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p66Shc activation promotes 
increased oxidative 
phosphorylation and renders CNS 
cells more vulnerable to amyloid 
beta toxicity
Asad Lone1, Richard A. Harris1, Olivia Singh1, Dean H. Betts2 & Robert C. Cumming1

A key pathological feature of Alzheimer’s disease (AD) is the accumulation of the neurotoxic amyloid 
beta (Aβ) peptide within the brains of affected individuals. Previous studies have shown that neuronal 
cells selected for resistance to Aβ toxicity display a metabolic shift from mitochondrial-dependent 
oxidative phosphorylation (OXPHOS) to aerobic glycolysis to meet their energy needs. The Src 
homology/collagen (Shc) adaptor protein p66Shc is a key regulator of mitochondrial function, ROS 
production and aging. Moreover, increased expression and activation of p66Shc promotes a shift in 
the cellular metabolic state from aerobic glycolysis to OXPHOS in cancer cells. Here we evaluated the 
hypothesis that activation of p66Shc in CNS cells promotes both increased OXPHOS and enhanced 
sensitivity to Aβ toxicity. The effect of altered p66Shc expression on metabolic activity was assessed 
in rodent HT22 and B12 cell lines of neuronal and glial origin respectively. Overexpression of p66Shc 
repressed glycolytic enzyme expression and increased both mitochondrial electron transport chain 
activity and ROS levels in HT22 cells. The opposite effect was observed when endogenous p66Shc 
expression was knocked down in B12 cells. Moreover, p66Shc activation in both cell lines increased 
their sensitivity to Aβ toxicity. Our findings indicate that expression and activation of p66Shc renders 
CNS cells more sensitive to Aβ toxicity by promoting mitochondrial OXPHOS and ROS production while 
repressing aerobic glycolysis. Thus, p66Shc may represent a potential therapeutically relevant target 
for the treatment of AD.

Alzheimer’s disease (AD) is a chronic, neurodegenerative disorder that is characterized by a gradual development 
of cognitive dysfunction and memory loss. AD is currently the fourth leading cause of death in developed nations 
with no effective therapy currently available1. From a pathological perspective, AD is strongly associated with 
deposits of extracellular plaques and intracellular neurofibrillary tangles within broad regions of the cortex and 
hippocampus; events believed to be major factors contributing to disease progression2–4. Plaques mainly consist 
of the amyloid β peptide (Aβ), which arises from cleavage of the amyloid precursor protein (APP). Aβ plaque 
deposition begins well before the appearance of clinical symptoms of dementia5,6. The progressive accumulation 
of Aβ is strongly associated with the production of mitochondrial reactive oxygen species (ROS) and oxidative 
damage, leading to extensive neuronal death and synaptic loss in the AD brain7–9.

The brain is particularly susceptible to oxidative stress compared to other tissues due to high rates of neu-
ronal mitochondrial metabolism and lower level of antioxidant enzyme expression9. Neuronal activation and 
increased energy metabolism are known to be intimately related. However, dysfunctional mitochondria have 
been observed in both neurons and astrocytes in the AD brain10,11. Localization of Aβ to mitochondria has been 
detected in both postmortem AD brain tissues as well as in transgenic mice models of AD12. Oligomeric forms 
of Aβ have been shown to interact with the mitochondrial protein Aβ binding alcohol dehydrogenase (ABAD), 
resulting in increased ROS production, mitochondrial impairment, and cell death13. Furthermore, in vitro studies 
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have reported that Aβ peptides prevent nuclear encoded proteins from entering the mitochondria while acti-
vating mitochondrial fission proteins leading to decreased mitochondrial membrane potential, mitochondrial 
fragmentation and altered mitochondrial morphology14,15. 18F-fluoro-2-deoxy-D-glucose positron emission 
tomography (FDG–PET) studies have shown reduced glucose metabolism in the cortices and hippocampi of AD 
patients8,16,17. Glucose hypometabolism and reduced glucose transport have been shown to correlate with Aβ dep-
osition in at-risk individuals of AD, as well as in patients with mild cognitive impairment18,19. Alterations in the 
relative ratio of glycolysis versus oxidative phosphorylation (OXPHOS) can significantly affect ROS production 
and oxidative stress in the brain20. Therefore, dysfunctional cerebral metabolism linked to altered mitochondrial 
function, glucose metabolism, and ROS production are believed to play significant roles in AD pathophysiology.

Aerobic glycolysis, also known as the Warburg effect, is defined as the preferential use of glycolysis in the 
presence of oxygen and is a form of metabolism frequently observed in cancer cells21. Interestingly, the spa-
tial distribution of Aβ deposition correlates with elevated aerobic glycolysis in cognitively normal people22. It 
has been suggested that elevated aerobic glycolysis may arise in certain regions of the brain as a compensatory 
response to offset Aβ-induced ROS production23,24. Approximately 30% of elderly individuals accumulate signif-
icant quantities of Aβ plaques within their brains yet show no symptoms of memory loss or dementia; suggesting 
that cellular responses to mitigate Aβ toxicity may arise in cognitively normal individuals with high plaque dep-
osition25–28. Several studies have shed light on the neuroprotective mechanisms that arise in Aβ resistant cells, 
including increased antioxidant enzyme expression and activity as well as reduced mitochondrial ROS produc-
tion. Moreover, cells selected for Aβ resistance in vitro exhibit increased glucose consumption and lactate pro-
duction, as well as significantly higher expression of pyruvate kinase, hexokinase, lactate dehydrogenase (LDHA), 
and pyruvate dehydrogenase kinase 1 (PDK1); enzymes involved in aerobic glycolysis23,24,29,30. Taken together, Aβ 
resistant cells undergo a metabolic shift away from mitochondrial dependent oxidative phosphorylation towards 
aerobic glycolysis to meet energy requirements. However, the upstream triggers that promote this metabolic shift, 
and associated resistance to Aβ toxicity, are currently unknown.

Several studies have demonstrated that the p66Shc adaptor protein is a regulator of the cellular redox state 
and apoptosis31–33. The p66Shc protein is one of three isoforms, including p46Shc and p52Shc, encoded by the 
SHC1 gene. All three SHC1 isoforms contain a phosphotyrosine binding (PTB) domain, a collagen homology 
1 (CH1) domain, and a Src-homology 2 (SH2) binding domain. However, due to alternative promoter usage, 
p66Shc contains an additional collagen homology 2 (CH2) domain34. All ShcA isoforms are phosphorylated at 
tyrosine residues in response to growth factor signaling, however p66Shc is also phosphorylated at serine 36 (S36) 
within the CH2 domain by kinases that are activated in response to various oxidative stressors35–38. As a result 
of S36 phosphorylation, p66Shc translocates to the mitochondria where it promotes increased ROS production, 
release of cytochrome-c and induction of apoptosis38–40. In the context of AD, recent studies have shown that Aβ 
exposure can promote S36 phosphorylation and activation of p66Shc in a c-jun N-terminal kinase (JNK) and 
mitogen-activated protein kinase kinase 6 (MKK6) dependent manner41,42. Aβ-induced p66Shc activation also 
leads to phosphorylation and repression of the Forkhead-type (FOXO) transcription factors, and a concomitant 
reduction in expression of antioxidant enzymes such as glutathione peroxidase-1 and catalase43–45. Reduced activ-
ities of these and other antioxidant enzymes have been previously reported in the AD brain as well as in trans-
genic mouse models of AD46–49. In contrast, mice with a targeted deletion of the p66Shc gene are phenotypically 
normal but live 30% longer compared to wild type mice50. Furthermore, p66Shc deficient cells exhibit higher 
expression of antioxidant enzymes and lower intracellular levels ROS levels51–53.

Recent evidence has also implicated p66Shc in regulating cellular metabolism. Expression and activation 
of p66Shc in cultured mouse embryos closely correlates with elevated mitochondrial OXPHOS and ROS pro-
duction54. Cells lacking p66Shc exhibit lower oxygen consumption and increased lactate production, suggest-
ing that genetic ablation of p66Shc leads to elevated aerobic glycolysis55,56. However, the relationship between 
p66Shc-dependent metabolic effects and cellular sensitivity to amyloid toxicity has never been examined before.

In this study, we examined the effect of p66Shc expression and activation on Aβ toxicity in CNS cells. We 
report that the expression and activation of p66Shc in both neuronal and glial cells increases mitochondrial elec-
tron transport chain activity while downregulating the expression of enzymes involved in glycolysis. As a conse-
quence of elevated mitochondrial OXPHOS and ROS production, cell survival is decreased in the presence of Aβ. 
Our findings indicate that Aβ toxicity is strongly mediated by p66Shc-induced alterations in cellular metabolism.

Results
p66Shc expression and activation attenuates expression of enzymes involved in aerobic glyc-
olysis and promotes mitochondrial OXPHOS.  Previous studies have demonstrated that p66Shc plays a 
pivotal role in mitochondrial metabolism. Restoration of p66Shc expression in p66Shc deficient HeLa cells results 
in elevated O2 consumption, while reducing the abundance of the glycolytic intermediates acetyl coenzyme A 
(ACoA), NADH, and lactate55,56. However, to our knowledge the effect of p66Shc on metabolic enzyme expres-
sion in CNS cells has not yet been examined. To this end, we investigated alterations in the expression of enzymes 
involved in mitochondrial OXPHOS and aerobic glycolysis following p66Shc activation in the immortalized 
rat glial cell line B1257,58, and mouse hippocampal neuronal cell line HT2259. We first examined endogenous 
p66Shc expression levels in both B12 and HT22 cells by immunoblot analysis. Endogenous p66Shc expression 
was detected in B12 cells (Fig. 1) but was very low in HT22 cells (Fig. 2). Protein kinase C β (PKC-β) is a kinase 
that phosphorylates p66Shc at the S36 residue, resulting in its activation and mitochondrial translocation60–62. In 
order to promote phosphorylation of p66Shc, cells were treated with the phorbol ester 12-Deoxyphorbol 13-phe-
nylacetate 20-acetate (DOPPA), a specific and potent activator of PKC-β63–66.

To investigate the effect of p66Shc activation on cellular metabolism, p66Shc was transiently overexpressed in 
HT22 cells using an HA-tagged p66Shc overexpression plasmid (hereby denoted as HT22p66Shc). DOPPA-induced 
phosphorylation of p66Shc was observed in both B12 and HT22p66Shc cells (Figs 1 and 2). We then looked at the 



www.nature.com/scientificreports/

3Scientific Reports |         (2018) 8:17081  | DOI:10.1038/s41598-018-35114-y

resulting effect of p66Shc activation on the expression of proteins involved in OXPHOS and aerobic glycolysis by 
immunoblot analysis. Pyruvate dehydrogenase kinase 1 (PDK1) is involved in the phosphorylation and inhibition 
of pyruvate dehydrogenase (PDH), an enzyme which converts pyruvate to ACoA for entry into the TCA cycle. 
Lactate dehydrogenase A (LDHA) is responsible for converting pyruvate to lactate, a metabolite widely used as a 
marker for glycolysis. Pyruvate kinase 2 (PKM2) is an alternatively spliced isoform of pyruvate kinase that favours 
glycolysis and lactate production67,68. A significant decline in levels of the glycolytic enzymes PDK1 and LDHA 
in B12 and HT22p66Shc cells was observed following DOPPA-induced phosphorylation of p66Shc (Figs 1 and 2). 
PKM2 levels also showed a significant reduction in B12 cells, whereas a modest but non-significant decrease of 
PKM2 was observed in HT22p66Shc cells (Figs 1 and 2). In addition, a significant decrease in phosphorylated PDH 
was detected in both cell lines expressing active p66Shc (Figs 1 and 2). HT22 cells transfected with an empty 
pcDNA vector and treated with DOPPA showed no change in either OXPHOS or glycolytic enzyme expression 
(Figs 1 and 2). To validate these findings, we also measured the oxygen consumption rate (OCR) in real time, as a 
measure of OXPHOS, in live B12 cells with or without p66Shc activation using the Seahorse XFe24 flux analyzer 
(Fig. 3A). A significant increase in the rates of basal as well as maximal respiration were observed in B12 cells 
following p66Shc activation via DOPPA treatment (Fig. 3B,C). Furthermore, B12 cells with phosphorylated and 

Figure 1.  Activation of endogenous p66Shc in B12 cells promotes a reduction in the levels of aerobic glycolysis 
enzymes. (A) Immunoblot analysis of extracts from B12 cells revealed increased phosphorylation of p66Shc 
following 24-hour DOPPA (100 nM) exposure compared to untreated control cells. DOPPA exposure also 
promoted decreased phosphorylation of pyruvate dehydrogenase (PDH) and led to a reduction in levels of the 
aerobic glycolysis enzymes pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA) and 
pyruvate kinase 2 (PKM2) compared to control cells. (B) Densitometric analysis of blots revealed a significant 
increase in S36 phosphorylation of p66Shc and a concomitant decrease in PDH phosphorylation and protein 
levels of PDK1, LDHA and PKM2 following DOPPA exposure. Data presented are the mean ± SEM of 3 
independent experiments (*P < 0.05, **P < 0.01).
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active p66Shc also had significantly higher spare respiratory capacity, ATP production, and Proton Leak when 
compared to control cells (Fig. 3D–F). Taken together, p66Shc expression and activation promotes alterations in 
metabolic enzyme expression which favour OXPHOS while suppressing glycolysis.

Expression and activation of p66Shc promotes increased mitochondrial electron transport 
chain activity and ROS production.  Maintenance of mitochondrial membrane potential (∆𝜓m) is essen-
tial for ATP production and cell viability. The fluorochrome tetramethylrhodamine methyl ester (TMRM) is 
frequently used to measure ∆𝜓m, and corresponding changes in ETC and OXPHOS activity69–72. In addition, ele-
vated ETC and OXPHOS are also frequently associated with increased mitochondrial ROS production, which is 
detectable with the fluorochrome Mitotracker CMXRos73. We therefore evaluated the effect of p66Shc activation 
on both ∆𝜓m and mitochondrial ROS levels. B12 cells treated with DOPPA exhibited a significant increase in 
∆𝜓m compared to control treated cells (Fig. 4A). As expected, a significant increase in mitochondrial ROS pro-
duction was also observed in DOPPA-treated B12 cells (Fig. 4B). Similarly, HT22p66Shc cells treated with DOPPA 
also exhibited a significant increase in both ∆𝜓m and ROS production compared to DOPPA treated cells trans-
fected with pcDNA (Fig. 5). Overall, these findings demonstrate that the expression and activation of p66Shc 
enhances mitochondrial metabolism by increasing ETC activity, and consequently ROS production.

Figure 2.  Ectopic expression and activation of p66Shc in HT22 cells promotes a reduction in aerobic 
glycolysis enzyme levels. (A) Immunoblot analysis of extracts from HT22 cells transiently transfected with 
either pcDNA control plasmid or a p66Shc-HA expression vector. DOPPA treatment (100 nM) promoted 
both increased p66Shc phosphorylation and repressed PDH phosphorylation in p66Shc-HA transfected cells. 
DOPPA exposure also led to a reduction in levels of the aerobic glycolysis enzymes PDK1, LDHA and PKM2 in 
p66Shc-HA expressing cells compared to control cells. (B) Densitometric analysis of blots revealed a significant 
increase in S36 phosphorylation of p66Shc and a concomitant decrease in PDH phosphorylation and protein 
levels of PDK1, LDHA and PKM2 in p66Shc-HA expressing cells following DOPPA exposure. Data presented 
are the mean ± SEM of 3 independent experiments (*P < 0.05, **P < 0.01).
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p66Shc silencing shifts cellular metabolism towards aerobic glycolysis.  Cells in which p66Shc 
transcript abundance is knocked down exhibit increased glucose uptake, elevated production of glycolytic inter-
mediates, as well as diminished O2 consumption; all hallmarks of the Warburg effect55,56. Hence, we silenced 
endogenous p66Shc expression in B12 cells using p66Shc specific siRNAs. After confirming p66Shc knockdown 

Figure 3.  Phosphorylation and activation of endogenous p66Shc in B12 cells leads to an increase in 
mitochondrial oxidative metabolism. (A) Oxygen consumption rate of B12 cells, with and without DOPPA 
(100 nM) treatment for 24 hours, was measured in real-time using a Seahorse XFe24 Flux Analyzer. After 
normalization to protein content, B12 cells treated with DOPPA displayed significant increases in (B) basal 
respiration, (C) maximal respiration, (D) spare respiratory capacity, (E) ATP production, and (F) proton 
leak when compared to untreated cells. Data presented are the mean ± SEM of 3 independent experiments 
(*P < 0.05).
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(Fig. 6A,B), we analyzed the expression of key enzymes involved in OXPHOS and aerobic glycolysis by immunob-
lot analysis. A significant increase in expression of the glycolytic enzymes PDK1, LDHA, and PKM2 was detected 
following knockdown of p66Shc (Fig. 6A,B). In addition, increased phosphorylation of PDH, was also observed 
following p66Shc knockdown (Fig. 6A,B). B12 cells transfected with p66Shc siRNA and also treated with DOPPA 
exhibited the same alterations in metabolic enzyme levels as cells transfected with p66Shc siRNA alone; demon-
strating that DOPPA mediated effects on metabolism occur in a p66Shc-dependent manner (Fig. 6A,B). Since 
aerobic glycolysis does not use oxygen to produce ATP, a shift away from mitochondrial metabolism is associated 
with reduced ROS production. We therefore examined ROS levels in cells with reduced p66Shc expression using 
the fluorescent dye Mitotracker CMXRos. B12 cells transfected with p66Shc specific siRNAs had significantly 
lower ROS production when compared to cells transfected with scrambled siRNAs (Fig. 6C). Thus, silencing 
p66Shc expression promotes aerobic glycolysis while reducing mitochondrial ROS production.

Aβ phosphorylates p66Shc and promotes OXPHOS while repressing aerobic glycolysis.  
Previous studies have demonstrated that Aβ exposure elicits increased phosphorylation of p66Shc at S3641,42. To 
determine if Aβ-mediated effects on metabolism correlate with the activation state of p66Shc, we treated B12 and 
HT22p66Shc cells with Aβ1–42 and examined OXPHOS and aerobic glycolysis enzyme expression by immunoblot 
analysis. B12 cells treated with Aβ1–42 exhibited increased p66Shc phosphorylation (Fig. 7). As anticipated, a sig-
nificant reduction was observed in the phosphorylation state of PDH, and expression of the glycolytic enzymes 
PDK1, LDHA, and PKM2 (Fig. 7). HT22p66Shc cells treated with Aβ1–42 also exhibited a significant increase in 
p66Shc phosphorylation, leading to a reduction in phospho-PDH, PDK1, LDHA, and PKM2 levels (Fig. 8). 
HT22 cells transfected with an empty pcDNA vector and treated with Aβ1–42 showed no expression changes in 
either OXPHOS or glycolytic enzymes (Fig. 8). Thus, Aβ exposure promotes changes in expression of metabolic 
enzymes favouring OXPHOS in a manner that closely parallels p66Shc activation.

Expression and activation of p66Shc increases sensitivity to Aβ toxicity.  Various forms of oxidative 
stressors have been shown to be more damaging to cells and tissues expressing p66Shc41,50,52,53,74,75. However, most 
studies examining p66Shc expression and oxidative stress-induced toxicity have not distinguished between the 
non-phosphorylated and phosphorylated forms of p66Shc. We have shown that phosphorylated p66Shc promotes 
OXPHOS and increased ROS production. To address the question of whether the active form of p66Shc enhances Aβ 
toxicity by elevating OXPHOS and mitochondrial ROS production, we exposed B12 and HT22p66Shc cells to Aβ1–42 
with or without DOPPA treatment, and quantified cell survival using the MTT assay. DOPPA treatment alone had no 
effect on cell viability in B12 cells (Fig. 9A). However, DOPPA exposure significantly enhanced Aβ1–42 toxicity in B12 

Figure 4.  p66Shc activation promotes an increase in mitochondrial membrane potential (∆𝜓m) and ROS 
production in B12 cells. (A) B12 cells were stained with the ∆𝜓m sensitive fluorochrome TMRM (red), while 
nuclei were stained with Hoechst stain (blue) and visualized by fluorescence microscopy. Quantification of 
TMRM fluorescence (right panel) revealed a significant elevation of ∆𝜓m in DOPPA (100 nM) treated B12 
cells when compared to untreated control cells. (B) B12 cells were stained with Mitotracker CMX-ROS (Red) 
and visualized by fluorescence microscopy. Quantification of Mitotracker CMX-ROS (right panel) revealed 
a significant increase in mitochondrial ROS production following DOPPA treatment (100 nM) compared to 
control cells. Data presented are the mean ± SEM of 3 independent experiments (**P < 0.01; ****P < 0.001).
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cells. In contrast, transient knock down of endogenous p66Shc expression in B12 cells using p66Shc specific siRNAs, 
resulted in significantly higher cell survival after Aβ1–42 treatment when compared cells transfected with scrambled 
siRNA (Fig. 9B). Concurrent Aβ1–42 and DOPPA treatment of HT22p66Shc cells resulted in significantly decreased cell 
viability compared to cells transfected with a control vector and treated with Aβ1–42 alone (Fig. 9C). To further confirm 
these findings, we investigated whether active p66Shc increased sensitivity to Aβ toxicity using mouse cortical neu-
ronal cultures. Primary neurons with or without DOPPA treatment were exposed to Aβ1–42 at 6 days in vitro (DIV). As 
expected, primary neurons with active p66Shc showed a significant reduction in cell survival when compared neurons 
that lacked active p66Shc and treated with Aβ1–42 (Fig. 9D). Collectively, these data demonstrate that p66Shc activation 
potentiates Aβ1–42 toxicity.

Aβ exposure has previously been shown to trigger apoptosis in a JNK dependent manner41,76. Moreover, 
Aβ-induced JNK activation also promotes increased phosphorylation of p66Shc41. To determine if Aβ-induced acti-
vation of p66Shc was mediated by JNK in B12 and HT22p66Shc cells, we examined the phosphorylation status of JNK 
following Aβ exposure. Although Aβ exposure significantly induced p66Shc phosphorylation in B12 cells, there 
was no effect on JNK phosphorylation (Figure S1). In addition, Aβ-induced p66Shc phosphorylation in HT22p66Shc 
cells also occurred in the absence of any increase in JNK phosphorylation (Figure S2). These findings indicate that 
Aβ-induced activation of p66Shc is not mediated by the JNK pathway in the cell models employed in this study.

Figure 5.  Ectopic expression of p66Shc in HT22 cells promotes increased mitochondrial membrane potential 
and ROS production following DOPPA exposure. (A) HT22 cells were transfected with either pcDNA or a 
p66Shc-HA expression plasmid, treated with DOPPA (100 nM) and stained with TMRM. Stained cells were 
visualized by fluorescence microscopy and fluorescence intensity was quantified (right panel). (B) HT22 cells 
transfected as indicated and treated with DOPPA (100 nM) were stained with Mitotracker CMX-ROS and 
visualized by fluorescence microscopy. Fluorescence intensity of stained cells was quantified (right panel). HT22 
cells transfected with p66Shc and treated with DOPPA exhibited significantly higher TMRM and Mitotracker 
CMX-ROS staining compared to pcDNA control transfected cells. Nuclei were stained with Hoechst stain 
(blue). Data presented are the mean ± SEM of 3 independent experiments (**P < 0.01; ****P < 0.001).
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Discussion
In this study we demonstrate that the expression and activation of p66Shc in CNS cells significantly increases 
OXPHOS, while downregulating aerobic glycolysis. Specifically, we observed a significant decline in levels of 
the glycolytic enzymes PDK1, LDHA, and PKM2 in cells expressing activated p66Shc. We also observed signifi-
cantly reduced phosphorylation of PDH following p66Shc activation. Reduced PDH phosphorylation promotes 
increased activity of the PDH complex and enhanced flux of glycolytic intermediates into the TCA cycle for 
energy production77–79. Two previous in vitro studies, using mouse embryonic fibroblasts (MEFs) and human 

Figure 6.  Silencing p66Shc expression promotes aerobic glycolysis while reducing mitochondrial ROS 
production. (A) Immunoblot analysis of extracts from B12 cells transfected with p66Shc specific siRNA. 
Knockdown of p66Shc expression resulted in elevated levels of PDK1, LDHA and PKM2 in addition to 
increased phosphorylation of PDH. This effect was also observed in B12 cells with silenced p66Shc expression 
treated with DOPPA. (B) Densitometric analysis of immunoblots. (C) Mitotracker CMX-ROS (red) staining 
was significantly decreased in B12 cells with silenced p66Shc expression when compared to control cells. Nuclei 
were stained with Hoechst stain (blue). Data presented are the mean ± SEM of 3 independent experiments 
(*P < 0.05, **P < 0.01; ***P < 0.001).
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HeLa cells, demonstrated that the expression of p66Shc increased O2 consumption while reducing the produc-
tion of glycolytic intermediates55,56. The findings presented here provide further support that p66Shc acts as an 
upstream inhibitor of aerobic glycolysis while at the same time promoting increased OXPHOS in cells of glial 
and neuronal origin. The mechanism by which p66Shc modulates metabolism is poorly understood but RNA 
sequencing analysis of wild type and p66Shc knock out MEFs, revealed no differences in transcript abundance for 
genes encoding glycolytic enzymes; suggesting that p66Shc likely regulates metabolism through signaling and/or 
post-translational processes56. Post-translational modifications of diverse metabolic enzymes regulate activation 
of aerobic glycolysis and reprograming of cell metabolism in cancer80. Thus, future studies examining the effect of 
p66Shc activation on post-translational modifications of aerobic glycolysis enzymes are warranted.

Increased ROS production is associated with age- and disease-dependent loss of neurons leading to cognitive 
dysfunction9–12. Although Aβ accumulation has historically been perceived as a critical driver of AD pathogenesis, 
the failure of clinical trials targeting Aβ have challenged this theory81,82. Moreover, several lines of evidence sug-
gest that mitochondrial-derived ROS enhances amyloid precursor protein processing and Aβ production83,84. It is 
therefore possible that age-dependent changes in metabolism and mitochondrial dysfunction, possibly mediated 
by p66Shc activation, are key initiating events that trigger Aβ production resulting in a feed forward mechanism 
to further enhance p66Shc activation and mitochondrial ROS levels in a vicious cycle. Thus, Aβ accumulation 
may not necessarily initiate neurodegenerative processes in AD but rather may potentiate p66Shc activation and 
age-related mitochondrial impairment. The question arises as to what signaling pathways are perturbed with age 
that subsequently trigger elevated mitochondrial ROS production and possibly increase Aβ levels?

Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are 
frequently detected in neurodegenerative diseases and normal aging85. The mitogen-activated protein kinase 

Figure 7.  Aβ exposure promotes p66Shc activation and a reduction in aerobic glycolysis enzyme levels in B12 
cells. (A) Immunoblot analysis of B12 cells treated with Aβ1–42 (20 µM) for 24 hours. (B) Densitometric analysis 
of immunoblots revealed a significant increase in p66Shc phosphorylation and a concomitant decrease in 
PDH phosphorylation and levels of PDK1, LDHA, and PKM2 following Aβ exposure. Data presented are the 
mean ± SEM of 3 independent experiments (*P < 0.05).
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(MAPK) pathway is significantly activated during neuroinflammation and in response to oxidative stress86. 
MAPKs, including JNK and extracellular signal-regulated kinase (ERK), in addition to protein kinases such Src 
and PKC, are responsible for p66Shc phosphorylation; depending on the cellular context and nature of the stimu-
lus87. Although JNK activation is implicated in Aβ-induced neuronal death both in vitro and in vivo76,88,89, we did 
not observe increased JNK phosphorylation following Aβ exposure in both B12 and HT22p66Shc cells, indicating 
that Aβ exposure possibly activates other kinases that phosphorylate p66Shc. ERKs have been reported to be 
significantly upregulated in cell culture and animal models of AD, and higher ERK activation has been detected 
in AD brain extracts when compared to control subjects85,90,91. Inhibition of ERKs and other kinases that phos-
phorylate p66Shc, including PKC-β, have been shown to reduce oxidative stress and increase cellular resistance 
to various stressors85,90. In a recent study, pharmacological inhibition of PKC-β in vitro prevented S36 phospho-
rylation of p66Shc and lowered ROS during hyperglycemic stress92. Therefore, targeting upstream activators of 
p66Shc, such as ERK and PKC-β, may be an effective strategy to attenuate Aβ toxicity.

In addition to promoting increased ROS production, activation of p66Shc also leads to downregulation of 
anti-oxidant enzyme expression both in vitro and in vivo. Aged mice exhibit an increase in S36 phosphorylation 
of p66Shc and lower levels of catalase, superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1) 
compared to newborns93. Previous studies have identified p66Shc as a negative regulator of the Forkhead (FOXO) 
transcription factors, a family of proteins which when activated lead to the transcriptional activation of a host 
of ROS scavenging enzymes e.g. catalase and manganese superoxide dismutase (MnSOD). In vitro studies have 

Figure 8.  Aβ exposure promotes activation of ectopically expressed p66Shc in HT22 cells and a reduction in 
aerobic glycolysis. (A) Immunoblot analysis of extracts from HT22 cells transfected with the indicated plasmids 
and treated with Aβ1–42 (20 µM) for 24 hours. (B) Densitometric analysis of immunoblots revealed that Aβ 
exposure promoted a significant increase in p66Shc phosphorylation while repressing PDH phosphorylation. 
Aβ treatment also promoted a significant decrease in the levels of PDK1, LDHA, and PKM2 in HT22 
cells ectopically expressing p66Shc compared to pcDNA transfected control cells. Data presented are the 
mean ± SEM of 3 independent experiments (*P < 0.05; **P < 0.01; ***P < 0.001).
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shown that treatment of cells with H2O2 or Aβ results in increased phosphorylation and activation of p66Shc and 
subsequent inhibition of FOXO3a resulting in downregulation of the downstream transcriptional targets catalase 
and MnSOD41,94. Thus, p66Shc activation exacerbates Aβ toxicity by promoting increased mitochondrial ROS 
production while at the same time repressing antioxidant enzyme expression. Interestingly, cells selected for 
resistance to Aβ toxicity exhibit both an increase in both glycolytic and antioxidant enzyme expression; proteins 
repressed by activated p66Shc23,24,29.

In this study, we showed that activation of p66Shc potentiates Aβ toxicity in both B12 and HT22 cells; an event 
closely linked to repressed aerobic glycolysis. Interestingly, CNS cells selected for resistance to Aβ toxicity, or cells 
overexpressing either LDHA or PDK1, exhibit a metabolic switch from OXPHOS to aerobic glycolysis23,24. As a 
result of this metabolic reprogramming, Aβ-resistant cells restrict the amount of glycolytic flux through the mito-
chondria, leading to lowered mitochondrial membrane potential and ROS production. In contrast, chemically or 

Figure 9.  p66Shc activation enhances Aβ toxicity. (A) Treatment of B12 cells with both Aβ1–42 (20 µM) and 
DOPPA (100 nM) was significantly more toxic than Aβ treatment alone. (B) Silencing of p66Shc expression 
in B12 cells led to reduced Aβ-induced toxicity compared to B12 cells transfected with control siRNA and 
treated with Aβ. (C) HT22 cells ectopically expressing p66Shc and treated with DOPPA (100 nM) exhibited 
significantly decreased viability following Aβ treatment compared to pcDNA control cells treated with both 
agents. (D) DOPPA induced activation of p66Shc exacerbated Aβ toxicity in mouse primary cortical neurons. 
Data presented are the mean ± SEM of 3 independent experiments (*P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001).
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genetically inhibiting LDHA or PDK1 re-sensitizes resistant cells to Aβ toxicity, indicating that aerobic glycolysis 
plays a key role in modulating CNS cell sensitivity to toxins23. The role of p66Shc in modulating brain metabolism 
and cellular sensitivity to Aβ in vivo is currently unknown.

It is well established that advanced age is one of the strongest risk factors for AD. The likelihood of developing 
AD doubles about every five years after age 65 and reaches nearly 50 percent by the age of 8595. Thus, molecular 
mechanisms underlying the aging process likely predispose the brain to the toxic effects of pathogenic proteins 
involved in AD. Interestingly, brain aerobic glycolysis declines naturally with age96. In contrast, the distribution 
of aerobic glycolysis in the brain correlates spatially with Aβ deposition in cognitively normal individuals and in 
AD patients22. Elevated glycolysis has also been detected in the brains of individuals with mild cognitive impair-
ment97. Moreover, patients with elevated glycolysis and low amyloid levels did not convert to AD over the course 
of 18 months, whereas amyloid-positive individuals with low glycolysis did convert to AD within the same time 
period97. These findings raise the possibility that elevated aerobic glycolysis occurs as a compensatory protective 
mechanism to counter Aβ toxicity in the brains of individuals with high Aβ deposition but with little to no cogni-
tive impairment. Genes that regulate age-dependent alterations in cerebral metabolism and toxin sensitivity are 
currently unknown but p66Shc represents a strong candidate for future evaluation.

In this study, we demonstrated that knockdown of endogenous p66Shc significantly upregulated key glycolytic 
enzymes, such as LDHA, the enzyme that catalyzes the conversion of pyruvate to lactate. Indeed, previous studies 
have illustrated that silencing of p66Shc expression not only promoted aerobic glycolysis, but also increased lac-
tate production55,56. Interestingly, not only can the brain can access circulating lactate for energy production, but 
it can use this metabolite as a preferential fuel over glucose. Earlier work has shown that when lactate is used as a 
primary fuel, glucose utilization decreases in cultured neurons and astrocytes, and also in the whole brain98–101. 
The enzymatic conversion of lactate to pyruvate for utilization in the TCA cycle is thermodynamically favorable 
when compared to the conversion of glucose to pyruvate, as the latter reaction requires ATP consumption, how-
ever the former does not102. Hence, lactate use as a fuel is glucose sparing, which may be a beneficial metabolic 
strategy in the aged brain to compensate for age related reductions in glucose metabolism. Moreover, lactate is 
required for long term memory formation, and emerging evidence has also identified lactate as a signaling mol-
ecule in the brain promoting gene expression linked to synaptic plasticity103–106. Lactate has also been shown to 
be neuroprotective, especially in the face of glutamate induced excitotoxicity107,108. There is evidence of increased 
p66Shc levels in the hippocampus and frontal cortex of AD patient brain extracts91. Thus, therapeutic strategies 
which either target p66Shc or increase lactate production may prevent cognitive decline associated with aging or 
AD.

In the context of aging, adult wild type mice exhibit a significant increase in both p66Shc protein levels and 
S36 phosphorylation in multiple tissues when compared to newborns; events associated with higher mitochon-
drial H2O2 production93. A significant increase in p66Shc mRNA levels were also found in the brains of aged rats 
relative to young animals109. Deletion of the p66Shc gene in mice results in increased resistance to stress and an 
approximate 30% extension of life span. These mice show an apparently normal phenotype and are characterized 
by a decreased incidence of aging-associated diseases50,110. From a metabolic perspective, p66Shc knockout mice 
exhibit increased insulin sensitivity and glucose tolerance, and are more resistant to weight gain when fed a high 
fat diet111,112. Thus, the age-related increase in p66Shc expression and activation may alter the metabolic state of 
the brain and render neurons more susceptible to Aβ induced toxicity.

Interestingly, deletion of the p66Shc gene in mice leads to an improvement in age-dependent cognitive decline, 
as well as significant increases in levels of the neurotrophin brain derived neurotrophic factor (BDNF) in the hip-
pocampus and sustained hippocampal neurogenesis113,114. Moreover, genetic ablation of p66Shc in an AD mouse 
model (APP/PS1) leads to a reversal of age-dependent cognitive decline, independent of Aβ levels and plaque for-
mation. The improvement in cognitive function in APP/PS1 mice lacking p66Shc was associated with a reversal 
of mitochondrial complex I dysfunction, increased ATP production, and reduced ROS levels in cortical tissue115. 
A recent study also revealed that p66Shc knockout (−/−) mice were protected from diabetes-induced cogni-
tive decline, which correlated with a decrease in oxidative stress and pro-inflammatory markers in the brain116. 
Interestingly, diabetes induction promoted an increase in microglia, a pro-inflammatory cell type, in wild-type 
but not in p66Shc−/− mice116. Numerous studies have shown that chronic microglial inflammatory activity is a 
major contributing factor to AD pathogenesis117.

In conclusion, our work demonstrates that expression and activation of p66Shc in CNS cells promotes mito-
chondrial metabolism while suppressing glycolytic enzyme expression. As a consequence, ETC activity and ROS 
production is elevated. CNS cells that express activated p66Shc are therefore more sensitive to Aβ induced tox-
icity. However, silencing p66Shc expression shifts the metabolic state of a cell away from OXPHOS and towards 
aerobic glycolysis, thereby lowering ROS levels and promoting stress resistance against Aβ. Our findings suggest 
that agents which either target p66Shc, including upstream activating kinases, or drugs which enhance aerobic 
glycolysis may have therapeutic relevance for the treatment of AD and possibly other age-dependent neurode-
generative disorders.

Materials and Methods
Cell Culture.  HT-22 and B12 immortalized cell lines were a gift from Dr. Dave Schubert (Salk Institute for 
Biological Sciences, California, US). Both cell lines were cultured in DMEM (Lonza) supplemented with 10% 
FBS (Corning) and 1% penicillin and streptomycin (pen/strep) (Gibco). Cell transfections were performed using 
Opti-MEM (Gibco) and Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions, either using 
3 µg DNA and 5 µL Lipofectamine 2000 in a 60 mm cell culture dish, or 1.2 µg DNA and 2 µL Lipofectamine 
2000 in a 35 mm cell culture dish. Transfection media was replaced with DMEM containing FBS after 5 hours. 
In some cases, transfected HT-22 cells were treated with 100 nM DOPPA (Sigma) when transfection media was 
replaced with regular media. B12 cells were seeded (180,000 cells in a 60 mm cell culture dish) 24 hours prior to 
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being treated with 100 nM DOPPA. For Aβ experiments, HT-22 and B12 cells were treated with 20 µM Aβ1–42 
(California Peptide) for 24 hours. Cells were harvested after 24 hours of either DOPPA or Aβ treatment for immu-
noblot analysis.

Primary cortical neuronal cultures were derived from embryonic day 15 C57/BL6 mice. All animal proce-
dures were performed in compliance the Canadian Council on Animal Care guidelines under an animal protocol 
(#2011-079) approved by Western University’s animal care committee. Cortices from each embryo were treated 
with trypsin (Sigma) to dissociate neurons, as described previously102. Neurons were then plated in 96-well plates 
(40,000 cells/well) pre-treated with poly-L-ornithine (Sigma) and cultured in neurobasal medium (Invitrogen) 
supplemented with 2 mM Glutamine (Life Tech), 50 units/ml penicillin and streptomycin (Invitrogen), and 
B27 (Invitrogen) and N2 (Invitrogen) supplements. Culture medium was replaced every three days. Cytosine 
Arabinoside (Sigma) was added to the culture medium on day 3 at a concentration of 5 µM to prevent any con-
taminating glial cells from propagating. Following 4 days in culture, neurons were treated with DOPPA and on 
day 6, neuronal cultures were treated with 20 µM of Aβ1–42 for 24 hours.

Expression plasmids and siRNAs.  A human p66SHC expression plasmid, generously provided by Dr. 
Mauro Cozzolino (Fondazione Santa Lucia IRCSS, Italy), was used as a template to generate an HA-tagged p66SHC 
cDNA by PCR, with forward primer sequence 5′-GACGATAGTCCGACTACCCTGTGT-3′ and reverse primer 
sequence 5′-ACTCTAGATTAAGCGTAGTCTGGGACGTCGTATGGGTACAGTTTC-CGCTCCAC-3′. Once 
amplified, the HA-tagged p66SHC cDNA was digested using EcoRI and XbaI restriction enzymes (ThermoFisher 
Scientific), and the digested product was then ligated into a pcDNA3.1 vector. Incorporation of the PCR product 
was then confirmed by sequencing. p66SHC specific and control siRNAs were purchased from ThermoFisher 
Scientific (siRNA IDs: p66Shc-1: 151656, p66Shc-2: 253836, and control- AM4611). Sequence for p66Shc-1 
siRNA is 5′-GCUUUGUCAAUAAGCCCACTT-3′ (forward) and 5′-GUGGGCUUAUUGACAAAGC-TC-3′ 
(reverse), and the sequence for p66Shc-2 siRNA is 5′-UCCCAACGACAAAGUCAUGTT-3′ (forward) and 
5′-CAUGACUUUGUCGUUGGGATG-3′ (reverse). For optimal p66SHC knockdown, both p66Shc-1 and 
p66Shc-2 siRNAs were combined in a 1:1 ratio during transfection. siRNA knockdown experiments were per-
formed using the Lipofectamine RNAiMAX (ThermoFisher Scientific), according to manufacturer’s instructions. 
In brief, B12 cells were seeded in a 6-well cell culture plate 24 hours before siRNA transfection. The following day, 
p66Shc specific and control siRNAs were added to Opti-MEM (Gibco) to obtain a final siRNA concentration of 
75 pmol, and then mixed with Opti-MEM containing Lipofectamine RNAiMAX, and incubated for 5 mins at 
room temperature. The siRNA-lipid complex in Opti-MEM was then added to the DMEM in each corresponding 
well in the cell culture plate and incubated at 37 °C and 5% CO2 for 36 hours. Cells were harvested 36 hours post 
transfection for immunoblot analysis.

Immunoblot Analysis.  Cells were washed twice in PBS and lysed in ice-cold RIPA buffer (10 mM Tris-Hcl 
pH 8, 1% Triton X-100, 0.1% Sodium deoxycholate, 0.5 mM EGTA, 0.1% SDS, 140 mM NaCl) containing a pro-
tease inhibitor cocktail (2 mM leupeptin (Sigma), 0.1 mM pepstatin A (Sigma)), phenolmethanesulfonyl fluoride 
(Sigma), and sodium orthovanadate (Sigma). The cell debris was removed by centrifugation at 16,000 g at 4 °C 
for 10 min and the resulting supernatant was collected. Protein concentrations were determined using the DC 
protein assay (Bio-Rad), and extracts were resolved by 10% SDS-PAGE. Separated proteins were immunoblotted 
onto polyvinylidene fluoride membrane (Bio-Rad), and blocked in TBS buffer containing 3% BSA (VWR) and 1% 
nonfat dry milk (Cell Signalling). The following primary antibodies were used: p66SHC (AM00143PU-N; Acris 
Antibodies), pSer35 p66SHC (566807; EMD Millipore), SHC (610878; BD Biosciences), HA-tag (MMS-101P; 
Covance), PDH (ab110334; abcam), Actin (sc-47778; Santa Cruz), pser232 PDH (AP1063; EMD Millipore), LDHA 
(#2012; Cell Signalling), PDK1 (ADI-KAP-PK112-F; Enzo Life Sciences), and PKM2 (#3198; Cell Signalling). 
HRP-conjugated secondary mouse (sc-2005; Santa Cruz) and rabbit (sc-2006; Santa Cruz) antibodies. Bands were 
detected using Luminata Forte chemiluminescence substrate (EMD Millipore) and immunoblots were imaged 
using a Chemidoc XRS System (Bio-Rad). Band density quantification was performed using Image Lab software 
(Bio-Rad).

Fluorescence Microscopy.  For visualizing mitochondrial membrane potential, the fluorescent dye TMRM 
(ThermoFisher Scientific) was used. Mitochondrial ROS production was measured using the fluorescent dye 
MitoTracker Red CMXRos (Life Technologies). HT-22 cells were seeded in 35 mm cell culture dishes, transfected 
as described earlier, and treated with DOPPA for 24 hours. B12 cells were seeded in 35 mm cell culture dishes 
overnight and treated with DOPPA for 24 hours. B12 cells transfected with p66Shc siRNA were trypsinized and 
seeded in 35 mm dishes cell culture dishes overnight before microscopic analysis. Cell culture medium was aspi-
rated and replaced with phenol-red free DMEM (10% FBS, 1% pen/strep) containing either 200 nM TMRM or 
200 nM MitoTracker Red CMXRos, and culture dishes were incubated at 37 °C and 5% CO2 for 20 minutes. Cells 
were then rinsed twice with PBS and incubated with PBS containing 10 µg/mL Hoechst (Life Technologies) for 
1 minute at room temperature. Cells were further rinsed with PBS and imaged in phenol-red free DMEM (10% 
FBS, 1% pen/strep) using a Zeiss Axio Observer AI microscope. All images were captured at the same exposure 
time and were analyzed using ImageJ software (National Institute of Health).

Cell Viability Assay.  Viability of HT-22 and B12 cells, and primary cortical neurons was measured using 
the MTT assay. HT-22 cells were transfected in 60 mm dishes and treated with DOPPA for 24 hours as described 
above. Following DOPPA treatment, transfected HT-22 cells were trypsinized and seeded in a 96-well plate (7000 
cells/well) in DMEM supplemented with 5% FBS and 1% pen/strep. After 5 hours of seeding, the culture medium 
was replaced with DMEM (5% FBS and 1% pen/strep) containing either 100 nM DOPPA or 20 µM Aβ1–42 for a 
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period of 24 hours. B12 cells were seeded in a 96-well plate (10,000 cells/well) and 24 hours after DOPPA treat-
ment, culture medium was aspirated and replaced with DMEM (5% FBS and 1% pen/strep) containing either 
100 nM DOPPA or 20 µM Aβ1–42 for 24 hours. B12 cells transfected with p66Shc siRNA were trypsinized and 
seeded in a 96-well plate overnight, and cell culture medium was removed the following morning and replaced 
with DMEM (5% FBS and 1% pen/strep) containing 20 µM Aβ1–42 for 24 hours. Mouse primary cortical neurons 
were seeded in a 96 well plate as described above. Culture medium was changed every 3 days and treated with 
100 nM DOPPA on the fourth day for 24 hours. At 5 days in vitro (DIV) and after 24 hours DOPPA treatment, cul-
ture medium was aspirated and replaced with neurobasal medium containing containing either 100 nM DOPPA 
or 20 µM Aβ1–42 for 24 hours. Following DOPPA and/or Aβ1–42 treatment, culture medium was replaced with 
DMEM (1% FBS and 1% pen/strep) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; 
Sigma) was added at a final concentration of 10%. Culture plates were incubated at 37 °C and 5% CO2 for 3 hours. 
After incubation, culture medium containing MTT was replaced with DMSO and the optical density was meas-
ured at 595 nm using a microplate reader (Bio-Rad Model 3550). All treatments were seeded in triplicates.

Seahorse XFe24 Mitochondrial Flux Analysis.  B12 cells were plated at a density of 40,000 cells per well 
in DMEM (5% FBS and 1% pen/strep) in a Seahorse XFe24 cell culture microplate and incubated overnight in 
the absence or presence of 100 nM DOPPA. All wells were then washed twice with bicarbonate-free Seahorse XF 
assay medium (Agilent) supplemented with 10 mM glucose, 4 mM L-glutamine, and 1 mM sodium pyruvate, 
and pH adjusted to 7.35 +/− 0.05. Following washes, the cell culture plate was incubated in the XF assay medium 
for 1 hour at 37 oC. Mitochondrial oxygen consumption rate (OCR) was first measured at baseline, and then 
sequentially after the administration of 1 µM oligomycin (Agilent), 1 µM FCCP (Agilent), and 0.5 µM rotenone/
antimycin A (Agilent). After the Seahorse XF MitoStress Test assay, cells in control and treatment wells were lysed 
and protein harvested using RIPA buffer as stated earlier. Data was normalized by protein concentration.

Statistical Analyses.  All data presented here are expressed as the mean ± SEM of at least 3 independent 
experiments. Effects of the treatments were assessed using either a two-tailed Student’s t-test or ANOVA, using 
GraphPad Prism (version 6). The difference between mean values was considered statistically significant at 
p < 0.05.
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