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Abstract 
Intra-detrusor Botulinum Toxin-A (BTX-A) injection is the gold standard treatment for 

detrusor overactivity in clinical practice when medical treatment fails. Despite satisfactory 

results of BTX-A injection, the endoscopic procedure still has risks of anaesthetic and 

operative complications. Several studies have investigated more simple ways to deliver BTX-

A to the detrusor muscle but with limited success. In our study, we assessed the evidence of 

BTX-A delivery using a newly modulated hyaluronan-phosphatidylethanolamine (HA-PE) 

carrier in a rat model through BTX-A-HA-PE bladder instillations. We used histological 

evidence of SNAP-25 protein cleavage and detection of Alexa Fluor®594-labelled BTX-A 

as a proof of physical BTX-A delivery across the urothelium. In addition, we assessed the 

functional impact of using HA-PE on rat detrusor muscle through urodynamic assessment 

both at baseline and 2 weeks later after 1% acetic acid instillation. We found positive 

histological evidence of SNAP-25 cleavage, detection of Alexa Fluor®594-BTX-A red 

fluorescence in bladder tissue supporting that HA-PE may be an efficient carrier to deliver 

BTX-A across the urothelium. 

Keywords: Botulinum Toxin A, Detrusor overactivity, modulated carrier, Bladder 

instillations, SNAP-25 cleavage, and urodynamic assessment. 
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Chapter1 : Introduction 

1.1   Bladder function and dysfunction 

The urinary bladder is a unique organ. As a hollow structure, it is remarkably integrated 

in its neuromuscular, mechanical, and physical properties, all of which are crucial for its 

normal function. The urinary bladder is evolutionarily programmed to fill with fluid over 

hours at low pressures, and then contract on demand to evacuate its contents. It is also the 

only autonomic organ under voluntary control.  

Although the ability to accommodate a volume of fluid (i.e., filling) is thought to largely 

represent a passive phenomenon, this is not entirely the case. The recruitment of active 

neuro-mechanical properties is crucial to the maintenance of low intra-vesical pressures 

while the bladder fills; and to this end, the characteristics of the surrounding cellular 

elements and extracellular matrix (ECM) can either facilitate or compromise this 

function. Bladder contraction (i.e., emptying), on the other hand, is largely an active 

neuromuscular process, although it is also influenced by the physicochemical nature of 

the ECM, and obviously depends on the overall mass and optimal functional status of 

bladder smooth muscle cells (bSMCs).  

According to the standardization of terminology for lower urinary tract function 

published by the International Continence Society (ICS), detrusor overactivity (DO) is a 

urodynamic phenomenon characterized by involuntary detrusor contractions during the 

filling phase that may be either spontaneous or provoked (1). DO can occur in patients 

with neurological disorders and also in those with no underlying neurological anomaly. 

When there is a relevant underlying neurological condition, this is qualified as 

neurogenic detrusor overactivity (NDO). In patients with neurological disorders, the 

prevalence of bladder dysfunction associated with NDO is approximately 12-19% in both 

men and women (2-4). 
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 Overactive bladder (OAB) is a symptom complex described as urgency, with or without 

urge incontinence, usually associated with frequency and nocturia. Although OAB is not 

specific for any condition or urodynamic finding, patients with OAB are often found to 

have DO. 

Detrusor over-activity impairs quality of life (QoL) secondary to urinary incontinence 

and poses a threat for the upper urinary tract when associated with high bladder filling 

pressures. Urinary incontinence (UI) affects approximately one third of patients with an 

overactive bladder (3, 5).  

Oral anti-muscarinic agents have been widely used as first-line treatment for patients with 

DO. Failure of adequate anti-muscarinic therapy, may require surgical intervention 

designed to reduce bladder storage pressures and inhibit DO. Currently these options 

include intra-detrusor botulinum toxin injections and bladder augmentation (6, 7). 

Bladder augmentation, which involves using a patch of bowel to increase bladder 

capacity and thereby lower filling pressures, is an effective surgical option. The ileum is 

the preferred bowel segment used, but colon and stomach have been utilized as well. 

Unfortunately, exposing urine to the bowel patch’s absorptive surface creates a new set of 

potential complications and morbidities, like electrolyte and acid base balance 

disturbances, urinary tract infections, stone formation, the risk of bladder perforation, and 

malignancy.  

1.2   Botulinum toxin 

Botulinum toxin (BTX), first isolated by van Ermengem in 1897, is a potent neurotoxin 

produced by the gram-positive anaerobic bacterium Clostridium botulinum (8). There are 

seven distinct serotypes of BTX (A-G), of which types A and B have been used 

clinically. BTX-A was first licensed under the brand name Botox® and has been the most 

commonly used serotype in clinical practice. From a structural viewpoint, the toxin is a 

150-kD amino acid di-chain molecule consisting of one light (50kD) and one heavy chain 

(100kD), which are linked by a disulfide bond.  
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The role of BTX-A at the neuromuscular junction has been well described and consists of 

inhibiting acetylcholine neurotransmitter release, resulting in striated muscle 

relaxation (9). However, increasing evidence suggests that it has a much greater range of 

neurological effects, as BTX-A has been discovered to inhibit the release of a number of 

neurotransmitters (including acetylcholine, adenosine triphosphate, and neuropeptides 

like substance P) and to down-regulate the expression of purinergic and capsaicin 

receptors on afferent neurons within the bladder (10). 

In 1989, botulinum toxin A (BTX-A) was approved by the United States Food and Drug 

Administration (FDA) for use in patients with strabismus and blepharospasm. Since then, 

its use has been extended to cervical dystonia, cosmesis, hypersecretory disorders and 

overactive muscle disorders.  

Following the publication of studies in adults, Schulte-Baukloh et al, demonstrated the 

safety and efficacy of intra-vesical BTX-A injections in pediatric patients with 

neurogenic bladders (NB) (11). Since then, several observational studies have confirmed 

the significant and impressive response to BTX-A injections in the NB population (12-

14). However, the current status of this mode of therapy is primarily limited to end-stage 

bladders as an option to delay bladder augmentation. This therapeutic option requires 

direct bladder muscle injection under cystoscopic guidance and therapy has to be 

repeated every 6-9 months. To obviate the need for repeated injections, several authors 

have studied alternative means of BTX delivery to the detrusor muscle using several 

carriers (15-19). In addition, alternative modes of BTX-A delivery are preferable, as 

injections may require anesthesia and are associated with increased costs related to the 

procedure, and possible complications. Unfortunately, these alternative techniques have 

not yet yielded a reliable and acceptable means of BTX delivery without injection to the 

bladder muscle.  
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1.3   Hyaluronic acid-based topical delivery of proteins 

Hyaluronic acid (HA) is a hydrophilic polysaccharide that is ubiquitous in tissues. In its 

native form (e.g.> 500 kDa), it is highly viscoelastic (20, 21). Continuous HA networks 

or channels link the layers of the epidermis (22, 23).  

Small amounts of unmodified HA can cross epidermal layers, likely via its ability to 

insert into HA coats (24, 25). However, most (> 98%) of the unmodified HA binds only 

to the skin surface, where it can act as a reservoir for slow-release drugs. The use of HA 

for drug release is restricted, however, to low molecular weight drugs only (e.g., 

Solaraze: HA/diclofenac gel).   

A non-particulate formulation has been developed that increases the penetration of HA 

through the epidermis, this was achieved by linking HA to phospholipid chains (PE) and 

selecting those formulations that promote HA coat formation around keratinocytes. This 

non-particulate formulation forms HA coats around epidermal cells, and takes advantage 

of both the high viscosity of HA polymers, which permits the encapsulation of large 

proteins, and its efficient delivery to the dermis. The high viscosity of these formulations 

enmeshes large proteins, like BTX-A, which then can be carried with HA-PE into the 

epidermal layer. Proteins like BTX-A likely accumulate in the lower dermis and muscle 

layers by slow release or diffusion. Local inflammatory changes and/or systemic toxicity 

has not yet been observed (26). 

1.4.   Objectives of the current study 

The purpose of the current experimental study was to evaluate a novel alternative 

modality of BTX-A delivery to the detrusor muscle using HA-PE carrier by simple 

bladder instillation rather than cystoscopic detrusor injection of BTX-A. The secondary 

objective was to assess our surgical technique and standardize the urodynamic study 

protocol. 
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1.5.   Hypothesis 

We proposed that BTX-A-HA-PE-saline intravesical instillation allows translocation of 

BTX-A across the urothelium into the bladder muscle. The evidence of this delivery will 

be shown by the following outcomes assessment: 

1.   Instilled BTX-A would be observed to act at pre-synaptic terminals and cleave 

cytosolic SNAP-25 protein, indicated by a decreased level of SNAP-25 staining in 

detrusor muscle. This decrease in SNAP-25 staining will be comparable to direct 

BTX-A muscle injection. 

2.   Bladder instillation of BTX-A labeled with a fluorescent agent (Alexa Fluor®594) 

would be visualized across the epithelium and in detrusor muscle to demonstrate 

physical translocation across the urothelium. 

3.   Further, bladder instillation of BTX-A HA-PE will show a physiological response 

evidenced by decrease bladder muscle contraction on urodynamic studies in 

response to a bladder irritant instillation (acetic acid) which will be comparable to 

the physiological response elicited by direct BTX-A detrusor muscle injection. 

1.6.   Outcomes 

1.6.1  Primary outcome 

The primary outcome of this study was to compare BTX-A-HA-PE intravesical 

instillation to simple BTX-A-Saline intravesical instillation and to direct BTX-A 

bladder muscle injection using the mean SNAP-25 staining percentage in the 

corresponding tissue slides described in section 3.7 
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1.6.2  Secondary outcomes 

1)   Assess and modify our surgical technique and standardize the urodynamic study 

protocol. 

2)   Detection of Alexa Fluor®594 labeled-BTX-A fluorescence compared to controls 

to demonstrate physical evidence of BTX-A delivery across the urothelium. 

3)   Observing the effect of BTX-A-HA-PE intravesical instillation on urodynamic 

parameters (maximum detrusor pressure and inter-contraction intervals) in 

treatment groups compared to direct bladder muscle injection of BTX-A and other 

control groups. 

4)   Observing the effect of HA-PE dose and duration of intravesical instillation on the 

efficiency of BTX-A delivery across the urothelium. 

5)   Detection of toxicity and/or inflammatory changes caused by the HA-PE carrier 

on the bladder urothelium and musculature. 
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Chapter 2: Review of literature 
2.1   Anatomy of the urinary bladder 
The bladder is a hollow muscular organ that serves as a reservoir for urine collection and 

emptying. The bladder is divided into two parts; a body that lies above the ureteral 

orifices and a base that consists of the trigone and the bladder neck (27). The bladder 

outlet is composed of bladder base, urethra and external urethral sphincter.  

The bladder base has a laminar architecture with a superficial longitudinal layer that lies 

beneath the trigone. A muscle layer deep to the superficial layer is continuous with the 

detrusor muscle (28-30). The smaller muscle bundles of the deep muscle layer within the 

bladder base predominantly exhibit a circular orientation.  

 

Figure 1: Sagittal section of the bladder and adjacent viscera in the female 
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Figure 2: sagittal section of the bladder and adjacent viscera in the male 

 

The triangle of smooth urothelium between the two ureteral orifices and the internal 

urethral meatus is referred to as the trigone of the bladder. The fine longitudinal smooth 

muscle fibers from the vesical side of the ureters pass to either side of their respective 

orifices to join the lateral and posterior ureteral wall fibers, where they then fan out over 

the base of the bladder. Fibers from each ureter meet to form a triangular sheet of muscle 

that extends from the two ureteral orifices to the internal urethral meatus. The edges of 

this muscular sheet are thickened between the ureteral orifices (the inter-ureteric crest or 

Mercier's bar) and between the ureters and the internal urethral meatus (Bell's muscle).  
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Figure 3: Anatomy of the bladder and its outlet, as defined by Gosling and Dixon (left) versus 

Elbadawi et al (right).  (From Torrens M, Morrison JFB: The Physiology of the Urinary Bladder. 

Berlin, Springer-Verlag, 1987:1). 

Blood supply:  

Blood to the bladder is supplied by the superior and inferior vesical branches of the 

internal iliac artery. The vesical veins form a plexus that drains into the internal iliac 

vein. 

 Lymphatic drainage: 

 Lymph vessels drain alongside the vesical blood vessels to the iliac and then the para-

aortic nodes. 

 Nerve supply: 

Parasympathetic fibres from S2 to S4 accompany the vesical arteries to the bladder. They 

convey motor fibres to the muscles of the bladder wall and inhibitory fibres to its internal 

sphincter. 
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Sympathetic efferent fibres are inhibitory to the bladder muscles and innervate motor 

function at its sphincter, though they may be mainly vasomotor in function, so that 

normal filling and emptying of the bladder are probably controlled exclusively by its 

parasympathetic innervation. Sensory fibres from the bladder, which are stimulated by 

distension, are conveyed in both the sympathetic and parasympathetic nerves, the latter 

pathway being the more important. The external sphincter is made up of striated muscle. 

It is also concerned with the control of micturition and is supplied by the pudendal nerve 

(S2, 3, 4). 

2.2   Architecture of the bladder wall 
The bladder wall consists of three distinct tissue layers. These layers, starting from the 

inner luminal surface and progressing outwards, are: the mucosa; the muscularis propria; 

and the adventitia/serosa. The mucosa in turn, consists of three layers: the urothelium, the 

basement membrane, and the lamina propria. The urothelium is approximately six cells 

thick, creating a transitional epithelium that consists of so-called ‘umbrella cells’ that 

form the luminal surface, with underlying intermediate cells, and finally, basal cells that 

rest upon a thin basement membrane (31, 32).  

It is the urothelium and specifically the umbrella cells that render the bladder 

impermeable, thereby preventing urine and waste solute from penetrating into the 

submucosa. The barrier function of umbrella cells stems from an arrangement of tight 

junctional proteins called uroplakins, and is further augmented by an overlying-luminal- 

mucin layer composed of glycosaminoglycans (GAGs). Suggested additional role of this 

GAG layer is to prevent particulates in the urine from adhering to the bladder lumen (33).  

One of the most remarkably distinct characteristics of the bladder is its elasticity. This 

elasticity is so great that, whereas the transitional epithelium appears smooth when the 

bladder is full, it contracts into numerous folds when the bladder empties. The bladder 

wall’s elasticity allows it to store 400-600 ml of urine in the average-weight human adult 

under low pressure. 
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This elasticity is the result of both the lamina propria — the deepest layer of mucosa — 

and the detrusor muscle that underlies it. The lamina propria is a relatively thick layer of 

fibroelastic connective tissue and smooth muscle fibers collected into a poorly-defined 

muscularis mucosa that together allow for considerable distension. This layer is also 

traversed by numerous blood vessels.  

Beneath this layer lies the smooth muscle of the bladder wall, called the detrusor muscle. 

There, large muscle fibers form branching, interlacing bundles loosely arranged into 

inner longitudinal, middle circular, and outer longitudinal layers. The outer longitudinal 

fibers are thickest posteriorly at the bladder base. In the midline, they insert into the apex 

of the trigone and intermix with the smooth muscle of the prostate to provide strong 

trigonal support. Laterally, the fibers from this posterior sheet pass anteriorly and fuse to 

form a loop around the bladder neck. 

In the bladder neck of males, radially-oriented inner longitudinal fibers pass through the 

internal meatus to become continuous with the inner longitudinal layer of smooth muscle 

in the urethra. With respect to the inner longitudinal fibers, this is similar in females. 

However, the middle circular layer in females does not appear to be as robust as in males. 

Where female bladder necks differ most strikingly from that of males in its scanty 

adrenergic innervation. In addition, its sphincter function is limited, such that, in 50% of 

continent women, urine still enters the proximal urethra when they cough (34). 

2.3   The blood–urine barrier 

The urothelium is the most impermeable barrier in the body (35). It also is responsible for 

a multitude of physiological activities, not only effective at blocking the passage of urine 

and its contents, but equally effective at blocking the passage of bladder-instilled drugs 

(36, 37). It sits at the interface between the urine and underlying connective tissue, where 

it forms a barrier preventing the unregulated exchange of solutes, ions and toxic 

metabolites. The permeability of substances like water, ammonia and urea, which 

normally cross membranes relatively rapidly, is extremely low across the urothelium   

(35, 36).  
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Indeed, the GAG layer might play a greater role preventing bacterial adherence, as 

described by Hanno et al (1981) (38). The GAG layer might also be important at 

preventing the formation and attachment of particulates to the urothelium, and thereby, 

subsequent stone formation (39). This being said, there are a number of problems with 

the theory that the GAG layer is a major urothelial-plasma barrier, which are beyond the 

scope of this thesis.  

2.4.   Physiological aspects of bladder function 
            The lower urinary tract differs from other visceral structures in several ways. Its 

dependence on CNS control distinguishes it from the structures that maintain a level of 

function even after all extrinsic neural input has been eliminated. It is also unusual in its 

pattern of activity and in the organization of its neural control mechanisms.  

2.4.1  Muscarinic receptors of the urinary bladder 

There are five subtypes of muscarinic receptor, which have been labelled M1 through 

M5. Encoded by five distinct genes and present in both animal and human bladders, the 

mRNAs for all muscarinic receptor subtypes have been demonstrated, albeit with a 

predominance of mRNAs encoding for M2 and M3 receptors.  

Detrusor muscle contains muscarinic receptors mainly of the M2 and M3 subtypes, with 

the M3 receptors in human detrusor muscle the most important for muscle contraction 

(40). It has been suggested that M2 receptors may oppose sympathetically-mediated 

smooth muscle relaxation mediated by β adrenergic receptors (41). 

M2 receptor stimulation might also activate nonspecific cation channels and inhibit K-

ATP via the activation of protein kinase C. Thus, in a denervated rat bladder, a 

combination of M2 and M3 receptors mediates contractile responses. Both types of 

receptor seem to act in a facilitatory manner to mediate contraction (42). Muscarinic 

receptors have also been located at pre-synaptic nerve terminals and to participate in the 

regulation of transmitter release.  
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In addition, they have been demonstrated in the urothelium and sub-urothelium and may 

be directly involved in afferent signaling (43, 44). 

2.4.2   Adrenergic receptors of the urinary bladder 

α- adrenergic receptors (αAR): 

Most investigators agree that there is low-level expression of αARs in the human detrusor 

muscle (45). Two types of α receptor are known to exist — α1A and α1D — and some 

investigators have noticed increased αAR expression in cases of outflow obstruction. 

However, this remains a subject of debate (46). 

ß-adrenergic receptors: 

All three types of ß receptor (ß1, ß2, ß3) can be found in the detrusor muscle of most 

species, including humans (45). Clinical and functional evidence indicate the 

predominance of ß3 receptors in both normal and neurogenic bladders (45). The human 

detrusor also contains ß2-AR and both receptors, ß2 and ß3, are most likely involved in 

the process of bladder relaxation (45,47). ß3-AR has a relaxing effect on the detrusor, 

which may be the basis for its therapeutic effects in detrusor overactivity (DO). 

2.4.3  Vanilloid receptors 

The transient receptor potential (TRP) channel superfamily has been demonstrated to be 

involved in nociception and mechanosensory transduction in various organ systems. 

Studies of the lower urinary tract have indicated that several TRP channels — including 

TRPV1, TRPV2, TRPV4, TRPM8 and TRPA1 — are expressed in the bladder and may 

act as sensors of stretch and/or chemical irritation. The rationale behind the intravesical 

instillation of vanilloids (compounds that possess a vanillyl group) is based on the 

involvement of C-fibres in the pathophysiology of conditions like bladder 

hypersensitivity and neurogenic detrusor overactivity (NDO).  
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In the healthy human bladder, C-fibres carry responses to noxious stimuli, but they are 

not implicated in the normal voiding reflex. C-fibre bladder afferents proliferate within 

the sub-urothelium and become sensitive to bladder distension. These changes lead to the 

emergence of a new C-fibre-mediated voiding reflex, which is strongly involved in spinal 

neurogenic detrusor overactivity. Improvement in this condition is accomplished by 

defunctionalizing C-fibre bladder afferents with intravesical vanilloids (48). 

2.4.4  Neural circuits controlling bladder storage and elimination 

Both bladder filling and elimination are controlled by neural circuits in the brain, spinal 

cord and neural ganglia. Supra-pontine influences are believed to act as on-off switches 

to shift the lower urinary tract between the two modes of operation: filling and 

elimination. Both filling and elimination involve a complex pattern of afferent and 

efferent signaling in parasympathetic (pelvic nerves), sympathetic (hypogastric nerves) 

and somatic (pudendal nerve) pathways. The next three sections briefly examine each of 

their roles. 

Parasympathetic pathways: 

Preganglionic parasympathetic neurons transmit impulses to the sacral parasympathetic 

nucleus (SPN) in the spinal cord at the level of S2-S4. Ganglionic neurotransmission is 

predominantly mediated by acetylcholine acting on nicotinic receptors, although the 

transmission can also be modulated by adrenergic, muscarinic, purinergic or peptidergic 

presynaptic receptors. A non-adrenergic, non-cholinergic (NANC) contractile component 

is identified regularly in the bladders of most animal species. Such a component can also 

be demonstrated in functionally and morphologically altered human bladder tissue (49).  

Adenosine triphosphate (ATP) is the most important mediator of NANC contractions, 

although the involvement of other mediators cannot be ruled out. The pelvic nerve also 

conveys parasympathetic fibers to the bladder neck and urethra and exerts an inhibitory 

effect on the smooth muscle by releasing nitric oxide and other transmitters (40). 
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Sympathetic pathways: 

Sympathetic innervation of the bladder and urethra originates from the intermediolateral 

nuclei in the thoracolumbar region (T10-L2) of the spinal cord. Axons leave the spinal 

cord via the splanchnic nerves and travel either through the inferior mesenteric ganglia 

(IMG) and the hypogastric nerve, or pass through the paravertebral chain to the 

lumbosacral sympathetic chain ganglia and enter the pelvic nerve.  

Ganglionic sympathetic transmission is predominantly mediated by acetylcholine acting 

on nicotinic receptors. In addition, the sympathetic innervation inhibits parasympathetic 

pathways at both the spinal and ganglionic level. This being said, the importance of 

sympathetic innervation in relaxation of the human detrusor has not yet been established. 

Somatic pathways: 

Somatic innervation of the urethral rhabdosphincter and some perineal muscles (e.g., 

compressor urethrae and urethrovaginal sphincter) is provided by the pudendal nerve.  

These fibers originate from sphincter motor neurons located in the ventral horn of the 

sacral spinal cord (levels S2-S4) in the region of Onuf’s (Onufrowicz’s) nucleus (50). 

Sensory (afferent) pathways: 

The afferent nerves to the bladder and urethra originate in the dorsal root ganglia at the 

lumbosacral level of the spinal cord and travel via the pelvic nerve to the periphery. Some 

afferents originate in dorsal root ganglia at the thoracolumbar level and travel 

peripherally within the hypogastric nerve (51, 52).  

The afferent nerves to the striated muscle of the external urethral sphincter travel in the 

pudendal nerve to the sacral region of the spinal cord.  
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The afferents most crucial to the micturition process are myelinated Aδ-fibers and 

unmyelinated C-fibers that travel within the pelvic nerve to the sacral spinal cord, 

conveying information from receptors in the bladder wall.  

The Aδ- fibers respond to passive distension and active contraction, thereby conveying 

information about bladder filling. The activation threshold for Aδ- fibers is 5-15mm 

H2O. This is the intravesical pressure at which humans report their first conscious 

sensation of bladder filling. C-fibers have a higher (i.e., less sensitive) mechanical 

threshold and primarily respond to chemical irritation of the bladder urothelium or to 

cold. The cell bodies of Aδ-fibers and C-fibers are located in the dorsal root ganglion at 

the level of the S2-4 and T11-L2 spinal segments. Following chemical irritation, the C-

fiber afferents exhibit spontaneous firing when the bladder is empty and increased firing 

during bladder distension. These C-fibers are usually inactive and are, hence, termed 

‘silent fibers’. Afferent information about the amount of urine in the bladder is 

continuously conveyed to the mesencephalic periaqueductal gray matter (PAG), and from 

there to the pontine micturition center, also called Barrington’s nucleus (53). 

2.4.5  Bladder contraction and relaxation  

Contraction of bladder smooth muscle cells is mainly the result of interactions between 

the contractile proteins actin and myosin, in a manner similar to other muscle cells in the 

body. In an energy-dependent process, a multi-step enzymatic reaction allows for the 

cross-bridging and attachment of these two proteins in a cyclical fashion, following the 

same general scheme proposed for skeletal muscle. ATP is the immediate energy 

substrate, and is crucial for membrane pump Ca2+ handling, phosphorylation events, and 

cross-bridge cycling. 

2.4.6  Neurotransmitters and modulators 

In response to acetylcholine released from parasympathetic nerve terminals, muscarinic 

M3 receptors are thought to induce detrusor muscle contractions by calcium entry 

through nifedipine-sensitive L-type Ca2+ channels (54-57).  
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In addition, increased poly-phosphoinositide hydrolysis results in inositol 1, 4, 5-

trisphosphate (IP3) production and the release of intracellular calcium stores (58, 59). 

Calcium also activates a variety of cellular responses when it enters the cytoplasm of a 

cell by means of transmembrane channels. To be effective as a signal, its concentration 

must be returned to sub micro-molar levels, driven by ATP pumps. The Ca2+ pump is a 

membrane-bound, Ca2+-activated ATPase, similar to the Na+-K+ pump that controls ion 

balance and membrane potential in all animal cells. These pumps belong to a superfamily 

of ATPases known as the P type, because they depend on the auto phosphorylation — 

using ATP — of conserved aspartic acid residues. 

2.5.   Current treatment for neurogenic bladder 
Clean intermittent catheterization (CIC) in combination with anticholinergic medications 

is considered the standard therapy for children with neurogenic bladder dysfunction 

associated with neurogenic detrusor overactivity (NDO), poor bladder compliance, and/or 

detrusor sphincter dyssynergia (DSD) (58,59). Anti-cholinergic medications reduce 

detrusor over activity and lower bladder storage pressures, while CIC ensures complete 

bladder emptying and lowers voiding pressures generated secondary to DSD. Failure of 

anti-cholinergic therapy to lower bladder filling pressure and/or alleviate NDO with risk 

of upper renal tract deterioration and/or incontinence leads to surgical intervention in the 

form of Botulinum toxin intra-detrusor injections or augmentation cystoplasty as a final 

resort. 

2.6.   Botulinum toxin 
2.6.1    Structure of BTX-A molecule 

Botulinum toxins are neurotoxins produced by the facultative gram-positive anaerobic 

bacteria Clostridium botulinum. They were first isolated by van Ermengem in 1897; but it 

was Schurch et al, in 2000, who pioneered the use of botulinum toxin A injection into the 

detrusor muscle as an option to treat bladder overactivity secondary to spinal cord injury 

(60). Botulinum A toxin (BTX-A) is a two-chain 150 kDa molecule that includes one 

heavy (100 kDa) and one light (50 kDa) chain linked by a di-sulphide bond.  
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The process of binding to a membrane receptor and internalization, a process called 

endocytosis, is mediated by the heavy chain (100kDa). 

2.6.2  Mechanism of BTX-A action 

Shortly after internalization, the disulfide bond unravels releasing both the heavy and 

light chains (61). The light chain then binds with high specificity to the SNARE (soluble 

N-ethylmaleimide- sensitive factor attachment protein receptor) protein complex, which 

leads to the cleavage of (25 kDa) SNAP-25, a protein integral to the successful docking 

and release of acetylcholine from vesicles situated within nerve endings, in a process 

called exocytosis. 

The toxins disrupt different parts of the SNARE receptor, with BTX-A blocking the 

release of acetylcholine into the synaptic gap of the neuromuscular junction by cleaving 

the synaptosome-associated protein, SNAP 25 (62-64). This causes selective, temporary 

flaccid paralysis of the target organ. In smooth muscles, it has been documented to trigger 

the release of nitric oxide that diffuses out of the endothelial cell and causes smooth 

muscle relaxation. 

The receptor molecule responsible for toxin binding and internalization has been 

identified as the synaptic vesicle protein 2 (SV2) receptor (64, 65). Recent evidence 

points at another possible mechanism of action for BTX-A, implying that it might affect 

afferent pathways via some dual mechanism of action (66). The bladder afferent neuronal 

receptors implicated include vanilloid, purinergic (P2X), and neurokinin receptors for 

nerve growth factor (66, 67). Neurotransmitters acting at these receptors include ATP, 

substance P, neurokinin A, nitric oxide, and calcitonin-gene-related peptide (CGRP), 

which modulate the sensory afferent nerves in the detrusor muscle, especially in diseased 

neurogenic bladders with NDO. The role of the sub-urothelial myofibroblast cells acting 

as a sensory organ in regulating bladder overactivity and the effect of BTX-A on these 

cells is also being recognized (68).  
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Figure 4: Botulinum toxin/A cleaves SNAP-25 protein, preventing assembly of the fusion 

complex and thereby blocking the release of acetylcholine (Adopted from Rowland, 35 with 

permission). 

 

2.6.3  Technique of BTX-A detrusor injection 

Procedurally, BTX-A injections are performed via cystoscopy and involve its injection 

directly into bladder muscle at multiple sites (e.g., 20-30), except usually the trigone. 

Anaesthesia is usually required to complete the procedure, (Fig.5). 
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Figure 5: Intra-detrusor injection of Botulinum Toxin A using an injection needle 

 

2.6.4  Possible complications of BTX-A detrusor injection 

Since its initial use, the efficacy and safety of BTX-A injections to treat detrusor over 

activity and improve bladder compliance has been well established in both the adult and 

pediatric scientific literature (69-71). However, BTX-A injection therapy has certain 

limitations and complications. Apart from the anaesthetic complications; other 

complications might be a concern including drug leakage outside the bladder and 

systemic absorption, haematuria, pain at the injection site, and the uneven distribution of 

botulinum toxin (72, 73). As a result of BTX-A injection and SNAP-25 cleavage, 

chemical denervation results. However, axonal sprouting may then occur, and extra-

junctional acetylcholine receptors may develop over time. Consequently, the effects of 

Botox generally only last six to nine months, such that repeat injections are almost 

always needed to maintain the drug’s therapeutic effects. The use of anaesthesia is 

usually required for BTX-A injections  

Fortunately, since BTX-A cleaves the cytosolic translocation protein SNAP-25, reduced 

total SNAP-25 due to cleavage can be used as a marker of toxin diffusion and its local 

action (74), allowing for some assessment of the effectiveness of such alternative BTX-A 

delivery methods.  
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The effect on bladder contractility is also mediated by the suppression of sensory 

neurotransmission through mechanisms that modulate mediator release from afferent 

nerve terminals. BTX-A- saline solution instillation has been attempted in animals and 

humans with limited success on detrusor storage pressures, despite the use of other 

carriers like liposomes and DMSO, pre-treatment with protamine sulfate to enhance 

absorption, and the recent employment of low energy shock wave (LESW) therapy to 

facilitate BTX-A delivery (75-78). 

2.6.5  Results of detrusor BTX-A injection in both adults and 
pediatrics 

Of the seven distinct but structurally similar serotypes of botulinum toxin, types A and B 

have been used with clinically beneficial outcomes in various neurological disorders. In 

children, botulinum toxin A (BTX-A) is used worldwide and is becoming a standard in 

the treatment of spasticity secondary to cerebral palsy. No systemic side effects have 

been reported when the appropriate dose is used (79). 

In 2009 Game et al, based on the results of a systematic literature review of 6 clinical 

studies involved 108 children, evaluated the efficacy and safety (or both) of BTX-A in 

children with NDO/NOAB and subsequent clinical expert discussion of the outcomes, 

this review provided more insight into these topics on an evidence-based medicine level. 

They concluded that, in children with NDO/NOAB resistant to anti-muscarinics, BTX-A 

intradetrusor injection have a clinically significant effect. Treatment with BTX-A seemed 

to be well tolerated with minimal injection site and systemic side effects (70). 

Karsentley G, et al; 2008 based on the results of a systematic literature review of 18 

clinical studies involved 698 adults, evaluated the efficacy or safety of BTX-A in adult 

population. Of all adult patients included, 83% had NDO with urinary incontinence 

and/or NOAB (mainly due to SCI 57% and MS 17%) and refractory to usually high doses 

of antimuscarinic agents. Only three studies also enrolled patients with idiopathic DO 

(IDO) or bladder outlet obstruction (BOO) (71). They concluded that,	  treatment with 

BTX-A intradetrusor injections provide a clinically significant benefit to adults with 

NDO/NOAB resistant to antimuscarinics.  
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The onset of effect is fast (within 1–2 wk.) and after reinjection (time interval between 

injections approximately 6–9 months), the effect on the clinical and urodynamic variables 

persists. Moreover, treatment with BTX-A seems to be very well tolerated with minimal 

injection site and systemic side-effects (71). 

2.7    Alternative methods of BTX-A delivery 

2.7.1  Intravesical BTX-A instillation using liposomes 

An animal experiment on Sprague Dawley rats divided into 3 groups was reported 

comparing intravesical instillation of 20 U BTX-A plus1ml liposomes (Lipotoxin) 

retained in the bladder for one hour to BTX-A toxin and liposomes (LP) instilled alone. 

Outcomes measured included the extent of SNAP-25 cleavage and the expression of 

calcitonin-gene related peptide (CGRP) in harvested bladders. Urodynamic functional 

parameters were measured at baseline and 8 days later after instillation of 0.3% acetic 

acid (80). 

The authors found that intravesical lipotoxin suppressed acetic acid induced bladder 

hyper-activity and inflammatory reaction, which was not observed in LP pre-treated 

groups and was less significant in BTX-A pre-treated groups. Furthermore, SNAP-25 

expression was significantly decreased and CGRP was significantly increased in the 

lipotoxin pre-treated group compared to those in the LP and BTX-A pre-treated groups. 

Importantly, bladder contraction amplitude did not show a significant change between 

days 1 and 8 baseline UDS and urinary retention was not seen in the lipotoxin pre-treated 

group. Therefore, their results support the concept that intravesical lipotoxin instillation 

may be a simpler, effective method to deliver BTX-A across the urothelium without 

injection. Caution must be exercised interpreting these results, however, especially since 

neither the total number of used rats, nor the number of rats in each group were provided. 
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2.7.2  Intravesical BTX-A delivery using Electromotive Drug 
Administration (EMDA)  

In an experimental study, 15 male healthy New Zealand white rabbits were allocated into 

3 groups; BTX-A injection into the bladder wall, intravesical electromotive BTX-A 

administration (BTX-A/EMDA), and electromotive saline administration (81,82). In 

BTX-A injection group, a total dose of 10 IU/kg of BTX-A was injected into 10 sites of 

bladder detrusor muscle using a 6-Fr rigid cystoscope. In BTX-A/EMDA group, a current 

generator delivered a total of 2-2.4 mA with a frequency of 2.5 kHz to a fully distended 

bladder containing 10 IU/kg BTX-A for 15 minutes. In electromotive saline 

administration group, electrical current with the same characteristics was delivered to a 

saline-filled bladder. Three different specimens from the bladder dome, posterior, and 

anterior bladder walls were obtained and submitted for pathologic evaluation as frozen 

sections.  

For the immunohistochemistry, sections were treated with primary anti-clostridium 

botulinum toxoid type A, mouse IgM monoclonal antibody (US Biological, Swampscott, 

MA). Brown staining was considered an evidence for BTX-A presence. This study 

showed that BTX-A/ EMDA resulted in deeper and more homogeneous distribution of 

BTX-A into the rabbit bladder wall including urothelium, lamina propria and muscularis 

when compared with intravesical BTX-A injection.  

In electromotive saline administration group, the urothelium, interstitium, and muscular 

layers were negative for staining. The findings of this study should be interpreted with 

caution and within the context of several limitations. First, precise laboratory 

investigations are needed to evaluate the stability of BTX-A’s molecular structure under 

the influence of an electrical field. Secondly, the possibility of systemic drug absorption 

should be kept in mind, because BTX-A/EMDA resulted in deep drug penetration. 

Thirdly, this study failed to show a physiological response of the BTX as the authors did 

not perform any urodynamic studies.  
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Finally, recruitment of a control group in which the toxin is intavesically instilled without 

any further intervention would probably help in better understanding of the effect of 

electrical field in deep penetration of the toxin (81). Nevertheless, this technique has 

potential for clinical use translation but requires further investigation. The cost of the 

equipment and need to come to a medical facility to get the procedure done is a 

limitation.  

2.7.3   Intravesical BTX-A instillation using low-energy shock 
wave therapy: 

In another study on female Sprague Dawley rats, low-energy shock waves (LESW) were 

used to enhance urothelial permeability prior to drug instillation. Rats were anaesthetized, 

baseline urodynamic study was conducted at baseline, and then either saline or BTX-A 

were administered by intravesical instillation. On day #8, rats were again anaesthetized 

and another urodynamic study was performed prior to bladder harvesting and 

immunohistochemical staining for SNAP-23, SNAP-25 and COX2. Magnetic resonance 

imaging (MRI) was also performed after intravesical administration of Gd-

diethylenetriamine pentaacetic acid (GPA) to document any urothelium leakage after 

LESW.  

Pre-treatment with LESW was documented to increase urothelial permeability and 

facilitate intravesical BTX-A delivery, as indicated by decreased SNAP-25, SNAP-23 

and COX2 expression in LESW pre-treated versus non-pre-treated rats. Urodynamic 

findings suggested blockage of the acetic acid-induced bladder overactivity in LESW 

pre-treated rats. The authors concluded that LESW was a novel and promising technique 

that would require further investigation. Though still not definitively proven method by 

which to deliver BTX-A without the need for injections (83). 

2.7.4   Intravesical BTX-A instillation using Protamine Sulphate: 

In this study the effect of intravesical BTX-A administration on Calcitonin Gene Related 

Peptide (CGRP) immunoreactivity and bladder hyperactivity was investigated in an 

acetic acid-induced bladder pain model in rats. 
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Experimental and control animals were catheterized and intravesically exposed 

to protamine sulfate (1 ml, 10 mg/ml), followed by BTX-A (1 ml, 25 U/ml) or saline, 

respectively. 3 and 7 days after intravesical therapy continuous cystometrograms were 

performed under urethane anesthesia by filling the bladder (0.08 ml per minute) with 

saline, followed by 0.3% acetic acid instillation. Bladder immunohistochemistry was 

used to detect Calcitonin Gene Related Peptide (CGRP) (84). 

The author found that the inter-contraction interval (ICI) was decreased after acetic 

acid instillation (50.2% and 65.0%) in the control group at days 3 and 7, respectively. 

However, rats that received BTX-A showed a significantly decreased response (28.6% 

ICI decrease) to acetic acid instillation at day 7. This effect was not observed at day 3 

(62.2% ICI decrease). On other words, the ICI values were almost the same between 

control and BTX-A treated groups at day 3 meanwhile they start to show significant 

difference only at day 7. Increased CGRP immunoreactivity was detected in the BTX 

treated group at day 7 but not at day 3, meanwhile it was detected in the control group 

both at day 3 and 7. 

The authors concluded that; intravesical BTX using Protamine Sulphate blocked acetic 

acid- induced bladder pain response and inhibits CGRP release from afferent nerve 

terminals. This study lacks certainty as the investigator was not blinded to analysis. On 

the other hand, a control group where only BTX-A-saline is instilled without protamine 

sulphate should be available. Parsons et al (1990) also reported that the intravesical 

treatment of rabbit bladder with protamine sulfate increased urothelial permeability, both 

in vivo and in vitro, to water, urea, and calcium (85). This effect was reversed with 

pentosan polysulfate. The authors concluded that the protamine sulfate somehow 

interfered with or damaged the GAG layer and that this was repaired by pentosan 

polysulfate (84). 
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2.7.5  Intravesical BTX-A instillation using Dimethyl Sulfoxide 
(DMSO) 

A phase I/II trial was recently performed at the Mayo Clinic in Rochester, Minnesota to 

evaluate the safety and potential efficacy of the intravesical instillation of a BTX-A- 

DMSO solution to treat idiopathic DO in women (86).  

Twenty-five women with medication-resistant, urodynamically-confirmed idiopathic DO 

were enrolled. Of these 25 patients, 22 received the full 300 units of botulinum toxin-A 

and 50 ml of DMSO (50% concentration), while three were given 66% of the full BTX-A 

dose.  

Questionnaires assessing symptoms were completed at baseline and both one month and 

three months’ post treatment. The primary outcomes of interest were adverse effects, 

number of episodes of incontinence, quantity of post-void residuals, and scores on the 

Blaivas-Groutz Anti-Incontinence scale, Indevus Urgency Severity Scale, Incontinence 

Impact Questionnaire, and Urogenital Distress Inventory. One- and three-month scores 

were compared against baseline values.  

At the end of three months of observation, no serious adverse events were reported. 

Clinically-important increases in post-void residual were reported, the median number of 

incontinent episodes had decreased, and an overall improved quality of life was noted. 

Randomized, double-blind, placebo-controlled trials are needed to verify these results.  

2.8   Use of hyaluronan-phosphatidylethanolamine (HA-
PE) to enhance BTX-A delivery 

The term “hyaluronan” was introduced in 1986 to describe a ubiquitous extracellular 

matrix tissue polysaccharide that belongs to the glycosaminoglycan (GAG) family. It is 

characterized by repeating hexosamines and uronic acid (87-89). Its functions in the body 

are, amongst other things, to bind water and lubricate movable parts of the body, like 

joints and muscles. At Western University, London, Canada, a non-particulate 

formulation was developed that increases the penetration of HA through the epidermis.  
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It forms HA coats around epidermal cells and takes advantage of HA polymers that 

permit the encapsulation of large proteins like BTX-A and their more efficient delivery to 

the dermis. This was achieved by linking HA to phospholipid chains and selecting those 

formulations that promote HA coat formation around keratinocytes. The high viscosity of 

these formulations allows it to enmesh large proteins like BTX- A, which can then be 

transported with HA-PE into the epidermal layer. 

An experimental study within Western University’s Department of Plastic Surgery was 

recently conducted using this newly-formulated HA-PE. In this study, forty-five 10-

month old, retired breeder female C57BL/6 mice (Jackson Laboratory) were used for 

multiple cream application studies (26), while an additional twelve 12-month old retired 

breeder female C57BL/6 mice were used for Alexa647 mouse experiments. For this, all 

the mice were anesthetized prior to cream application. While anesthetized, the upper 

dorsum of their back was shaved, leaving a strip of hair in the midline to define the right 

and left sides. Alexa647-HA 0.18 g and Alexa647-HA-PE cream were then applied to the 

left and right sides, respectively. Two mice were euthanized using CO2 chamber at each 

of six time points: 40 min, 2 h, 4 h, 8 h, 24 h, and 72 hours following cream application. 

It was found that multiple topical applications of HA-PE to shaved mouse skin 

significantly stimulated basal keratinocyte proliferation and epidermal thickness, relative 

to HA or the vehicle cream alone. HA-PE had no detectable effect on keratinocyte 

differentiation nor caused local inflammation.  

These effects of HA-PE polymers are similar to those reported for endogenous epidermal 

HA in youthful skin and show that the topical application of HA-PE polymers can restore 

some of the impaired functions of aged epidermis. Due to the successful penetration of 

HA-PE through the epidermal skin layers, we then proposed that HA-PE might penetrate 

through the urothelium, carrying large molecules like BTX-A along with it. It was this 

conjecture that led to the planning and orchestration of the current research project. 
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2.9   Anatomy of the rat bladder 

The wall of the rat urinary bladder is made up of three layers namely, mucosa, muscularis 

and adventitia. The mucosa is thrown into numerous folds and consisted of a lining 

urinary epithelium and a fibroelastic lamina propria. The lining epithelium is transitional 

consisting of basal, intermediate and superficial cells. The basal cells were mainly 

cuboidal in form with central nuclei. The intermediate cells are spindle-shaped and 

arranged with their long axes perpendicular to the basal lamina. The superficial cells are 

large and dome-shaped with abundant eosinophilic cytoplasm.  

The luminal border also showed deep invaginations giving the surface a characteristic 

scalloped appearance. The lamina propria consisted mainly of collagenous connective 

tissue containing small blood vessels (90). 

The muscularis appeared to be formed of three interlaced layers; inner and outer thin 

longitudinal layers and a middle thick layer. As a result of intermingling of muscle fibers 

in these layers, the muscularis cannot be clearly separated into three well-defined strata. 

The muscle fibers are arranged into groups separated by loose connective tissue septa. 

The structure of the rat bladder urothelium is very similar to human urothelium as regard 

the type of epithelium and the number of cell layers that makes it very suitable to perform 

several experimental studies.  

On the other hand, mice bladders are very tiny compared to rat bladders that makes rat 

bladders more applicable to research purposes than the tiny mouse bladder. Female rats 

are more preferable to male rats when research on the rat bladder is desirable because the 

female rat urethra is shorter and urethral catheterization, is more feasible. 
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Figure 6: Photomicrographs of sections of the urinary bladder of adult female rats showing the 

bladder mucosa (1A). Lamina propria (1B) and muscularis mucosa (1C).  Int. J. Morphol. 2005, 

vol.23, n.4, pp.309-316. ISSN 0717-9502.  
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Chapter 3: Methods 
This study is an experimental, pilot study in a rat model to assess the feasibility and early 

results of using a novel carrier hyaluronan-phosphatidylethanolamine (HA-PE) to aid 

botulinum toxin A (BTX-A) delivery to the bladder muscle using bladder instillation 

instead of direct bladder muscle injection, our current standard clinical practice.  

3.1.   Objective and outcomes measured 

a)  Primary objective and outcome 
The primary objective of this study was to demonstrate the action of hyaluronan-

phosphatidyl-ethanolamine (HA-PE)- BTX-A bladder instillation on SNAP-25 cleavage 

and compare it to SNAP-25 cleavage achieved by direct bladder muscle injection of 

BTX-A. This outcome was measured by estimating the mean SNAP-25 staining 

percentage using immuno-histochemistry in the corresponding tissue slides.  

b)  Secondary objectives and outcomes 

1)   Assess our surgical technique and standardize the urodynamic study protocol. 

2)   To demonstrate the translocation of Alexa Fluor®594-labelled BTX-A across the 

urothelium using fluorescence under the confocal microscope. 

3)   To demonstrate the physiological actions of the translocated BTX-A-HA-PE on 

urodynamic parameters (maximum pressure and inter-contraction intervals) compared 

to direct bladder muscle injection of BTX-A, after acetic acid instillation.  

4)   Assess the effect of HA-PE dose and duration of instillation on the efficiency of 

BTX-A delivery using HA-PE solution. 

5)   Assess the toxicity and/or inflammatory changes caused by the HA-PE carrier on the 

bladder urothelium and musculature using histological assessment. 
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3.2   Study Design 

This experimental study was conducted on sixty female Sprague Dawley rats (250-350 

g), which were equally divided (10 rats per group) into three control groups and three 

treatment groups, (Fig.7). 

a)   Control groups                                                                   

Group #1 rats (n=10) received bladder instillation of BTX-A-saline solution (10 U in 2 

ml saline) for 60 minutes to assess whether a simple, presumably therapeutically-inert 

BTX-A- saline solution would be capable of crossing the urothelium and be 

physiologically effective. Group #2 rats (n=10) received bladder instillation of the HA-

PE carrier (0.5g dissolved in 2ml saline) for 60 minutes. The purpose of this control 

group was to assess for possible HA-PE effect on bladder urothelium and musculature to 

rule out the inflammatory changes in the bladder. Group #3 rats (n=10) received BTX-A 

(5 units diluted in 0.2 ml of saline) by direct injection into the external bladder surface 

into the lateral, anterior and posterior bladder walls performed through a midline 

laparotomy. This group served as a control to mimic the standard clinical BTX-A 

delivery through cystoscopic bladder muscle injection. 

b)  Treatment groups 

Group #4 rats (n=10) received bladder instillations of Alexa Fluor ®594-Labelled BTX-

A 10 U mixed with HA-PE 0.5g in 2ml saline. Group #5 rats (n=10) received bladder 

instillations of BTX-A 5U-HA-PE (in different doses, ranging from 0.2 to 0.5g) dissolved 

in 2 ml of saline for 60 minutes. We further classified this group to sub-groups based on 

HA-PE dose; 5A where we used higher HA-PE doses (0.4 or 0.5g) and 5B where lower 

doses were used (0.2 or 0.3g) with identical instillation times of 60 minutes. Group #6 

rats (n=10) received bladder instillation of BTX-A 10 U-HA-PE (0.2 to 0.5g) dissolved in 

2 ml saline for 30 minutes. We further classified this group to sub-groups based on HA-

PE dose; 6A where we used higher HA-PE dose (0.4 or 0.5g) and 6B where lower doses 

were used (0.2 or 0.3g) with identical instillation times of 30 minutes (Fig. 8&9). 
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Fig. 7: Figure showing control groups 1-3 and treatment groups 4-6 
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Fig. 8: Botulinum Toxin A- HA-PE- saline intravesical instillation 

(Control Groups) 
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All rats in the control and treatment groups underwent the identical anesthetic and 

surgical procedures on Day 0, accompanied by a baseline urodynamic study. A second 

procedure was performed on all rats on Day #14. This was followed by an urodynamic 

study, after 1% acetic acid instillation for 30 minutes (Fig.8&9). Rats were subsequently 

euthanized and their bladders were harvested, as detailed below.  

3.3   Pre-operative care 

Rat housing 

Rats were housed in the animal lab facility at the Lawson Research Institute, St. Joseph’s 

Hospital, Western University, London, Canada. All rats were housed in conventional rat 

cages, two rats per cage, in a temperature-controlled environment with a 12-hour 

light/dark cycle. Rats were fed a standard rat chow diet and observed for 3 days in the 

animal lab facility for acclimatization before their enrollment into the study.  

3.4.   Pre-operative preparation 

3.4.1.   BTX-A reconstitution 

BTX-A was reconstituted by adding 2 ml of normal saline to a 50 U vial, generating a 

concentration of 5U/0.2ml. Reconstituted BTX-A was kept in a 4°C fridge in the animal 

lab facility and was used within 14 days of the reconstitution date to maintain its 

effectiveness.  

3.4.2.   HA-PE liquefaction 

HA-PE is a yellowish viscous paste like substance, Fig 10. There was no pre-defined 

standard dose of HA-PE for BTX-A delivery to be liquefied adequately in 2ml of saline 

(the average rat bladder volume) nor any previous study to assess the degree of viscosity 

achieved after dissolving HA-PE in saline, which would allow injection through a 

6mm/28-gauge needle for bladder instillations.  
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Therefore, we used different doses of HA-PE to assess both adequate liquefaction as well 

as the impact of HA-PE dose on BTX-A delivery.  

One of our secondary aims was to define the highest possible HA-PE dose that could be 

sufficiently liquefied in 2ml of saline for injection through 28-gauge needle. We started 

with the highest possible soluble HA-PE weight (0.5g) that could be liquefied in 2 ml 

saline and then reduced the dose in 0.1g (0.4, 0.3, 0.2g). The appropriate dose of BTX-A 

was then added to the HA-PE solutions, in accordance with assigned group 

specifications.       

 

 

 

Fig. 10: HA-PE in its original form as a paste (Left) and after liquefaction in saline (Right) 

 

3.4.3.   Alexa®594- BTX-A labeling 

Labeling of BTX-A with Alexa Fluor®594 was carried out at Robarts Research Institute, 

Western University, Canada, using a standardized protocol, appendix 3. 
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Supplies: 

Life Technologies (Thermo- Fischer Scientific) Cat A20004 Alexa Fluor® 594 NHS 

Ester, 1.3 mg (succinimidyl ester). Dialysis Tubing – MWCO 6000 -8000 - Spectrum 

Labs Cat 132660. 

Solutions used: 

Sodium bicarbonate 9.0 pH solution, Alexa solution was prepared using 1.3 mg Alexa 

Fluor®594 and Dialysis Solution for BTX-A dialysis, 4L of 1*PBS (Phosphate Buffered 

Saline). 

Steps: 

BTX-A was put in dialysis tubing immersed in Alexa Fluor®594 solution and was left 

for 24 hours at 4 °C in the dark (wrapped in foil). Then, we dialyzed BTX-A in 1*PBS 

for 2-3 days with change in the buffer every 6-12 hours (6 changes). 

3.5.   Anesthetic procedure 

All rats were weighed and checked for activity prior to the initial procedure (day zero). 

The standard anesthetic procedure was used, the rat was placed in the glass anesthesia 

chamber, (Fig.11), and Isoflurane inhalation at an induction dose of 4ml/min was used, 

until the rat was completely anesthetized. Once anesthetized, the rats were taken out of 

the glass chamber and received Isoflurane through the rat mask (Fig.12) at a maintenance 

dose of 2ml/min throughout the entire surgical procedure. 
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Fig. 11: Glass chamber for gas anesthesia 

 

 

Fig. 12: Rat mask 
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3.6.   Surgery procedure and postoperative care 
3.6.1.   Initial surgery on day zero  

For the initial surgery, the animal was positioned supine with the animal’s abdomen 

facing up. The lower part of the abdomen was shaved with an electric clipper, after which 

a standard 3-step sequential sterilization procedure was performed, using chlorhexidine, 

alcohol and betadine, in order. A lower midline abdominal incision (1-2cm) was then 

created and the bladder identified. A urodynamic assessment was performed, as discussed 

later. 

Group #1 rats: The pre-prepared mixture of BTX-A 10U in 2ml saline was instilled into 

the bladder by direct bladder puncture. Care was taken to avoid rapid instillation and 

prevent leakage through the urethra. The instilled mixture was retained in the bladder for 

60 minutes.  

Group #2 rats: The pre-prepared mixture of HA-PE 0.5g dissolved in 2ml saline was 

instilled gradually into the bladder by direct bladder puncture and retained in the bladder 

for 60 minutes. 

Group #3 rats: BTX-A (5U in 0.2ml saline) intra-detrusor injection was achieved by 

direct injection into the lateral, anterior and posterior walls of the bladder at 4-5 sites 

from the peritoneal surface of the bladder. Raised blebs were considered as an adequate 

sign of successful injection into the detrusor muscle.  

Group 4 rats:  2-3 ml of a pre-prepared mixture of Alexa Fluor®594- Labeled BTX-A 

10U-HA-PE 0.5g in 2ml saline were instilled gradually into the bladder by direct bladder 

puncture. The mixture was retained in the bladder for 60 minutes. Care was taken to 

avoid direct exposure of the mixture to light by covering the syringe with opaque tape 

and covering the bladder after instillation with moist towel during the entire instillation. 

Group #5 rats: 2-3 ml of the pre-prepared mixture of BTX-A 5U-HA-PE (dose varied 

between 0.2-0.5grams) in saline was instilled gradually into the bladder by direct bladder 

puncture. The instilled mixture was retained in the bladder for 60 minutes. 
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Group #6 rats: 2-3 ml pre-prepared mixture of BTX-A10U-HA-PE (dose varied from 0.2-

0.5grams) was instilled gradually into the bladder by direct bladder puncture.The mixture 

was retained in the bladder for 30 minutes. 

After instillation for either 30 or 60 minutes, as per group assignment, the bladder was 

drained by applying gentle manual pressure on the bladder dome to evacuate the solution 

per urethra.  

Supplemental heat was provided by a heat lamp and a pre-heated pad that had been 

autoclaved for 30 seconds prior to commencing the procedure. During the entire duration 

of surgery, adequate hydration via intra-peritoneal saline injection was used to 

compensate for unavoidable fluid losses, and the surgical wound was covered with a wet 

gauze. Respiratory movements and neurological reflexes were monitored throughout the 

procedure. Rectal temperature was monitored using a baby thermometer lubricated with 

K-Y gel. The bladder was then closed in a water tight manner using 7-0 PDS. Abdominal 

muscles were closed with interrupted Vicryl 3-0 suture in one layer followed by sub-

cuticular 3-0 Vicryl sutures for the skin closure. 

3.6.2.   Final surgery and euthanasia on day 14 

After two weeks, rats were re-anesthetized using the previously described protocol. For 

30 minutes, 2ml of 1% acetic acid were administered by direct bladder puncture using a 6 

mm/ 28-gauge needle. K-Y Jelly was applied to the external urinary meatus to prevent 

leakage through the urethra. Acetic acid was then drained through the urethra. 

Urodynamic assessment was carried out as described later (Section 3.7.2.2). The rat was 

then euthanized by exsanguination (transecting the aorta) and the urinary bladder was 

harvested. 

In Group #4 rats (10 rats), in which Alexa Fluor®594-labelled BTX-A was used, the 

common iliac artery was ligated and saline was injected into the internal iliac artery distal 

to the ligature to washout as much blood as possible from the harvested bladder tissue, so 

as to minimize any auto-fluorescence of blood when analyzing Alexa Fluor®594 red 

fluorescence thereafter. 
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3.6.3.   Post-operative care 

Rats who received BTX-A, either via instillation or through intra-detrusor injection, were 

housed in filter-top cages, two rats per cage, for the first 24 hours of the 2-week 

experimental protocol (days 0 to 14). Subsequently, they were transferred to conventional 

rat cages until the date of the second surgical procedure and ultimate euthanasia. 

Rats in Group #2, in which HA-PE-saline was instilled, were moved to conventional rat 

cages immediately after recovery and maintained there until the second procedure and 

ultimate euthanasia. 

Rats were observed post-operatively twice daily for the first three days and once per day 

thereafter until they were euthanized. On each of the first three post-operative days, rats 

were weighed and observed for the following: activity; urine excretion; stool production; 

and certain body postures, like hunching, which is suggestive of pain or infection. All 

pre- and post-operative observational data was registered on pre-prepared animal 

observation sheets. If an infection was suspected, the rat was euthanized, as per protocol. 

3.7.  Outcomes assessment 

Tissue processing: 

All bladder specimens were fixed in 4% paraformaldehyde at 4∘C for 24 hours. 

Specimens were processed for SNAP-25 staining as paraffin sections at the London 

Regional Cancer Program (LRCP) facility in London, Ontario. An automated tissue 

processor — Leica ASP300 — was used to process the tissues. The microtome used for 

cutting was a Leica Rm2255 and the samples were cut at a thickness of 5µm. Group #4 

(Alexa Fluor®594 -labelled BTX-A) specimens were processed as frozen sections and 

prepared for examination using the confocal microscope at St Joseph’s Hospital in 

London, Ontario. Group #1 controls, which received BTX-A10U-saline instillation 

without were processed similarly and used as negative controls for group 4. The cryostat 

used for cutting was a Leica CM3050S, and samples were cut at a thickness of 10µm. 
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3.7.1.   Primary outcome assessment 

SNAP-25 staining  
Day 1 

The first step was deparaffinization of the slides by immersing them in Xylene for 15 

minutes then alcohol series (100- 95-70 %) each for 10 minutes followed by rehydration 

using distilled water and 1*PBS (Phosphate –buffered saline) for 5 minutes each. Antigen 

retrieval done by immersion of tissue slides in Sodium Citrate, pH 6.0.and microwave it 

at different temperature levels. Then, slides were immersed in 3.0 % H2O2 diluted in 1 

PBS for 10 minutes. Antigen block with 3.0% BSA (Bovine Serum Albumin) diluted in 1 

BPS then took place for 1-2 hours. Primary antibody (sab 2500965, Sigma Aldrich, 

Canada) was then added to the slides and tissue slides were left covered in tinfoil 

overnight in cold fridge at (4°C). SNAP-25 antibodies are supplied at 0.5 mg/mL in 

saline with 0.02% sodium azide and 0.5% bovine serum albumin.  

Day 2 

Secondary antibody (anti-rabbit IgG-goat) at a dilution of 1ul added to 500 ul of 1*PBS 

was added to the slides. Streptavidin at a dilution of 1:2000 ul 1*PBS was added to the 

slides and left in room temperature for 30 minutes. DAB has been added and the slides 

and left from 5 minutes to 40 minutes according to the evidence of reaction. Sections 

were immersed in Haematoxylin for 30 seconds then washing in distilled water for 5 

minutes followed. Tissue slides were then run through original series in reverse (70%-

95%-100%) Ethanol each is 2 minutes’ duration and Xylene for 1 minute at the end. The 

slides were mounted in Richard-Allan Scientific Cytoseal 60 (Thermo-Scientific). 

Mounted slides were left to dry overnight in the lab. 
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SNAP-25 Examination  

Tissue slides were scanned at the LRCP facility using the Aperio Scan Scope. Several 

pictures (4 pictures) were captured randomly for each slide, from different slide corners. 

The 4 captured pictures from each slide were then analyzed quantitatively using Image J 

software, and the picture which showed the highest staining density was selected to 

represent the SNAP-25 staining percentage of this slide. 

Using image J software, the same settings were applied to all tissue slides to obtain a 

SNAP-25 staining score, which was then divided by the total slide area score to calculate 

the percentage of SNAP-25 staining. Bladder urothelium was also examined for evidence 

of HA-PE-induced toxicity and inflammation, denoted by the presence of inflammatory 

cells and the level of integrity of cell lines. Functional activity of BTX-A using SNAP-25 

staining shows a brown colour when the molecule is intact and absence of brown colour 

when it is cleaved. Lack or scarcity of brown colour in the tissue slides denoted SNAP-25 

cleavage and was used as a proof of BTX-A activity in bladder muscle. Conversely, 

abundance of brown colour denoted that SNAP-25 molecules were intact (not cleaved), 

arguing against any significant BTX-A activity.  

3.7.2.   Secondary outcomes assessment 
3.7.2.1   Alexa Fluor®594-labelled BTX-A fluorescence 

Experimental group 4 and control group 1 frozen tissue slides were stained with DAPI 

(4', 6-diamidino-2-phenyl-indole ) to stain tissue nuclei and examined for Alexa 

Fluor®594 red fluorescence under the Olympus Confocal Microscope at St Joseph’s 

Hospital, London. Canada. Slide examination under the confocal microscope was done 

by an experienced blinded scientist who was not a member of the study team.  

3.7.2.2   Urodynamic assessment 

The urodynamic study was performed under anesthesia at baseline and after 2 weeks of 

the initial procedure. The second study was performed after 1% acetic acid intravesical 

instillation.  
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Both studies were performed identically using slow fill saline (0.1ml/minute as per the 

protocol), a 26-gauge bladder angiocath representing the saline input arm was connected 

to one side of a 2-stopcock pressure transducer. The other side of the pressure transducer 

was connected to a micro-infusion pump that infused saline at a rate of 0.1ml/minute 

(Fig. 13). 

 

 

 

Fig. 13: Standard Infusion Only, 11 Elite Syringe Pump 

 

A PE-50 tube representing saline output was connected to a micro-pressure analyzer that 

transformed the pressure inside the bladder into pressure waves and values which were 

digitally recorded, (Fig.14).  
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Fig.14: Digi-Med, Micro-Pressure Analyzer 

 All pressure values were automatically saved to each rat experiment on Digi-Med 

software. 2 ml of normal saline were infused which represents the average rat bladder 

capacity of 250-350g female rat. 

Each urodynamic assessment measured two main parameters, which were:   

Maximum Pressure (MP): The highest intravesical pressure recorded during bladder 

filling expressed as mmHg.                                                                                                         

Inter-Contraction Intervals (ICI): the average duration (milliseconds) between bladder 

contractions during bladder filling. It is calculated by measuring the time interval 

between the beginning of the first contraction to the beginning of the last contraction and 

then dividing by the number of inter-contraction intervals. In cases where there are 

multiple contractions, the number of the inter- contraction intervals is n-1, where n is the 

number of contractions, e.g.; an urodynamic study with 4 contractions has 3 inter-

contraction intervals. 
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In the example below; the first contraction starts at 11 milliseconds while the last 

contraction starts at 49 milliseconds. Hence, the total ICI is 38 milliseconds provided that 

we have 5 contractions and 4 inter-contraction intervals so the average ICI is 38/4=9.5 

milliseconds. 

 

 

 

∗ Blue arrow: Maximum detrusor pressure    ∗ Green arrow: Total-inter-contraction interval  

Fig. 15: Urodynamic recording from the study showing the different parameters measured 

 

3.8   Funding 
This study was funded through an internal research grant from the Department of 

Surgery, Western University. The protocol was approved by the Animal Use -

Subcommittee at Western University, London, Ontario, Canada (2012-047). All surgical 

procedures, follow-up, and eventual rat euthanasia were compliant with the standard 

operating protocols of the Animal Use Subcommittee. 
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3.9   Sample size calculation 
Since no previously- published study has used the current HA-PE carrier for BTX-A 

delivery, we designed this study as a pilot study. Therefore, no formal sample size 

calculations were done. In lieu of any formal calculations, a decision was made to have 

10 rats in each experimental group. With six groups, this meant that a total of 60 rats 

were needed and ultimately studied.  

3.10  Data and statistical analysis 

Quantitative data analysis for the primary outcome (SNAP-25 staining) was obtained 

using Image J software after applying the same technique and method of assessment to all 

tissue slides. Quantitative data were expressed as means ± standard deviations (SD) for 

all groups. Statistical analyses were conducted using SPSS version 23, after testing for 

normality, we employed one-way ANOVA, all analyses were two-tailed, and p ≤ 0.05 

considered statically significant. 

Quantitative data analysis of values for the two urodynamic parameters of interest were 

expressed as means ± standard deviations (SD) for all groups. Statistical analyses were 

conducted using SPSS version 23. Testing of normality showed that the two urodynamic 

parameters values had a non-equal distribution. Therefore, non-parametric tests — the 

Kruskall-Wallis test for unpaired variables and Freidman test for paired variables — were 

employed, with all analyses two-tailed and p ≤ 0.05 considered statistically significant. 
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Chapter 4: Results 
All the surgical procedures undertaken were completed successfully, with no intra-

operative complications. The proposed post-operative follow-up, second operative 

procedure and tissue harvesting were completed as planned in 59 of 60 rats. One rat, in 

Group #2, was sacrificed 48 hours after the initial surgical procedure due to signs of 

infection and the bladder was harvested as per protocol. 

In Group #3 controls, where direct bladder muscle injection of BTX-A was performed, 8 

rats exhibited visualized blebs apparent at the site of injection. The injection was deemed 

unsuccessful in two rats, where we suspected that the intra detrusor injection was intra- 

luminal and therefore these 2 rats were subsequently excluded from further analysis. 

Since this was a pilot study, we intended to assess our surgical technique and standardize 

the urodynamic study protocol. Group #6 (BTX-A 10U-HA-PE) rats were the first group 

conducted. Our experience with these initial injections led to several technical 

modifications in the protocol. These changes and modifications are detailed below:  

4.1   Modifications to the protocol 

These modifications detailed below were designed to improve the study methodology and 

allow better assessment of outcomes.   

4.1.1  Modifications to the surgical technique 

Two modifications were made to the surgical technique. First, the technique to perform 

the urodynamic study using 2 bladder cystostomies and purse-string sutures to affix the 

26-gauge angiocath and PE-50 tube led to leakage from the bladder during instillation. 

Therefore, we initiated urethral catheterization with a PE-50 tube and K-Y jelly applied 

to the external urethral meatus to avoid urethral leakage for better recording of the 

bladder pressure during urodynamic studies, thus avoiding the need for a second bladder 

incision. 
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Secondly, the method of instillation was altered from using a 26-gauge angiocath placed 

in the bladder through a midline cystostomy incision, to performing direct bladder 

puncture using a 6mm/28-gauge needle and gradually instilling the solution into the 

bladder.  

4.1.2  Modifications to the urodynamic assessment 

Performing the urodynamic assessment as initially drafted in the study protocol was 

technically challenging. Leakage almost always occurred at the cystostomy site, and 

pressure recordings were inaccurate due to reduced bladder capacity secondary to 

leakage. 

To address these obstacles, the following changes were made. Firstly, the PE-50 tubing 

measuring bladder pressure was inserted urethrally rather than through a cystotomy. In 

addition, K-Y gel was applied to the urethral meatus to prevent urethral leakage. 

Secondly, a single tubing was used with two stopcocks on the pressure transducer: one 

connected to the PE-50 tube in the urethra and the other connected to the micro-infusion 

pump for infusion. The main stem of the pressure transducer has already a cord 

connection with the low pressure analyzer. This connection allowed for easy and 

straightforward recording of the urodynamic parameters of interest, preventing bladder 

leakage. 

4.1.3  Modifications to the injection technique 

Rat bladder is thin and it is technically hard to perform an intra- detrusor muscle 

injection. As such, to achieve successful injections into the detrusor muscle, a thinner 

calibre needle was used, replacing the 6mm/28-gauge needle with a 6mm/30-gauge one. 

This facilitated injection into the bladder wall evidenced by well-formed blebs post 

injection in 8/10 rats. However, this smaller needle altered how easily we could inject the 

viscous BTX-A-HA-PE solution. We tried different concentrations of HA-PE and found 

that 0.5grams HA-PE liquefied in 2ml saline was the highest possible dose that could be 

instilled without blocking the needle. 
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4.1.4  Modifications to the BTX-A-HA-PE mixture 

There are no previous studies to assess the optimal dose of HA-PE for this study. We 

started by using different doses of HA-PE, beginning with 0.5 grams, which was found to 

be the highest possible dose of HA-PE that could be liquefied in 2 ml saline (average rat 

bladder capacity). Once this was achieved, the dose of HA-PE was lowered in 0.1g (0.4, 

0.3, 0.2 grams) to compare the effect of HA-PE dosage on BTX-A delivery. 

4.1.5  Modifications to the instillation time 

The duration of instillation was increased from 30 minutes, as initially planned in the 

study protocol to 60 minutes to increase the time of contact between the instilled solution 

and bladder mucosa. 

4.1.6  Modifications to the labeling process 

Fluorescein iso-thio-cyanate (FITC) was replaced with Alexa Fluor®594 in Group #4 

rats, because Alexa Fluor® 594 molecules can attach more readily to proteins at high 

molar ratios without significant self-quenching, thereby enabling brighter images and 

increasing the sensitivity of detection (91). 

4.2   Final control and treatment group 

This experimental study involved six groups of rats, three control groups (Groups #1-3) 

and three treatment groups (Groups #4-6). Only rats in groups #5 and #6 had variable 

HA-PE doses. The Methods section (3.2) review the different group specifications. 
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Control groups: 

Group #1, control arm: All rats received BTX-A 10U-saline, by instillation, which was 

retained in the bladder for 60 minutes (protocol modification; time of instillation 

modified from 30 minutes to 60 minutes).  

Group #2, control arm: All rats received HA-PE 0.5g–saline, by instillation, retained in 

the bladder for 60 minutes (protocol modification; time of instillation modified from 30 

minutes to 60 minutes). 

Group #3, control arm: All rats received BTX-A 5U by direct intra-muscular injection. 

8/10 rats received a successful bladder muscle injection as evidenced by well-formed 

blebs.  

Treatment groups: 

Group #4: All rats received Alexa Fluor®594-labeled BTX-A10U- HA-PE 0.5g, by 

instillation, retained in the bladder for 60 minutes (Protocol modification; Alexa 

Fluor®594 replaced FITC and modified time of instillation from 30 to 60 minutes). 

Group #5: All rats received BTX-A 5U with HA-PE in different doses (0.2-0.5g) instilled 

for 60 minutes (protocol modification; time of instillation modified from 30 minutes to 

60 minutes). Table 1, summarises the HA-PE doses and instillation times for Group #5 

rats. Because of the variable HA-PE doses used in Group #5, the group was further sub-

divided into: 

Group #5A: rats received higher doses of HA-PE: 0.4 or 0.5 grams 

Group #5B: rats received lower doses of HA-PE: 0.2 or 0.3 grams 

Group #6: All rats received BTX-A 10U with different HA-PE doses (0.2-0.5g) instilled 

for 30 minutes (as per the protocol). Table 2, summarises the HA-PE doses and the 

instillation times for Group #6. Because of the variable HA-PE doses used in Group #6, 

this group was further sub-divided into: 

Group #6A: rats received higher doses of HA-PE: 0.4 or 0.5 grams 

Group #6B: rats received lower doses of HA-PE: 0.2 or 0.3 gram 
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Rat number     Group HA-PE dose Instillation time 

1st rat               (5A) 0.4 g 60 minutes 

2nd rat              (5A) 0.4 g 60 minutes 

3rd rat               (5A) 0.4g 60 minutes 

4th rat               (5A) 0.5 g 60 minutes 

5th rat               (5B) 0.3 g 60 minutes 

6th rat               (5B) 0.2 g 60 minutes 

7th rat               (5B) 0.2 g 60 minutes 

8th rat               (5B) 0.2g 60 minutes 

9th rat               (5B) 0.3 g 60 minutes 

10th rat             (5B) 0.2 g 60 minutes 

  

Table 1: Doses and instillation times in group 5 rats 
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Rat number       Group  

 

HA-PE dose Instillation time 

1st rat                 (6A) 0.4 g 30 minutes 

2nd rat                (6A) 0.5 g 30 minutes 

3rd rat                 (6A) 0.5 g 30 minutes 

4th rat                 (6A) 0.5 g 30 minutes 

5th rat                 (6A) 0.4 g 30 minutes 

6th rat                 (6B) 0.3 g 30 minutes 

7th rat                 (6B) 0.3 g 30 minutes 

8th rat                 (6B) 0.3 g 30 minutes 

9th rat                 (6B) 0.2 g 30 minutes 

10th rat               (6B) 0.3 g 30 minutes 

Table 2: Doses and instillation times in group 6 rats 

 

 

4.3   Exclusions from analysis and explanation 

4.3.1   Exclusions from SNAP-25 staining analysis 

SNAP-25 staining were evaluated in all rat groups, with the exception of Group 4 (10 

rats) in which Alexa Fluor®594-labelling was assessed. Another two rats were excluded 

from Group 3 due to unsuccessful BTX-A direct detrusor injections, a total of 48 rats out 

of 60 were assessed for SNAP-25 staining percentage. 
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4.3.2   Exclusions from urodynamic analysis 

Group 6 rats were excluded from urodynamic analysis, as we were unable to perform 

adequate bladder filling due to significant bladder leakage as a result of the 2 

cystostomies technique into the bladder. This initial experience led to urodynamic 

protocol modifications as detailed above (4.1). Two rats were also excluded from Group 

3 due to unsuccessful BTX-A detrusor injections and one rat from group 2 was sacrificed 

after 48 hours due to infection. Consequently, the urodynamic assessment ultimately was 

performed in 47 of the 60 rats.   

4.4   Primary outcome analysis 
SNAP-25 staining 

Five groups were evaluated for SNAP-25 staining; control groups 1- 3 and treatment 

groups 5 and 6. SNAP-25 staining was identified in both arms of the study with variable 

density. We used SNAP-25 staining in the tissue slides as a primary outcome measure of 

BTX-A action because SNAP-25 cleavage is the primary action of BTX-A in order to 

end up with muscle relaxation.  

Group 1 (BTX-A 10U- Saline) and Group 2 (HA-PE 0.5g - saline) instillations yielded 

the highest density of SNAP-25 staining, with mean staining percentages of 21.8 ± 6.5% 

and 24.6 ± 12.3%, respectively, which was confirmed in both bladder urothelium and 

detrusor muscle, thereby indicating the lack of any substantial SNAP-25 cleavage and 

therefore as expected, absence of any appreciable BTX-A activity. Conversely, Group 3 

control rats (BTX-A 5U IM injection) exhibited the lowest density of SNAP-25 staining, 

with a mean staining percentage of (7.3 ± 5.0%) which suggests substantial SNAP-25 

cleavage and considerable BTX-A activity. This extensive SNAP-25 cleavage confirms 

that direct BTX-A injection into the bladder muscle remains the gold standard method to 

deliver BTX-A to the detrusor muscle. 

Group 5 rats (BTX-A 5U- HA-PE 0.2-0.5g, 60-minute instillation) exhibited SNAP25 

cleavage dependent on the dose of HA-PE. Group 5A rats (n=4) which had received a 

higher dose of HA-PE (0.4 or 0.5g), exhibited minimal SNAP-25 staining, with a mean 
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staining percentage of  12.4 ± 12.3%, which was noticeably lower than in group 5B rats 

(n=6 ) that received lower (0.2, 0.3g) HA-PE dose, in which the mean SNAP-25 staining 

percentage was 23.9 ± 8.5% . 

Group 6 rats, in which BTX-A 10U-HA-PE was instilled for 30 minutes, displayed 

minimal BTX-A activity, indicated by a relatively high degree of SNAP-25 staining in all 

tissue slides and showed HA-PE dose dependent response as well. Group 6A rats (n=5) 

exhibited a mean SNAP-25 staining percentage of 22.9 ± 10.2%, versus 31.5 ± 3.5 in 

Group 6B (n=5).  

Table 3, lists the mean SNAP-25 staining percentages in the different groups, along with 

standard deviations.  

Figure16 and 17, illustrate SNAP-25 staining of all groups compared to group 3 controls.  

Figure18, illustrates SNAP-25 staining of groups 5A&5B and groups 6A&6B compared 

to group 3 controls. 
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Table 3: Mean SNAP-25 staining percentages ± SD of in all groups 

  

 

Group Mean Staining Percentage ± SD 

Group 1 (BTX-A 5 IU-saline)                         

60 minutes 

21.8 ± 6.5 

 

Group 2 (HA-PE, 0.5g)                               

60 minutes 

 

24.6 ± 12.3 

 

Group 3 (BTX-A 5 U IM injection) 

 

7.3 ± 5.0 

 

Group 5 A (BTX-A 5 U-HA-PE, 0.4,0.5g) 

60 minutes 

Group 5 B (BTX-A 5U-HA-PE, 0.2,0.3g) 

60 minutes 

 

12.4 ± 12.3 

 

23.9 ± 8.5 

 

Group 6A (BTX-A 10 U-HA-PE, 0.4,0.5g) 

30 minutes                                           

Group 6B (BTX-A 10 U-HA-PE, 0.2,0.3g) 

30 minutes 

 

 

 

    

 

 

 

22.9 ± 10.2 

 

31.5 ± 3.5 
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                         Group 3                                                             Group 1 

      

                                                                                                 

                Group 3                                                                      Group 2   
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                           Group 3                                                        Group 5A 

       

                                    

                              Group 3                                                         Group 5B 
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                     Group 3                                                              Group 6A 

   

            

Group 3                                                         Group 6B 

Fig 16: SNAP-25 staining in all treatment and control groups compared 

to group 3 controls, magnification 20× 
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Fig. 17: Mean percentage of SNAP-25 Staining. Groups 1- 6 
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Fig. 18: Mean percentage of SNAP-25 Staining. Groups 3,5 and 6 
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Group  Group Std. Error Significance 

3 1                        

(BTX-A 10 U-

saline) 

4.3 0.02 

3 2                        

(HA-PE 0.5g saline) 

4.3 0.003 

3 5A                     

BTX-A5U-HA-PE 

(0.4,0.5g) 

4.8 1.000 

3 5B                     

BTX-A 5U-HA-PE 

(0.2,0.3g) 

4.3 0.008 

3 6A                     

BTX-A10 U-HA-PE 

(0.4,0.5g) 

4.5 0.02 

3 6B                     

BTX-A10 U-HA-PE 

(0.4,0.5g) 

4.5 < 0.001 

*. The mean difference is significant at a p < 0.05 level. 

Table 4: SNAP-25 staining percentage comparisons using one–way analysis of variance 
(ANOVA) compared to BTX-A 5U detrusor injection (Group 3) 
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There was evidence of a statistically-significant increase in SNAP 25 cleavage comparing 

Group 3 rats to either Groups 1 or 2 (p = 0.02 and 0.003, respectively), or to group 5B 

with (p = 0.008).  

On the other hand, comparing the mean percentage of SNAP-25 staining between Group 

3 and group 5A, failed to identify any statistically-significant difference (p =1.00) 

suggesting that the mean SNAP-25 staining in these two groups was comparable and 

evidence of similar BTX activity in Group 5A compared to Group 3.  

Similarly, comparing Group 3 mean SNAP-25 staining percentage to group 6A (BTX-A 

10 U instilled for 30 minutes with a high HA-PE dose (0.4 and 0.5) and to group 6B 

(similar BTX dose and instillation time but lower HA-PE dose 0.2 and 0.3g) revealed 

statistically significant difference in mean SNAP-25 staining in Group 6A and 6B versus 

Group 3 (p = 0.02, p < 0.001, respectively), showing that despite higher dose of BTX, the 

reduced instillation time of 30 minutes may be a significant factor to hamper BTX 

translocation. Collectively, these results show that both prolonged instillation time and 

higher dose HA-PE dose should be combined together to facilitate BTX-A delivery 

across the urothelium with this novel delivery mechanism. Higher dose of BTX-A might 

has an additional effect but this point was not possibly obviated by the instillation time. 

4.5   Secondary outcome analyses 

4.5.1.   Alexa®594 fluorescence 

In Group 4 rats, where BTX-A10U labelled with Alexa Fluor®594 and HA-PE 0.5 g was 

instilled for 60 minutes, positive red florescence was observed in the urothelium upon 

examination under a confocal microscope. These slides were compared by a blinded 

examiner to similarly-processed frozen section specimens from Group 1 rats that had 

undergone BTX-A-saline instillation for 60 minutes without Alexa Fluor®594. Group 1 

exhibited the absence of Alexa Fluor®594 red florescence that was clearly detected on 

Group 4 tissue slides. These results indicate that BTX-A 10 U instilled with HA-PE 0.5g 

for 60 minutes was successfully translocated a cross the urothelium denoted by positive 

Alexa®594 red fluorescence in group 4 tissue slides, compared to controls, (Figure19). 
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                           A                                                                      B 

        

                            C                                                                        D 

Fig. 19: Group 4: Alexa Fluor®594-labeled BTX-A-HA-PE (A & C)                                                      

Group 1(control): BTX-A-saline (B & D).  
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4.5.2   Urodynamic results  

Urodynamic evaluation was performed in all control groups and experimental groups, at 

the initial procedure without acetic acid (AA) instillation and after two weeks, following 

instillation of 1% acetic acid for 30 minutes. The urodynamic studies in Group 6 were 

excluded because of technical errors resulting in leakage of the fluid. All urodynamic 

studies were performed under anesthesia through a urethral PE-50 tube connected to the 

urodynamic machine. 

4.5.2.1    Maximum Pressure 

         Group Maximum Pressure      

(baseline study) 

 

Maximum Pressure          

(Follow up study after AA 

instillation) 

Group 1        

(n=10) 

         0.02 ± 0.01          0.04 ± 0.02 

Group 2          

(n=9) 

         0.03 ± 0.008           0.04 ± 0.02 

Group 3          

(n=8) 
         0.02 ± 0.004           0.04 ± 0.009 

Group 4        

(n=10) 
         0.03 ± 0.01           0.04 ± 0.01 

Group 5A       

(n=4) 

         0.02 ± 0.005           0.05 ± 0.009 

Group 5B       

(n=6) 

         0.03 ± 0.007           0.04 ± 0.008 

Table 5: Mean maximum pressure at baseline and after AA instillation, ± SD 
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We did not observe any significant differences in baseline MP at the time of initial 

urodynamic study in the control versus treatment groups (p = 1.0), table (5). The 

administration of acetic acid induced an increase in the MP in all groups. However, there 

again was no significant difference in maximum pressure after acetic acid instillation 

between the groups (p = 0.2). Kruskal-Wallis test was used to evaluate the significance of 

MP in both baseline and after acetic acid instillation, (Fig.20, 21). 

 

 

 

 

 

 

Fig. 20: Maximum pressure at baseline urodynamic study 
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Fig. 21: Maximum pressure after 1% acetic acid instillation on follow up urodynamic 

study 
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4.5.2.2   Inter-contraction interval (ICI) 

No significant differences were noted in baseline inter-contraction intervals between the 

six groups (p=0.9). As expected, control groups (1and 2) showed shortening of inter-

contraction intervals at the time of the second urodynamic assessment, after 1% acetic 

acid instillation for 30 minutes. Group 3 rats showed prolongation of inter-contraction 

intervals compared to the baseline despite AA stimulation, demonstrating the 

physiological effects of BTX-A (13.0 ± 11.4 seconds at baseline &16.8 ± 10.2 seconds 

after AA).  

Group 5A was the only treatment group that exhibited a relatively stable inter-contraction 

intervals, during the second urodynamic assessment after AA instillation mimicking the 

results we showed with group 3 (11.8 ± 4.3 at baseline &11.3 ± 7.0 after AA). This effect 

did not reach statistical significance. Statistical analysis using the non-parametric 

Kruskal-Wallis test identified significant differences in ICI at day #14 between the 

groups (p = 0.01), (Table 6, Fig. 22,23). 
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Group          ICI at baseline 

 

ICI after AA instillation 

 
Group 1              9.6 ± 2.1              5.1 ± 3.7 

Group 2             10.7 ± 4.7              8.9 ± 3.2 

Group 3             13.0 ± 11.4              16.8 ± 10.2 

Group 4             16.0 ± 11.6              11.3 ± 5.1 

Group 5A             11.8 ± 4.3              11.3 ± 7.0 

Group 5B             15.2 ± 9.8               6.3 ± 2.6 

 

Table 6: Mean inter-contraction intervals (ICI) at baseline and at 14 days 

after AA instillation; ± SD 
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Fig. 22: Baseline ICI urodynamic study 
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Fig. 23: ICI after acetic acid instillation on follow up urodynamic study at day 14 

 

 

 

Group # 4 rats, showed considerable shortening of ICI after 1% acetic acid instillation at 

day 14 compared to baseline (16.0 ± 11.6 at baseline & 11.3 ± 5.1after AA) despite that 

we used BTX-A 10U for 60 minutes instillation. We do not have adequate explanation of 

this point; the labeling process might deem responsible for this effect and it is possible 

          1                2                3               4              5A             5B 
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that the labeling process might by blocking the active functional sites of BTX-A 

molecule.  

Interestingly, in agreement with our SNAP-25 cleavage results, group 5B rats showed 

considerable shortening of ICI after 1% acetic acid instillation compared to baseline (15.2 

± 9.8 at baseline & 6.3 ± 2.6 after AA) suggesting the lack of BTX-A action most 

probably due to low HA-PE dosage and a possible increased bladder reactivity to acetic 

acid instillation. 

In conclusion; SNAP-25 staining results of our experimental study show that bladder 

instillations of BTX-A with HA-PE carrier led to significant histological evidence of 

SNAP-5 cleavage and BTX-A translocation a cross the urothelium comparable to direct 

muscle injection (Group 3).  

We demonstrated another evidence of BTX-A translocation in group #4 rats using BTX-

A labeled with Alexa Fluor®594. HA-PE dose and instillation time had an impact on 

BTX-A translocation and effect. Clear evidence of BTX-A action on urodynamic data is 

not clear and The study showed weak evidence of the relaxing effect of BTX-A-HA-PE 

instillation on detrusor muscle, yet our data shows encouraging results that could be more 

evident in future studies on bigger animals with bigger sample sizes. 
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         Chapter 5: Discussion 
The current study, in a rat model, assessed the success of the carrier, hyaluronan 

phosphatidyl-ethanolamine (HA-PE), in the delivery of botulinum toxin A (BTX-A) to 

bladder muscle when administered by bladder instillation rather than by the standard 

clinical practice of direct bladder muscle injection. The underlying hypothesis was that 

HA-PE might facilitate the passage of BTX-A across the normally impermeable 

urothelium that forms the innermost lining of the bladder wall. 

Summary of study findings and comparative literature 

As expected, we found that simple instillations of BTX-A in saline were ineffective at 

delivering BTX-A across the urothelium. Using SNAP-25 staining as a marker of 

effective BTX-A passage through the urothelium, we histologically observed that simple 

BTX-A - saline solution failed to result in the cleavage of SNAP-25 in a control group of 

rats (group1), as evidenced by the high mean percentage of SNAP-25 staining relative to 

rats in which direct detrusor injection of BTX-A was done (group 3). These results 

confirm those published by Chuang et al who assessed the delivery of BTX-A in rat 

bladders by instillation and identified both histological and urodynamic evidence that 

BTX-A in saline alone was ineffective (80). 

Group 3 rats which received direct bladder muscle injection exhibited the least mean 

staining percentage of SNAP-25 of all the six groups, indicating the greatest degree of 

BTX-A- induced SNAP-5 cleavage. This group also was the only one to experience 

prolongation of the inter-contraction intervals on follow up urodynamic studies, despite 

acetic acid stimulation, suggesting decreased detrusor muscle hyperactivity. Several other 

investigators had already studied the effectiveness of intra-detrusor injections of BTX-A 

in humans and the results have largely been supportive (70,71). 
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Consequently, based upon those of previously-published research, for our purposes; the 

control group that received direct detrusor injections was the reference group against 

which all others were compared.  

We detected no evidence of inflammation in the form of inflammatory cells and/or 

disruption of cell integrity, in the urothelium or detrusor muscle after the administration 

of HA-PE with saline (group 2), obviating any concerns that this preparation may lead to 

bladder inflammation as a potential factor in allowing the BTX-A translocation rather 

than a direct effect of HA-PE. This is conceivable because the HA-PE carrier is formed 

from two biological components — hyaluronic acid and phospholipids — both of which 

are integral components of body tissues. As such, it should unlikely be toxic to the 

bladder epithelium or to trigger a foreign body immune response. 

Treatment group #5was further subdivided into rats that received a higher dose of HA-PE 

(0.4 or 0.5g), and those that received a lower dose of HA-PE (0.2 or 0.3g). We found that 

the mean percentage of SNAP-25 staining was comparable in the sub-group of rats that 

received 5U BTX-A plus higher-dose HA-PE (either 0.4 or 0.5g ) instilled for 60 

minutes, to those rats that received the direct detrusor injections, as indicated by mean 

SNAP-25 staining percentages of 12.4% versus 7.3%, respectively (p = 1.00). Those rats 

in which BTX-A was instilled accompanied by a lower dose of HA-PE (between 0.2 and 

0.3g) fared no better than those administered BTX-A in saline alone, these mean 

percentages of SNAP staining being 23.9 and 21.8%, respectively. Therefore, the dose of 

HA-PE played a fundamental role in the effective delivery of BTX-A. 

These results provide promising evidence that BTX-A instillation, when combined with a 

high dose of HA-PE (in the range of 0.4 to 0.5g in 2 ml saline) and instillation time of at 

least (60 minutes), could be a promising alternative therapy in the future to BTX-A 

injection in neurogenic bladder dysfunction, if future studies confirm our current results.  

By facilitating the transfer of BTX-A through urothelium, our newly-formulated carrier 

has the potential to augment the efficacy of intravesical BTX-A instillation to reach 

similar therapeutic effect as direct muscle injection. This conjecture, obviously, requires 
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further investigation and reproduction to assess the effect in larger animals with thicker 

bladder walls and an understanding of the HA-PE dose effect and ideal instillation time.  

In treatment group# 4 we identified additional evidence that BTX-A was able to cross the 

urothelium when combined with a higher-dose HA-PE using fluorescence evidence. This 

was the detection of Alexa Fluor®594-labeled BTX-A in rat bladder wall tissue after 60 

minutes of instillation of BTX-A 10 U- HA-PE 0.5g. Such fluorescence was absent in 

control rats in which BTX-A 10U-saline was instilled and maintained in the bladder for 

60 minutes before draining. The evidence here is tainted by the fact that good tissue 

architecture was not obtained during our frozen section examinations. Therefore, while 

we are confident of the fluorescence observed in the bladder epithelium, it was hard to 

confirm the exact depth of tissue penetration into the bladder muscle. Nevertheless, the 

presence of fluorescence in the deeper layers of the epithelium is preliminary proof of our 

principle and hypothesis.   

One of our initial goals was also to see if BTX-A delivery using the newly-formulated 

HA-PE carrier resulted in any physiological improvements in bladder wall function after 

noxious stimuli using acetic acid. We sought to determine whether BTX-A-HA-PE 

instillation would reduce the extent of bladder hyperactivity measured by ICI induced by 

instilling 1% acetic acid for 30 minutes during our follow up urodynamic procedure. We 

expected that successful delivery of BTX-A would prolong the inter-contraction interval 

(ICI) despite acetic acid stimulation. The only rats that experienced mean prolongation in 

the ICI was the group treated by BTX-A intra-detrusor injection (group 3), among which 

the ICI rose from 13.0 to 16.8 milliseconds. Understandably, acetic acid triggered a 

marked shortening of the ICI in all the remaining installation groups, with the exception 

of those given BTX-A-HA-PE at a higher dose and longer instillation time (5A), in which 

the ICI essentially remained unchanged. This again suggests that higher HA-PE dose and 

longer duration of instillation promotes BTX-A delivery across the urothelium.  

Interpreting our urodynamic data has to be done with caution because none of the 

differences in ICI over time between groups were statistically significant. This may be a 

reflection of our sample size or the lack of a true effect. Another perplexing finding of 
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our study was seen in rats treated with Alexa Fluor®594-labeled BTX-A 10 U- HA-PE 

0.5g for 60 minutes instillation. In this group the ICI declined suggesting a worsening 

from a baseline interval of 16.0 milliseconds to an interval of 11.3 milliseconds after 

acetic acid instillation. One possible explanation is the potential loss of biological activity 

resulting from labeling of BTX-A  with Alexa Fluor®594. We could have examined 

SNAP-5 staining in this group to detect if translocated BTX-A is functionally active or 

not but this was not done in this study. Clearly this must be investigated further to verify 

this result and seek potential explanations for this observation. 

Our study adds to the body of literature studying alternative methods of BTX-A delivery 

as opposed to direct detrusor muscle injection (80-84). Chaung et al tested intravesical 

instillation of BTX-A with liposomes (lipotoxin) in Sprague Dawley rats using similar 

outcome measures. These results matched ours as we found that mean SNAP-25 staining 

percentage in group 5A rats treated with high HA-PE dose showed similar lowered mean 

SNAP-25 staining percentage compared to control groups. In their study, Chaung et al 

showed a significant decrease in SNAP-25 activity in the lipotoxin pre-treated group 

which also exhibited less bladder hyperactivity and inflammation in response to acetic 

acid intravesical instillation. Their report was however lacking some basic data to 

interpret the results like the number of rats in each group and the lack of untreated 

controls. Pre-treatment with low-energy shock waves (LESW) was used in another 

experimental study on female Sprague Dawley rats, in which the effects of intravesical 

instillation of BTX-A-saline solution were compared after pre-treatment with LESW.  

 

The evaluation included an urodynamic evaluation eight days’ post-treatment, as well as 

staining for SNAP-23, SNAP-25 and COX2 (83). The study showed that SNAP-23, 

SNAP-25 and COX2 protein levels in the LESW+ BTX-A group was decreased by 15%, 

15% and 28%, respectively compared to the control group.  

The results were encouraging, the author mentioned that SNAP-23, SNAP-25 and COX2 

protein level in the LESW+ BTX-A group was decreased by 15% (p˂0.05), 15% 

(p=0.061) and 28% (p˂0.05), respectively, compared to the control group. However, no 

significant difference was detectable in LESW or BTX-A groups relative to controls. Pre-
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treatment with LESW decreased SNAP-25, SNAP-23 and COX2 expression in LESW 

pre-treated versus non-pre-treated rats, and inhibited bladder hyperactivity induced by an 

acetic acid challenge, suggesting at least some degree of enhanced urothelial permeability 

to BTX-A post LESW treatment. 

Current study limitations 
Our study has limitations that need to be considered while interpreting its results. The 

original intention was to perform urodynamic assessment while the rat was awake, 

instead of under general anesthesia. However, because rats will not lie still even during a 

relatively innocuous procedure like bladder catheterization, anaesthesia was required.  

Performing urodynamic assessments while the rats were awake would likely have yielded 

a more realistic evaluation of bladder function. In addition, group 6 rats were all excluded 

from the urodynamic analysis because of an issue related to urodynamic procedure and 

instillation technique leading to leakage and inadequate bladder filling. This was 

unfortunate but a true learning process given the absence of any previously published 

guidelines on how to perform urodynamic assessments on an anaesthetised rat. This loss 

of data from this group prohibited us from determining if 60 minutes versus 30 minutes’ 

bladder instillation actually impacted successful BTX-A delivery. Urodynamic data in 

this study was obtained rigorously and using a standardized protocol. Despite this, 

urodynamic data show variability and we are concerned with the validity of this data and 

the lack of previous study references to justify our observations.  

ICI measurements were not universally analyzable because of some studies with either 

single bladder contraction during the study or flat curve as a result of failure of detrusor 

contraction under anesthesia. Therefore, it was hard to interpret whether this was a 

relaxed non-contractile bladder or somehow a flaw in pressure recording or the effect of 

anaesthesia, though all rat underwent urodynamic studies under anaesthesia.  

Future studies expanding on our findings will have to investigate using maximal doses of 

HA-PE (0.5 g or more) with higher instillation time, beyond 60 minutes to understand the 

implications of both modifications. This study opened up the possibility of a new novel 

delivery mechanism that has never been tested before, which does show promise and 

requires further evidence and experimental study before clinical translation. Lack of 

blinding of assessors when analyzing SNAP-25 staining would be a pre-requisite for 
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future studies but unfortunately could not be implemented in this current study. However, 

by randomly taking 4 pictures of each slide, then select the picture with the highest 

SNAP-25 staining percentage, we tried our best to avoid investigator bias. 

We had a relatively small sample size especially when we take into account sub group 

divisions. Future studies using this technique will have the benefit of considering a 

formal sample size calculation. In addition, selecting a larger animal model with thicker 

bladder wall will help us estimate the depth of BTX-A penetration using the HA-PE 

carrier. 

Implications of the Research 
This study is a first step to evaluate the success of a novel method to deliver BTX-A to 

the detrusor muscle using HA-PE. This technique and carrier, if validated in subsequent 

studies, may eventually preclude the need for endoscopic injection of BTX-A in the 

detrusor muscle under anesthesia in pediatric patients. The implications for patient 

comfort, lack of physician led intervention and savings related to health care costs could 

potentially be very significant if this technique achieves similar results to direct bladder 

muscle injection.  

Conclusions: 

Our study results showed that HA-PE could potentially be an efficient carrier for BTX-A 

delivery across the urothelium using simple bladder instillation. Further investigation of 

this potential is required in a larger animal model with a larger sample size and more 

robust urodynamic data. In addition, the effect of HA-PE dose and instillation time needs 

to be further elucidated to understand the dose-dependent effect, while ensuring that 

adverse effects of HA-PE continue to be absent. 
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Appendices  

Appendix 1: SNAP-25 Staining protocol 

1)   Tissue slides were de-paraffinized by being immersed in xylene for 15 minutes, 

followed by alcohol concentrations (100%, 95% and then 70%), each for 10 

minutes.  

2)   The tissue was then rehydrated by being immersed in distilled water and then 

1*PBS (phosphate-buffered saline), each for 5 minutes.  

3)   Antigens were retrieved by immersing tissue slides in 10mM sodium citrate, pH 

6.0, then micro-waving them at power level 10 for three minutes, followed by 

power level 5 for five minutes and, finally, power level 3 for eight minutes. Slides 

then were left to cool for 20-30 minutes at room temperature. 

4)   Slides were washed in 1*PBS for 5 minutes, a process that was repeated 2-3 

times. 

5)   Slides were immersed in 3.0% H2O2 diluted in 1*PBS for 10 minutes. 

6)   Slides were removed from H2O2 and washed in 1*PBS for five minutes, and the 

washing process was repeated 2-3 times. 

7)   Blocking with 3.0% BSA (Bovine Serum Albumin) diluted in 1*PBS was done 

for one to two hours, after which one slide was retained as a negative control in 

BSA solution in a 4°C fridge overnight. 

8)   Primary antibody (sab 2500965, Sigma Aldrich, Canada) was added to the slides 

at a dilution of 1:100ul (SNAP-25 antibodies were supplied at 0.5 mg/mL in 

saline with 0.02% sodium azide and 0.5% bovine serum albumin). Then the slides 

were covered in tinfoil, and stored in a 4°C fridge overnight.  
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Day 2:  

1)   The negative ‘control’ slide was taken out of the fridge and washed with the other 

slides in 1*PBS for five minutes on the rocker, and this repeated 2-3 times. 

2)   Secondary antibodies (anti-rabbit IgG-goat), at a dilution of 1µl in 500µl of 

1*PBS, were added to the slides and this was left for two hours at room 

temperature, followed by washing in 1*PBS for 15 minutes.  

3)    Streptavidin was added to the slides at a dilution of 1:2000µl 1*PBS and left at 

room temperature for 30 minutes. Then the slides were washed in 1*PBS for five 

minutes.  

4)   DAB was added and the slides left to sit for between 5 and 40 minutes, the length 

of time determined by evidence of a reaction (Brown staining). As soon as slides 

started to turn brown, they were washed in 1*PBS for five minutes, and this 

repeated 2-3 times. 

5)   Sections were immersed in filtered haematoxylin for 30 seconds, then washed in 

distilled water for five minutes.  

6)   Tissue slides were then run through the original series in a reverse concentration 

of ethanol (70%-95%-100%), each for 2 minutes, culminating with xylene for one 

minute. 

7)   As a final step, the slides were mounted in Richard-Allan Scientific Cytoseal 60 

(Thermo-Scientific) and left to dry overnight in the laboratory. 
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Appendix 2: BTX-A- Alexa Fluor®594 labeling Protocol 

Solution preparation: 

The first step in solution preparation was to make a sodium bicarbonate solution with a 

pH of 9.0, by dissolving 1.2 g/L of sodium bicarbonate in distilled water and adjusting 

the pH with 1N Na OH to achieve the final desired pH of 9.0. The Alexa solution was 

then prepared by dissolving 1 mg Alexa Fluor®594 in 250µL DMSO, which then was 

added to 250mL of 0.1 M sodium bicarbonate, at pH = 9.0. The dialysis solution for 

BTX-A was 4L of 1*PBS (phosphate buffered saline). 

Steps: 

Solutions were prepared as mentioned above and stored at 4°C for 24 hours, after which a 

length of dialysis tubing was soaked in RT-PCR grade water for 2-5 minutes, then in 

boiling water for 5 minutes, followed by final incubation, again in RT-PCR grade water. 

This was followed by re-suspension of the BTX-A in a 0.1 M solution of sodium 

bicarbonate at pH = 9.0.  

BTX-A was placed into dialysis tubing and dialyzed in 0.1M sodium bicarbonate, pH 9.0, 

at 4°C with 250uL of dye in 250 mL of 0.1 M sodium bicarbonate pH 9.0, then left for 24 

hours at 4°C in the dark (wrapped in foil). Finally, BTX-A was dialyzed in 1*PBS for 2-3 

days, while changing the buffer every 6-12 hours (6 changes). 
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Appendix 3: Animal Use Approval 

 

2012-047:3: 

AUP Number: 2012-047 
AUP Title: Use of hyaluronan formulations in tissues 
Yearly Renewal Date: 05/01/2016 

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2012-047 has 
been approved, and will be approved for one year following the above 
review date. 

1.   This AUP number must be indicated when ordering animals for this project.  
2.   Animals for other projects may not be ordered under this AUP number.  
3.   Purchases of animals other than through this system must be cleared through the 

ACVS office. 
Health certificates will be required. 

REQUIREMENTS/COMMENTS 
Please ensure that individual(s) performing procedures on live animals, as described in 
this protocol, are familiar with the contents of this document. 

The holder of this Animal Use Protocol is responsible to ensure that all associated safety 
components (biosafety, radiation safety, general laboratory safety) comply with 
institutional safety standards and have received all necessary approvals. Please consult 
directly with your institutional safety officers. 

Submitted by: Kinchlea, Will D  
on behalf of the Animal Use Subcommittee 

 

 

 



 

 

 

93 

 

Appendix 4: Urodynamic Assessment 
 

Urodynamic assessment via PE-50 urethral tube 

                  

BTX-A HA-PE saline bladder instillation via PE-50 urethral tube 
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