation, to
keep an acceptable length of the procedure. A response was
considered positive when the child displayed a clear and
transient arrest in language activity during stimulation.

Fusion of fMRI and CT scan images
To obtain the same reference space for depth electrodes

and fMRI, the postimplantation CT scan was aligned with

the anatomic MRI data and resliced using MRIcro (Version
1.39) (Rorden & Brett, 2000) and SPM2.

Fusion of CT and fMRI images was performed using two
different softwares: Anatomist (CEA, Orsay, France, http://
brainvisa.info) and MRIcro (Version 1.39). Fusion with
both software packages was similar, as well as the number
of electrode contacts either within or outside of activated
areas.

Analysis
All stimulation data were reviewed and grouped as posi-

tive or negative.
The fMRI data were analyzed using SPM2 (Wellcome

Institute for Cognitive Neuroscience, University College,
London, United Kingdom). The first three images of each
run were discarded to allow stabilization of the longitudinal
magnetization. The remaining nonnormalized images were
realigned to the first image to correct for head motion during
acquisition, coregistered to the anatomic image, resliced,
and smoothed (full width at half maximum [FWHM] of
5 mm). Images were then analyzed using pixel-wise thresh-
olds of p < 0.05 and p < 0.01 (FDR), corrected at a cluster-
level of p < 0.05. The obtained clusters were then saved as a
3D image.

In an additional analysis to assess hemispheric language
dominance, hemispheric laterality indices were calculated
by automatically summing all activated clusters in the left
and right hemispheres (excluding basal ganglia, occipital
cortex, and midline pixels) after linear normalization, and
computing Left ) Right/Left + Right ratios (Binder et al.,
1996).

Sensibility and specificity of the fMRI were calculated
using the stimulation results as the reference.

Results

Language representation at fMRI
fMRI during sentence generation elicited consistent acti-

vation in the usual perisylvian network in all patients, con-
firming the robustness of both the task and the analysis
threshold, albeit with considerable interindividual variation,
as expected in this population (Fig. 1). Activation of the
prefrontal cortex (left inferior frontal gyrus) was found in all
subjects, whereas posterior temporal activation was seen in
six of them.

In the seven patients with periictal language impairment,
fMRI confirmed the clinically suspected left hemisphere
language dominance with positive hemispheric laterality
index (HLI) (between 0.1 and 1; Fig. 1). In Patient 1 where
word repetition was used, temporal activation was rather
bilateral, contrasting with a clearly left lateralized activation
in Broca’s area, resulting in an laterality index (LI) of 0.1.
In the right-handed child without periictal language mani-
festations (Patient 4), the dominance side was atypical with
a right-sided lateralization (HLI )0.28).
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Language stimulation using depth electrodes
Among the 184 depth electrodes contacts stimulated in

total, 8 disclosed a positive result, that is, with a language

disruption during the stimulation between 2 and 5 mA
(Table 2). That corresponded to three of the seven patients
with both periictal language deficits and left language domi-
nance on fMRI (Table 3), interestingly including Patient 2
in which the electrode placement had been slightly modified
to place contacts within the fMRI activated clusters.
Patient 1 stopped counting (repeated in two stimulations)
while stimulating two contacts in the pars opercularis at a
threshold of 2 mA. Patient 2 stopped counting (first stimula-
tion) and generating nouns (second stimulation) while stim-
ulating two contacts of a single frontal electrode at 4 and
5 mA. In Patient 3, a 2-mA stimulation of two contacts of
two different posterior temporal electrodes produced com-
prehension impairment and reading arrest, followed by a
seizure. No language disturbance was obtained in the other
four patients.

Table 2. Comparison between language depth

electrode stimulation and fMRI activation

Stimulation + Stimulation )

SPM analysis: FDR, p < 0.05;

v2 = 16.46 (p < 0.01)

fMRI + 8 54

fMRI ) 0 122

SPM analysis: FDR, p < 0.01;

v2 = 16.36 (p < 0.01)

fMRI + 7 41

fMRI ) 1 135

Table 3. Individual results of depth electrode stimulations

Patient

Location

of epilepsy

Depth electrodes:

number of stimulated

contacts and location

Maximal

parameters

of language

stimulations

Positive contacts for

language: number,

location, impact, intensity

Maximal

parameters

of motor

stimulations Surgery

1 (m) Left opercular 22 left frontal

and temporal

2 mA

50 Hz

0.3 ms

Yes, two contacts on one

electrode, inferior

frontal gyrus, pars

opercularis stop

counting + seizure

ND IFG (pars orbitalis)

anterior insula,

MSPT on the

pars opercularis

Engel IIa (1 year)

2 (f) Left frontal 4 left

frontotemporal

2–6 mA

50 Hz

0.3 ms

Yes, two contacts on one

electrode*, inferior

frontal gyrus stop

counting and noun

generation, 5 mA

ND Denied

3 (m) Left posterior

temporoparietal

12 left

frontotemporoparietal

2–5 mA

50 Hz

0.3 ms

Yes, four contacts on

two electrodes,

temporoparietal reading

arrest, decreased

comprehension

ND Pending

4 (m) Left frontal 38 left frontal 2–7 mA

50 Hz

0.3 ms

No Motor

stimulation

3 mA

MFG, precentral,

very focal Engel I

(6 months)

5 (m) Left frontal 29 left frontal 5 mA

50 Hz

0.3–5 ms

No (discharges) Sensory

stimulation +

seizure: 5 mA

Focal IFG

lesionectomy,

sparing the foot

of F3 Engel I

(3 years)

6 (m) Left temporal ext

post and ant

30 left temporal 2–6 mA

50 Hz

0.3 ms

No ND Denied

7 (m) Left opercula +

IFG + motor

18 left frontal 2–6 mA

0.3 ms

No (postdischarge,

seizure aura)

Motor: 2 mA

Sensory: 3 mA

Denied

8 (m) Left temporal 31 left temporal 2–3 mA No (hearing decreased

near Heschl gyrus)

ND Lesionectomy T1,

with left

posterior T1

intact, postop

deafness, Engel Ia

(1 year)

m, male; f, female; ND, not done; mA, milliamperes; Hz, hertz; ms, milliseconds; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; T1, superior temporal
gyrus.
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Colocalization of depth electrodes and fMRI
At the individual level, the colocalization of each positive

contact with fMRI-activated clusters was excellent (pars
opercularis of the left inferior frontal gyrus in Patient 1
(Fig. 2A–C); inferior frontal gyrus in Patient 2; temporopa-
rietal junction in Patient 3; Table 2).

Although, as expected, a large number of negative con-
tacts were outside activated areas, some were within or at
the border of activated clusters [superior temporal sulcus in
Patient 1; posterior portion of the middle temporal gyrus
in Patients 3 and 6; inferior and middle frontal gyri, precen-
tral gyrus, and SMA in Patients 4, 5, and 7; and superior

A B

C

D

E

Figure 2.

Excellent colocalization of fMRI activation and positive electrode contact (Patient 1). (A–C) Axial, coronal, and sagittal views of

the CT–fMRI fusion showing positive contacts located in an activated cluster in the pars opercularis of the left inferior frontal gyrus.

(D–E) Postoperative CT scan showing the resection with the pars opercularis left in place. No postoperative language deficit and

Engel I at 12 months follow-up.

Epilepsia ILAE

A B

C

Figure 3.

Low specificity of fMRI activation

(Patient 8). (A–C) Axial, coronal,

and sagittal views of the CT-fMRI

fusion, where the electrodes within

the activated areas were negative to

stimulations. Frontal depth

electrodes were decided because of

the rapid spread of the seizures to

the frontal area on the scalp EEG to

exclude the possibility of the inferior

frontal gyrus being part of the

epileptogenic zone. Left temporal

dysembryoplastic neuroepithelial

tumor resected (lesionectomy).

One year after surgery the patient is

seizure free.

Epilepsia ILAE
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temporal gyrus and inferior frontal gyrus in Patient 8
(Fig. 3A–C)].

In the whole series, all eight positive contacts were
located within an fMRI cluster activated during sentence
generation at the widely used threshold of p < 0.05 (FDR).
Among the 176 negative contacts, 54 were located within an
active fMRI cluster and 122 were not (v2 = 16.46, p < 0.01,
Table 2). At a more stringent threshold (FDR p < 0.01),
only seven of the eight positive contacts were within an acti-
vated cluster (global results v2 = 16.36, p < 0.01, Table 2,
Fig. 4A,B).

Therefore, if we were to take the depth electrode simula-
tion as gold standard, the fMRI would have a sensitivity of 1
and a specificity of 0.69 when analyzed at p < 0.05; and a
sensitivity of 0.88 and a specificity of 0.77 when analyzed at
p < 0.01.

Five children were operated on and none had postopera-
tive deficit. These children have remained seizure-free for a
mean follow-up of 16 months (range 6 months–3 years).
Three children were denied surgery on the basis of bilateral
epileptogenic foci or a high risk of postoperative language
deficit (Table 3).

All surgeries spared the areas that were positive during
stimulation. In addition, planned resections also spared
areas that were activated during fMRI despite their negative
response at stimulation (in the Broca or Wernicke area).
Therefore, we have no feedback whether those areas were
indeed necessary for language.

Discussion

We report the first description of combined language
mapping in pediatrics, using coregistered fMRI maps and
depth electrode stimulation. Despite its limited sample size,
collecting these data in such a series of fairly homogeneous
epileptic children with stringent inclusion criteria was a
challenge, given the many limitations inherent to a pediatric
population. In this series, fMRI during a broad language task
amenable to deficient children (sentence generation,
FDR < 0.05) showed a large perisylvian network in which
it did not miss any critical language areas demonstrated by

cortical stimulation (sensitivity = 100%). However, the
yield of depth electrode language stimulation was low (8 of
184 contacts; 3 of 7 patients). Notably, one of the three
patients with positive contacts had the electrode placement
modified according to the fMRI map, to place contacts
within the activated clusters. Not surprisingly, fMRI also
showed many more activated clusters, either colocalized
with negative contacts (30% of them) or outside of any con-
tact (low specificity).

We propose that, beyond the establishment of hemi-
spheric dominance, language fMRI be systematically per-
formed in the planning of cortical stimulation, using broad
tasks including expressive and receptive processing that
activate the whole perisylvian network, in order to plan the
implantation scheme according to language maps and
increase the yield of cortical stimulation that is highly
dependent on appropriate electrode placement.

fMRI
The ability of fMRI to reliably demonstrate language

dominance has led to a decline in the use of the WADA test.
However, even though fMRI is now everyday practice in
adults for that purpose (Binder et al., 1996; Springer et al.,
1999; Lehericy et al., 2000), it is not yet fully accepted as a
standard of care in pediatric epilepsy because of the limited
number of published studies (Hertz-Pannier et al., 1997,
2002; Balsamo & Gaillard, 2002; Wilke et al., 2003, 2006;
Szaflarski et al., 2006; Yuan et al., 2006). Expressive tasks
such as word fluency or verb generation are the most lateral-
ized tasks and provide better correlation with invasive meth-
ods like the WADA test than receptive tasks (Lehericy
et al., 2000). Generation of sentences, an easy task largely
amenable to impaired children, activates a large left perisyl-
vian network, comprising both expressive and receptive lan-
guage areas (Broca and Wernicke) as well as the usual
cortical areas found to be coactivated in various language
tasks (Muller et al., 1997; Vigneau et al., 2006). In this ser-
ies, seven of the eight children showed clear left dominance.
These children had little reorganization despite early left
perisylvian epilepsy, as it was found in other studies (Duch-
owny et al., 1996; Liegeois et al., 2004), unlike some

A B
Figure 4.

Threshold effect. (A) At FDR

p < 0.05, the electrode contacts

that are positive to stimulation are

within an activated area. (B) At

FDR p < 0.01, the activated area

around the electrode contacts is no

longer detected.

Epilepsia ILAE
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reported cases, which showed more reorganization with
early seizure onset (Gaillard et al., 2000; Sachs & Gaillard,
2003; Wood et al., 2004; Wilke et al., 2006).

Although fMRI activations show all neuronal networks
involved in a specific task, they do not indicate the hierarchy
between participating regions. Therefore, an activated
region may not be functionally critical to the language task
being studied (i.e., it could be resected without inducing per-
manent language deficit, low specificity). However, the use
of a ‘‘nonspecific’’ task such as sentence generation show-
ing the whole left perisylvian language network (high sensi-
tivity) seems useful to constrain and refine the planning of
cortical stimulation to successfully map language cortex
representation, providing we can demonstrate it does not
miss any critical area.

In this study, our goal was not to test the specificity of
fMRI during either expressive or receptive language, but
rather to investigate a clinically meaningful, highly sensi-
tive way of optimizing the electrode placement. Sentence
generation showed lateralized frontal activation in all, and
temporal activation in six of them, reflecting the findings in
our large experience of >250 children with epilepsy over
>12 years. Our comprehensive protocol also includes recep-
tive tasks, such as listening to sentences, which exhibits
robust bilateral activation in the superior temporal gyrus,
with a mild degree of leftward asymmetry in the posterior
temporal cortex (Wernicke’s area), and a significant overlap
with the activation found during sentence generation.
Although it might be interesting in some instances to add a
receptive task to map larger temporal areas, it would, how-
ever, not have increased the yield of fMRI in this study, as
all positive contacts were located in sentence generation
activation clusters.

Depth electrode stimulation
In this study, we could obtain a language disruption in

only three patients. These disruptions included a total of
eight electrode contacts of the 184 tested, which is a low
yield. Insufficient stimulation intensity is unlikely,
because stimulation was terminated in the negative cases
due to afterdischarge or seizure-induction. This termina-
tion occurred at intensities up to 10 mA, whereas positive
responses were obtained at intensities between 2 and
5 mA.

Direct intraoperative cortical stimulation is commonly
being considered the gold standard for revealing regions
critical to language function in adults (Kral et al., 2006).
However, this technique is not feasible in most children.
More recently, perioperative stimulations using subdural
grids or depth electrodes have been challenged because of
their insufficient sensitivity in children (Jayakar et al.,
1994; Ojemann et al., 2002, 2003). Using grids, Schevon
et al. (2007) showed that children younger than 10 have a
lower response rate to cortical stimulation than older chil-
dren or adults. The following different variables may

account for these negative language findings and apply to
both grids and depth electrodes:
1 While left language specialization has been shown as

early as 3 months in healthy infants (Dehaene-Lambertz
et al., 2002, 2010), language representation is still more
bilateral in healthy toddlers than later on (Redcay et al.,
2008), with increasing specialization of left perisylvian
networks until at least 18 years of age (Holland et al.,
2001; Schapiro et al., 2004; Brown et al., 2005; Szaflar-
ski et al., 2006; Yuan et al., 2006). This might reduce the
possibility of cortical areas whose unilateral left stimula-
tion would induce a speech disturbance.

2 Reorganization of language distribution has been shown
more frequently in subjects with early brain lesions and
epilepsy, with a trend toward more bilateral language
(Hertz-Pannier et al., 1997; Springer et al., 1999;
Liegeois et al., 2004; Yuan et al., 2006). This, however,
was not clearly the case in our series, where all children
but one showed some degree of left specialization. This
relative lack of reorganization may relate to the high rate
of developmental lesions that are known to keep language
networks in their predetermined sites. Indeed, in Duch-
owny et al., 1996. most children with developmental
lesions had positive language sites that directly over-
lapped or did lay adjacent to the epileptogenic zone (six
of six in the temporal lobe, and 10 of 11 in the frontal
region).

3 Alternatively, developmental delay in children with epi-
lepsy, especially in language performance and attentional
resources, may limit their capacity for language testing.

4 A fourth hypothesis is that the developing brain has a
higher stimulation threshold, due to higher amount of
small fibers and lack of complete myelination (Jayakar
et al., 1992, 1994; Chitoku et al., 2001). Comparably,
Alvarez and Jayakar (1990) showed a progressive
increase in afterdischarge and sensorimotor response
thresholds with age, which might be related to more com-
plete myelination, more mature neurons, and a shorter
chronaxis. These observations raise questions about the
safety of the high currents needed to elicit a response in
young children (up to 20 mA) (Berger et al., 1989;
Alvarez & Jayakar, 1990; Jayakar et al., 1992; Chitoku
et al., 2001, 2003; Ojemann et al., 2003; Schevon et al.,
2007).
The detection of language cortical areas is also highly

dependent on the appropriate placement of grids or depth
electrodes because these areas are only 1–2 cm2 (Ojemann
et al., 2002). Placement is currently mostly based on clinical
and electrophysiologic hypotheses on the epileptogenic
network, as it is impossible to infer the precise cortical orga-
nization of language from anatomic data alone. Geometric
differences between grids and depth electrodes (grids:
3–5 mm in diameter, separated by 1 cm; depth electrodes:
2 mm in diameter, separated by 1.5 mm) also influence
the stimulated volume. Although subdural grids allow
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stimulation of the cortical surface, depth electrodes induce
transcortical stimulation. In adults, bipolar stimulation
applied to stereoencephalography (SEEG) got better
responses when high frequency stimulation was applied
(Ostrowsky et al., 2000). No such studies have been
reported in children.

Even when eliciting a response, stimulation can occasion-
ally be misleading, since a case of falsely positive
stimulation was recently published (Seeck et al., 2006). In
that case, no language deficit occurred after surgical
removal of an area where cortical stimulation had induced a
speech arrest.

Finally, some authors have recently suggested the need
for alternative, more sensitive, and complementary tech-
niques such as fMRI or magnetoencephalography (MEG)
(Schevon et al., 2007) in addition to specific cortical stimu-
lation.

Colocalization of stimulation contacts and fMRI clusters
A few studies have compared intraoperative stimula-

tions and fMRI in short series of adults. In 1997, FitzGer-
ald et al. (1997) superimposed an intraoperative
photograph of a stimulation map onto functional maps
merged with an MR angiogram. Later, Ruge et al. (1999),
Rutten et al. (2002), and Roux et al. (2003) compared the
responses of intraoperative stimulation (either bipolar or
monopolar) to fMRI maps (for verb generation, picture
naming, verbal fluency, and sentence comprehension)
using neuronavigation or video/photographic recordings.
Although Ruge found no fMRI false negatives in 426
stimulation sites in 14 patients, Roux found at least 9
cortical areas that were positive to stimulation but not acti-
vated on fMRI, depending upon the type of language task.
Overall, in these studies the sensitivity of fMRI, consid-
ered within the group of areas involved by the electrodes,
varied from 38–100%, and the specificity from 65–97%.
Our data are the first currently available in children.

The challenge in presurgical mapping is to maintain high
sensitivity to lower the risk of postoperative deficits while
preserving reasonable specificity. The statistical threshold
substantially influences the extent of activated areas and the
possible limits of resection. To provide a framework for
clinical use, we kept the same threshold for all patients. We
used a threshold of FDR p < 0.05, which is commonly used
in pediatric and adult studies. This threshold has shown con-
vincing results, usually favoring sensitivity over specificity
in the analysis (Wilke & Lidzba, 2007). In this presurgical
series, where our goal was indeed to favor fMRI sensitivity,
it proved appropriate to display all the critical areas demon-
strated by cortical stimulations. When we used a more strin-
gent threshold (FDR p < 0.01) to ensure that the method
was reasonably robust, only one positive contact was
located just outside the corresponding activated cluster.
Therefore, we suggest that a threshold such as FDR

(p < 0.05) be used to ensure that all essential areas are
included.

If cortical stimulation was considered as the reference to
display critical regions in this pediatric series, in the
absence of any other possible gold standard, the sensitivity
of fMRI would reach 100% at a threshold of 0.05, that is,
fMRI did not miss any critical region (sensitivity remained
high, at 88%, when using a more stringent threshold of
0.01), and the specificity for both thresholds would be,
respectively, 0.69 and 0.77. However, those values might
not reflect entirely the reality, since the stimulation itself is
neither sensitive nor specific at 100%. In addition, sensitiv-
ity/specificity results observed in this short series cannot
be easily generalized. Indeed, both depend heavily on the
study design, which includes many variables (type of lan-
guage tasks in both fMRI and stimulation, performance of
the patients, size of the population, parameters of stimula-
tion, and so on). However, this preliminary study demon-
strates the possibility to achieve good sensitivity of fMRI,
and paves the way for larger studies that will progressively
refine the yield of fMRI for the planning of electrode
placement. Currently, the trajectory of the electrodes is
decided solely according to the scalp EEG in conjunction
with the semiology of the seizures and an eventual lesion.
Their exact trajectory is then planned by looking at the
MRI of the patient and might be slightly modified to avoid
cortical vessels. Because the clinical and EEG information
enable the surgical team to decide on an approximate loca-
tion, within a few millimeters, if there is an fMRI activated
area in that vicinity, then a modification of the trajectory
by a few millimeters will not affect the quality of the
recording from an epileptology point of view (to find the
epileptogenic zone), but might enable testing of language
in that precise location.

In the child where electrode placement was slightly modi-
fied according to the fMRI results by place contacts within
an activated cluster in the left frontal operculum (Patient 2),
the stimulations elicited a positive response. This further
suggests that appropriate placement of electrodes according
to fMRI may increase the yield of stimulations.

Of course, not all fMRI activated areas could be corre-
lated with stimulations, due to the restricted number of
implanted electrodes. In addition, our goal was not to com-
pare between both modalities the localizations of regions
specific to a particular language component, but to highlight
the whole language network in which electrodes should be
placed to successfully map language. Indeed, the fMRI task
used here includes numerous oral language processes (com-
prehension, phonology, semantics, syntax, and so on) and
activates the entire perisylvian network, when compared to
simple rest. This procedure maximized our chances of
detecting all regions involved in ‘‘real-life’’ language abil-
ity. In addition, testing each electrode with specific lan-
guage tasks would considerably lengthen the procedure
considering the attentional control of our pediatric popula-

76

S. de Ribaupierre et al.

Epilepsia, 53(1):67–78, 2012
doi: 10.1111/j.1528-1167.2011.03329.x



tion. Because we could demonstrate the high sensitivity of
fMRI in this study, it is thus not surprising to find numerous
regions activated at fMRI that are not critical to language
(low specificity).

Finally, the only ‘‘gold standard’’ for testing the function
of a specific cortical area would be an unexpected postoper-
ative deficit. This fortunately is rare and did not occur in this
series.

Conclusion

This study confirms the high sensitivity of fMRI for
detecting all the areas critical for language in children when
an appropriate ‘‘broad’’ task is chosen. This makes fMRI an
exquisite tool to be used systematically for preoperative
mapping, even in patients with cognitive deficits, whereas
depth electrode stimulations retain the ability to test the crit-
ical contribution of each cortical area in language function,
and to tailor the resection when the epileptogenic zone lays
within or in close vicinity to eloquent cortex. Considering,
however, that the sensitivity of cortical stimulation tech-
niques is limited in pediatrics not only by the number of
electrodes but also by many practical constraints and by the
immaturity of the brain, fMRI provides a useful comple-
mentary method for optimizing language mapping in the
epilepsy surgery workup. We believe that in order to
increase the yield of cortical stimulations, an ideal approach
would be to plan the trajectory of the electrodes according
to fMRI activation maps, in addition to the hypotheses on
the epileptogenic zone. This would allow surgeons to more
efficiently combine epilepsy mapping and language map-
ping, which is especially relevant when the epileptogenic
zone is close to language cortex. Modifying the trajectory
by a few millimeters would enable the cortical stimulation
to confirm cortical function. This step, along with the opti-
mization of both stimulation parameters and task paradigms
in children, would provide better language mapping for
planning resective surgery. It would also allow better
assessment of the concordance of electrode stimulation and
fMRI activation.
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