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Abstract— Stochastic multiarmed bandits (stochastic MABs)
are a problem of sequential decision-making with noisy rewards,
where an agent sequentially chooses actions under unknown
reward distributions to minimize cumulative regret. The majority
of prior works on stochastic MABs assume that the reward
distribution of each action has bounded supports or follows light-
tailed distribution, i.e., sub-Gaussian distribution. However, in a
variety of decision-making problems, the reward distributions
follow a heavy-tailed distribution. In this regard, we consider
stochastic MABs with heavy-tailed rewards, whose pth moment
is bounded by a constant v, for 1 < p < 2. First, we provide
theoretical analysis on sub-optimality of the existing exploration
methods for heavy-tailed rewards where it has been proven
that existing exploration methods do not guarantee a minimax
optimal regret bound. Second, to achieve the minimax optimality
under heavy-tailed rewards, we propose a minimax optimal
robust upper confidence bound (MR-UCB) by providing tight
confidence bound of a p-robust estimator. Furthermore, we also
propose a minimax optimal robust adaptively perturbed explo-
ration (MR-APE) which is a randomized version of MR-UCB.
In particular, unlike the existing robust exploration methods, both
proposed methods have no dependence on v,. Third, we provide
the gap-dependent and independent regret bounds of proposed
methods and prove that both methods guarantee the minimax
optimal regret bound for a heavy-tailed stochastic MAB problem.
The proposed methods are the first algorithm that theoretically
guarantees the minimax optimality under heavy-tailed reward
settings to the best of our knowledge. Finally, we demonstrate
the superiority of the proposed methods in simulation with Pareto
and Fréchet noises with respect to regrets.

Index Terms— Heavy-tailed noise, mini-max optimality, multi-
armed bandits (MABs), regret analysis.

I. INTRODUCTION

STOCHASTIC multiarmed bandit (stochastic MAB) is

a fundamental decision-making problem under uncertain
environment. In this problem, an intelligent agent selects an
action among a set of K actions and receives a noisy reward
corresponding to the selected action. Then, the goal of the
agent is to find an optimal action, whose expected reward is the
maximum, over total rounds 7. However, due to the noise in
rewards, the agent needs estimation of true expected rewards.
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Hence, the agent should explore entire set of actions includ-
ing suboptimal one to obtain accurate estimations; however,
selecting suboptimal actions for exploration will make the
agent lose a large amount of rewards compared to an optimal
one. In this regard, the agent faces a natural dilemma between
exploration and exploitation: collecting more information to
estimate rewards accurately (exploration) and selecting the
best action based on experiences (exploitation).

The exploration methods should carefully balance this
dilemma to efficiently find an optimal action. Specifically,
efficiency of exploration methods can be measured by a
cumulative regret which is defined as an expected cumulative
difference between the maximum rewards and the expected
reward of selected actions. Hence, the smaller the regret, the
more efficient the algorithm. Most exploration methods have
conducted regret analysis to guarantee their efficiency. Espe-
cially, the majority of researches have assumed that the noise
of rewards follows sub-Gaussian distribution whose tail prob-
ability is dominated by the tail of Gaussian distribution. Under
the sub-Gaussian assumption, it is well known that, for any
algorithm, the gap-independent cumulative regret cannot be
lower than Q(+/KT) [1]. Several approaches have been pro-
posed to achieve the gap-independent lower bound Q (v K T),
which is called a minimax optimal [2], [3], [4], [5], [6].

While many methods have been studied under sub-
Gaussian noise, there still needs developing a robust explo-
ration method to address real-world problems which are
not covered by sub-Gaussian assumptions. However, few
researches have investigated the stochastic MAB problem
under heavy-tailed noise whose pth moment is bounded
by a constant v,. In general, heavy-tailed noise covers
wider range of noise distributions than sub-Gaussian noise.
Bubeck ef al. [7] have first addressed the heavy-tailed noise
in a bandit problem by proposing a robust upper confi-
dence bound (robust UCB) whose gap-independent regret is
O((K In(T)'=YPT/P). Furthermore, Bubeck et al. [7] have
shown that, for any algorithm, the worst case cumulative regret
cannot be lower than Q(K'~/?T!/P) under heavy-tailed noise
assumptions. To achieve the lower bound, Lee et al. [8] have
proposed perturbation-based explorations called APE? which
has achieved O(K'~"/?T1/?In(K)) regret bound that is opti-
mal only with respect to 7 but is still suboptimal with respect
to K as factor In(K). Furthermore, Wei and Srivastava [9] have
proposed minimax optimal strategy by modifying the upper
confidence bound of the truncated mean estimator, but the
truncated mean estimator requires the prior knowledge about
v,, which is not desirable for the bandit setting that assumes
no prior knowledge about reward distributions. In this regard,
we develop the minimax optimal exploration for heavy-tailed
rewards without using the problem-dependent knowledge, v,.
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In this article, we propose a true minimax optimal explo-
ration method which can guarantee @ (K'~!/?T!/P) regret
bound without using the prior information of v,. To remove
the dependency of v,, we employ a robust estimator which
is proposed in our prior work [8]. In [8], we have pro-
posed the robust estimator, called a p-robust estimator, whose
error probability decays exponentially fast while it does not
depend on v,. More specifically, the error probability follows
O(exp(—n'""P¢)) where n is the number of sample and €
is an error bound we consider. Note that the proposed robust
mean estimator has worse decaying rate than other existing
robust mean estimators, which have O (exp(—ne?/?~1)), but
it does not require prior information about v, while other
estimators essentially need v, to guarantee the decaying
rate O (exp(—ne?/?~D)). Since the p-robust estimator has
worse decaying rate, naive UCB style exploration with the
p-robust estimator shows suboptimal regret bound while it
can remove dependency on v,. Hence, to reduce the regret
bound, we modify the confidence bound of p-robust esti-
mator by borrowing a technique in MOSS [10]. Further-
more, we also extend modified upper confidence bound to
the perturbation-based exploration and we derive the condi-
tion of perturbation for the minimax optimality. From the
theoretical results in Lee et al. [8], we first prove that the
unbounded perturbation, whose supporting set is unbounded,
cannot achieve the minimax optimality since In(K) factor
cannot be removed. However, we also prove that we should
employ a bounded perturbation to reduce the sup-optimal
factor In(K). We finally propose a randomized version of
robust UCB for the minimax optimality by combining the
bounded perturbation method and modified confidence bound.
We believe that the proposed methods can be extended into fur-
ther structured bandit problems such as [11], [12], [13], [14],
[15], [16], [17], and [18]. Our contribution can be summarized
as follows.

1) We analyze that robust UCB and perturbation-based
exploration cannot achieve the minimax optimality.
Especially, unbounded perturbation cannot remove the
suboptimal factor In(K).

2) For the minimax optimality, we propose a mod-
ified upper confidence bound and prove that its
gap-independent regret bound can matches to the lower
bound Q(K'~!/PT1/7). Hence, the modified upper con-
fidence bound method is minimax optimal.

3) We also propose a bounded perturbation method by
combining with the modified upper confidence bound
and prove that its gap-independent bound also matches
to the lower bound Q (K '~!/?T1/P). Thus, the proposed
bounded perturbation method is minimax optimal.

4) For both modified upper confidence bound and bounded
perturbation method, we employ the p-robust estimator
in [8] that does not require v, as a prior knowledge.
In this regard, the proposed exploration methods have no
dependency on v, while, interestingly, they can achieve
the minimax optimality.

5) We also verify the proposed methods show superior per-
formance compared to other robust exploration methods
for heavy-tailed noise.
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II. BACKGROUND

Consider a set of K actions, A := {ay,...,ax}, and
corresponding mean rewards {rq,...,7rq.}. At time ¢t =
1,2,..., T, an exploration algorithm chooses an action a, and
receives a noisy reward for the selected action

Rz,a, =Tg Tt €, (1)

where ¢ ,, is an identical and independently distributed zero
mean random noise for each time step and each action.
In multiarmed bandits (MABs), r,, is generally assumed to
be unknown. Then, the goal of the exploration method is to
efficiently verify an optimal action a, := argmax,r,. The
performance of the exploration strategy is often measured by
the cumulative regret over total round 7', defined as follows:

T K
Rr =D ro—Eufrg] =D AuEng (D] ()
1=1 k=1
where r, := max,cqr, and n,(¢) is the number of times
selecting a over ¢ rounds, i.e., n, (1) = Z;c:l I[ay = a]. Hence,
the smaller Ry, the better exploration performance.

A. Minimax Optimality Under Sub-Gaussian Noise

In stochastic MABs, many researches usually assume that
each ¢, follows a o,-sub-Gaussian distribution with zero
mean, that is, the following inequality holds for all s € R
and a € A:

E[exp(s (e,,a — E[e,,a]))] < exp(azsz/Z). 3)

Under the sub-Gaussian assumption, it is well known that the
gap-dependent lower bound is Q (3, La, In(T")/A,,) and the
gap-independent lower bound is Q (v/K T, respectively, where
Q indicates a lower bound [2], [19], [20]. There exist several
minimax optimal methods which guarantee matching the lower
bound to solve the stochastic MABs under sub-Gaussian
noise. In this article, we introduce two well-known algo-
rithms using confidence bounds under sub-Gaussian assump-
tions, which is highly related to the proposed method.
Auer et al. [19] have proposed upper confidence bound (UCB)
using the confidence bound of sample mean estimators, i.e.,
(2In(T)/n.(t))"/?. Audibert and Bubeck [2] have analyzed
that the minimax regret bound of UCB is O((KT In(T))"/?)
that is suboptimal. Hence, Audibert and Bubeck [2] have
extended UCB to minim-max optimal strategy in stochas-
tic MAB (MOSS) by modifying the confidence bound as
(In (T /(Kny(1)))/ng())/> where Iny(x) = max(In(x), 0).
From this modification, MOSS achieved the minimax optimal
regret bound © (vKT).

B. Minimax Optimality Under Heavy-Tailed Noise

While sub-Gaussian assumption has been well analyzed,
only few methods have extended an assumption on noise to
heavy-tailed noise whose pth moment is bounded, i.e.,

E[lel”] < v, @)

where v, is a constant and p € (1,2] is the maxi-
mum number of the bounded moments. For heavy-tailed
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TABLE I
REGRET BOUNDS OF ALGORITHMS WITH PRIOR INFORMATION

Algorithm ‘ Gap-Dependent Bound O(-) ‘ Gap-Independent Bound ©(-) ‘ Prior Info.

Robust UCB [7] S s, In(T)/AL 7Y (KIn(T) " » T i

Robust MOSS [9] S asa, In (TAﬁ/(’"”/K) JAY =D K wTs Py

MR-UCB [This work] Y aza, In <TA§/ (P=1) /K)p =D AL/ (-1) K" %Ts

APE? (Unbounded) [8] | 1! Yaza, 0 (TAg/(p_l)y) " A‘ll/jp_l) K5 T% In(K) 8
TYPEN | ., In(K)7-1 (TAZ/“’*”)W JAY =D

MR-APE? (Bounded) [This work] Y aza, In (TN;/ (P=1) /K)p = AL/ =D K" %T5s

O(+) is an upper bound. ©(-) is a tight bound. Prior Info. indicates prior information. p indicates the maximum order of the bounded moment of rewards.
vp is an upper bound of the p-th moment of rewards. Unbounded and Bounded indicates unbounded perturbations and bounded perturbations, respectively.
TYPE I and II indicates the type of distribution of perturbations. TYPE I includes Weibull, Gamma, and generalized extreme value (GEV) distribution,

TYPE II includes Pareto and Fréchet distribution

noise, it is well known that the gap-dependent lower bound
is Q2. £a, In(T)/ AY v 71)) and the gap-independent lower
bound is Q(K'~V/?PT1/P) [7]. However, most algorithms suf-
fer from the sub-optimality in terms of the gap-independent
regret bounds. Bubeck et al. [7] have first proposed the robust
UCB using the confidence bounds of general robust esti-
mators. Bubeck et al. [7] have analyzed the regret bound
of the robust UCB where the gap-dependent bound is
o, £a, In(T)/ AY =D 4 A,) and gap-independent bound
is O((K In(T))'~"/PT"/P), respectively. However, the robust
UCB requires v, in prior to define a confidence bound of
the robust estimator. Then, this condition restricts the via-
bility of robust UCB since v, is generally not accessible
in bandit settings. Furthermore, the upper regret bound of
robust UCB has the suboptimal factor of In(7)'~!/?. More
precisely, Lee et al. [8] have proven that the lower bound of
robust UCB is also Q((K In(7))'~"/?PT/P), hence, it is a
tight bound. In other words, unfortunately, we cannot remove
the suboptimal factor, In(7)'~"/?. A similar restriction also
appears in [21]. Vakili ef al. [21] have proposed a determin-
istic sequencing of exploration and exploitation (DSEE) by
exploring every action with a deterministic sequence. It is
shown that DSEE has the gap-dependent bound O (In(T")), but,
its result holds when v, and the minimum gap mingec 4/, Ag
are known as prior information. Furthermore, in practice,
DSEE often shows poor performance since the deterministic
sequence cannot perform adaptive exploration. While other
existing robust exploration methods have not guaranteed the
minimax optimality, Wei and Srivastava [9] have recently
proposed robust version of MOSS which can guarantee
O (K'=1/PT1/P); however, the robust MOSS has a limitation in
that v, is an essential prior information to achieve the minimax
optimality. Agrawal et al. [22] also have proposed KLi,--UCB
by adding two variants to the original UCB algorithm and
proved that the problem-dependent regret bound of KLijs-
UCB is O(log(T)*?); however, it also requires v, as a prior
knowledge to achieve the proposed regret bound.

The dependence on v, is a crucial issue in a bandit
problem since v, is problem-dependent prior information.
Cesa-Bianchi ef al. [23] have first removed in [23] only
for p = 2 by developing a robust estimator using the
influence function in the Catoni’s M estimator [24]. For
exploration, the Boltzmann—Gumbel exploration (BGE) has

been proposed. We observe one interesting fact that the robust
estimator proposed in [23] has a weak tail bound, whose error
probability decays slower than that of the original Catoni’s M
estimator [24]. However, BGE achieved gap-dependent bound
O 20, (T AZ)?/Ay + A,) and gap-independent bound
OWKTIn(K)) for p = 2. While In(K) factor remains,
BGE has a better bound than robust UCB in terms of T.
Lee et al. [8] have extended Cesa’s estimator to a p-robust
estimator for p € (1, 2] and have applied perturbation-based
exploration inspired by BGE, which is named an adaptively
perturbed exploration with a p-robust estimator (APE?).
By combining p-robust estimator and perturbation methods,
Lee et al. [8] showed that APE? can achieve the regret bound
of O(K'"YPTVPIn(K)) which is partially optimal with
respect to T but suboptimal with respect to K as the factor
of In(K).

In this article, we apply the idea of MOSS to our p-robust
estimator in [8] where upper confidence bound of the p-robust
estimator is modified to be tighter than the original UCB.
By combining MOSS and p-robust estimator, we can enjoy
both benefits of MOSS, i.e., the minimax optimality, and the
p-robust estimator, i.e., independence on v,. Then, we also
propose a randomized version of robust UCB by extending the
modification of robust UCB to the perturbation-based explo-
ration method. A comparison of existing robust exploration
methods including ours can be shown in Table I. Table I
shows a gap-dependent and gap-independent regret bounds and
essential prior information.

III. SUB-OPTIMALITY OF EXISTING METHODS

In this section, we discuss pessimistic results about existing
methods. First, we restate the sub-optimality of the robust
UCBs of Bubeck et al. [7]. Second, we newly prove the
sub-optimality of the unbounded perturbation methods in
Lee et al. [8]. The perturbation-based exploration employs
a random perturbation to encourage exploration. Hence, its
cumulative regret is closely related to the distribution of
random perturbation and Lee ef al. [8] have revealed the
relationship between distribution of perturbation and cumu-
lative regret bounds. Unfortunately, from the results of
Lee et al. [8], we prove that the perturbation-based explo-
ration is minimax suboptimal if the random perturbation
is unbounded.
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A. Sub-Optimality of Robust UCBs

The robust UCB employs a class of robust estimators which
satisfies the following assumption.

Assumption 1 (in [7]): Let {Ri}2, be ii.d. random vari-
ables with the finite pth moment for p € (1,2]. Let v, >
E[|R|?] and r = E[R]. Assume that, for all 6 € (0, 1) and n
number of observations, there exists an estimator 7, (7, v, J)
with a parameter # such that

P(#, > r4+v)/?(nIn(1/8)/n)'""7) <6 5)
and
P(r > fu4v)/"(nIn(1/6)/n)' ") < 6. (6)

There exist several robust estimators that satisfy Assump-
tion 1, such as truncated mean, median of mean, and Catoni’s
M estimator [24]. This assumption naturally provides the
confidence bound of the estimator 7,, hence, we can easily
employ UCB-based exploration with the robust estimators
in Assumption 1. However, we would like to note that the
estimator in Assumption 1 essentially requires v, as prior
information to define the estimator, which is not available
under bandit setting.

Using the confidence bound in Assumption 1, we can derive
a robust UCB strategy. For every step, robust UCB chooses
an action based on the following strategy:

an(2)
— Frla lypf 7\ 7 7
at arggleaui( rt 1, + vp (na(t - 1)) ( )

where 7,_1 4 is an estimator which satisfies Assumption 1 with
d := t72. In our previous work, we have shown that there
exists a MAB problem that makes the strategy (7) have the
following lower bound of Ry.

Theorem 1 (in [8]): There exists a K-armed stochastic
bandit problem for which the regret of robust UCB has the
following lower bound, for T > max(10, [(v"/P=D) /p(K —
1%

Rr > Q((K In(T))!~V/rT/?). (8)

The proof can be found in [8]. Theorem 1 clearly
shows that the lower regret bound of the robust UCB is
Q((K In(T))'=V/PT/P). The theorem tells that there always
exists a MAB problem that causes the suboptimal regret bound
for the robust UCB. Hence, the robust UCB cannot remove the
suboptimal factor In(7)'~!/? from the gap-independent regret
bound. Consequently, the robust UCB has two main drawbacks
for a stochastic MAB. First, theorem 1 tells us the pessimistic
fact that the sub-optimality of the robust UCB is caused by a
fundamental issue of exploration strategy, rather than, by the
lack of mathematical techniques such as employing a loose
upper bound. Secondly, the estimators employed in the robust
UCB usually require v, as a prior knowledge.

B. Sub-Optimality of Adaptively Perturbed Exploration With
Unbounded Perturbation

Lee et al. [8] have proposed an APE? that can guarantee
the minimax optimality with respect to 7 while removing
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dependency on v,. However, it still has a limitation in that
its gap-independent regret bound is suboptimal with respect
to K. Especially, we prove that unbounded perturbation can-
not guarantee the minimax optimality in heavy-tailed MAB
problems.

In APE?, Lee et al. [8] have extended Catoni’s M estimator
by generalizing Catoni’s influence function where a new
influence function y,(x) is defined as

wp(x) == sgn(x)ln(bp|x|p + x|+ l) )

where sgn(x) is a sign of x, I[-] is an indicator function, and

(2—p>)”“’ ((2—1)))““”
b, =
' [2(@—1) BN

Using ,(x), Lee et al. [8] define a p-robust estimator and
derive its confidence bounds as follows.

Theorem 2 (in [8]): Let {Y;};2, be ii.d. random variables
sampled from a heavy-tailed distribution with a finite pth
moment, v, := E|Y|”, for p € (1,2]. Let y := E[Y)] and
define an estimator as

L
2

¥, = ,11_#1/,, : ; v, (%) (10)
where ¢ > 0 is an arbitrary constant. Then, for all 6 > 0
]P’(f/,, > y+ cln(exp(bpvp/cp)/é)/nlfl/p) <o (1D
and
P(y > ¥, + cIn(exp(bpv,/c?)/d)/n'"1P) < 6. (12)

The entire proof can be found in [8]. Compared to Assump-
tion 1, a p-robust estimator has clear benefits in that a p-robust
estimator does not depends on v, while robust estimators
defined in Assumption I require v, as prior knowledge to guar-
antee the confidence bounds. This property of a p-robust esti-
mator makes APE?2 independent on v,. However, a p-robust
estimator has a drawback since the confidence bound of (10)
is looser than Assumption 1 for a fixed o.

By combining the estimator in (10) with a perturbation
method, APE? selects an action based on the following deci-
sion rule:

a, == argraneac{ftfl,a + Bi-1.aGra} (13)
where f;_1.4 = ¢/(n,(t — 1))'7V?, n,(t — 1) is the number
of times a has been selected, G,, is sampled from F, and
F(g) =P < g).

The lower bound of APE? is derived by constructing a
counterexample as follows.

Theorem 3 (in [8]): Let F(g) be a log-concave CDF. For
0<c<(K—=1/(K—-1420/?"Dyand T > (c/P~D(K —
1)/2P/P=D)|F~1(1 — (1/K))|?/P~D, there exists a K -armed
stochastic bandit problem where the regret of APE? is lower

bounded by
Ry > Q(K'"V/PTVPF-I(1 - 1/K)). (14)

The proof is done by constructing the worst case bandit
problem whose rewards are deterministic. When the rewards
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are deterministic, no exploration is required, but, APE? unnec-
essarily explores suboptimal actions due to the perturbation.
In other words, the lower bound captures the regret of APE?
caused by useless exploration. The lower bound tells us that
tail behavior of perturbation plays a crucial role in determining
the effect of K on the regret bound. From the lower bound,
we can derive a novel pessimistic result on APE? that employs
unbounded perturbation for exploration.

Corollary 1: If the support of F(g) is bounded, then, the
lower bound of Ry of APE? becomes Q(K!~!/PT1/P),
Corollary 1 is induced by Theorem 3. Due to the term F~!(1—
1/K), if G has an unbounded support, then, F~'(1 — 1/K)
will grow as K increases and, thus, the lower bound of APE?
has a suboptimal dependency on K. In other words, if G
is unbounded, then, the lower bound of APE? cannot match
Q(Kl_l/”Tl/”). From this observation, we conclude that
bounded perturbation is needed to obtain the minimax optimal-
ity. Furthermore, from the observation of the sub-optimality
of the robust UCB, we argue that the confidence bound of
robust estimator in [7] is too loose to capture the error tightly
and, thus, causes unnecessary exploration. To handle this issue,
we modify the confidence bound of a p-robust estimator
much tighter and extend the modified confidence bound to
the perturbation method.

IV. MINIMAX OPTIMAL STRATEGY FOR
HEAVY-TAILED REWARDS

We propose two novel exploration methods to guarantee the
minimax optimality under heavy-tailed noise. The first one is a
minimax optimal robust upper confidence bound (MR-UCB),
whose confidence bound is modified to a much tighter one, and
the second one is a minimax optimal robust adaptively per-
turbed exploration (MR-APE), which is a randomized version
of robust UCB using a bounded perturbation. The main benefit
of MR-UCB and MR-APE is not only minimax optimality but
also the minimal requirement of prior knowledge.

A. Minimax Optimal Robust UCB

In general, the regret bound of UCB often depends on the
convergence rate of estimators. Especially, a robust estimator
should satisfy two key properties to achieve efficient explo-
ration performance. The first one is that the error probability
decays exponentially fast and the second one is tight con-
fidence bound for exploration. The main idea to design a
minimax optimal exploration without dependency on v, is
employing a p-robust estimator with tight confidence bound.
The p-robust estimator satisfies exponential decaying from
Theorem 2. However, if we employ the naive confidence
bound in (11) and (12), then, its minimax regret bound
is suboptimal with respect to 7. Hence, we propose more
tight confidence bound than the naive confidence bound.
In MR-UCB, the selection rule is defined as

a; 1= arg I;l:}‘)‘({frq,a + Bi-a} (13)

T
Bita = cln+(m)/[na(t - DI 16)

where Iny (x) := max(In(x), 1). Similar to MOSS [2], we sim-
ply modify confidence bound from the naive confidence
bound, O(In(T)), to tighter one, O(In(T/n,(t — 1))), that
becomes tighter than O(In(7")) as the number of selecting
a increases. Then, we derive the gap-dependent and gap-
independent regret bounds as follows.

B. Minimax Optimal Robust Adaptively Perturbed
Exploration

MR-APE is a randomized algorithm of MR-UCB. MR-APE
replaces the optimism in MR-UCB with simple randomization.
Instead of directly employing the confidence bound of the
p-robust estimator, MR-APE is to employ a value randomly
chosen between lower and upper confidence intervals using
bounded perturbation within [—1, 1]. Then, the selection rule
of MR-APE is defined as

a, = argmzzc{f;fl,a + (1 4+ 6)pi-1.aGr.a} (17)
ae

where G, , is a bounded random perturbation within [—1, 1]
and € is an auxiliary hyperparameter. If the sampled pertur-
bation is negative, the perturbation term can be interpreted as
the lower confidence bound. Otherwise, the perturbation term
is similar to the upper confidence bound. Hence, MR-APE
employs both lower and upper confidence bounds for decision-
making. Furthermore, if we set G;, = | and € = 0 almost
surely, then, MR-APE is equivalent to MR-UCB. The entire
algorithm is summarized in Algorithm 1.

C. Theoretical Analysis

We provide gap-dependent and gap-independent upper
bounds of the cumulative regret of MR-UCB and MR-APE.
First, we derive the gap-dependent regret bounds and then,
extend gap-dependent bounds to the gap-independent bounds.
The main idea of our proof is decomposing the event of
selecting suboptimal actions into three events. Before decom-
position, we assume that r,, > ry, > 1, > -+ > 1,4, Without
loss of generality. Then, let us define Z := minj ;<7 #1—1 o +
Pi—1,4 and z, :=rs — A, /6. Then, using Z and z,, we define
the event E, := {z, < Z}. Based on E,, we decompose
the expected regret into three terms as follows, for any k¢ €
[1,...,K]:

K
Rr = Tho +T > P(E; ) (A0, — Ay ) (18)

J=ko+1
K T
+ D Ay D P(Eq NEg,) (19)
k=ko+1 =1

where E;, := {a; = a} indicates the event of selecting a
at time 7. By computing the bound of each term, we can
derive the gap-dependent and gap-independent upper bounds.
We would like to note that this decomposition technique
follows the proof of MOSS [2] and it generally holds without
any special assumption on reward distributions. However,
in [2], the remaining part for proving the minimax optimality
of MOSS heavily depends on the sub-Gaussian assumption.
In particular, to prove the minimax optimality, the second term
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Algorithm 1 Minimax Optimal Robust Adaptively Perturbed Exploration (MR-APE)

Input: p,c,T,¢, and F~'(y)
Output: {fT,a }aeA

1: Initialize {#, = 0, n,(0) = 0} for all a € A and select a;, ..

2:fort=K+1,...,T do

.,ag and receive Ry 4, ..., Rg 4, once

3 Picta < cln+(m)/(na(t — 1)!=Y? and G,, < F~'(u) with u ~ Uniform(0, 1)

4 Frorg < o/ (na(t — D) 7VP S Ilar = aly,(Rya /(¢ - (na (2 — 1))1/7))
5:  Choose a;, = argmaxse a{fi—1,4« + (1 + €)fi—1,4G:.4}, receive R, ,,, and update n,, (t) < n, (t — 1)+ 1

6: end for

is bounded using Hoeffding’s maximal inequality that cannot
be employed under unbounded heavy-tailed noise. Hence,
to bound the second term we employ the integration bound that
provides the upper bound of the summation. Consequently,
we achieve the minimax optimal regret bound without using
Hoeffding’s maximal inequality.

1) Gap-Dependent Regret Bound of MR-UCB: Now,
we provide the gap-dependent bound of each term for
MR-UCB. The upper bound of the second term can be
obtained as the following lemmas.

Lemma 1: For the second term of (18), MR-UCB satisfies
the following inequality:

K _ K Kcrt
T > P(ES )8y - A ) =0 D55

Jj=ko+1 j=ko+1 A;;'

. (20)

The entire proof of this lemma can be found in Appendix B.
The main idea of to compute the upper bound of IP’(E;’!,) is to
employ the integration bound where there exist a upper bound
f(s) such that P(ES) = P(Z < z4,) < ST, f(s) holds and
the summation of f (3) can be bounded by the integral of f(s).
The trick that bounds the summation by the integration will
be generally used throughout the proof of our lemmas.

The final term of (19) can be bounded by the following
lemma.

Lemma 2: For the final term of (19), MR-UCB satisfies the
following inequality:

K T
> Ay D P(Eq NEig,)

k=ko+1 t=1

P T
T =
K max(Sln(fAJk')/Z, 1) gy
2 - + =
AL

21

(22)

The entire proof of this lemma can be found in Appendix B.
The main idea of the proof is counting the number of rounds
for making confidence bound f;_;, small enough. For small
Pi—1.a, the final term can be bounded by the summation of
the probability of estimation error. By combining two lemmas
and setting kg = 1 whose A; = 0 by definition, then, we can
obtain the gap-dependent regret bound.

Theorem 4: Assume that v, <
p-robust estimator. Then, the

oo and 7y is a
gap-dependent  regret

bound of MR-UCB is

P

P p-1
T p—1
max(ln(?A; ), 1) KC#EWC);P
o> +

1
= =
Ag Ag

. (23)
a#a,

The proof is simply done by combining two lemmas and
pick kp = 1 that makes TA% = 0 since r,, = r.. The
gap-dependent bound of MR-UCB shows the poly-logarithmic
dependency on T. Compared to gap-dependent bound of
robust UCB, the superiority of the gap-dependent bound can
vary depending on {A,}. In general, the gap-dependent bound
of MR-UCB follows In(AZ/ P~V 1yp/(p=D / AV @D \yhile that
of robust UCB follows ln(T)/A(l,/(pfl). Hence, if A, is suf-
ficiently large, then, In(7) dominates In(A2/""") and this
fact results in that robust UCB can have a smaller regret
bound since In(7) < In(T)?/?~D. On the other hand, if A,
is sufficiently small, then, In(A%2/?~") becomes a negative
value for A, < 1 and, hence, it can dominantly reduce the
term In(AZ/P~VT)P/(>=1) I this regard, MR-UCB can have a
smaller regret than robust UCB. From this fact, we can observe
that MR-UCB is superior to robust UCB for a challenging
MAB problem that has small gaps, which requires large
samples to distinguish optimal action from suboptimal actions.
This property makes it available that MR-UCB guarantee the
optimal minimax regret bound.

2) Gap-Independent Regret Bound of MR-UCB: The gap-
independent regret bounds can be derived from the similar
strategies of gap-dependent bound. Now, we compute the
gap-independent bounds for each term in (18) and (19).

Lemma 3: For the second term of (18), MR-UCB satisfies
the following gap-independent inequality:

K
T Z P(E;j)(Aﬂj - Aaj—l) = O(C#eb];;p Kl_%T’l).
J=ko+1
24)

The proof can be found in Appendix C. The main strategy

of the proof is to bound the summation, Z,;(:ko 41 IP(E;j)(Aaj —

Ag4;_,), by the integration, A — A, + fAl P(Z < ry —
(u/6))du, which is borrowed from [2]. Then, the probability
P(Z < ry« — (14/6)) can be bounded using the same technique
in Lemma 1.

The third term of (19) can be bounded as follows.
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Lemma 4: For the final term of (19), MR-UCB satisfies the
following gap-independent inequality:

Z akZP EamEfaA)<0(ch 3T ) (25)

k=ko+1 =1

The proof can be found in Appendix C. The proof starts
from Lemma 2. We pick ko such that A, < A < Ag
where A = max(e?, eGP~ l)/2”))(1(/T)1 /P Then, the
gap-dependent bound in Lemma 2 is a decreasing function for
A, > A. Hence, we can replace A, of Lemma 2 with A to
get an upper bound. By combining two lemmas, we can obtain
gap-independent bound of MR-UCB as following theorems.

Theorem 5: Assume that v, < oo and 7, is a p-robust
estimator. Then, the gap-independent regret bound is

bpvp L1 _ 1

Ry < O(cp e K T) (26)
From Lemmas 3 and 4, we can bound the second term
of (18) and third term of (19) with O(K'="/PT!/P), Then,
the remaining part of the proof is to check the first term
in (18), T Ay,, is bounded by O(KI’I/PTI/P) Fortunately,
since we pick ko such that A, < A < A, holds, we
have TAy, < TA = O(K'~ 1/”Tl/”) Consequently, we can
guarantee that the gap-independent regret bound of MR-UCB
is O(K'=YPT'/P) that matches the global minimax optimal
regret bound for heavy-tailed MAB problems.

3) Gap-Dependent Regret Bound of MR-APE: Now, we will
derive the gap-dependent regret bound of MR-APE. We can
derive the regret bound of MR-APE by only proving the third
term of (19) since other two terms in (18) can be bounded
using the same way of MR-UCB. For the third term of (19),
we first introduce x, 1= ra—f—A /3 and y, :=r,—A,/3. Then,
let us define three events, E, a = {Fr.a < Xa}, E, a = {Fc1a+
(1 +6e)pi-1,aGra < ya}, and Et,a ={zs < 100 +ﬁt—_l,a
From the definition of three events, we have E,, N E, C
EoNE,, since z, < minj ;<7 #_1 4« + Bi—1,, implies z, <
Pi—1.a« + Pi—1.a-- Then, we decompose E;, N E,,a into three
subsets

E NE,=E)UE2UES (27)

where E/) = E,aﬂE,aﬂEfa,E(z) E NE NE ,NE,,
and E,Ga) E,aﬂE,aﬂE,aﬂE,a Hence, the final term of (19)

can be bounded using the following inequality:
P(E.a N Ea) < P(ER) +P(ED) +P(ED).

Each term has the following meanings.

1) The first event, E,(la) mainly counts the number of
times that the suboptimal action a is selected due to
the estimation error of 7_;,. Hence, this term will
be bounded by the error probability of the p-robust
estimator.

2) The second event, El(za), considers the case of choosing
suboptimal action due to the large perturbation, G; g4,
while its reward estimation is well concentrated. This
term can be controlled by coefficient f,_;, since this
event depends on the magnitude of sampled perturbation.

3) The final event, E,(a) , indicates that suboptimal action
was selected even though 7,_; , is well estimated and the
perturbation, G, , is not too large. This event can happen
when the estimation of the optimal reward is incorrect
and the perturbation of the optimal action, G, 4, is not
large enough to overcome the under-estimation.

The basic idea of deriving bounds of E,(la), E; (2) and E, (g)
followed by Kim and Tewari [5], Lee et al. [8], and Cesa—
Bianchi et al. [23]. We apply techniques in [5], [8], and
[23] to our modified confidence bound. Now, we provide the
gap-dependent bounds for three terms.

Lemma 5: The probabilities of E,(Ia), ,(2(,), and E,Ga) can be
bounded as follows:

(3c)p i exp(b”v”)r(zlf’%ll)

M'ﬂ

P(EL) = "
=1 Aa”"

T P(E®) < max(S(l +¢€) ln(% A(ll’k/(pfl)), 1),,,, y
> p(E) < . -
=1 D

_pP_
T max(6(2 +€) ln(% Agk/(”‘”), 1) =
ZP(EQ) < M.
, AP/(P—])
=1 D
(30)

The entire proofs of the lemma can be found in Appendix D.
By combining all lemmas, we can bound the third term of (19).
Consequently, we have the following gap-dependent regret
bound of MR-APE.

Theorem 6: Assume that the pth moment of rewards is
bounded by a constant v, < oo, 7 is a p-robust estimator and
G is a bounded perturbation within [—1, 1], and there exists
a constant M, only dependent on € such that P(G < (1/(1 +
€))/P(G > (1/(1 + €))) < M,. Then, the gap-dependent
regret bound of MR-APE is

v =
Kk M max((2+e)ln(%A§k‘), 1)
"ol 3

1
=
A,

k=1

P bpvp
KcrTe P
—— | GD

1
Ag,

where M := max(M,, 1).

The proof is simply done by combining two lemmas with the
proof of MR-UCB, and picking ko = 1 that makes T'A,, =
0 since r,, = r,. We can observe that the gap-dependent bound
of MR-APE is the same as that of MR-UCB up to a constant.

4) Gap-Independent Regret Bound of MR-APE: Now,
we can derive the gap-independent regret bound of MR-APE
using the same technique of MR-UCB.

Theorem 7: Assume that the pth moment of rewards is
bounded by a constant v, < oo, 7 is a p-robust estimator and
G is a bounded perturbation within [—1, 1], and there exists
a constant M, only dependent on € such that P(G < (1/(1 +
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€))/P(G > (1/(1 +€))) < M,. Then, the gap-independent
regret bound of MR-APE is

bpvp

Rr < O(max(Mj(Z—}-e)ﬁ,c%e 7

)KI’I/PTI/I’). (32)

The proof is omitted here and can be found in Appendix E.
Similar to the gap-dependent bound, the gap-independent
bound of MR-APE also has the same order of 7 and K as
that of MR-UCB. Consequently, MR-APE also guarantee the
minimax optimal regret bound.

5) Comparison Between MR-UCB and MR-APE: While
MR-APE and MR-UCB have the same mini-max optimal
regret bound, the main difference between MR-APE and
MR-UCB comes from the gap-dependent regret bounds in
Theorems 4 and 6. In Theorem 4, the logarithmic term in
the gap-dependent bound of MR-UCB is independent on ¢
and only the final term O (K cP/®P—D exp(bpvp/cp)/A;{(pfl))
depends on c. In this regard, controlling ¢ does not affect
the order of 7. However, in Theorem 6, MR-APE has an
auxiliary controllable parameters M, and € that can affect to
the logarithmic term of the gap-dependent bound of MR-APE.
Furthermore, we can interpret MR-APE as the unifying frame-
work between UCB-like exploration and perturbed explo-
ration. Intuitively speaking, from the condition of P(G <
1/(14+¢€))/P(G > 1/(1+¢€)) < M., most of probability mass
of the perturbation is located near one, hence, MR-APE has
randomness but works similar to MR-UCB. More specifically,
the condition on G and M, can be rewritten as P(G > 1/(1 +
€)' =1 < M, then, if P(G > 1/(1 +¢€)) is getting smaller,
the constant M, should become larger to satisfy the condition.
In this case, MR-APE mainly employs the perturbation for
exploration, rather than depends on the confidence bound.
On the other hand, if P(G > 1/(1+¢)) is getting bigger, most
of probability mass should be located near G = 1 to make M,
small enough. Under this condition, MR-APE behaves similar
to MR-UCB. Such property of MR-APE allows it to enable
more adaptive exploration in practice, since we can control not
only ¢ but also M, and € using the distribution of perturbation.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We verify the properties of the proposed methods and com-
pare the proposed methods to other existing methods. First,
we compare two proposed methods, MR-UCB and MR-APE.
Especially, we prepare various types of MR-APE that have
different bounded perturbations. We separate bounded pertur-
bations into two groups. The first group is a positive bounded
perturbation whose random variable only has a positive value.
The second group is a both-sided bounded perturbation whose
random variable can have both positive and negative values.
For the first group, we employ Bernoulli distribution and
Uniform distribution with [0, 1] as a bounded perturbation
in MR-APE. For the second group, we employ Rademacher
distribution whose value can have —1 or 1, and Uniform distri-
bution with [—1, 1]. Hence, the proposed exploration scheme
is tested in five different algorithms: MR-UCB, MR-APE
with Bernoulli, MR-APE with Uniform(0, 1), MR-APE with
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Rademacher, and MR-APE with Uniform[—1, 1]. We com-
pare the proposed methods with existing robust exploration
methods such as robust UCB [7], DSEE [21], and APE? with
unbounded perturbation [8]. For APEZ?, we utilize Fréchet
and Pareto distributions as an unbounded perturbation. Hence,
the comparisons are conducted with APE? with Fréchet and
APE? with Pareto. Note that robust UCB and DSEE utilize the
truncated mean estimator, and APE?, MR-UCB, and MR-APE
mainly utilize the p-robust estimator.

We prepare synthetic and real-world data for simula-
tions. First, for all synthetic simulations, we synthesize a
heavy-tailed MAB problem with K actions. The optimal action
has 1 mean reward and K — 1 suboptimal actions have
1 — A mean reward. Hence, A determines the gap between
the maximum reward and other rewards. By controlling A,
we can measure how the gap influence the regret of each
exploration method. Then, we add a heavy-tailed noise to the
observation of rewards. The heavy-tailed noise is created by
transforming a Pareto and Fréchet random variable. Let z, be
a heavy-tailed random variable, z, ~ Pareto(a,, 1¢) where a,
is a shape parameter and A, is a scale parameter. Then, a noise
is defined as €, := b,(z; — E[z;]) where b, is a Rademacher
random variable that has 41 value with probability 1/2 and
get —1 value with probability 1/2. From the definition, ¢
is a mean zero heavy-tailed noise. In simulation, we observe
a noisy reward R,, = r, + €, for every step. Each
simulation runs 7 rounds and we measure the time average
regret R/t 1= 22:1 (ra, —14,)/t for t € [1, T]. Second, for
real-world data, we employ cryptocurrency dataset [25] that
contains daily returns of cryptocurrency from April 1, 2019 to
July 1, 2021. We select ten cryptocurrency, such as Bitcoin,
Ethereum, Doge, Monero, Stellar, or EOS, based on market
value. Then, the goal of this simulation is to identify the
most profitable currency, which is motivated by the practical
scenario that an investor wants to invest a fixed budget in
a cryptocurrency and get return as much as possible. For this
scenario, an action is defined as buying a specific currency and
the corresponding reward is defined as the daily profit. Note
that it is a well-known fact that the financial data often show
the inherent characteristic of heavy tails [26], [27], hence,
we believe that identifying the most profitable cryptocurrency
is a practical application of the proposed methods.

Consequently, we prepare four simulations. The first sim-
ulation compares the performance of exploration methods on
various p and A with two heavy-tailed noises. The second
simulation verifies the effect of increasing K for the regret
bound. The third simulation measures the effect of scale
hyperparameter for the performance of exploration methods.
The final simulation compares the performance of exploration
methods on real-world cryptocurrency dataset.

B. Performance Comparison for Various Noises, p, and A

We compare the performance of every exploration method.
For MR-UCB, robust UCB, MR-APE, and APE?, we optimize
the hyperparameter ¢ using a grid search. We would like to
note that, for robust UCB, we modify the confidence bound
in Assumption 1 by multiplying a scale parameter ¢ since
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Time-average regret for various p and A with Fréchet noise. A bold line indicates the average value over ten different random seeds and shaded

region indicates half-standard deviation area. All figures share the legend. (a) p =12, A =03, K =10.(b) p=12, A=07, K =10.(c) p=15 A =

03, K=10.(d) p=15 A=07 K=10.(e) p=18, A =03, K = 10.

the original robust UCB consistently shows poor performance
even if v, is given. Then, ¢ for robust UCB is also optimized
using a grid search. We prepare six synthetic MAB problems
by combining A = 0.3,0.7 and p = 1.2,1.5,1.8 for two
noise types. Figs. 1 and 2 show the results of Pareto noise
and Fréchet noise, respectively.

As shown in Fig. 1, first, MR-UCB consistently outperforms
other exploration methods except for the case of (p =
1.2,A = 0.7). In the MAB with (p = 1.2, A = 0.7),
MR-UCB shows comparable performance with robust UCB
and MR-APE with Bernoulli. For A = 0.3, as shown in

) p=18, A=0.7, K = 10.

Fig. 1(a), (c), and (e), we can observe that MR-UCB signif-
icantly outperform other methods while the performance gap
between MR-UCB and other methods is marginal when A =
0.7. Furthermore, the performance gap between MR-UCB
and other methods increases as the order of the moment, p,
decreases. This observation implies that MR-UCB shows more
robust performance against heavy-tailed noise. As p is getting
closer to 2, a robust estimator generally converges much faster
than the case that p is close to 1, hence, reward estimators
used by all exploration methods are concentrated with a
fewer number of trials. This fact reduces the performance gap
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between MR-UCB and other methods since the algorithm can
distinguish the optimal action from suboptimal actions with
fewer trials. However, as p is close to 1, the convergence
speed of reward estimators is getting slower and requires
a lot of samples to concentrate on the true mean. It hin-
ders the convergence speed of exploration methods, however,
MR-UCB outperforms other exploration methods as shown in
Fig. 1(a) and (b).

As shown in Fig. 1, for MR-APE, we can observe
that bounded perturbation usually shows the second-best
performance for various settings under Pareto noises. In par-
ticular, MR-APE with positive perturbations generally outper-
forms MR-APE with both-sided perturbations. Furthermore,
MR-APE with Bernoulli often shows the second best perfor-
mance for various settings such as (p = 1.2, A =0.3), (p =
1.2,A=07), (p=15A=0.7),and (p = 1.8, A = 0.3).
However, we can observe that there is no clear dominance
between MR-APE, APE2, and robust UCB. From the tendency
shown in Fig. 1, we can observe that the performance gap
between MR-APE and other exploration methods, such as
APEZs, Robust UCB, and DSEE, increases as A decreases
from 0.7 to 0.3.

For Fréchet noise setting, MR-UCB also outperforms APE?
with unbounded perturbations and Robust UCB as shown in
Fig. 2. However, unlike the Pareto noise setting, MR-APE
with bounded positive perturbations shows comparable per-
formance with MR-UCB in various problem settings, and
even outperforms MR-UCB in several settings. In particular,
MR-APE with Uniform(0, 1) shows similar performance to
MR-UCB including (p = 1.8, A =0.7), (p = 1.8, A =0.3),
(p=15A=07),(p=15A=07),(p=15A=0.7)
and outperforms MR-UCB for (p = 1.2, A = 0.7). While
MR-APE that randomizes MR-UCB shows inferior perfor-
mance for Pareto noise settings, in Fréchet noise settings,
MR-APE has advantages over MR-UCB. In summary, from
the empirical results shown in Figs. 1 and 2, MR-UCB that
employs modified upper confidence bound clearly outperforms
other exploration methods for heavy-tailed MAB problems and
MR-APEs shows comparable performance in general cases but
dominates other algorithms in several special cases.

C. Performance Comparison for Varying K

In this experiment, we verify the effect of the number of
actions in heavy-tailed bandits. We employ a Pareto noise set-
ting with p = 1.8 and A = 0.7. For all exploration methods,
we measure the final time average regret after 20000 rounds.
The simulation is conducted varying K from 10, 30, 50, 70,
and 100. In Fig. 3, we plot the average value over ten
random seeds. For each K, we conduct the hyperparameter
optimization using a grid search.

As shown in Fig. 3, all algorithms show a similar tendency
that Ry /T increases as the number of actions increases since
the number of exploring an individual action is reduced if
K increases with fixed T. Hence, the plot in Fig. 3 shows
the effect of K on the cumulative regret. First, the most
robust algorithm against increasing the number of cation
is MR-UCB. Especially, MR-UCB outperforms all other
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Fig. 3. Effect of number of actions. The time-average final regret Ry /T
at the final round is plotted for different K. All regrets are measured under
p = 1.8 and A = 0.7 with Pareto noise distribution. The bold line is an
average value of R /T over ten different random seeds and the shaded area
indicates a half-standard deviation region.

exploration methods as the number of actions K increases.
However, the performance of APE? with Fréchet is drastically
getting worse as K increases while MR-APEs with bounded
perturbations show a moderate performance drop. This result
clearly supports the fact that using modified confidence bound
helps to reduce the regret by removing the suboptimal fac-
tor In(K) from APE? with unbounded perturbations. Other
methods except for MR-UCB and APE? with Fréchet show
comparable performance with each other. Interestingly, Robust
UCB and DSEE show similar performance to MR-APEs such
as Uniform, Bernoulli, and Rademacher perturbations. These
results indicate that the regret bound of Robust UCB and
DSEE has the same dependency on K'/? as the regret bound
of MR-APEs while it has suboptimal factor In(7)"/? with
respect to 7. In summary, we can conclude that MR-UCB
outperforms other exploration methods as the number of
actions increases under heavy-tailed settings since the modified
confidence bound removes the suboptimal factor of K in the
minimax regret bounds of MR-UCB.

D. Effect of Hyperparameter

In this experiment, we verify the sensitivity of each explo-
ration method with respect to the hyperparameter c¢. For
MR-UCB, robust UCB, MR-APE, the exploration tendency
depends on scale parameter c. To verify the effect of ¢ for
each algorithm, we measure the final time average regret with
50 different ¢ values after 20000 rounds. For this simulation,
we set K = 10, A = 0.7, and T = 20000 and run each
algorithm with ten different random seeds. In Fig. 4, we can
observe valley-shaped plots for varying hyperparameter c.
In general, if ¢ is small, then, an algorithm shows the worst
regret since small ¢ makes the algorithm rarely explore an
action space. With the similar reason, if ¢ is large, then,
an exploration method also shows the worst regret since large
¢ hinders exploitation or convergence to the optimal action.
Hence, the regret is reduced at the proper range of c as
shown in the valley-shaped plots in Fig. 4. For each algorithm,
we would like to focus on analyzing the plateau of valley
that shows sensitivity of exploration tendency with respect to
hyperparameter. The wide plateau implies that the algorithm
is less sensitive to hyperparameters and the proper hyperpara-
meter can be easily found with smaller number of grid search.
On the contrary, the narrow plateau indicates that the algorithm
is more sensitive for hyperparameter optimizations. To visually
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Fig. 4. Effect of hyperparameter. The time-average final regret R /T at final round is plotted for different c. All regrets are measured under p = 1.8 and
A = 0.7 with Pareto noise distribution. The red dotted line indicates Rr /T = A /3. The bold line is average value of Ry /T over ten different random seeds
and shaded area indicates a half-standard deviation region. (a) MR-UCB and robust UCB. (b) MR-APE with uniform(0, 1). (c) MR-APE with uniform(—1, 1).
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Fig. 5. Time average regret for cryptocurrency dataset. The bold line is an
average value over ten different random seeds and the shaded area indicates
a half-standard deviation region.

measure the range of plateau, we mark the threshold at red
dotted line in Fig. 4.

In Fig. 4(a), it can be observed that MR-UCB has the
wider plateau than Robust-UCB. Hence, this plot implies that
MR-UCB is less sensitive than Robust-UCB. Especially, the
performance of the best hyperparameter of MR-UCB is lower
than that of Robust-UCB. Consequently, the result shows that
MR-UCB is more robust and has a better performance than
Robust-UCB with respect to hyperparameter optimization.
Comparing MR-APE with Uniform(0, 1) with MR-APE with
Bernoulli, MR-APE with Bernoulli shows much robust perfor-
mance with wider range of the plateau of valley in hyperpara-
meters. Especially, MR-APE with Bernoulli perturbation has
much wider plateau than MR-APE with Uniform perturbation.
Furthermore, the plateau of MR-APE with Bernoulli is much
wider and shows lower cumulative regret than the plateau
of MR-UCB. This result shows that the randomization of
MR-UCB such as Bernoulli perturbation has the effect of
widening the plateau of valley in hyperparameter space.

In practice, finding a proper hyperparameter ¢ is a
demanding task for applying exploration methods in practi-
cal applications. Hence, algorithms that are less sensitive to
hyperparameters are more suitable for practical problems since
such properties reduce the cost of optimizing hyperparameters.
From the experimental results of hyperparameter optimization,
we can conclude that MR-UCB and MR-APE with bounded
perturbations are more desirable for practical applications.

E. Performance Comparison for Cryptocurrency Dataset

In this experiment, we test all exploration methods on
real-world cryptocurrency dataset [25]. Similar to other simu-
lations, we optimize hyperparameters of each algorithm using
a grid search. In Fig. 5, we plot the average value over
10 random seeds. As shown in Fig. 5, MR-UCB shows the
best performance and MR-APE with Uniform(—1, 1) shows

the second best performance. Especially, among the set of
bounded perturbations, the uniform perturbation on (—1, 1)
shows the best performance. Furthermore, the results show the
similar tendency to the results from synthetic simulations. It is
worth mentioning that MR-UCB and MR-APE with Uniform
(=1, 1) clearly outperform Robust-UCB, DSEE, and APEZ.
Overall, with synthetic and real-world simulations, we have
verified the superiority of the proposed methods.

VI. CONCLUSION

We have studied the minimax optimality under heavy-tailed
noise assumption for stochastic MABs where the pth moment
of rewards is bounded by a constant v, for 1 < p < 2.
We first investigated and found two critical drawbacks of
existing robust explorations. First, existing robust exploration
methods often depend on a robust mean estimator that requires
prior knowledge about v, where v, is not accessible in many
real-world problems. Second, we proved the sub-optimality of
existing robust exploration methods for heavy-tailed rewards.
Based on the analysis of the sub-optimality of existing
methods, we have proposed two algorithms, MR-UCB
and MR-APE, that can guarantee the minimax optimality
with minimal information. Both proposed methods are
independent on v, and this fact allows us to employ the
proposed exploration methods with minimal prior knowledge
compared to existing exploration methods. MR-UCB utilizes
the modified confidence bounds that can provide more
precise confidence bound of robust mean estimators. Then,
MR-APE is the randomized version of MR-UCB that employ
bounded perturbation whose scale follows the modified
confidence bound in MR-UCB. Furthermore, we analyzed
both gap-dependent and gap-independent regret bounds of two
proposed methods and guaranteed that both proposed methods
have the minimax optimal regret bounds. In simulations,
we demonstrate the superiority of the proposed methods
for various heavy-tailed synthetic and real-world data.
Furthermore, MR-UCB clearly outperforms other algorithms
as the number of actions increases under heavy-tailed noise.
Consequently, we can conclude that the proposed methods
have benefits over heavy-tailed MAB problems.

APPENDIX A
PROOF OF COROLLARY 1

Proof of Corollary 1: If the supporting interval of F(g) is
bounded, then, there exists some constants A and B such that,
forall y € [0,1], A < F~!(y) < B holds. Then, the following
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inequalities also hold, A < F~!(1 — 1/K) < B, due to the
bounded support of F(g). From this fact, we get

K'=VrrlrpA < g'VepVP =1L — 1/K)
< K'7Vrrlrp,
This fact induces the following relation:
K'"VrTVP I — 1/K) = ©(K'TVPTVP).
Therefore, we have
Rr = Q(K'"VrTVPFI(1 - Q(k'"VrTlP),
O

1/K)) =

APPENDIX B
PROOFS FOR THEOREM 4

Lemma 6 (First Step of Theorem 5 in [2]): Without loss
of generality, assume that r,, > r,, > --- > r,4,. Then, for
any ko € [1, K1, the following bound holds:

K
E[Rr] = TAu, +T > P(Ef) (A, — A) (33)

Jj=ko+1
K T
+ D Ay D P(E4NE.L). (34)
k=ko-+1 =1
Proof: The proof can be found in [2]. U

Proof of Lemma 1: To prove Lemma 1, we employ the
concentration property of the p-robust estimator. We have

i ]P(EC )(Aal - Aa,_l)

(35)
Jj=ko+1
s A
= Z IP’(Z < Fe — ”f’)(Aa, —Agy ). (36)
6 J J
Jj=ko+1

Then, we can bound the probability P(Z < r, — (A4 /6)) as

B(Z < rae — Ay, /6) (37)
Ay,
= P(lg}iin]_ Frotar + Brotar <Tar — %) (33)
T
cln Ay,
S Zp(ra* — fs,a* > —:—_(lK ) + 6]) (39)
s=1 s
T -1
T Ays »
< Zexp(— ln+(—) - — ) (40)
= Ks 6¢
T 1-1
K Ay s 7
< T ;s exp(— o ) 41
K 6 Aa o 11
(L2 )\ K / xe S dx (42)
T \e(p— DA,
K(__sp ™ + KF( ) e (43)
e(p— DA, 2T Aaj

Then, we can obtain a gap-dependent bound for the second
term of (18) as follows:

T i P(E; ) (a

Jj=ko+1

a; — Aaj,l) (44)
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K A K Ke 4
<Cck > —F=0( > 1 (45)
j=kot1 AL i=hotl AL

where C is a constant independent on ¢, T, K, and A,. O

Proof of Lemma 2: To prove the upper bound, we first
introduce the stopping time tx = min{t : By, < z,} where
By = Fi_1.q, + cIng (T/(Kng (t — 1)))/(t — 1)!~V/7, Then,
we have {Z > z,} C {ng.r < t} from the definition of Z
and selection rule of MR-UCB. Then, 3./, P(E,, NE,,,) can
be first bounded by E[I[Z > z, ]n,.7]. Hence, by combining
two facts, we have

K T
Z Ag, ZP(EW NE. ) (46)
k=ko+1 =1
K
< D ALE[I[Z > z4|ng, 1] z Ay B, (47)
k=ko+1 k=ko+1

Then, we can compute the upper bound of the expectation of
7 as follows:

Eln] <o+ Y PU <)

(48)
I=y+1
o0

=lo+ D PVt <1,Bi > z4,) (49)

1—£0+1
584 Ini(g)

<o+ Z (r,ak— o, > =gt - o . (50)

1=ly+1

Then, we bound the expectation of 7; by properly setting £.
Let us take £y as follows:

,
1 1
[6 1n(§ AP/ ’)] .

1 > (p—1
(4Aak)p/(p ) Agk/p )

{y = max

For [ > €, we have [ > A”"~" due to the definition of ¢,
and thus, In ((T/K1))/1'~'/? < 4A,, /6. Hence, the following
condition holds:

T
5A, /6 — ln+(ﬁ)/ll_i >5A,/6—4A,/6. (51)
Hence, we can bound E[7;] as follows:
- A
Eln] <o+ ) P(% —ry > 6) (52)
1=Cp+1
b, & 17 A,
< ly+ exp(ﬁ) Z exp(—ik (53)
cr I=Co+1 6c
b 00 =5 A
< lo+ exp( "”") / exp(—u)dx (54)
cP 0 6¢
T Jl—)l p%]
()]
< max T ) P (55)
(44q)"" As
(6c)#ebfl‘;p F(%)
+ . (56)

P
—1
A,
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Finally, using the bound of E[z;], we get

K
> AyElr]

(57)
k=ko+1
.
K max(3ln(%Aa”k')/2,l)
<ol > 1 (58)
k=ko+1 AL
P bpvp
cr-le cP
+— (59)
AL
O

Proof of Theorem 4: The proof can be done by combining
Lemma 1 and 2. By combining all gap-dependent bounds and
setting ko = 1, we can obtain the gap-dependent bounds as

P

P p—1
K max(ln(%A(ﬁ’[‘),l) Ko e
o> 1 -

k=2 AL A(fk“

(60)

APPENDIX C
PROOFS FOR THEOREM 5

Proof of Lemma 3: The proof starts from Lemma 2 as
follows:

Z a ZP (Eq N Erg) (61)
k=ko+1 =1
. =
X max(3 ln(%A(j’k')ﬂ, 1) i
<o| X - +—
k=ko+1 AL AL
(62)

Then, for all gap-independent bounds, we set ko
such that A, < A < Ay, where A =
max(e?, e=OP=D20)) (K /TYI=V/e. For Ay > eP(K/T)'"/7
and e?(K/T)'7V/P > G- 1)/2”)(1(/T)1‘1/”, the upper
bound in (61) is a decreasing function. Hence, replacing
A, with A makes the upper bound greater. Consequently,
we have

K
AuEln] < O(ce S K5 TT). (63)
> A (e
k=ko+1
O

Proof of Lemma 4: Let A be (e"/Y(K/T))'=(/P) Let ko
be an index of the action such that A, < A < A

i P(Egj)(Aﬂj B Aa/—l)

Jj=ko+1

Aiy+1

(64)

13

X A
= Z ]P(Z < Fgx — gj)(Aaj Aa; 1) (65)
Jj=ko+1
1
<A-A, +/ IP’(Z < g — —)du (66)
A
For a fixed u € [A, 1], we have
P(Z < re — u/6) (67)
= P(IELHT ft—l,a* +ﬁt—l,a* < Tg — u/6) (68)
T
. clny (T/(Ks
E ;P((ra* — rs,a*) 7+S1_/( )) 6) (69)
r 1
< > exp(—In (T/(Ks)—us' 7 /(60)) (70)
s=1
K
< ?;sexp(— ﬂ/(6c)) 1)
K( 6 SOOK [ L
S +—/ xe s dx 72)
T \e(p—Du T Jo
P i
K 6 T K _(3p—1\[6c\"T
= (—2 )" 4+ (£ =) 3
T \e(p—Du 2T p—1 u
<ceti By (74)
< Cert—u

where C is a large constant including only ¢ and p from the
above inequality. From the above inequality, we can bound the
integration as follows:

1 , K ! ,
/P(Z<ra*—u/6)du50cﬁ—/ wridu  (75)
A T Ja

— X Du ] <P i a6
e T[ (p = Du ]A_ ‘7 (76)

where C’ is a constant greater than C(p — 1). Finally, we get

T i IP(E;j)(Aa

Jj=ko+1

= A ) (77)

<TA+CcP KA 1’1<0(61’1K T%:) (78)

O

Proof of Theorem 5: The proof can be done by combining

Lemma 3 and 4. We combine all gap-independent bounds and

for all gap-independent bounds, we set ko such that A, =~ <

A < A, where A = max(e?, e Cw=D2)(K/T)!~ .

Then, T Ay, < TA = O(K'=V/?PT1/r) holds. Finally, we can
obtain the gap-independent bounds

bpvp

O

APPENDIX D
PROOFS FOR THEOREM 6

Proof of Lemma 5: For a fixed a € A, We first define
a stopping time 7 for the kth selection of a. Using i, the
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following bound can be derived:

T T
ZP(E,{Q) = > P(Eva N Era N ES) (80)
t=1 t=1
= b Vv = kl’%A
< ZP(?C,,,,( > xa) < exp( ppp) e % (81
k=0 ¢ k=0
(SC)% exp(bzl‘j”)l"(%)
< T . (82)
AL

The probability of Et(za) can be bounded by the probability

of £ q N ES , as follows:
T T
ZP(E,(?,)) = > P(EvaN v EraNEL) (83)
=1 =1
T-1
<> P(E,.NE,) (84)
k=0
T-1
- ]P)(fa,rk < Xa, fzk,a + (1 + e)ﬂrk,aGrk,a > ya) (85)
k=0
T-1
=< P(xa + (1 + e)ﬁrk,aGrk,a > ya) (86)
k=0
T-1
<lo+ D, Plxa+ (1 +6)ByaGra > Ya)- (87)

k=Co+1

Then, similar to Lemma 2, we properly take ¢, to bound the
sum of probability. Now, let us take

T
ty = max(3(1 +€) ln(? AZ/(”—”), 1) /Ap/(p

Then, for [ > €, we have I > Az”/?~" and thus

T
(1+¢) ln+(ﬁ)/ll_l/” < A, /3. (88)
Hence, we have
T-1
bo+ D Pltat+ (1 +6)eaGra>va) (89
k= fo+l
550—‘;— Z zka>1 (90)
k=CLo+1
max(S(l +¢€) ln(%Ag/(p_l)), l)"Tl
= ©On
A(I;k/(P*I)

where (A,/3(1 + E)),BT:,I” > 1 for [ > £y and G is a random
variable within [—1, 1] and hence, P(G > 1) = 0 holds.

Finally, to prove the bound of the sum of the probability
of E,(Z), we barrow the idea from [3] and [23]. Let i, =
P(y.a, + Pra.Gra, > Ya). Using F, we can derive the
following bound:

T T
ZP(EZ(,S(I)) - ZP(E[’(J ﬂ E[’a ﬂ E[’a ﬂ E[’a)
=1 =1

92)
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T-—1
- Fia A,
< E[ik’ﬂ(ra* -

6 Bra, < ffk,a*)} (93)

_ _ 1 A
- ! 1 —fk,a < L IP(G < (14€) - 6(1+E)ﬁrk,a*) (94)
- Fi - 1 a
k=0 Tha k=0 P(G Z o ~ 6<1+e>/nk,a*)
{o
P
- (G <1/(1+4+¢)) 95)
pay PG > 1/ +¢))
N = PG <1/(0+6) = A/(6(1+6)B.a))
ot B(G > /(4 €) = Ad/(6(1+€)fr.a))
(96)
Similar to the MR-UCB, let us take
_ T - T b/ (=)
o =max|6(2+¢€)In KA”k , 1 JAY .
For [ > ¢y, we have [ > A;p/(pfl), and thus
1“*( )/ 17U < A /6/2+ €). 97)
In other words, we have
/(A4 €) = Ay /(6(1 + €)fya) < —1. (98)

Hence, P(G < (1/(1 +¢€)) — (A,/6(1 4+ €)fr.0,)) = O since
G is a random variable in [—1, 1]. Finally, we get

iP(E@)

t=1

max(6(2 +¢€) ln(% Af,’k/(p*l)), 1) ”
1
Agk/(p )

99)

where P(G < 1/(1 +¢€))/P(G > 1/(1 +¢€)) < M. U
Proof of Theorem 6: First, using Lemma 5, we can bound
the final term in (19) as follows:

T
Ag D P(EqNE)) = ALE[I[Z > 24 ]na.r]  (100)

t=1

M -

< Ay S P(E N Ey) (101)
=1
T

< A, Z[IP(E,(}Q)) + p(E,{Zg) + p(ESg)] (102)
=1

max((2 +€) ln(% Af,’k/(p*l)), l)ﬁ
= O M N (103)
ax
(3¢) "1 exp( 22
+ (104)

1/(p—1
Aa;{(p )

Hence, from Lemma 6, the gap-dependent regret bound of
MR-APE can be obtained as follows:

P

i max((2+e)ln(% A(’,’[(’"”), 1)”“
M 1/(p—1
P Aﬂ]{(l’ )

(105)
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5 bpvp
Kc? lexp( 5 )

+ , (106)

where M} := max(M,, 1) that combines (89) and (99). O

APPENDIX E
PROOFS FOR THEOREM 7

Proof of Theorem 7: The proof can be simply done
by picking ko such that A, < A < A, ,, where
A = max(eP, e CP=D2PY(K/T)!=V/P. Then, TA; <
TA = O(K'"YPT'P) holds. Finally, we can obtain the
gap-independent bounds as

bpvp

0 (max (M 2+ )71, e

)Kl’l/”Tl/P). (107)
0
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