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The E26 Transformation–Specific Family Transcription Factor
Spi-C Is Dynamically Regulated by External Signals in B Cells

Hannah L. Raczkowski, Li S. Xu, Wei Cen Wang, and Rodney P. DeKoter
Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; and Division of Genetics
and Development, Children�s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada

ABSTRACT

Spi-C is an E26 transformation-specific transcription factor closely related to PU.1 and Spi-B. Spi-C has lineage-instructive functions

important in B cell development, Ab-generating responses, and red pulp macrophage generation. This research examined the

regulation of Spi-C expression in mouse B cells. To determine the mechanism of Spic regulation, we identified the Spic promoter and

upstream regulatory elements. The Spic promoter had unidirectional activity that was reduced by mutation of an NF-kB binding site.

Reverse transcription-quantitative PCR analysis revealed that Spic expression was reduced in B cells following treatment with

cytokines BAFF + IL-4 + IL-5, anti-IgM Ab, or LPS. Cytochalasin treatment partially prevented downregulation of Spic. Unstimulated B

cells upregulated Spic on culture. Spic was repressed by an upstream regulatory region interacting with the heme-binding regulator

Bach2. Taken together, these data indicate that Spi-C is dynamically regulated by external signals in B cells and provide insight into the

mechanism of regulation. ImmunoHorizons, 2022, 6: 104–115.

INTRODUCTION

B cells express BCRs specific to Ags, and these same Igmolecules
can be secreted as Abs. Ag-specific B cells can acquire the fate of
a long-lived memory B cell responsible for rapid reactivation on
secondary Ag challenge. Ag-specific B cells can also differentiate
into Ab-secreting plasma cells (PCs) (1). B cell development is
coordinated in stepwise fashion by a network of cell type� and
developmental stage�specific transcription factors (2).

The E26 transformation-specific (ETS) transcription factors
PU.1 (encoded by Spi1), Spi-B (encoded by Spib), and Spi-C
(encoded by Spic) are significant contributors to cell fate deci-
sions during hematopoiesis (3�6). PU.1 is required for genera-
tion of B cells and macrophages in mice (7�9) and for B cells in

humans (10). Spib�/� mice show impairments in B cell devel-
opment and function (4, 11). Mature B cells are not generated
in mice lacking both PU.1 and Spi-B in the B cell lineage (12).

Spi-C is a lineage-instructive transcription factor that is
important for the generation of multiple myeloid and lymphoid
cell subsets. In the B cell compartment, Spi-C promotes the
transition from large to small pre-B cells and regulates the gen-
eration of Ab-secreting cells (6, 13, 14). In the myeloid lineage,
Spi-C is indispensable for the generation of splenic red pulp
macrophages through a heme-dependent pathway (15, 16). Spi-
C has recently been implicated in regulating the inflammatory
profile of macrophages in response to NF-kB signaling, with
evidence that it promotes a protective, anti-inflammatory phe-
notype (17). As well, altered expression of Spi-C has been noted
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in inflammatory disease, both in mouse models and human
patient cells (18, 19). In the B cell lineage, Spi-C is expressed at
the pre-B, transitional, and mature B cell stages, with peak
expression occurring in transitional B cells (20, 21). In mature
and differentiated subsets, Spi-C expression is highest in Ab-
secreting cells compared with all other populations, most nota-
bly in terminally differentiated PCs (6, 22).

Despite its important contributions to B cell fate decisions, the
mechanisms underlying the regulation of Spi-C in B cells remain
largely unexplored. There has been nowork done at themolecular
level to characterize regulatory elements of the Spic locus. This
study aimed to investigate the regulation of Spi-C in B cells. Gene
expression analysis showed that Spic expression was reduced in B
cells following additionof a variety of proliferative signals. Cultured
but unstimulatedB cells upregulated Spic over time. At themolecu-
lar level, we found that the Spic promoter had unidirectional activ-
ity, which was reduced by mutation of an NF-kB binding site. Spic
was repressed by two upstream regulatory regions interactingwith
the heme-binding regulator Bach2. Taken together, these data indi-
cate that Spi-C is dynamically regulated by external signals in B
cells andprovide insight into themechanismof regulation.

MATERIALS AND METHODS

Mice
C57BL/6 mice were purchased from Charles River Laboratories
(Pointe-Claire, QC, Canada). All animals were housed under
specific pathogen-free conditions at the West Valley facility
(London, ON, Canada) and were monitored in accordance with
an animal use protocol approved by the Western University
Council on Animal Care.

B cell enrichment
Spleens were removed from male and female mice aged 6�12 wk
and dissociated into a single-cell suspension with ground-glass tis-
sue homogenizers. RBCs were lysed with ammonium-chloride-
potassium buffer, and B cells were enriched by negative selection
using the Miltenyi system comprised of the QuadroMACS Separa-
tor magnet, LD depletion columns, streptavidin microbeads
(Miltenyi Biotec, Bergisch Gladbach, Germany), and biotin-conju-
gated mouse anti-CD43 (clone S7; BD Biosciences). Effective
enrichment was confirmed by flow cytometry with staining for CD19
(clone 6D5; BioLegend, San Diego, CA) gated on all viable cells.

Cell culture
Primary mouse B cells were cultured in RPMI-1640 (Wisent, St-
Bruno, QC, Canada) containing 10% FBS, 10 U penicillin/1mg/ml
streptomycin/20 mM L-glutamine, and 10�5 M 2-ME. Additional
reagents used for culture of primary B cells are listed in
Supplemental Table I. Bone marrow was flushed from the femur
and tibia of C57BL/6wild-type (WT)mice aged 6�10wk. Follow-
ing erythrocyte lysis, bone marrow cells were plated at 2 × 105 in
six-well plates and cultured for 6 d in IMDM 1 10% FBS
(Wisent) supplemented with 20 ng/ml GM-CSF (PeproTech,

Rocky Hill, NJ). Bone marrow�derived macrophages (BMDMs)
were washed twice with D-PBS (Wisent) to remove nonadherent
cells and cultured in fresh IMDM1 10% FBS alone or containing
1000 ng/ml LPS (List Biological Laboratories, Campbell, CA) or
40 mM hemin (Sigma-Aldrich, St. Louis, MO). After 48 h,
BMDMs were harvested for RNA extraction. WEHI-279 B lym-
phoma cells were cultured in DMEM containing 4.5 g/l glucose,
10% FBS, 10 U penicillin, 1 mg/ml streptomycin, 20 mM L-gluta-
mine, and 10�5 M 2-ME. 38B9 pre-B cells were cultured in
RPMI-1640 containing the same supplements as for WEHI-279.
Fetal liver-derived pro-B cells were cultured in IL-7�conditioned
medium as previously described (23). All cells were cultured at
37�C and 5% CO2. Images were taken with the Zeiss Axio-
Observer and A1 AxioCam ICM1 using ZEN 2 Pro software.

Plasmids and cloning
The Spic promoter, region of interest (ROI) 1, and ROI 2 were
amplified from C57BL/6 genomic DNA by PCR using the Q5
High-Fidelity DNA Polymerase (New England BioLabs, Ipswich,
MA). PCR products were ligated into pSCB-Amp/Kan using the
StrataClone Blunt PCR Cloning Kit (Agilent Technologies, La
Jolla, CA). The Spic promoter was cloned into pGL3-Basic
(Promega, Madison, WI) using HindIII cut sites. Predicted NF-
kB subunit binding sites within the Spic promoter were identified
using CiiiDER (24) and ConTra v3 (25) software. Site-directed
mutagenesis was performed on one common predicted site. Spic
ROI 1 and ROI 2 were each ligated into the Spic promoter-con-
taining pGL3-Basic vector using KpnI/SacI and XhoI/SacI sites.
Site-directed mutagenesis was performed on one predicted
Bach2 binding site in each construct. Predicted Spi-C binding
sites were mutated by site-directed mutagenesis. Ligations were
performed with T4 DNA Ligase (New England BioLabs). All
PCR products were purified with the QIAEX II Gel Extraction
Kit (Qiagen, Hilden, Germany) prior to subsequent cloning. Site-
directed mutagenesis was performed using the Q5 Site-Directed
Mutagenesis Kit (New England BioLabs). Constructs were veri-
fied by Sanger DNA Sequencing at the London Regional Geno-
mics Center. Each cloned region was cloned and investigated in
both the forward and reverse orientations. All restriction
enzymes were purchased from New England Biolabs. Cloning
andmutagenesis primers are listed in Supplemental Table II.

Transient transfection
WEHI-279 or 38B9 B cells in early log-phase growth were
washed three times in serum-free DMEM (4.5 g/l glucose) or
RPMI-1640 (Wisent). Cells were incubated for 10 min at room
temperature with 0.35 mg of pRL-TK (Promega) and either
10 mg of each luciferase reporter vector or 5 mg of each reporter
and 5 mg of an additional expression vector. Samples were elec-
troporated at 220 V and 950 mF in 4-mm gap cuvettes
(Thermo Fisher Scientific, Rochester, NY) using a GenePulser
II with Capacitance Extender (Bio-Rad). Cells were recovered
at room temperature for 10 min and plated in six-well culture
plates in complete DMEM or RPMI for 24 h at 37�C, 5% CO2.
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Luciferase assays
Cells were washed twice in D-PBS (Wisent), and lysates were
collected using the Dual-Luciferase Reporter Assay System
(Promega) according to the manufacturer�s instructions. Lumi-
nescence was measured in 96-well opaque white plates using a
Synergy H4 plate reader (BioTek, Winooski, VT). Data were
collected using Gen5 software (BioTek).

Reverse transcription-quantitative PCR
Total RNA was extracted from fresh or cultured primary B cells
using the RNeasy Minikit (Qiagen) or TRIzol reagent (Ambion,
Austin, TX). cDNA synthesis (iScript cDNA Synthesis Kit; Bio-
Rad, Mississauga, ON, Canada) was performed using equal start-
ing RNA concentrations, followed by reverse transcription-quan-
titative PCR (RT-qPCR) analysis, which was conducted using the
SensiFAST SYBR No-ROX Kit (Bioline, Singapore) on the Quant-
Studio 5 or QuantStudio 3 Real-Time PCR System (Thermo
Fisher Scientific). Relative transcript levels were normalized to
TATA-binding protein (Tbp) and/or b-actin (Actb) and calculated
as fold change using the comparative threshold cycle (2�DDCT)
method. Primer sequences are listed in Supplemental Table III.

EMSA
Forward and reverse fully complementary oligonucleotides were
synthesized with 50 conjugation to IR700 dye to contain the pre-
dicted NF-kB site in the Spic promoter (50-GCTGCAAAGGG-
GATTTTTTTT-30, where bold indicated the consensus binding
site) or a mutant predicted to be unable to bind NF-kB (50-
GCTGCAAAGCCGATTTTTTTT-30, where underlined nucleo-
tides represent changes). Recombinant GST-p50 subunit D434-
969 was purchased from Sigma-Aldrich. Binding reactions were
performed for 20 min at room temperature with 20 pmol
annealed primers. Binding buffer contained 10 mM Tris�Cl (pH
7.5), 50 mM NaCl, 1 mM DTT, 1 mM EDTA, 1% Ficol-400, and
1 mg poly-dI-dC (LightShift; Thermo Fisher Scientific) in the
presence of 1 ml of either control Ab (2.4G2; BD Biosciences) or
anti�NF-kB p50 Ab (4D1; BioLegend). Protein�DNA complexes
were run on 4% nondenaturing gels for 1 h using TGE running
buffer and visualized using a Li-Cor Odyssey system at 700 nm.

Statistical analyses
All statistical analyses were performed using Prism 9.1.2
(GraphPad, La Jolla, CA). Statistical tests used are indicated in
the figure legends. Each data point on the figures is a biological
replicate representing cells enriched from a single mouse.

RESULTS

NF-jB activates transcription of Spic through interaction
with its promoter
The canonical and noncanonical NF-kB signaling pathways
have previously been implicated in regulation of Spic mRNA
transcription. First, Spic was found to be activated by a path-
way depending on noncanonical NF-kB signaling following

induction of dsDNA breaks by RAG1/2 (13, 14). Second, Spic
was found to be activated by LPS and TLR signaling in macro-
phages, activating canonical NF-kB signaling (17, 26). However,
the Spic promoter has not been characterized, and no NF-kB
binding sites were defined in previous studies. A region imme-
diately upstream of the transcription start site encompassing
483 bp of sequence was found to be conserved across verte-
brates (Fig. 1A). CiiiDER and ConTra v3 software packages
were used to predict transcription factor binding sites within
the conserved region of the promoter (Fig. 1B, 1C). One com-
mon predicted NF-kB binding site was identified by both pro-
grams. EMSA was used to determine the ability of rNF-kB p50
protein to bind to the predicted NF-kB site in the Spic pro-
moter (Fig. 1D, 1E). P50 interacted with the WT, but not the
mutant, NF-kB binding site, and the unmutated promoter
sequence showed a supershifted complex in the presence of
anti-p50 Ab (Fig. 1E, 1F). The 483-bp Spic promoter region was
PCR amplified, cloned, and ligated into the pGL3-Basic lucifer-
ase reporter plasmid. We performed site-directed mutagenesis
to mutate two crucial guanine nucleotides of the RGGRNN
consensus sequence known to be required for NF-kB subunit
binding (27) (Fig. 1D, 1E). Transient transfection of the Spic
promoter reporter vectors into WEHI-279 B lymphoma cells,
followed by luciferase assays, revealed that the promoter had
activity in the forward, but not the reverse, orientation (Fig. 1G,
1H). Transfection of the mutant vector into WEHI-279 B cells
resulted in reduced luciferase activity compared with the WT
vector (Fig. 1H). In summary, these experiments identify the
Spic promoter region and identify a functional NF-kB binding
site that may be involved in Spic transcriptional regulation.

Proliferative signaling reduces Spic expression in primary
splenic B cells
Our laboratory previously showed that Spic is expressed at high
levels in transitional B cells (20). Transitional B cell survival
requires BAFF signaling through the noncanonical NF-kB path-
way (28). To determine whether BAFF or other cytokines can
influence Spic expression, we enriched C57BL/6 B cells by CD43
column depletion to 97% as determined by flow cytometry (Fig.
2A), then treated with cytokines for various periods before Spic
mRNA transcript levels were determined by RT-qPCR. Culture
with 100 ng/ml BAFF neither increased nor decreased Spic
expression relative to freshly isolated B cells (data not shown).
Culture with IL-4 or IL-5 alone also had no effect on Spi-C
expression. In B cells cultured with IL-4 and IL-5 in combina-
tion, a 5-fold decrease in Spic expression over time was observed
(Fig. 2B), although there was no significant change in cell num-
bers (Fig. 2C). The combination of BAFF1 IL-41 IL-5 resulted
in a 40-fold decrease in Spic expression over 72 h (Fig. 2D). To
determine whether there was a link between B cell proliferation
and Spic expression, we examined Spic expression following cul-
ture of B cells with BAFF1 IL-41 IL-5 for 72 h in the presence
or absence of the actin polymerization inhibitor cytochalasin D
(29). Addition of cytochalasin D reduced downregulation of Spic

106 DYNAMIC REGULATION OF Spi-C BY EXTERNAL SIGNALS IN B CELLS ImmunoHorizons

https://doi.org/10.4049/immunohorizons.2100111

 by guest on A
ugust 8, 2022

http://w
w

w
.im

m
unohorizons.org/

D
ow

nloaded from
 

http://www.immunohorizons.org/lookup/suppl/doi:10.4049/immunohorizons.2100111/-/DCSupplemental
http://www.immunohorizons.org/


(Fig. 2E) and reduced cell counts at all time points, indicating
that it blocked cell proliferation (Fig. 2F). These results suggest
that downregulation of Spic by BAFF1 IL-41 IL-5 is dependent
on actin polymerization and cell division.

Downregulation of Spic expression in primary splenic
B cells by CD40L, anti-IgM, or LPS
To further examine the relationship between B cell prolifera-
tion and reduced Spic expression, we selected three additional
molecules to investigate their effect on Spic expression in B
cells. We examined the effect of CD40L by comparing Spic
expression of stimulated cells to cultured but unstimulated B
cells across three time points. Spic expression was reduced
over time, with its lowest expression at 72 h, showing a 29-fold
reduction in expression (Fig. 3A). B cells cultured with the
addition of CD40L increased in number over time (Fig. 3B).

We next asked how BCR signaling influenced Spic expres-
sion. B cells were cultured with anti-IgM Abs for 24�72 h, and
Spic expression was quantified by RT-qPCR relative to time-
matched cultured but unstimulated cells. We found that BCR
engagement reduced Spic expression in a time-dependent man-
ner, with expression reducing by 50-fold (Fig. 3C). As expected,
stimulation through the BCR also significantly increased the
number of live cells in culture over time (Fig. 3D).

Alam et al. (17) recently reported that treatment of BMDMs
with LPS activated Spic expression in an NF-kB�dependent
manner. To evaluate whether a similar transcriptional program
exists in B cells, we treated primary splenic B cells with LPS
for 24�72 h. We observed that LPS treatment downregulated
Spic expression by 225-fold in B cells (Fig. 3E). Spic expression
was lowest at 48 h and recovered to an extent at 72 h. Corre-
sponding cell count data displayed a considerable increase in

A

B

C

D E

H

G

F

FIGURE 1. Identification of an NF-kB binding site in the Spic promoter.

(A) University of California Santa Cruz Genome Browser track showing Spic exon 1 and surrounding sequence. Arrow represents exon 1, and box

denotes upstream region of conservation. (B) CiiiDER transcription factor binding site prediction within cloned promoter sequence including two

possible RelB binding sites. (C) ConTra v3 cross-species transcription factor binding site prediction within one 110-bp region of the cloned pro-

moter. Possible NF-kB subunit binding sites shown as colored segments. (D) Schematic of NF-kB consensus binding site. (E) DNA sequence of

cloned region of Spic promoter showing WT sequence and mutant. (F) EMSA showing binding of the WT or mutant (Mut) Spic promoter oligonu-

cleotide with p50 (lane 2) and supershift in the presence of anti-p50 (lane 3). The experiment shown is representative of five experiments. (G) Sche-

matic of the Spic promoter luciferase reporter plasmids. (H) Transient transfection of WEHI-279 B cells and luciferase assays. Relative luciferase

activity represents Renilla/Luciferase readings. Bars indicate mean 6 SD. Significance was determined using one-way ANOVA with Tukey�s multiple

comparisons test. Individual data points represent mean of triplicate wells for a single experiment. ***p < 0.001, ****p < 0.0001.
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live B cell counts over time, peaking at >2.5 × 106 cells follow-
ing 72 h in culture (Fig. 3F). In summary, stimulation with
CD40L, anti-IgM, or LPS induced cell proliferation of B cells
and strongly downregulated Spic expression.

Spic expression is increased by quiescence in primary
splenic B cells
Based on the observations that various stimuli that induce pro-
liferation downregulate Spic expression, we determined the
effect of culture without cytokines on Spic expression in B cells.
Spic expression was measured in cells cultured in complete
RPMI media for 24�72 h, relative to freshly isolated B cells.
We observed a time-dependent increase in Spic expression, cul-
minating in a 20-fold increase by the 72-h time point (Fig. 4A).
To determine whether the observed upregulation was specific
to Spi-C among ETS transcription factors, we examined tran-
script levels of closely related family members Spi1 and Spib
using matched samples. Expression of Spi1 and Spib increased

over time, peaking at 11- and 4.3-fold increases, respectively
(Fig. 4B, 4C). Cell counts showed stable numbers of live B cells
over time after an initial decrease from 24 to 48 h (Fig. 4D).
These results suggest that Spic expression is increased in unsti-
mulated B cells, relative to the related ETS transcription factors
Spi1 and Spib.

To determine the upregulation of Spic in cultured B cells
relative to other genes, we sought to examine the expression of
genes with known patterns of expression during nutrient star-
vation and/or apoptosis. We selected Tp53 as a gene that is
expected to be upregulated in unstimulated B cells because of
its well-documented increase in expression during apoptosis
(30). Acly was chosen as a gene expected to be downregulated
because of its role in fatty acid synthesis during cell division
(31). We found that Tp53 was upregulated over time by 12-fold
in unstimulated B cells (Fig. 4E), whereas Acly expression
increased by 3-fold following 72 h in culture (Fig. 4F). To addi-
tionally verify our findings, we used b-actin as a reference

A B C

D E F

FIGURE 2. Combinations of IL-4, IL-5, and BAFF reduce Spic expression.

(A) Flow cytometry quantifying CD191 B cell frequency following CD43 depletion of spleen cells. (B) RT-qPCR analysis of Spic expression in primary

B cells enriched from WT mouse spleens and cultured with IL-4 and IL-5. Bars indicate mean 6 SD. Significance was determined by Kruskal–Wallis

with Dunn�s multiple comparisons test. (C) Corresponding viable cell counts for (B). (D) RT-qPCR analysis of Spic expression in B cells cultured in

BAFF 1 IL-4 1 IL-5 for the indicated times. (E) RT-qPCR analysis of Spic expression in B cells cultured with BAFF 1 IL-4 1 IL-5 for 72 h in the pres-

ence or absence of cytochalasin D. Bars indicate mean 6 SD. Significance was determined using Kruskal–Wallis with Dunn�s multiple comparisons

test. (F) Viable cell counts for B cells cultured in (D), with or without cytochalasin D. Bars indicate mean 6 SD. Significance was determined by two-

way ANOVA. Relative gene expression for all RT-qPCR was relative to freshly isolated B cells and normalized to Tbp as the reference gene. Each

data point for qPCR experiments represents mean of duplicate wells for one biological replicate. Cell count data points indicate mean of triplicate

counts for each biological replicate. *p < 0.05, **p < 0.01, ***p < 0.001.
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gene. We found that relative to Actb, Spic and Tp53 transcript
levels increased in a similar time-dependent manner and to the
same extent, peaking at �4-fold (Fig. 4G, 4H). Conversely, Acly
expression decreased slightly and remained low throughout the
assessed time period (Fig. 4I). Overall, these findings support
the notion that Spic expression is increased in quiescent B cells,

and to a higher degree than the related ETS transcription fac-
tors Spi1 and Spib.

Imatinib (also known as Gleevec) is an Abl kinase inhibitor
that blocks proliferation of v-Abl�transformed B cell lines (32).
We treated the v-Abl�transformed pro-B cell line 38B9, and as
a negative control for Abl transformation, IL-7�dependent fetal

FIGURE 3. Stimulation with CD40L, anti-IgM, or LPS downregulates Spic expression in B cells.

(A) RT-qPCR analysis showing Spic expression in B cells cultured with or without CD40L for the indicated times. Bars indicate mean 6 SD. (B) Viable

cell counts for B cells culturedwith CD40L for 72 h. Bars indicatemean6 SD. (C) RT-qPCR analysis of Spic expression in primary B cells enriched from

WTmouse spleens and cultured with anti-IgM Abs for the indicated times. Bars indicate mean6 SD. (D) Corresponding viable cell counts for (C). Bars

indicatemean6 SD. (E) RT-qPCR analysis showing Spic expression in B cells cultured with or without LPS for the indicated times. (F) Viable cell counts

from (E). Relative gene expression for all RT-qPCRs was relative to time-matched cultured cells, using Tbp as the reference gene. Significance was

determined using one-way ANOVAwith Tukey�s multiple comparisons test. Each data point for qPCR experiments represents mean of duplicate wells

for one biological replicate experiment. Cell count data points indicate mean of triplicate counts for each biological replicate. *p < 0.05, **p < 0.01,

***p< 0.001, ****p< 0.0001.
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FIGURE 4. Induction of Spic by culture of B cells.

(A–C) RT-qPCR analysis of mRNA transcript levels of Spic, Spi1, and Spib. WT primary splenic B cells were cultured in complete RPMI for the indi-

cated times. Bars indicate mean 6 SD. Significance was determined using Kruskal–Wallis with Dunn�s multiple comparisons test. (D) Live cell counts

for cultured B cells. Bars indicate mean 6 SD. Significance was determined using one-way ANOVA with Tukey�s multiple comparison test. (E and F)

RT-qPCR analysis quantifying expression of Tp53 (E) and Acly (F) in cultured B cells. Data are shown as mean 6 SD. For (A)–(F), Tbp was used as

the reference gene. Significance was determined using Kruskal–Wallis with Dunn�s multiple comparisons test. (G) RT-qPCR analysis of Spic expres-

sion in WT primary splenic B cells cultured with cytochalasin D for the indicated times. (H) RT-qPCR analysis of Tp53 expression in WT primary

splenic B cells cultured with cytochalasin D for the indicated times. (I) RT-qPCR analysis of Acly expression in WT primary splenic B cells cultured

with cytochalasin D for the indicated times. For (G)–(I), data are relative to freshly isolated B cells and relative to Actb. Data are shown as mean 6

SD. Significance was determined using Kruskal–Wallis with Dunn�s multiple comparisons test. (J) RT-qPCR analysis of Spic expression in v-Abl–

transformed 38B9 pro-B cells or (K) IL-7–withdrawn fetal liver-derived WT pro-B cells treated with imatinib for 24 h. Data represent mean 6 SD.

Significance was determined using one-sample Wilcoxon test. Expression data for (J) and (K) are relative to untreated cells on day 0 and normalized

to Actb expression. Individual data points for qPCR experiments represent mean of duplicate wells for one biological replicate. Cell count data

points indicate mean of triplicate counts for each biological replicate. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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liver-derived WT pro-B cells, with 10 mM imatinib for 48�72 h
and assessed Spic expression. Imatinib treatment induced Spic
expression by an average of 11-fold in 38B9 pro-B cells (Fig.
4J), but not in WT pro-B cells (Fig. 4K). These data further
support the idea that Spic expression in B cells can be induced
by quiescence, but reduced by agents that stimulate cell prolif-
eration. We conclude that Spi-C is downregulated by cytokines,
whether relative to levels in freshly isolated cells or to cells cul-
tured without cytokines. These results suggest that Spi-C is reg-
ulated in a cell-cycle-dependent manner.

Activation of Spic in BMDMs or in B cells by LPS and
heme
Because of the strong effect of LPS downregulating Spic in B cells,
we sought to confirm the previously described reports of LPS
treatment activating Spic expression in macrophages (17, 26).
Bone marrow was isolated fromWTmice and cultured for 6 d in

the presence of GM-CSF to generate BMDMs (Fig. 5A). Culture
of BMDMs with LPS for 48 h increased Spic expression by 5-fold
(Fig. 5B). We also sought to confirm upregulation of Spic in
BMDMs cultured with heme (15). Corroborating previous find-
ings, we found that heme-treated BMDMs upregulated Spic
expression by 5-fold comparedwith unstimulated cells (Fig. 5C).

To evaluate whether Spic is inducible by heme in B
cells, we cultured enriched B cells for 48 or 72 h in the
presence of 20 or 40 mM heme, and Spic expression was
assessed by RT-qPCR. As a control, Spic expression was
determined in RNA prepared from freshly isolated B
cells. Spic expression was upregulated by 3.5-fold in
response to heme at 72 h (Fig. 5D). Cell counts indicated
that the viability of B cells cultured in the presence of
heme was stable over 72 h (Fig. 5E). In summary, Spic is
inducible by heme in both macrophages and B cells and is
inducible by LPS in macrophages.

A B C

D E

FIGURE 5. Activation of Spic in BMDMs or in B cells.

(A) Representative photomicrographs of BMDMs cultured in complete media alone (top) or with 40 mM heme (bottom). Original magnification ×20.

Scale bars: 50 mm. (B) RT-qPCR analysis of Spic expression in primary BMDMs obtained from WT mice and cultured with LPS for 48 h. Bars indicate

mean 6 SD. Significance was determined using one-sample Wilcoxon test. (C) RT-qPCR analysis of Spic expression in BMDMs cultured with heme

for 48 h. Bars indicate mean 6 SD. Significance was determined using one sample and Wilcoxon test. (D) RT-qPCR analysis of Spic expression in

primary B cells enriched from WT mouse spleens and cultured with or without heme. Bars indicate mean 6 SD. Significance was calculated by

one-way ANOVA with Tukey�s test. Expression was determined relative to freshly enriched B cells. (E) Viable cell counts for B cells cultured in (D).

Data points indicate mean of triplicates for each biological replicate. Expression was determined relative to unstimulated cells cultured for the indi-

cated amounts of time. Relative gene expression for all RT-qPCR was normalized to Tbp. Each data point indicates mean of duplicate wells for one

biological replicate. *p < 0.05, **p < 0.01, ****p < 0.0001.
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Bach2 represses transcription of Spic in B cells
Heme induces Spic in macrophages by a mechanism involving
de-repression by the heme-sensing transcription factor Bach1
(15). However, B cells express Bach2 and not Bach1 (33). Previous
studies suggested that Spic expression is repressed at the tran-
scriptional level by Bach2 in B cells (6, 34, 35). To determine
whether Bach2 is involved in repression of Spic in B cells, we
reanalyzed published anti-Bach2 chromatin immunoprecipitation
sequencing data (36) and identified two binding peaks �40 kb
upstream of the Spic transcription start site (Fig. 6A, upper panel).
These two regions, termed here ROI 1 and ROI 2, are in accor-
dance with previous reports of Spic regulatory sequences inter-
acting with Bach1 (35). To determine whether Bach2 regulates
expression of Spic by interacting with the identified regulatory
regions, we PCR amplified �200-bp regions encompassing Spic

ROI 1 or ROI 2, cloned them, and ligated them into the pGL3
luciferase reporter vector containing the Spic promoter described
in Fig. 1 (Fig. 6A, lower panel).WEHI-279 B cells were transiently
transfected with luciferase constructs, and luciferase activity was
quantified. We found that transfection of ROI 1� or ROI
2�containing vectors alone did not enhance or repress luciferase
expression relative to the vector containing only the Spic pro-
moter inWEHI-279 B cells (Fig. 6B).

We then asked whether WEHI-279 or 38B9 cell lines exp-
ressed sufficiently high levels of endogenous Bach2 to observe
the effects of its interaction with the ROIs. RT-qPCR showed
that both 38B9 pro-B cells and WEHI-279 mature B cells
expressed low levels of Bach2 compared with primary splenic B
cells (Fig. 6C). Therefore, we obtained a MIG-Bach2 retroviral
vector allowing for cotransfection to enforce high levels of

A B C

D E F

FIGURE 6. Bach2 represses Spic expression in B cells.

(A) Interaction of Bach2 with regulatory regions in the Spic locus (top). Chromatin immunoprecipitation sequencing data were reanalyzed to show

interaction of Bach2 with a putative regulatory element located �39 and �41 kb upstream of the Spic transcription start site. Black arrows indicate

locations of Bach2 binding sites. Schematic of luciferase reporters Spic promoter 1 ROI 1 and Spic promoter 1 ROI 2 (bottom). (B) Spic ROI 1 and

ROI 2 have no significant activity in WEHI-279 B cells. Relative luciferase activity represents Renilla/Luciferase readings. Significance was determined

using one-way ANOVA with Tukey�s multiple comparisons test. (C) RT-qPCR analysis of Bach2 expression in 38B9 pro-B cells and WEHI-279 cells

compared with primary splenic B cells. Data represent one representative experiment of three performed. (D) RT-qPCR analysis of Bach2 expres-

sion in WEHI-279 B cells transfected with MIGR1, MIGR1-Bach2, or untransfected. Data represent a single representative experiment. (E) Relative

luciferase activity of ROI 1 and ROI 2 in WEHI-279 B cells cotransfected with MIGR1-Bach2. Bars indicate mean 6 SD. Significance was determined

using one-way ANOVA with Tukey�s multiple comparisons test. (F) Relative luciferase activity of ROI 1 and ROI 2 in WEHI-279 B cells cotransfected

with MIGR1-Bach2 following mutation of one Bach2 consensus binding site. Bars indicate mean 6 SD. Significance was determined using one-way

ANOVA with Tukey�s multiple comparisons test. *p < 0.05, **p < 0.01, ****p < 0.0001.
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expression (37) (Fig. 6D). Transfection of vectors containing ROI
1 or ROI 2 in either orientation caused a significant reduction in
relative luciferase activity when cotransfected with MIG-Bach2
(Fig. 6E). We next performed site-directed mutagenesis on one
Bach2 consensus binding site within each ROI. Bach transcrip-
tion factors interact with a Maf recognition element containing
the consensus sequence 50-TGACTCA-30 or 50-TGAGTCA-30

(38). A predicted MAF recognition element within ROI 1 or ROI
2 was mutated to replace TG with CA. Cotransfection experi-
ments showed that vectors containing mutated Bach2 sites were
not repressed by cotransfection with MIG-Bach2 (Fig. 6F). In
summary, these data suggest that Bach2 represses transcription
of Spic by interactingwith ROI 1 and ROI 2, and that this function
is lost onmutation of one Bach2 binding site.

DISCUSSION

This study aimed to investigate the regulation of Spic by exter-
nal signals and to characterize the molecular mechanisms
responsible for its dynamic pattern of expression. We provided
evidence that expression of Spi-C is highly sensitive to the
presence of various stimuli in B cells. We characterized the
Spic promoter and identified an NF-kB binding site that may
be involved in regulation by NF-kB signaling. We showed that
agents that induce cellular proliferation, including BAFF 1 IL-
4 1 IL5, CD40L, anti-IgM, or LPS, strongly downregulate Spic
expression at the mRNA transcript level. In contrast, culture
with heme or with complete media containing no stimulating
agents induces upregulation of Spic expression in B cells.
Finally, we found that Bach2, a key factor involved in processes
including germinal center formation and memory B cell differ-
entiation, represses Spic transcription through interaction with
two upstream regulatory regions. Taken together, our findings
show that the lineage-determining transcription factor Spi-C is
highly responsive to regulation by external stimuli in B cells.

In general, we found that factors that induced cellular pro-
liferation also downregulated Spic mRNA transcription, while
factors that induced quiescence could upregulate Spic. Spic was
downregulated in cytokine-stimulated cells, whether measured
relative to freshly isolated B cells or cultured B cells. CD40L
(CD154) and anti-IgM strongly downregulated Spic expression
in splenic murine B cells. However, LPS downregulated Spic
expression to the greatest extent, >200-fold, whereas LPS
treatment upregulated Spic by �5-fold in BMDMs.

It is known that the NF-kB pathway becomes activated in
both B cells and macrophages following TLR4 engagement by
LPS (39, 40). However, a distinction between macrophages and
B cells treated with LPS is in their proliferative response. LPS-
activated macrophages experience cell-cycle arrest and instead
respondwith abundant production of proinflammatory cytokines
and NO (39, 41). In contrast, B cells activated by LPS initiate a
response characterized by robust proliferation and differentiation
into Ab-secreting cells (42). Therefore, although both cell types
activate the NF-kB pathway in response to LPS treatment,

additional signaling events linked to the cell cycle may be respon-
sible for differences in Spic expression. We found evidence that
NF-kB regulates transcription of Spic through a key site located
in the promoter. During B cell development, activation of the
noncanonical NF-kB pathway was found to be crucial for activa-
tion of Spi-C expression during B cell development (13, 14).

Spi-C is highly expressed in transitional B cells and PCs,
stages of B cell development that are nondividing and respond to
BCR engagement without inducing proliferation (6, 20, 22). Spi-
C directly represses genes that induce proliferation of B cells dur-
ing the pre-B cell stage of development (13, 14). In our study, Spic
was upregulated in cultured but unstimulated B cells and was
upregulated to a greater extent than the related Spi1 and Spib
transcription factors. Taken together, these findings suggest that
Spic expression is associatedwith quiescence in B cells.

Spi-C was induced in B cells in response to the metabolite
heme. Although the molecular mechanism for its upregulation
due to degradation of its repressor Bach1 is now well studied in
macrophages, the biological relevance of Spi-C induction by
heme in B cells remains unknown (36, 43�45). Although there is
evidence that treatment of B cells with heme increases transcrip-
tion of the endosomal transporter HRG-1, the mechanism of
heme transport across the plasma membrane is not known (44).
Despite early studies reporting that phagocytosis and pinocytosis
occur rarely in lymphocytes, there is growing evidence that B
cells may have a higher capacity for nonspecific uptake than pre-
viously thought (46, 47). Therefore, it is plausible that B cells
pinocytose free heme. Alternatively, heme may be sensed exter-
nally as a danger-associated molecular pattern that drives a Spi-
C�mediated immune response (6, 48). Although not thought to
strongly activate PRRs, there is evidence that heme may be able
to signal weakly through TLRs such as TLR4 (49). Finally, differ-
entiating B cells also synthesize intracellular heme (44). These
possible mechanisms of detection of heme by B cells provide
insight into how it may be sensed, but further investigation of the
downstream signaling pathways is warranted.

Because free heme is a potent catalyst of reactive oxygen spe-
cies generation, it is maintained almost exclusively complexed
with hemoglobin (48, 50). High levels of free heme are typically
indicative of excessive hemolysis, which can arise because of dis-
ease or infection. It is conceivable that heme-dependent activa-
tion of Spi-C is one signaling pathway that promotes the
generation of Ab-secreting cells in response to a nonspecific
threat (44). Specifically, we propose that in the case of hemolytic
infections, such as malaria or some forms of Streptococcus, B cells
detect and become activated in response to free heme (48, 51).
This leads to the proteosome-dependent degradation of Bach2,
which frees Spic from constitutive repression (6). Spi-C may then
act to counter its related factor Spi-B and promote B cell differen-
tiation into Ab-secreting cells. In addition, we previously showed
that Spi-C represses Bach2 transcription (6). Therefore, mutual
cross-antagonism between Spi-C and Bach2 is a potential mecha-
nism to promote the rapid generation of Abs to initiate immunity
while the longer-term immune response begins to develop.
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In summary, this work characterized the regulation of the lin-
eage-instructive transcription factor Spi-C in response to external
signals in B cells. Although the downstream effects of Spi-C in B
cell development and differentiation have been partly described,
this study provides insight into the dynamic regulation of Spi-C
in B cells. Understanding how Spi-C expression is regulated by
external signals and downstream signaling pathways in B cells
will enhance knowledge of adaptive immune responses.
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