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Mutation spectrum of NOD2 
reveals recessive inheritance 
as a main driver of Early Onset 
Crohn’s Disease
Julie E. Horowitz1, Neil Warner2,3, Jeffrey Staples1, Eileen Crowley2,3,4, Nehal Gosalia1, 
Ryan Murchie2,3, Cristopher Van Hout1, Karoline Fiedler2,3, Gabriel Welch1, 
Alejandra Klauer King1, Jeffrey G. Reid1, John D. Overton1, Aris Baras1, Alan R. Shuldiner1, 
Anne Griffiths2, Omri Gottesman1, Aleixo M. Muise2,3,5* & Claudia Gonzaga‑Jauregui1*

Inflammatory bowel disease (IBD), clinically defined as Crohn’s disease (CD), ulcerative colitis (UC), or 
IBD‑unclassified, results in chronic inflammation of the gastrointestinal tract in genetically susceptible 
hosts. Pediatric onset IBD represents ≥ 25% of all IBD diagnoses and often presents with intestinal 
stricturing, perianal disease, and failed response to conventional treatments. NOD2 was the first and 
is the most replicated locus associated with adult IBD, to date. However, its role in pediatric onset 
IBD is not well understood. We performed whole‑exome sequencing on a cohort of 1,183 patients 
with pediatric onset IBD (ages 0–18.5 years). We identified 92 probands with biallelic rare and low 
frequency NOD2 variants accounting for approximately 8% of our cohort, suggesting a Mendelian 
inheritance pattern of disease. Additionally, we investigated the contribution of recessive inheritance 
of NOD2 alleles in adult IBD patients from a large clinical population cohort. We found that recessive 
inheritance of NOD2 variants explains ~ 7% of cases in this adult IBD cohort, including ~ 10% of CD 
cases, confirming the observations from our pediatric IBD cohort. Exploration of EHR data showed 
that several of these adult IBD patients obtained their initial IBD diagnosis before 18 years of age, 
consistent with early onset disease. While it has been previously reported that carriers of more 
than one NOD2 risk alleles have increased susceptibility to Crohn’s Disease (CD), our data formally 
demonstrate that recessive inheritance of NOD2 alleles is a mechanistic driver of early onset IBD, 
specifically CD, likely due to loss of NOD2 protein function. Collectively, our findings show that 
recessive inheritance of rare and low frequency deleterious NOD2 variants account for 7–10% of CD 
cases and implicate NOD2 as a Mendelian disease gene for early onset Crohn’s Disease.

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal (GI) tract that 
arises as part of an inappropriate response to commensal or pathogenic microbiota in a genetically susceptible 
 individual1–4. IBD encompasses Crohn’s Disease (CD); ulcerative colitis (UC); and IBD unclassified (IBDU). 
The etiology of IBD is complex and has been attributed to defects in a number of cellular pathways including 
pathogen sensing, autophagy, maintenance of immune homeostasis, and intestinal barrier function, among 
other  processes3–18.

Great effort has been invested into defining the genetic factors that confer IBD susceptibility. To date, > 200 
unique loci have been associated with IBD through genome-wide association studies (GWAS), primarily in adult 
 populations19,20. Nearly all the identified susceptibility loci exhibit low effect sizes (ORs ~ 1.0–1.5)  individually19, 
and collectively account for less than 20% of the heritable risk for  IBD19–21. These observations support a complex 
disease model in which common variants of modest effect sizes interact with environmental factors including 
diet, smoking, and the intestinal  microbiome22,23 to give rise to IBD susceptibility.
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The earliest and most replicated genetic associations with  IBD24–26 correspond to a locus on chromosome 
16 that encompasses the nucleotide-binding and oligomerization domain-containing 2 (NOD2) gene, with an 
average allelic odds ratio across multiple studies of 3.119,20. NOD2 encodes an intracellular microbial sensor that 
recognizes muramyl dipeptide (MDP) motifs found on bacterial  peptidoglycans27,28. Upon activation, NOD2 
protein signals through the NF-κB family of  proteins29 to modulate transcription of genes encoding pro-inflam-
matory cytokines IL-8, TNF-α, and IL-1β30–32, among others. Variation in NOD2 accounts for approximately 
20% of the genetic risk among CD cases, with three variants—p.R702W (ExAC MAF = 0.0227 across all popula-
tions), p.G908R (ExAC MAF = 0.0099), and p.L1007fs (ExAC MAF = 0.0131)—accounting for over 80% of the 
disease-causing mutations in NOD2 associated with adult  CD33, albeit not with UC; and particularly ileal versus 
colonic  CD34. These three “common” risk variants, typically observed in a heterozygous state, are predicted to be 
loss-of-function alleles that impair NF-κB activation in response to MDP ligands, in vitro28,35–37.

With the assumption that genetic risk has a disproportionate effect over environmental risk in early onset 
disease, recent studies have focused on pediatric IBD cases (diagnosed < 18y)38–40. Pediatric IBD patients comprise 
20–25% of all IBD cases and are typically more clinically severe than adult-onset patients, often exhibiting disease 
of the upper GI tract, small bowel inflammation, and perianal disease as well as failure to thrive and poor clinical 
 response4,40. Results from GWAS conducted in this group of severely affected patients indicate that associated 
loci in early onset IBD significantly overlap with adult IBD loci, including both the NOD2 locus and an addi-
tional 28 CD-specific loci previously implicated in adult-onset  IBD41–43. As the mechanism for these “common” 
IBD susceptibility loci in the pathogenesis of early onset IBD remains  unclear44, we performed whole-exome 
sequencing and rare variant analysis on a cohort of 1,183 pediatric onset IBD patients to elucidate the role of 
rare protein coding variation in IBD-associated genes, specifically NOD2, in this disease.

Subjects and methods
Samples. We obtained informed consent for all individuals included in this study or parental informed 
consent was obtained for minors under 18 years of age. For pediatric IBD, we studied a cohort of 1,183 probands 
with pediatric onset IBD (ages 0–18.5 years), including their affected and unaffected parents and siblings, where 
available (total samples = 2,704). Individuals were consented for genetic studies under an IRB-approved protocol 
by the Toronto Hospital for Sick Children, Canada as part of the NEOPICS initiative (https ://www.neopi cs.org/).

DiscovEHR participants are a subset of the Geisinger MyCode Community Health Initiative. The MyCode 
Community Health Initiative is a repository of blood, serum, and DNA samples from Geisinger patients that 
have been consented to participate in research and donate samples for broad research use, including genomic 
analyses that can be linked to de-identified electronic health record (EHR) information. DiscovEHR participants 
were consented in accordance with the Geisinger Institutional Review Board approved protocol, Study number 
2006–0258.

Helsinki guidelines. All human experiments followed relevant guidelines and regulations according to the 
Declaration of Helsinki.

Exome sequencing. Sample preparation, whole exome sequencing, and sequence data production for both 
the pediatric IBD cohort and the DiscovEHR cohort were performed at the Regeneron Genetics Center (RGC) 
as previously  described45. In brief, 1ug of high-quality genomic DNA was used for exome capture utilizing the 
NimbleGen VCRome 2.1 design. Captured libraries were sequenced on the Illumina HiSeq 2500 platform with 
v4 chemistry using paired-end 75 bp reads. Exome sequencing was performed such that > 85% of the bases were 
covered at 20 × or greater. Raw sequence reads were mapped and aligned to the GRCh37/hg19 human genome 
reference assembly, and called variants were annotated and analyzed using an RGC implemented cloud-based 
pipeline. Briefly, variants were filtered based on their observed minor allele frequencies at a < 2% cutoff using the 
internal RGC database and other public population control databases to filter out common polymorphisms and 
high frequency, likely benign variants in consideration of disease prevalence.

DiscovEHR statistical analyses. For NOD2 locus-specific statistical analyses in the DiscovEHR cohort, 
individuals with ICD diagnoses in their EHR consistent with IBD and carriers of NOD2 variants were annotated 
and filtered using the same pipeline as for the pediatric IBD cases. Odds ratios for all genetic models (additive, 
recessive and genotypic) were calculated using Fisher’s exact test with no covariates.

For large-scale association analyses, variants were annotated with snpEff using Ensembl 85 gene  definitions46. 
Gene definitions were restricted to transcripts with annotated start and stop codons, totaling 19,467 protein-
coding genes. Predicted loss-of-function (pLoF) variants were defined as any of the following: variants leading 
to a premature stop codon, loss of a start codon, or loss of a stop codon; single-nucleotide variants or indels 
disrupting canonical splice donor or acceptor sites; and frame-shifting indels predicted to result in premature stop 
codons. Phasing of putative compound heterozygotes was performed as previously described for this  cohort47 
using a combination of familial relationship based  phasing48 and population allele frequency based phasing with 
 EAGLE49. Biallelic pLoF and predicted deleterious missense variants with a MAF < 5% in the discovery set of 
58,138 European ancestry individuals were aggregated at a gene level. Variants were aggregated for gene burden 
tests in two ways as previously  described45,50: pLoFs only and pLoFs plus missense variants (M3) predicted to be 
deleterious (pdNS) by five different bioinformatic prediction algorithms for functional effects, namely  SIFT51, 
 LRT52,  MutationTaster53, PolyPhen2 HumDiv, and PolyPhen2  HumVar54. Genotypes were coded as follows: 
homozygous reference as 0, heterozygotes as 1, and homozygous alternative or compound heterozygous as 2. 
PLINK 1.955 was used to run Firth logistic regression under both additive and recessive models using the ICD10 
K50 phenotype, which is the ICD10 diagnosis code for Crohn’s disease [regional enteritis],  (Ncases = 613 versus 

https://www.neopics.org/
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 Ncontrols = 54,802). Phenome-wide associations were performed using all ICD-10 disease diagnosis codes avail-
able for the DiscovEHR dataset.

Results
An initial analysis of the exome sequencing data for pathogenic and expected pathogenic variants in genes known 
to cause monogenic forms of IBD in all probands from our pediatric IBD cohort identified 40 rare variants in 
31  probands56. Additionally, we performed trio-based analysis of 492 complete trios using a proband-based 
analytical pipeline to identify all recessive (compound heterozygous and homozygous), X-linked, and de novo 
variants of interest in the affected probands. In our initial analyses, we identified 10 families with recessive 
(compound heterozygous or homozygous), rare variants (2% ≤ MAF) in NOD2, all with a diagnosis of CD. We 
observed that some of the rare variants in these probands were inherited in trans from previously-reported CD 
risk alleles, mainly the p.G908R missense variant. We identified two individuals who are compound heterozy-
gous for the p.G908R risk allele in trans with a less common NOD2 CD risk variant (p.N852S) in one case and 
a novel truncating indel (p.S506Vfs*73) in the second case (Supplementary Table 1, Fam008 and Fam009). The 
observation of a CD-associated NOD2 risk allele in trans from other rare or novel alleles led us to survey the 
rest of the probands, including singletons and those part of incomplete trios, for recessive inheritance, either in 
a homozygous or compound heterozygous manner, of NOD2 variants, but expanding our allelic range to low-
frequency variants (2% ≤ MAF ≤ 5%). Through this approach we identified 108 probands with putative recessive 
NOD2 variants. Visual inspection of sequence reads and orthogonal confirmation through Sanger sequencing 
excluded 13 probands with variants inherited in cis from an unaffected parent or heterozygous variants that were 
initially called as homozygous due to low coverage of the region and skewed allelic balance. Of note, we identified 
5 probands carrying p.L1007fs and p.M863V risk variants, 4 of which were confirmed to occur in cis and were 
inherited from an unaffected parent. The remaining case with p.L1007fs and p.M863V was a singleton and thus 
phase could not be determined. These two variants segregate in cis within the same haplotype, as confirmed by 
segregation within the trios and as previously  observed57. Therefore, we excluded these 4 probands from our 
final count of recessively-inherited NOD2 variants. Similarly, we identified 3 probands from 3 complete trios 
segregating the p.S431L and p.V793M reported risk variants in cis inherited from an unaffected carrier parent; 
these probands were also excluded. Three additional probands were excluded on the basis of a re-evaluation of 
the phenotype that excluded a clinical diagnosis of IBD.

Thus, we identified 92 probands with confirmed recessive NOD2 variants within our pediatric onset IBD 
cohort, none of which had variants of interest in known monogenic IBD associated genes. These included: 25 
probands carrying homozygous variants, 41 probands with confirmed compound heterozygous variants, and 
an additional 26 singleton probands with putative compound heterozygous variants where phasing could not be 
performed (Supplementary Table 1, Supplementary Fig. 1). The majority of the compound heterozygous individu-
als (65/67) carry a known NOD2 CD-risk allele in addition to either another known NOD2 CD-risk allele or a 
novel NOD2 variant, including some truncating loss-of-function variants supporting loss or impaired function 
of NOD2 in the pathophysiology of  CD6. In total, 92 of 1,183 (7.8%) of the probands in our pediatric onset IBD 
cohort conformed to a recessive, Mendelian inheritance mode for NOD2 rare and low frequency (MAF ≤ 5%) 
deleterious variants (Table 1, Fig. 1, Supplementary Table 1, and Supplementary Table 4).

The 92 pediatric patients homozygous for NOD2 mutations were predominantly male (71%) with a median 
age at diagnosis of 12.5 years (Supplementary Table 1). At diagnosis, 83% displayed diagnostic features of Crohn’s 
disease. 23% of the cohort displayed a constellation of extra-intestinal manifestations, mainly large joint arthritis, 
chronic recurrent multifocal osteomyelitis, recurrent fevers, erythema nodosum, and pyoderma gangrenosum. 
Only 6% of the cohort showed significant perianal disease (namely fistulae and abscesses; skin tags and fissures 
were not considered as perianal disease) (Supplementary Table 1). Per the Montreal classification of  IBD58, 44% 
of the overall cohort of patients presented with ileal disease at diagnosis (L1). 25% presented with ileocolonic 
disease (L3) and 10% displayed features of colonic inflammation only (L2). Isolated upper disease was only 

Table 1.  Mutation spectrum of recessive NOD2 variants in an EO-IBD cohort. Common NOD2 variants 
refer to the three main low-frequency Crohn’s Disease risk variants p.R702W, p.G908R, and p.L1007fs; Rare 
NOD2 variants refer to other low-frequency variants (MAF ≤ 5%). Q, quartet; T, trio; D, duo; S, singleton; Dx, 
diagnosis.

NOD2 variant # EO-IBD probands Mean age (range) % CD Dx

Tissue involvement

Colon (%) Ileum (%) Perianal (%)

Compound heterozygous

Rare/rare 4 T; 1S 12.5 (9.0–14.6) 88.9 80.0 60.0 40.0

Common/rare 1Q; 9 T; 6D; 14S 12.6 (5.5–16.5) 93.1 57.1 82.1 25.0

Common/common 17 T; 5D; 10S 11.8 (2.1–18.5) 90.6 56.3 90.6 25.0

Homozygous

Rare 1D; 2S 9.6 (4.2–15.1) 66.7 33.3 33.3 33.3

p.R702W 1Q; 2 T; 3D; 1S 11.7 (5.8–13.8) 100 85.7 57.1 42.9

p.G908R 2 T; 1D; 2S 10.6 (7.7–13.7 80.0 40.0 40.0 0.0

p.L1007fs 4 T; 2D; 4S 12.1 (5.9–13.4) 100 60.0 90.0 20.0
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present in 2% of the cohort (L4). We observed a progression of ileal disease in 21% (18.5% stricturing; 2.5% 
penetrating) with 21% requiring a resection. On review of the Crohn’s disease patients only, 50% displayed L1 
disease (terminal ileal +/− limited cecal disease), 32.9% L3 (ileocolonic) disease; 86.8% B1 (non-stricturing, non-
penetrating) disease, 10.5% B2 (stricturing) disease. Of the 92 patients with biallelic variants in NOD2, 42.4% 
(n = 39) had ileal disease, 27.17% (n = 25) had ileocolonic disease, and 11.95% (n = 11) had colonic inflammation 
only (Supplementary Table 1).

Given the substantial contribution of recessive NOD2 variants to CD in our pediatric onset IBD cohort and 
the known contribution of NOD2 to adult CD, we next investigated the contribution of NOD2 recessivity in a 
large clinical population. For this, we examined a cohort of adult IBD patients from the Geisinger-Regeneron 
DiscovEHR  collaboration45. A key feature of the DiscovEHR study is the ability to link genomic sequence data 
to de-identified electronic health records (EHRs). Within this cohort, we identified 984 patients (of 51,289 total 
sequenced DiscovEHR patient-participants) with a diagnosis of IBD, defined as having a problem list entry or 
an encounter diagnosis entered for two separate clinical encounters on separate calendar days for the ICD-9 
codes 555* (Regional enteritis) or 556* (Ulcerative enterocolitis) or ICD-10 K50* (Crohn’s disease [regional 
enteritis]) or K51* (Ulcerative colitis). For our analysis, we surveyed all instances of homozygous NOD2 rare 
and low frequency variants (MAF ≤ 5%); the same parameters applied to our pediatric IBD probands. Among 
patients with an IBD diagnosis, we identified 18 individuals who are either homozygous for the p.R702W risk 
allele (N = 10) or homozygous for the p.L1007fs allele (N = 8) (Table 2, Supplementary Fig. 2). We did not identify 
any p.G908R homozygous individuals with an IBD diagnosis in this cohort. Next, we looked for instances of puta-
tive compound heterozygosity among these adult IBD DiscovEHR patients. First, we searched for occurrences 
of two or more of the three most prevalent NOD2 risk alleles (p.R702W, p.G908R, or p.L1007fs) in these indi-
viduals. We identified putative compound heterozygosity for the three main CD risk alleles, p.R702W/p.G908R 
(N = 6), p.G908R/p.L1007fs (N = 5), and p.R702W/p.L1007fs (N = 11) (Table 2). We also observed instances of 
putative compound heterozygosity for each of the three main CD risk alleles along with either a rarer CD risk 
allele or a novel allele or two rare alleles in trans (N = 24), parallel to the findings in our pediatric IBD cohort. 

Figure 1.  Mutation spectrum of NOD2 in inflammatory bowel disease (IBD) patients. NOD2 variation 
identified in patients with pediatric early onset IBD (upper) and adult IBD cohort from the RGC-GHS 
DiscovEHR collaboration (lower). Variants in blue were observed in both cohorts; variants in red are predicted 
loss-of-function that result in nonsense mediated decay. The three “common” low-frequency Crohn’s Disease 
risk variants are highlighted: R702W (purple), G908R (brown), and L1007fs (green). Also depicted are the 
NOD2 protein structural domains: two caspase activation and recruitment domains (CARD), a nucleotide 
binding and oligomerization (NOD) domain, and leucine rich repeat domains in yellow.

Table 2.  Mutation spectrum of recessive NOD2 variants in the RGC-GHS DiscovEHR adult IBD cohort. 
Common NOD2 variants refer to the three main low-frequency Crohn’s Disease risk variants p.R702W, 
p.G908R, and p.L1007fs; Rare NOD2 variants refer to other low-frequency variants (MAF ≤ 5%). Dx, diagnosis.

NOD2 variants # IBD patients Mean age (range) # CD Dx % CD Dx # Male % Male # Perianal % Perianal

Homozygous

 p.R702W 10 47.3 (16.0–76.3) 10 100 5 50.0 1 10.0

 p.G908R 0 – – – – – – –

 p.L1007fs 8 40.25 (11.0–75.0) 8 100 4 50.0 3 37.5

Compound heterozygous

Common/common

 p.R702W/p.G908R 6 48.5 (11.4–54.2) 3 50.0 5 83.3 1 16.7

 p.R702W/p.L1007fs 11 38.5 (21.5–69.2) 8 72.7 3 27.3 2 18.2

 p.G908R/p.L1007fs 5 35.2 (20.0–52.4) 4 80.0 2 40.0 0 0.0

Common/rare 16 40.3 (10.8–66.1) 8 50.0 8 50.0 6 37.5

Rare/rare 8 60.9 (30.8–78.7) 4 50.0 3 37.5 1 12.5
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Using familial relationships and pedigree  reconstruction47, we were able to confirm appropriate segregation for 
32 of the 64 DiscovEHR recessive NOD2 variant carriers with IBD, including trans inheritance in 13 putative 
compound heterozygotes (Supplementary Fig. 2). The other 32 were singleton cases where phase could not be 
confirmed. Overall, we identified 64 homozygous or putative compound heterozygous NOD2 variant carriers 
in the DiscovEHR IBD cohort, accounting for 6.5% of patients with an IBD diagnosis in this clinical population 
(Fig. 1, Supplementary Table 4).

We were also able to evaluate longitudinal de-identified medical records for all patients within the DiscovEHR 
IBD cohort. According to their EHR data, 21 patients received diagnoses of both UC and CD. To clarify these 
diagnoses, we performed manual evaluation of EHR information (which includes demographics, encounter 
and problem list diagnosis codes, procedure codes, and medications) for all 64 homozygous or compound 
heterozygous NOD2 patients with an IBD diagnosis. Through this review, 6 homozygotes exhibited a conflict-
ing diagnosis of CD, of which 5 were resolved as CD and 1 could not be defined; 16 compound heterozygotes 
exhibited a conflicting diagnosis of CD of which 6 were resolved as CD and 10 were resolved as UC (Supple-
mentary Table 3). In total, we found that 17/18 (94.4%) of homozygous NOD2 individuals and 33/46 (71.7%) 
compound heterozygous had a diagnosis of CD and that 9.9% of all CD cases in this cohort could be attributed 
to homozygous or compound heterozygous variants in NOD2. We next investigated age of disease onset using 
the first recorded date of an IBD diagnosis in the EHR. We identified 6 carriers of recessive NOD2 variants (9.4% 
of our recessive NOD2 patients with IBD) who were diagnosed with IBD prior to 18 years of age. We also identi-
fied additional 11 carriers of recessive NOD2 variants diagnosed with IBD prior to age 30 years, which is at or 
below the average age of IBD  diagnosis59 and is consistent with earlier disease onset (Supplementary Table 3). Of 
note, our DiscovEHR cohort data extends to a median of 14 years (and maximum of 25 years) of electronically 
recorded medical information, concurrent with the adoption of the EHR by the Geisinger Health System. Since 
72.4% of our cohort is currently over the age of 50 years, we cannot determine whether the age of onset for IBD 
occurred prior to the first electronically recorded date of an IBD diagnosis for many recessive NOD2 patients; 
thus it is possible that other individuals with homozygous or compound heterozygous variants in NOD2 might 
have had pediatric-onset disease that was not captured in the EHR.

Incidentally, our manual evaluation of the EHR data for these individuals also revealed that 75% of the IBD 
patients had a diagnosis record of anemia in their history. In about 58% of these cases the anemia diagnosis was 
given concurrent or before the first recorded diagnosis of IBD, with an average of 2.26 years prior. This obser-
vation is consistent with previous reports of anemia as an important yet underappreciated and undertreated 
comorbidity in  IBD60,61, but also suggests that anemia may be an early indicator of IBD onset. Interestingly, 16 
of 48 individuals homozygous for the p.L1007fs variant that do not have a diagnosis of IBD and for which we 
were able to review their EHR information had a diagnosis of anemia in their chart and 11 of them had diag-
nosis codes related to gastrointestinal complaints. To further assess whether NOD2 genotype status associated 
with other phenotypes, we performed a PheWAS analysis using all ICD codes recorded in the EHR of NOD2 
homozygous and compound heterozygous individuals. This analysis showed that NOD2 recessivity significantly 
and specifically associates with Crohn’s disease (Fig. 2).

Next, given the recessive inheritance of NOD2 variants observed in both our pediatric onset and adult 
IBD cohorts, we estimated the disease risk for the three main known CD risk alleles (p.R702W, p.G908R, and 

Figure 2.  Phenome wide association analysis (PheWAS) of ICD diagnostic codes with biallelic recessive 
genotypes of NOD2. Analysis shows that NOD2 recessive status significantly associates with Crohn’s disease and 
related diagnoses.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5595  | https://doi.org/10.1038/s41598-021-84938-8

www.nature.com/scientificreports/

p.L1007fs) in our adult IBD case cohort and their effect sizes using additive, genotypic, and recessive genetic 
models. Under an additive model, we observed similar effect sizes for each of the 3 variants [OR = 1.43 (1.20–1.71 
95%CI, P-value 4.63 ×  10–5) for p.R702W; OR = 1.56 (1.18–2.06 95%CI, P-value 1.54 ×  10–3) for p.G908R; and 
OR = 1.84 (1.50–2.26 95%CI, P-value 1.69 ×  10–9) for p.L1007fs], consistent with previously reported low to 
moderate effect sizes for each allele by  GWAS20 and data available in the IBD Exomes  Portal62 (Table 3, Fig. 3). 
However, for the two risk alleles with homozygous cases, in the genotypic model – which estimates distinct effect 
sizes for heterozygous and homozygous carriers – we observe substantially larger effects in homozygotes versus 
heterozygotes for the p.R702W variant (Het OR = 1.30 [1.06–1.58 95%CI], P-value 8.77 ×  10–3, versus Hom 
OR = 4.02 [2.17–7.45 95% CI], P-value 6.86 ×  10–6) and the p.L1007fs variant (Het OR = 1.63 [1.30–2.04 95%CI], 
P-value 1.67 ×  10–5, versus Hom OR = 10.15 [4.75–21.69 95% CI], P-value 1.38 ×  10–12). We also calculated the 
effect sizes using a recessive model for these two variants and the 22 compound heterozygotes carrying any 
combination of the 3 CD risk alleles. We found that recessive effect sizes for the p.R702W and p.L1007fs variants 
were similar to those observed under the homozygous genotypic model (OR = 3.91 [2.11–7.24 95% CI], P-value 
2.86 ×  10–6, and OR = 9.81 [4.59–20.94 95% CI], P-value 3.80 ×  10–13, respectively) (Table 3, Fig. 2). Additionally, 
we calculated the relative risk for the identified putative compound heterozygous (pCHET) individuals under a 
recessive model. We observed that the effect size for the compound heterozygotes was also significant (OR = 4.35 
[2.80–6.75 95% CI], P-value = 8.14 ×  10–13), consistent with our previous observations (Table 3, Fig. 2). The calcu-
lated combined contribution of the 3 CD risk alleles under the different genetic models was as follows: additive 
(OR = 1.64 [1.45–1.86 95%CI], P-value 4.58 ×  10–15), genotypic (Het OR = 1.49 [1.28–1.73 95%CI], P-value 2.75 

Table 3.  OR calculations for 3 NOD2 CD risk alleles (p.R702W, p.G908R, p.L1007fs), composite, and 
compound heterozygous combinations in the DiscovEHR cohort. There were no homozygotes for the p.G908R 
variant affected with IBD in our cohort; therefore, no genotypic homozygous and recessive ORs could be 
calculated. The ‘Composite NOD2′ calculations account for all alleles and genotypes for the 3 CD risk variants 
in the different genetic models.

NOD2 variant
DiscovEHR 
MAF

DiscovEHR 
controls 
(N = 50,305)

DiscovEHR 
IBD cases 
(N = 984)

Additive model 
OR [95% CI] 
(P-value)

Genotypic 
model 
(heterozygous) 
OR [95% CI] 
(P-value)

Genotypic 
model 
(homozygous) 
OR [95% CI] 
(P-value)

Recessive 
model OR [95% 
CI] (P-value) ExAC MAF

IBD exomes 
OR (P-value)

p.R702W 0.050 Het = 4727; 
Hom = 145

Het = 116; 
Hom = 11

1.43 [1.20–1.71] 
(4.63 ×  10–5)

1.30 [1.06–1.58] 
(0.008765)

4.02 [2.17–7.45] 
(6.86 ×  10–6)

3.91 [2.11–7.24] 
(2.86 ×  10–6) 0.035 1.92 (< 1 ×  10–16)

p.G908R 0.017 Het = 1683; 
Hom = 16

Het = 52; 
Hom = 0

1.56 [1.18–2.06] 
(0.001544)

1.61 [1.21–2.13] 
(0.00087) NA NA 0.012 1.91 (< 1 ×  10–16)

p.L1007fs 0.029 Het = 2808; 
Hom = 42

Het = 86; 
Hom = 8

1.84 [1.50–2.26] 
(1.69 ×  10–9)

1.63 [1.30–2.04] 
(1.67 ×  10–5)

10.15 
[4.75–21.69] 
(1.38 ×  10–12)

9.80 
[4.59–20.94] 
(3.80 ×  10–13)

0.018 2.57 (< 1 ×  10–16)

Compound Het N = 263 N = 22 4.35 [2.80–6.75] 
(8.14 ×  10–13)

Composite 
NOD2

Het = 8955; 
Rec = 450

Het = 232; 
Rec = 41

1.64 [1.45–1.86] 
(4.58 ×  10–15)

1.49 [1.28–1.73] 
(2.75 ×  10–7)

5.24 [3.77–7.27] 
(4.31 ×  10–22)

4.81 [3.47–6.67] 
(1.63 ×  10–25)3.29 [2.56–4.23] 

(2 alleles  
predicted)

Figure 3.  Graphical representation of Odds Ratio (OR) point estimates and 95% confidence intervals (CI) for 
the three main CD risk alleles (p.R702W, p.G908R, p.L1007fs) under additive, genotypic, and recessive genetic 
models (corresponding to values in Table 3). The dotted line in the Composite panel depicts the calculated 
CI with corresponding calculated OR for 2 alleles under an additive genetic model; of note the point estimate 
(2xOR) is outside of the 95% CI for the Composite genotypic homozygous and recessive models. Diamonds 
correspond to estimated OR values for these same variants in the IBD Exomes  Browser49; no confidence 
intervals are provided.
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×  10–7, versus Hom OR = 5.24 [3.77–7.27 95% CI], P-value 4.31 ×  10–22), and recessive (OR = 4.81 [3.47–6.67 95% 
CI], P-value = 1.63 ×  10–25) (Table 3, Fig. 3).

Subsequently, we combined all heterozygous, homozygous, and phased compound heterozygous predicted 
loss-of-function (pLoF) and predicted deleterious missense variants in NOD2 with a MAF ≤ 5% including the 
3 risk alleles to calculate the CD risk using a burden test under additive and recessive models. The pLoF only 
burden analysis was significant under both the additive (P-value 5.5X10–20) and recessive (P-value = 2.67 ×  10–19) 
models, however the risk was much higher under the recessive model (OR = 20.74 [10.70 – 40.20 95%CI] com-
pared to the additive model (OR = 2.69 [2.18–3.32 95%CI]) (Table 4). The pLoF and predicted deleterious mis-
sense variant burden analysis showed similar results with a significantly higher risk under the recessive model: 
additive (OR = 2.38 [2.01–2.82]95%CI, P-value 4.60 ×  10–24) and recessive (OR = 13.15 [8.50–20.37]95%CI, 
P-value 7.21 ×  10–31) (Table 4). Collectively, these analyses show substantially larger effects for NOD2 homozy-
gotes and compound heterozygotes than heterozygotes only and indicate that the genetic contribution of NOD2 
alleles, in a subset of Crohn’s disease patients, is consistent with a recessive disease model.

Discussion
We use the term inflammatory bowel disease (IBD) throughout to encompass diagnoses of both Ulcerative Colitis 
and Crohn’s disease in the DiscovEHR cohort, which is similar to the referral diagnosis of the pediatric patients 
where some had diagnoses of ulcerative colitis, Crohn’s disease, or IBD unspecified (Table S1). Furthermore, 
prior to the release of ICD-10 codes, there was no specific diagnosis code for Crohn’s disease, as it was coded as 
‘regional enteritis’ (ICD-9 555), lending itself to confusion and misdiagnoses. The DiscovEHR IBD cohort is not 
intended to be a ‘pure’ Crohn’s disease cohort but rather a representative sample of the adult population that is 
diagnosed with IBD. Both, the pediatric and adult cohorts reflect the clinical heterogeneity of patients diagnosed 
with IBD and the challenges of the clinical and molecular diagnosis of this disease.

Our observations are in line with previous analyses and meta-analyses of CD cohorts where individuals  
carrying any one of the main three CD associated risk alleles (p.R702W, p.G908R, or p.L1007fs) have 2–fourfold 
increased risk for developing  CD63, whereas carriers of two or more of the same NOD2 variants have a 15–40 
fold increased risk for developing  CD33,64,65, exhibiting disease of the terminal  ileum34, and earlier diagnosis (by 
an average of 3 years)33. Our observations support these studies but highlight a subset of IBD cases molecularly 
defined by recessive inheritance of NOD2 alleles that exhibit markedly increased risk for CD with significantly 
earlier age of onset (mean age of onset among recessive NOD2 carriers in the DiscovEHR IBD cohort: 43.4y; 
mean age of onset in the DiscovEHR IBD cohort: 51.5y; P-value: 4.0X10–4 by unpaired t test).

Further, while we observe a low effect size for single allele carriers, based on our allelic effect size calculations 
for each of the 3 main CD risk alleles in our DiscovEHR cohort (Table 3, Fig. 3), we hypothesize that homozygous 
and compound heterozygous NOD2 individuals included in large IBD GWAS cohorts have likely contributed to 
a large proportion of the relative risk calculations for IBD, specifically for CD, under additive models, and that 
homozygous effect sizes have been largely underappreciated or underreported. It is possible that stratification or 
conditional statistical analysis of these large and heterogeneous cohorts based on NOD2 genotypes may increase 
power to detect other loci that contribute to IBD.

While our observations strongly support recessive inheritance of NOD2 variants as a driver of early onset 
Crohn’s disease, we observed incomplete penetrance, as evidenced by homozygous or compound heterozygous 
NOD2 variant carriers that do not have a clinical presentation of  IBD65–67. Penetrance and expressivity are two 
major genetic concepts that play into the onset of the phenotype and the clinical presentation of monogenic 
 diseases68. In the case of IBD, penetrance is known to be incomplete and clinical presentation is extremely 
variable. Further, the contribution of additional environmental triggers that may enhance disease onset and/
or severity in an already genetically-compromised individual should not be underestimated, especially consid-
ering that the loss of epithelial barrier function occurring during IBD allows for host exposure to up to  1014 
gut  microbiota69,70. Even in cases of monogenic IBD, such as IL-10 receptor  deficiency71–73, intestinal flora are 
required for disease presentation in murine disease  models74–76. Furthermore, variation in genes involved in 
NOD2-dependent signaling pathways, including XIAP77–79 and TRIM2280, result in Mendelian forms of IBD. For 
XIAP, and most likely TRIM22, viral triggers are required for disease onset and progression, and XIAP mutations 
have variable penetrance, with only a small percentage of XIAP-deficiency patients developing CD (age of onset 
between 3 months and 40  years64). As NOD2-deficient hosts are more susceptible to the pathogenic effects of a 
changing intestinal  microenvironment81, the contribution of either discrete or continuous gene-environment 
exposures may further explain heterogeneity in onset and presentation of disease for genetically-sensitized 
recessive NOD2 carriers.

Table 4.  Comparison of additive and recessive models for heterozygous, homozygous, and phased compound 
heterozygous pLoF and predicted deleterious missense variants for NOD2 variants (MAF < 5%) for Crohn’s 
Disease Risk in DiscovEHR.

NOD2 gene burden variant 
class Additive OR [95% CI] Additive P-value Recessive OR [95% CI] Recessive P-value Controls (ref/het/Hom) Cases (ref/het/Hom)

pLoF only 2.69 [2.18–3.32] 5.50 ×  10–20 20.74 [10.70–40.20] 2.67 ×  10–19 51,501/3254/47 529/73/11

pLoF and predicted deleterious 
missense 2.38 [2.01–2.82] 4.60 ×  10–24 13.15 [8.50–20.37] 7.21 ×  10–31 48,253/6388/161 474/115/24
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Given the wide variability in clinical presentation of IBD, we cannot exclude the possibility that recessive 
NOD2 carriers exhibit subclinical phenotypes not formally diagnosed as IBD or that they may eventually develop 
IBD. It is additionally possible that recessive NOD2 carriers in the DiscovEHR cohort have a diagnosis of IBD that 
has not been captured in the EHR. Detailed investigation into the medical histories of recessive NOD2 carriers 
may shed light on this variable expressivity or incomplete capture of medical information. We also cannot exclude 
the possibility that recessive NOD2 carriers possess additional genes or alleles that either contribute to disease 
onset and severity or, alternatively, provide protection or reduced expressivity of the phenotype. Identification 
of these genetic modifiers warrants future investigation both to unveil additional IBD-risk associated loci for 
early onset UC and CD cases and to identify protective genes and alleles that can be used to derive therapeutic 
avenues for IBD treatment and management.

In summary, in a cohort of 1,183 pediatric and early onset IBD patients, we report recessive inheritance of 
rare and low frequency variants in NOD2 accounting for about 8% of probands. We assessed the contribution of 
NOD2 recessive inheritance in a broader, heterogeneous cohort of adult IBD patients, similar to those recruited 
for GWAS, and found that recessive inheritance of variants in NOD2 account for 6.5% of these IBD patients, 
including 9.9% of CD cases. Thus, recessive inheritance of rare and low frequency NOD2 variants explain a 
substantial proportion of CD cases in a pediatric cohort and a large clinical population, with significantly earlier 
age of disease onset. Consistently, both pediatric and adult CD exhibit a broad spectrum of clinical presenta-
tion, suggesting a shared etiology across age groups, at least in the subgroup defined by recessive NOD2-driven 
CD. Our findings indicate that deleterious NOD2 variants should be considered as strong predictors of IBD-CD 
onset and implicate NOD2 as a Mendelian disease gene for early onset IBD, specifically for a molecularly defined 
subset of Crohn’s disease patients.
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