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REVIEW Open Access

The use of induced pluripotent stem cells
in domestic animals: a narrative review
Rachel A. Scarfone1† , Samantha M. Pena1†, Keith A. Russell1, Dean H. Betts2 and Thomas G. Koch1*

Abstract

Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate
into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of
biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great
potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their
production have been developed for many domestic animal species, which have since been used to further our
knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as
well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this
technology that must be considered before widespread clinical adoption. This review will analyze the literature
pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization,
applications for tissue and disease research, and applications for disease treatment.

Keywords: Induced pluripotent stem cells, Domestic species, Veterinary medicine, Production, Characterization,
Disease modelling, Disease treatment

Background
Induced pluripotent stem cells (iPSCs) are laboratory-
developed pluripotent stem cells generated by the repro-
gramming of differentiated cells [1]. Takahashi and
Yamanaka first discovered somatic cells’ capacity for re-
programming in 2006 after forcing differentiated fibro-
blast cells to ectopically express four transcription
factors associated with pluripotency: Oct4, Sox2, Klf4,
and c-Myc, collectively referred to as OSKM [1, 2].
iPSCs have since been of interest to researchers in the
fields of toxicology, pathology, virology, developmental
anatomy and physiology, amongst others [3–5]. iPSCs
possess several benefits over other stem cell types such
as mesenchymal stromal cells (MSCs) and embryonic
stem cells (ESCs). In the context of this review, the term
mesenchymal stromal cells has been adopted over

mesenchymal stem cells due to the finite self-renewing
property of MSCs that does not support the traditionally
recognized self-renewing characteristic of stem cells [6].
The versatility of iPSCs may make them preferential
over MSCs that are limited in their differentiation po-
tential due to their multipotent nature [7–9]. ESCs offer
a similar versatility to iPSCs as they are both pluripotent,
but not without limitations [8]. ESCs can be obtained
from in vivo and in vitro produced embryos at the
blastocyst stage [10]. However, technical difficulties have
interfered with the isolation and use of ESCs, namely in
ungulate species and canines [2, 8, 11, 12]. Oocyte col-
lection for in vitro embryo production is an invasive pro-
cedure that has prompted ethical considerations.
Disposed reproductive material has been the primary
source of oocytes in domestic species obtained from
meat processing in livestock or ovariohysterectomies in
companion animals [13–15]. In vivo protocols may in-
clude minimally invasive uterine flushing, often seen in
mares [10]. iPSCs provide a more practical alternative to
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creating ESC-like cells in species where recovery of em-
bryos or in vitro fertilization is difficult or not possible
[12]. Unlike ESC lines, autologous iPSC lines can also be
produced. This is ideal for transplantation of stem cells
and their derivatives as it avoids the immunological
complications associated with allogeneic iPSCs. Conse-
quently, iPSCs can be used as an alternative to MSCs
and ESCs with the potential for greater research and
clinical applicability in domestic species.
While research has focused primarily on human and

mice iPSCs, there has been a slow accumulation of iPSC
research in domestic animals in the last decade (Fig. 1).
iPSC derivation protocols have been developed in spe-
cies including porcine [16], equine [17], canine [18], bo-
vine [19], galline [20], caprine [21], ovine [22], and feline
[23]. Aside from their importance in treating veterinary
pathologies, porcine, canine, and equine models have
been shown to be valuable for the study and treatment
of human disease [24–26]. The purpose of this review is
to provide an overview of the literature pertaining to
current protocols and applications of iPSCs derived from
domestic species. This review will address the topics of
the development and use of iPSCs for tissue and disease
research, their treatment in domestic animals and the
barriers to their production and applications.

iPSC production and characterization
Yamanaka and colleagues’ discovery of iPSCs originated in
mice models, followed closely by their derivation from hu-
man fibroblasts [1, 27]. Briefly, mice tail fibroblasts or hu-
man dermal fibroblasts were cultured then transduced
with retroviral vectors containing expression cassettes of
the OSKM reprogramming factors, inducing pluripotency
in the transduced cells (Fig. 2). Using these protocols as a
base, methods have been adapted in order to produce
iPSCs in other species.

iPSCs have been developed from porcine [16], equine
[17], canine [18], bovine [19], galline [20], caprine [21],
ovine [22], and feline [23] tissue. Successful iPSC pro-
duction from domestic species was first reported in 2009
by Wu and colleagues in porcine, and the field has since
expanded to other species (Fig. 1).
iPSCs have been produced from various donor tissue

types, transduction systems, and reprogramming factor
combinations. In domestic species, iPSCs have been de-
rived from fibroblasts, MSCs and other somatic cell
types including epithelial and testicular cells (Table 1).
Tissue sources have been obtained from various devel-
opmental stages, namely fetal, neonatal, juvenile, and
adult. For simplicity, this review has identified any tissue
sources obtained from an animal in utero as fetal and
those obtained after birth as adult. Deriving iPSCs from
adult somatic cells is generally preferable to embryonic
derivation due to a higher abundance of cells, easier col-
lection of cells, and the ability to produce autologous
iPSC populations for disease treatment. Donor tissue is
then cultured and reprogrammed using viral or non-
viral vectors containing the designated reprogramming
factors. Viral vectors include lentiviruses, oncoviruses,
and Sendai viruses, while non-viral vectors include
cDNA vectors, minicircles and transposons (Table 1).
The selected reprogramming factors typically include
OSKM, but other variations have also been explored.
Nanog and Lin28 are commonly used in the literature in
addition to OSKM, and a small number of papers report
the use of other additional transcription factors, such as
TERT, and Tet1 (Table 1). More recently, work has been
carried out using microRNAs in combination with other
factors to achieve pluripotency induction [19, 29, 67].
MicroRNAs alone have only shown partial reprogram-
ming abilities in domestic animals [61].

Fig. 1 Cumulative iPSC-Related Publications in Domestic Species, January 2008–March 2020. a Publications regarding induced pluripotent stem
cells from January 2008 to March 2020 in domestic animal species including porcine, equine, canine, bovine, galline, caprine, ovine and feline.
Increased interest in iPSC research in domestic animals is demonstrated, particularly in the porcine model. b A subset of publications excluding
porcine papers to visualize the general positive trend in all other domestic species
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Following presumed iPSC production, colonies can be
analyzed via morphological assessment to select for col-
onies with the most potential in reprogramming cells to
an undifferentiated state. Non-invasive morphological
assessment also provides insight into the developmental
competence and homogeneity of iPSC colonies. Trad-
itionally, iPSC colonies resemble ESC colonies with well-
defined borders and tightly packed cells. More specific-
ally, dome-shaped and flattened colonies are indicators
of naïve and primed pluripotency, respectively [111].
Cells in these colonies are expected to have a large nu-
cleus and little cytoplasm [112]. Naïve pluripotency is
recognized by characteristic molecular features of the
pre-implantation mouse embryonic stem cell, whereas
primed pluripotency resembles stem cells of the post-
implantation mouse epiblast [113]. Naïve pluripotent
stem cells are identified by X chromosome reactivation in
females, dependency on leukemia inhibitory factor (LIF)
and receptivity to BMP4 to maintain pluripotency, and the

transition to a more differentiated state in response to
FGF2 and ACTIN/TGFB signalling [58, 114, 115].
Putative iPSCs must then undergo a series of tests to

confirm pluripotency (Table 2). In domestic species,
pluripotency is often confirmed by the endogenous ex-
pression of pluripotency markers, and the formation of
in vitro embryoid bodies and in vivo teratomas contain-
ing cell types derived from all three germ layers [118].
Chimera formation with germ-line transmission is a less
commonly used method in domestic species (as demon-
strated in Table 2), but is deemed the gold standard for
validating stem cell pluripotency [119].
Although formation of embryoid bodies and teratomas

are successful in the majority of papers referenced in this
review, many publications lack complete pluripotent
characterization of their produced cell lines. Conse-
quently, this review uses the term iPSCs broadly to de-
scribe both bona fide iPSCs and iPSC-like cells as some
primary research lacks sufficient iPSC characterization

Fig. 2 Induced Pluripotent Stem Cell Production and Differentiation. Differentiated cells, e.g. adult fibroblast cells [1], can be reprogrammed via
designated reprogramming factors (e.g. Oct4, Sox2, Klf4, and c-Myc), to create iPSCs [2]. Upon exposure to specific differentiation media, iPSCs are
capable of differentiating into any cell type of the body, e.g. multipotent neural cells [3]. Under appropriate culture conditions, iPSCs can result in
a fully differentiated cell, e.g. a motor neuron [4]. Figure from “Induced pluripotent stem cell model of lysosomal storage disorders,” by Borger DK
et al., 2017, Dis Model Mech. 10:691–704, CCBY [28] with minor alterations using Microsoft Word
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Table 1 iPSC Production

Origin cell type Reprogramming system Reprogramming factors Reference

Porcine

Fetal fibroblasts Unspecified retroviral vectors OSKM [29–38]

Fetal fibroblasts Oncoviral vectors OSKM [39]

Fetal fibroblasts Lentiviral vectors OSKM [16, 40–46]

Adult sertoli cells Unspecified retroviral vectors OSKM [47, 48]

Adult fibroblasts Unspecified retroviral vectors OSKM [49]

Adult fibroblasts Lentiviral vectors OSKM [24, 50–53]

Adult fibroblasts Sendai viral vectors OSKM [54]

Adult fibroblasts Lentiviral vectors OSKM, Nanog, Lin28 [55, 56]

Adult MSCs Lentiviral vectors OSKM, Nanog, Lin28 [57]

Adult MSCs and fibroblasts Lentiviral vectors OSKM [58]

Adult fibroblasts and bone marrow cells Lentiviral vectors OSKM, Nanog, LIN28 [59]

Fetal fibroblasts PiggyBac transposon OSKM [60]

Fetal fibroblasts Lentiviral vectors miR-302 s [61]

Fetal fibroblasts Unspecified retroviral vectors OSKM [62]

Fetal fibroblasts Episomal plasmids Oct3/4, Sox2, Klf4, I-Myc [63]

Adult fibroblasts Lentiviral vectors OSKM, Nanog, LIN28 [64]

Fetal fibroblasts Unspecified retroviral vectors OSKM, mTet3, Tet1, Kdm3a [65]

Fetal fibroblasts Lentiviral vectors OSKM, Nanog, LIN28 [66]

Fetal fibroblasts Unspecified retroviral vectors OSKM, miR-106a-363, and miR-302 [67]

Fetal fibroblasts Lentiviral vectors OSKM, or OSKM, Tbx3, Nr5a2 [68]

Fetal fibroblasts Sleeping Beauty transposon OSKM, Nanog, LIN28 [69]

Fetal fibroblasts Unspecified retroviral vectors OSKM, TERT [70]

Fetal and adult fibroblasts and MSCs Unspecified retroviral vectors and lentiviral vectors OSKM [71]

Adult fibroblasts Unspecified retroviral vectors OSKM [72]

Fetal fibroblasts Sleeping Beauty transposon OSKM, Nanog, LIN28 [73]

Fibroblasts Sleeping Beauty transposon OSKM [74]

GALT-KO fibroblasts Lentiviral vectors OSKM, Nanog, LIN28 [75]

Adult fibroblasts Lentiviral vectors OSKM, Nanog, LIN28 [76]

Adult MSCs Lentiviral vectors OSKM [77]

Fetal fibroblasts Episomal vectors Oct4, Sox2, Klf4 [78]

Fetal MSCs Unspecified retroviral vectors Oct4, Klf4 [79]

Fetal fibroblasts Lentiviral vectors OSKM, Nanog [80]

Adult fibroblasts Unspecified retroviral vectors OSKM [81]

Equine

Fetal fibroblasts PiggyBac transposon OSKM [17]

Adult fibroblasts Unspecified retroviral vectors Oct4, Sox2, Klf4 [82]

Adult fibroblasts Unspecified retroviral vectors OSKM [83]

Adult fibroblasts PiggyBac transposon OSKM [84, 85]

Adult keratinocytes Unspecified retroviral vectors OSKM [86]

Adult MSCs Lentiviral vectors OSKM [87]

Canine

Fetal fibroblasts Unspecified retroviral vectors OSKM [18]

Fetal fibroblasts Sendai viral vectors OSKM [88]
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to confirm true pluripotency. A common occurrence
among studies is the incomplete silencing of exogenous
transcription factors. These cell lines may not be truly
pluripotent, but are reliant on transgenes to maintain
pluripotency. The use of epigenetic modifiers has previ-
ously been shown in human and mice cells to increase
transgene silencing while maintaining endogenous pluri-
potency factor expression; results that have now been
replicated in the porcine model [65]. This technique
could be promising to alleviate these issues, although
more work will be required.

As previously mentioned, the gold standard for valid-
ating stem cell pluripotency is via chimera formation
with germ-line transmission. Chimera formation is de-
fined by the heterogeneous cell population of an early
embryo following the injection of iPSCs into the blasto-
cyst. This confirmation method requires iPSCs to inte-
grate into the developing embryo and contribute to all
three germ layers and, potentially, germ cells. To con-
firm germ-line transmission, chimeras are mated with
non-chimeras and offspring are assessed for iPSC contri-
bution [116]. Previous research has suggested that the

Table 1 iPSC Production (Continued)

Origin cell type Reprogramming system Reprogramming factors Reference

Fetal fibroblasts Lentiviral vectors OSKM [89]

Adult fibroblasts Unspecified retroviral vectors OSKM [90]

Adult fibroblasts Sendai viral vectors OSKM [12]

Adult fibroblasts Lentiviral vectors OSKM [91]

Adult MSCs Lentiviral vectors OSKM [92]

Adult MSCs Unspecified retroviral vectors OSKM [93]

Bovine

Adult testicular cells Electroporation Oct4 [94]

Fetal fibroblasts Unspecified retroviral and lentiviral vectors OSKM, Nanog [95]

Fetal fibroblasts Lentiviral vectors OSKM [43]

Fetal fibroblasts Unspecified retroviral and lentiviral vectors OSKM, Nanog, Lin28 [96]

Fetal fibroblasts Unspecified retroviral and lentiviral vectors OSKM, Nanog, Lin28, SV40TAg, TERT [96]

Adult neural stem cells Lentiviral vectors miR-302, miR-367 [19]

Adult epithelial cells Oncoviral vectors OSKM [97]

Adult fibroblasts Oncoviral vectors OSKM [97]

Fetal fibroblasts Unspecified retroviral vectors OSKM [98]

Fetal fibroblasts Lentiviral vectors OSKM [99]

Galline

Fetal fibroblasts Nonviral minicircle DNA OSKM, Nanog, LIN28 [20]

Fetal fibroblasts Lentiviral vectors OSKM, LIN28 [100]

Fetal fibroblasts Lentiviral vectors OSKM, Nanog, LIN28 [101]

Adult fibroblasts piggyBac transposon M3O, Sox2, Klf4, c-Myc, LIN28, Nanog [102]

Fetal fibroblasts Oncoviral vectors OSKM [103]

Caprine

Fetal fibroblasts Lentiviral vectors OSKM, Nanog, Lin28 [11]

Adult fibroblasts Lentiviral vectors OSKM [104]

Fetal fibroblasts cDNA vectors OSKM [105]

Fetal fibroblasts Lentiviral vectors OSKM, PRMT5 [106]

Fetal fibroblasts Lentiviral vectors OSKM [21, 107]

Ovine

Fetal fibroblasts Unspecified retroviral vectors OSKM [108, 109]

Fetal fibroblasts Oncoviral vectors OSKM [110]

Feline

Fetal fibroblasts Lentiviral vectors OSKM, Nanog [23]
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feasibility of chimerism and germ-line transmission is greatly
improved with the use of naïve pluripotent stem cells, as op-
posed to primed pluripotent stem cells [2, 40]. Although por-
cine naïve iPSC-like cells have been reported, there is little
evidence of germline transmission. Analysis of the literature
suggested that the generation of chimeras in livestock species
is difficult to achieve [20]. Injection of generated iPSCs into
an embryo often resulted in limited incorporation [40, 108]
and the resulting offspring often were not chimeric [40, 108,
117]. Significant variation in iPSC integration has been
shown [19, 112]. To the best of our knowledge, West and
colleagues remain the only researchers to successfully realize
germline transmission of iPSCs in a domestic species (i.e.
porcine) [116]. iPSCs were also tested in cloning transgenic
tissue [55, 104] and genomic incorporation of transgenes
[60]. It was found that iPSCs could be derived from trans-
genic organisms, specifically genetically modified pigs de-
signed for xenotransplantation [55]. However, limited
developmental potential of embryos past the blastocyst stage
was observed [60]. Hence, analysis of germline transmission
is currently not feasible in such species. In moving forward
with clinical applications of iPSCs in either human or veter-
inary medicine, being able to truly define cells as iPSCs will
be crucial for standardization, quality, and safety assurances.

Tissue and disease research
iPSCs have the potential to be valuable tools for tissue
and disease modelling. In vitro differentiation of iPSCs
has allowed for study of the developmental processes
and pathologies of tissues and may allow for preclinical
testing of therapeutic drugs for veterinary and human
medicine. With regard to drug screening, there has been
success in human and mouse iPSC research in using dif-
ferentiated iPSC lines to model disease and conduct

high-throughput screening of small molecules for their
effects on disease progression [120]. This technique al-
lows for testing of potential therapeutics against disease-
genotype cells specific to an individual or species with-
out the need for interspecies comparisons or excessive
lab animal use. Differentiation into specific cell types has
been noted many times in the literature in porcine,
equine, canine, galline, and bovine models, which are de-
scribed below. Although characterization of these differ-
entiation cells is demonstrated by physiological, genetic,
or metabolic capacities of cell lines, the degree of differ-
entiation varies from progenitor cells (e.g. neural pro-
genitors [41, 76, 121]), to fully differentiated cell types
(e.g. skeletal myocytes [122]). Domestic animal diseases
are abundant and have negative health effects for con-
sumers of agricultural animal by-products [123–126].
Unfortunately, the use of stem cells for research on live-
stock disease is novel and presently limited in number.
The prolonged self-renewing characteristic of iPSCs sup-
ports their use in the study of physiology, disease path-
ology, drug toxicity and vaccine development in
domestic species. A summary of veterinary animal iPSC
research can be found in Table 3.

Porcine
Porcine iPSCs (piPSCs) have been differentiated into
several cell types for research purposes. Currently, they
have been used in the production of neural progenitor
cells [41, 76, 121], endothelial cells [30], myotubes [134],
hepatocytes [50, 78], and vascular smooth muscle cells
(VSMCs) [42]. VSMCs in particular have been applied to
scaffolds for implantation into immunodeficient mice and
successfully formed 3D scaffold-free tissue rings [42].

Table 2 iPSC characterization (specific to articles that investigated chimerism)

Origin cell
type

Suggested
pluripotent
state

iPSC characterization criteria Reference

Pluripotency
markers

Embryoid
bodies

Teratomas Chimeras Germline
transmission

Porcine

Adult MSCs Primed Yes Yes Not tested Yes Yes [57, 116]

Fetal
fibroblasts

Naïve Yes Yes Yes Yes; limited to blastocyst Not tested [117]

Fetal
fibroblasts

Naïve Yes Yes No Yes, limited to fetus Not tested [40]

Ovine

Fetal
fibroblasts

Primed Yes Yes Yes Yes; but low contribution at
birth

Not tested [108]

Galline

Fetal
fibroblasts

Primed Yes Yes Not tested Yes Not tested [20]
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Table 3 iPSC publications relating to tissue and disease modelling

Origin cell
type

Differentiated cell type Tissue or disease
target

Outcome Reference

Porcine

Fibroblasts Neural Rosettes, neural crest-like
cells, and peripheral sensory
neural-like cells

Neural tissue Indications of neural differentiation by the upregulation of
sensory neuron genes and peripheral neuron markers

[121]

Adult
fibroblasts

Neurons, astrocytes, and
oligodendrocytes

Neural tissue Indications of neural differentiation by the presence of
mature neural markers and morphology of neurons,
astrocytes, and oligodendrocytes; indications of further
differentiation into motor neurons.

[76]

Fetal
fibroblasts

Neural progenitor cells Neural tissue Production of neural progenitor cells with expression of
neuronal markers

[41]

Fetal
fibroblasts

Endothelial cells Endothelial tissue Production of endothelial cells with morphological and
functional properties

[30]

Fetal
fibroblasts

Hepatocyte-like cells Liver tissue Production of differentiated cells characteristic of
hepatocytes by functional properties

[78]

Adult
fibroblasts

Hepatocyte-like cells Liver tissue Production of differentiated cells characteristic of
hepatocytes functional properties

[50]

Fetal
fibroblasts

Vascular smooth muscle cells Muscle tissue Production of vascular smooth muscle cells capable of
forming 3D scaffold-free tissue rings

[42]

Equine

Adult
fibroblasts

Cortical neurons West Nile Virus (WNV)
and Murray Valley
Encephalitis (MVEV)

Successful infection of functional eiPSC-derived neurons
by WNV and MVEV

[127]

Adult
keratinocytes

Cholinergic motor neurons Motor Neurons Production of functional neurons capable of generating
action potentials

[86]

Fetal and
adult
fibroblasts

Tenocytes Tendons Formation of three-dimensional artificial tendons [128]

Fetal
fibroblasts

Skeletal myotubes Muscle Tissue Formation of eiPSC-derived muscle fibers with electro-
physiological function

[122]

Adult
fibroblasts

Osteoblasts Bone Formation of eiPSC-derived bone tissue capable of secret-
ing hydroxyapatite and calcium matrix

[129]

Adult
keratinocytes

Primary keratinocytes Epidermal wounds Creation of artificial tissues for potential skin graft
applications

[84]

Canine

Adult
fibroblasts

MSCs Cartilage and Bone
Tissue

Formation of three-dimensional chondrogenic and osteo-
genic cultures

[130]

Fetal
fibroblasts

Mature megakaryocytes Thrombocytopenia Production of cells capable of releasing functional platelets
upon signaling induction

[131]

Bovine

Adult
testicular
cells

N/A Phthalate ester exposure Significant reduction in androgen expression and increase
in apoptosis

[94]

Adult
epithelial
cells

Mammary epithelial-like cells Mammary tissue Indication of mammary phenotype for iPSCs cultured with
progesterone

[97]

Galline

Fetal
fibroblasts

N/A Goose influenza H5 Incorporation of replication-incompetent virus into iPSCs [100]

Fetal
fibroblasts

N/A Newcastle disease
virus (NDV)

Successful infection of iPSCs with NDV; viable iPSCs
exhibited increased tolerability

[132, 133]
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Equine
Equine iPSCs (eiPSCs) have been differentiated into sev-
eral cell and tissue types for disease modelling including
neurons [86, 127], tendons [128], myotubes [122], and
osteoblasts [129]. Functional eiPSC-derived neurons
have been produced and were capable of firing action
potentials in vitro via functional calcium channels [86].
One paper reported the observation of neurospheres
with axonal outgrowths connecting adjacent cells [127].
This paper studied the potential for neurospheres to
model West Nile virus (WNV) and Murray Valley en-
cephalitis virus (MVEV), infectious, neurotropic equine
diseases [127]. iPSC-derived neurons were successfully
infected by WNV and MVEV, which could allow for fu-
ture research to study mechanisms of these and other
infectious diseases and neuropathic conditions.
Musculoskeletal tissue is a major system that would

benefit from eiPSC modelling due to the frequency of
injuries in competing horses. Artificial tendons de-
rived from iPSCs have been attempted and although
two-dimensional assays showed matrix contraction
and appropriate gene expression, three-dimensional
assays failed to generate functional artificial tendons.
ESCs were shown to more efficiently produce func-
tional tendons [128]. Further study is required here as
this could be a promising area of regenerative medi-
cine if eiPSC-derived tendons can be improved. Using
fibroblast-derived eiPSC lines, researchers induced dif-
ferentiation into myocytes, the functional unit of
muscles. Myotubes demonstrated intracellular calcium
release following membrane depolarization [122].
Lastly, functional eiPSC-derived osteoblasts have been
reported. These cells expressed genetic markers of os-
teoblasts and were shown to produce hydroxyapatite
and calcium matrices, highly specific characteristics of
bone tissue [129]. Artificial production of bone may
allow for study of bone physiology and diseases but
may also benefit veterinary treatment of fractures and
other pathologies.
Wound management is a common problem in equine

medicine, and skin grafting, the ideal treatment, is often
not possible due to a low supply of donor tissues [135].
One paper described a protocol where eiPSCs were dif-
ferentiated into keratinocytes (eiPSC-KCs) to produce
skin grafts. The eiPSC-KCs were likened to both pro-
genitor and primary keratinocyte-like cells, potentially
indicative of epidermal basal stem cell identity, ideal for
in vivo wound management [84].

Canine
MSCs derived from canine iPSCs (ciPSCs) have been
proposed as an intermediate stage to developing canine
models of musculoskeletal tissues through chondrogenic
and osteogenic pathways [130]. ciPSCs were

differentiated into MSCs and subsequently differentiated
into chondrocytes and osteoblasts in three-dimensional
hydrogel culture conditions. Researchers proposed these
three-dimensional cultures as effective models for study-
ing canine osteoarthritis in order to develop MSC-based
therapies and further model human degenerative joint
disease [130].
A novel protocol has been published to generate func-

tional canine platelets to treat thrombocytopenia, a ca-
nine and human clotting disorder. ciPSCs were
differentiated into mature megakaryocytes which could
be induced to release functional platelets [131]. This
could serve as an alternative treatment to blood transfu-
sion, the only effective therapy currently available.

Galline
Galline iPSCs (giPSCs) have been used in studying viral
infection and replication [100, 132, 133]. Newcastle dis-
ease (NDV) is a common avian viral disease often found
in domestic poultry [132]. Studies have demonstrated
that giPSCs are capable of NDV infection [132, 133],
and that viable cells displayed increased tolerability but
not immunity to the virus [133]. giPSCs could also be
used to produce replication-incompetent viruses, such as
the highly pathogenic H5 avian influenza viruses [136].
Replication-incompetent viruses were produced with the
goose influenza H5 gene and were incorporated into
giPSCs. Using these cells, the virus was further trans-
duced into a bladder cancer-derived cell line and could
be inactivated by formaldehyde [100]. The use of giPSCs
for vaccine production may be beneficial over chick em-
bryos or eggs due to a decreased risk of contamination
[100]. These results suggest that giPSCs have the poten-
tial to produce inactive viruses for vaccine production.

Bovine
Limited disease modelling has been observed with bo-
vine iPSCs (biPSCs); however, current efforts have dem-
onstrated their potential application in toxicological
studies to elucidate the effects of toxic environmental
compounds. Cattle can be used to investigate the nega-
tive effects of environmental endocrine disrupting com-
pounds (EDCs) on humans and livestock species as the
potential for harmful chemicals leaching into waterways
and soils has become a prominent concern [137]. Des-
pite a lack of clinical evidence, it has been proposed that
EDCs can affect the reproductive functioning of cattle,
greatly impacting agricultural production [138]. Bovine
iPSCs have been applied to research the EDCs phthalate
esters [94]. It was found that phthalate esters signifi-
cantly downregulated androgen receptors of iPSCs,
which supported apoptosis [94]. Such studies introduced
biPSCs as a feasible tool in studying the effects of endo-
crine disruptors and other chemicals on cell populations.
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biPSCs have also been differentiated into epithelial-like
cells that phenotypically resembled mammary cells [97].
These cells could further be investigated for their appli-
cation in tissue regeneration for oncology patients who
have undergone a mastectomy.

Disease treatment
Although research of specific pathologies is generally
limited to single publications, the use of iPSCs to treat
diseases and injuries in animals is growing and will likely
be integrated into veterinary practice in the future. The
field of domestic animal regenerative medicine may also
provide models for human pathologies. Stem cell re-
search that was once conducted on rodents is now grow-
ing in dogs and pigs [139, 140], species shown to be
better models for human disease [25, 139, 140]. Table 4
summarizes the current research for iPSC-based treat-
ments in domestic animals, which for the purpose of this

review, includes all in vivo applications of iPSCs and
their derivatives.

Porcine
Pigs are the most frequently used model of disease in
domestic species. Porcine iPSCs have been employed in
the study of tissue regeneration in bone [24, 141],
muscle [51, 142], and nervous tissue [54, 143]. The find-
ings in a majority of the articles published confirms that
piPSCs are capable of integrating into tissue at the site
of implantation [142, 143] and are capable of cueing en-
dogenous pathways to upregulate [51], thus improving
conditions at the site of tissue damage or death.
In a study of bone regeneration, piPSC-derived

osteoblast-like cells were able to improve the trabecular
and cortical bone structures of fractured tibias [141]. In
a similar study, partial tibial cartilage regeneration at the
transplantation site was observed with the regenerated
cartilage originating from iPSCs [24].

Table 4 iPSCs for Disease Research

Disease Target Origin Cell
Type

Differentiated
Cell Type

Route of
Administration

Outcome Reference

Porcine

Osteoporosis Fibroblasts Osteoblast-like
cells

Local cell
transplantation

Significant improvement in bone structures at transplanted site;
maintenance of bone structures locally

[141]

Osteochondral
damage,
osteoarthritis

Adult
fibroblasts

piPSC-like cells Direct pellet
transplantation

Cartilage regeneration; no tumor formation [24]

Chronic
myocardial
infarction

Adult
fibroblasts

piPSCs Direct injection Integration of iPSCs into cardiac muscle without differentiation;
potential contribution to angiogenesis

[51]

Acute myocardial
infarction

Adult
fibroblasts

piPSCs Direct injection Significant decrease in infarcted area; improvement in local
function and perfusion

[142]

Myocardial
infraction

Adult MSCs Endothelial
cells (ECs)

Local injections Improved function and an increase in the number of capillaries
in the peri-infarct area; no significant changes in infarct area
size.

[77]

Chronic spinal
cord injury

Adult
fibroblasts

Neural
precursor cells
(NPCs)

Bilateral
syngeneic
grafts

Long-term immune tolerance of NPCs; integration into and
beyond grafted region

[54]

Retinal damage Fetal
fibroblasts

Rod
photoreceptors

Local injection Integration into damaged porcine neural retina [78, 143]

Equine

Muscle injury Adult MSCs eiPSCs Intramuscular
injection

Partial muscle regeneration; in vivo differentiation of eiPSCs into
myofibers at the injury site

[87]

Musculoskeletal
injury

Adult MSCs MSCs Injection into
lesion

Improvements in clinical conditions for injuries including
fractures, tendonitis, osteochondrosis, and osteoarthritis

[144]

Canine

Hind limb
ischemia

Adult MSCs
and
fibroblasts

Endothelial
cells

Local injections Successful engraftment in the ischemic limb; significant
improvement of vascularization locally

[92]

Cardiac infarction Adult MSCs
and
fibroblasts

Endothelial
cells

Local injections Successful engraftment locally; improvement in cardiac
contractility

[92]
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Other studies examined the beneficial treatment effect
of iPSCs on chronic myocardial ischemia [51] and in-
farction [142]. Regenerative therapy of cardiac tissue in
porcine models involved direct injection of undifferenti-
ated piPSCs into myocardium [51, 142]. The treatment
was found to significantly decrease the infarction area,
decrease regional perfusion, and increase angiogenesis
with local incorporation of piPSCs into myocardium and
blood vessel without tumor formation [142]. A similar
study found small tumor formations that eventually
arrested in growth [51]. While the research suggested
variations in the grafting capabilities of these piPSCs into
host tissues, there was an identified increase in smooth
muscle actin, indicating piPSCs interact in some form
with host tissue. In brief, piPSCs have been shown to
contribute to myocardium regeneration.
piPSCs were also applied to regenerate nerve tissue.

Researchers differentiated porcine iPSCs into neural pro-
genitor cells (NPCs) and rod photoreceptors in vitro,
then successfully implanted them into the site of cell
damage. piPSCs not only incorporated into the host tis-
sue at the site of implantation, but further extended be-
yond the grafted region long-term [54, 143]. The results
suggest that piPSCs are capable of effectively integrating
into host tissue, making them a candidate for clinical
application.

Equine
Two papers have been published describing an in vivo ap-
plication of eiPSCs for the treatment of musculoskeletal
injuries in equines [87, 144]. In the first paper, published
in 2016, muscle injuries were induced in a GFP mouse
model by injecting notexin, a myotoxic venom, along with
an injection of eiPSCs. It was reported that these muscles
saw an increase in myofiber production, and since eiPSCs
were non-GFP reporting, it was shown that muscle fibers
originating from the eiPSCs were produced. Undifferenti-
ated cells remained in the muscle, indicating the danger-
ous potential for cancer formation [87].
To safeguard against potential cancer formation, an-

other paper differentiated eiPSCs into MSCs prior to in-
jection, reducing the risk of undesired proliferation. The
eiPSC-MSCs were then injected into horses with various
musculoskeletal disorders including fractures, tendonitis,
osteochondrosis, and osteoarthritis. Improvements were
observed including reduced lameness fever and fracture
lines, although some horses also experienced hot flush
and edema [144]. Although successful, this paper indi-
cates a need for further development of less immune-
reactive therapies.
Host immune responses are a major concern for clin-

ical use of iPSCs, especially in species like horses where
allogeneic cell use would be ideal. Further to the ex-
ample above, another paper tested the immune potential

of in vivo transplantation of allogeneic eiPSCs. Injected
cells induced a minor, focal inflammatory response, but
cellular signs of chronic inflammation persisted until the
end of the study period 30 days after grafting. Undiffer-
entiated cells have reduced expression of MHC surface
proteins, but upon differentiation in vivo, these proteins
increase, stimulating an increased immune reaction
[145]. Although these cells were undifferentiated, the
risk of immune response is significant and must still be
addressed in differentiated eiPSCs, especially if this re-
sponse increases with differentiation prior to
implantation.

Canine
Fewer developments have been made in ciPSC research,
but a 2011 paper showed the potential for ciPSCs to be
used for ischemic tissue damage treatment, both in hind
limb ischemia and cardiac infarction mouse models [92].
ciPSCs were differentiated into endothelial cells (ciPSC-
ECs), then injected into mice models. In hindlimb ische-
mia mice, ciPSC-ECs were shown to significantly im-
prove revascularization in the compromised tissue. In
cardiac infarction models, ciPSC-ECs were shown to en-
graft onto the heart muscle itself and improve cardiac
contractility. In both models it was demonstrated that
donor cells were lost over time, indicating a possible
need for repeated treatments. Nevertheless, the lack of
recurring original symptoms of ischemia suggests the
capability of these cells to induce long-lasting, persistent
effects in tissues following their disappearance [92].

Barriers
Safety
There are several concerns to be resolved before in vivo
use of iPSCs can be justified. Immune reactivity is one
concern in the use of allogenic cells that has been dis-
cussed earlier in this view. Aside from the formation of
undesired cell types, the most significant risk is in vivo
tumorigenesis due to the proliferative potential of iPSCs.
Current research has demonstrated that differentiation
of iPSCs and purification of differentiated cellular prod-
ucts prior to implantation can reduce tumour formation
[146]. Alternatively, tumour formation has been ad-
dressed in mice models with the application of “suicide
genes”. Using a drug-inducible suicide system, apoptosis
of iPSC-derived cells can be initiated with exposure to a
particular drug [147]. This system would allow for the
complete inactivation of iPSC derivatives in the event of
aberrant growth or modification.
Immune reaction to transplanted iPSCs is another

safety concern for clinical application. The use of autolo-
gous transplants would mitigate these effects, although
is not realistic for commercialization of treatments due
to prohibitively high costs. Research is being conducted
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into a cellular “cloaking” system that would allow cells
to go undetected by the immune system of the host.
Modification of allogeneic cells by altering MHC and
HLA antigens has also shown potential to eliminate im-
mune reaction in human iPSCs xenotransplantation
studies [148]. However, this system is not without limi-
tations; it is dangerous to create cell populations that
cannot be controlled by the host immune system. Intro-
ducing a system that combines the drug-inducible sui-
cide system and the cloaking system could potentially
resolve this issue.
Many transduction systems used for iPSC production

have inherent safety concerns due to their random inte-
gration into the host genome. Random integration can
lead to disruptions in host genes and an increased risk
of oncogenicity. A non-genome integrating Sendai virus
system [149, 150] allows for the production of
transgene-free iPSCs while maintaining a high repro-
gramming efficiency [149]. Similarly, a non-viral system
that operates on the use of piggyBac transposons can
create transgene-free iPSCs via excision from the gen-
ome following iPSC generation [151]. Originally de-
scribed in human models, these systems have since been
applied to domestic species, including dogs [88, 89],
chickens [20], and cattle [152]. The wide range of repro-
gramming system options is beyond the scope of this
article but have been reviewed elsewhere [153–155].

Technical barriers
Researchers have relied on precedent methods of human
and mouse models to generate iPSCs in domestic ani-
mals [49, 114, 156]. An issue seen in many domestic
models is the retention of pluripotent transgene expres-
sion; a situation that allows for the maintenance of pluri-
potency, or in many cases a pseudo-pluripotent state,
that can interfere with differentiation. Most iPSCs de-
rived from domestic species have been generated by viral
integration of human or murine reprogramming trans-
genes that remain expressed [82, 83, 85, 86, 91]. The
continuous expression of these transgenes suggests an
incomplete epigenetic remodeling with OKSM factors
alone and a greater need for understanding and optimiz-
ing the pluripotency induction process in domestic spe-
cies. The use of non-viral vectors may prove effective in
iPSC production, while overcoming the issue of trans-
gene expression. Unfortunately, there is limited research
on the application of iPSCs for disease research with the
use of non-viral vectors. Yu and colleagues remain the
only research group to successfully generate iPSCs using
non-viral minicircles capable of generating chimeric
chicks [20]. As few researchers have confirmed pluripo-
tency by means of chimerism, confirmation of bona fide
iPSCs has been limited. Often, cells believed to be iPSCs
are iPSC-like cells as there are technical difficulties in

yielding bona fide iPSCs that can maintain pluripotency
independent of doxycycline [80]. Bona fide iPSCs remain
difficult to obtain and further investigation into true
iPSC production is required.
Despite significant species conservation of pluripo-

tency genes, some divergence of the core pluripotency
genes have been identified between mammals [157]. For
example, the use of OSKM, Lin-28 and Nanog has been
well established in porcine models, while other species
are still under investigation, e.g. felids where OSKM plus
NANOG may be required [23, 158]. It may be necessary
to modify existing methods of achieving pluripotency,
such as including additional reprogramming factors or
developing different culture conditions to overcome
species-specific reprogramming barriers.

Cost
Cost is another barrier to the application of iPSCs in do-
mestic species due to laborious production. As previ-
ously mentioned, iPSCs from domestic animals have
technical barriers limiting yield. As a result, more re-
agents, tissue, time, and labour are required for sufficient
production [159]. Further costs have been associated
with autologous iPSC treatment due to the production
and maintenance of many cell lines and associated
labour costs.

Future directions
Organoids, three-dimensional cell cultures that demon-
strate characteristic development, anatomy, and physi-
ology of a tissue, are currently an undeveloped tool in
iPSCs derived from domestic species. Organoids have re-
cently been developed from human iPSCs, which sug-
gests the possibility of producing any organ of the body
under the appropriate conditions. The use of iPSCs de-
rived from domestic animals for organoid production
could also be applied to veterinary medicine. Similar to
human iPSCs, two-dimensional models have limitations
in drug screen and assessing disease progression as they
do not resemble in vivo conditions like organoids.
Hence, virologists and drug developers can use them to
better understand the mechanisms of disease or drug ac-
tions [160]. Several researchers have already exemplified
the use of human embryonic stem cell-derived organoids
in detecting harmful effects of toxins on the functional-
ity and morphology of the organoids [161, 162], and the
ability of organoids to be derived from tumorigenic tis-
sue for drug testing [163]. Nevertheless, these studies
have not yet been investigated in iPSC-derived
organoids.
CRISPR/Cas9 (clustered regularly interspaced short

palindromic repeats-associated protein 9) mediated gene
editing has been applied to iPSC research to correct or
induce genetic mutations in iPSC lines, primarily in the
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study of monogenic diseases. Figure 3 demonstrates the
potential research and clinical applications of CRISPR/
Cas9-edited iPSCs in domestic species. Extensive re-
search has been done in human models and has been
reviewed previously [164, 165]. Although the use of
genome editing technologies has been limited in do-
mestic species, a single report of successful CRISPR
editing of bovine iPSCs has been published [166].
Genome editing of iPSCs in combination with
chimera generation provide the potential for trans-
genic animal development. In agricultural animals, the
artificial introduction of valuable traits e.g. therapeutic
proteins in milk, decreased waste product, and disease
resistance, could be invaluable to the farming industry
[20, 167]. Economically, this would require germline
transmission, which has seen little success in domes-
tic species as compared to rodents [20, 116, 168].
Further research is required to fully understand the
feasibility, safety and ethical implications of germline

transmission of genetically modified iPSCs from do-
mestic species.
Proteomic, metabolic, and methylomic analysis of

iPSCs have limited acknowledgement and investigation
in research. However, there have been recent efforts to
investigate the proteins and sites of methylation of hu-
man iPSCs and their derivatives. The investigation of
-omics in iPSCs can assist in confirming how completely
iPSCs have been reprogrammed to an undifferentiated
stem cell state and resemble ESCs. Studying proteins
and sites of methylation have clinical applications in au-
tologous cell replacement therapy [169]. Aside from one
study investigating the effects of epigenetic modifiers on
silencing on exogenous transcription in piPSCs [65], epi-
genetics is an unexplored area of iPSC research in do-
mestic species. In humans, research has shown isogenic
iPSC populations and similar epigenetic markers of
hiPSCs and hESCs [170]. Such results further emphasize
the potential applicability of iPSCs in disease research
and as a substitute for ESCs.

Fig. 3 Potential Use of Domestic Animal iPSCs for Drug Discovery, Disease Modelling and Cell Replacement Therapy. Induced pluripotent stem
cell (iPSCs) can be generated from healthy animals (e.g. dogs) for allogeneic cell transplantation of therapeutic cell types/tissue indicative of the
disease. Alternatively, iPSCs can be generated from animals harbouring a genetic disorder and through CRISPR/Cas9-mediated genome editing
technologies these genetic mutations can be corrected so that differentiated cell products from these iPSCs can be utilized in autologous cell
replacement therapies. In addition, both the genetically mutated iPSCs and their genome-corrected iPSCs can be compared and contrasted for
disease modelling purposes. This disease-in-a-dish could be potentially use as a high throughput screening system to discover novel drug
candidates. Figure by Dean H. Betts (Adobe Photoshop)
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Although there is a steadily growing number of publi-
cations pertaining to porcine, equine, and canine
models, the numbers are much fewer for cattle, goats,
chickens, and cats. Hence, new research initiatives
should further investigate these species for their poten-
tial application in the fields of disease modelling, treat-
ment, and enhancement of production animals.

Conclusion
Induced pluripotent stem cells are an innovative tool that
hold great potential in contributing to veterinary medi-
cine. Protocols for the production of iPSCs in some do-
mestic species have been well-defined and have prompted
research into their many potential applications. iPSC cul-
tures have allowed for the production of tissues that can
be studied for their physiological use and disease patholo-
gies. Further, iPSCs themselves may be used in the future
for the treatment of various diseases seen by veterinary
practitioners. Although achievements have been made, a
great deal of work is still required before these techniques
can be clinically applied.
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