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ARTICLE

Haploinsufficiency of PRR12 causes a spectrum of
neurodevelopmental, eye, and multisystem abnormalities
Fuad Chowdhury1,2, Lei Wang3, Mohammed Al-Raqad4, David J. Amor5, Alice Baxová6, Šárka Bendová7, Elisa Biamino8, Alfredo Brusco9,
Oana Caluseriu10, Nancy J. Cox11, Tawfiq Froukh12, Meral Gunay-Aygun13, Miroslava Hančárová7, Devon Haynes14, Solveig Heide15,
George Hoganson16, Tadashi Kaname17, Boris Keren15, Kenjiro Kosaki18, Kazuo Kubota19, Jennifer M. Lemons20, Maria A. Magriña21,
Paul R. Mark22, Marie T. McDonald23, Sarah Montgomery23, Gina M. Morley16, Hidenori Ohnishi19, Nobuhiko Okamoto24,
David Rodriguez-Buritica20, Patrick Rump25, Zdeněk Sedláček7, Krista Schatz13, Haley Streff26, Tomoko Uehara18, Jagdeep S. Walia27,
Patricia G. Wheeler14, Antje Wiesener28, Christiane Zweier28, Koichi Kawakami29, Ingrid M. Wentzensen30, Seema R. Lalani26,
Victoria M. Siu1,2,31, Weimin Bi3,26✉ and Tugce B. Balci 1,2,31✉

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing
mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of
haploinsufficiency.
METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described
previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total
number to 24.
RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion
involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had
developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia,
microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart
defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly
associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet
macular degeneration and chronic kidney disease.
CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum
marked chiefly by neurodevelopmental and eye abnormalities.

Genetics in Medicine (2021) 23:1234–1245; https://doi.org/10.1038/s41436-021-01129-6

INTRODUCTION
Exome sequencing (ES) has become a mainstay in clinical genetics
as a comprehensive, unbiased method for diagnosing genetic
disease.1,2 However, a clinically useful molecular diagnosis is made
in only 30–40% of cases.3,4 Recently, global data sharing efforts
through large-scale platforms such as Matchmaker Exchange or
GeneMatcher have enabled the rapid delineation of novel rare
genetic syndromes by matching patients with variants in the same

candidate gene and overlapping clinical features.5–8 Nonetheless,
implicating candidate genes can be difficult due to low numbers
of patients, the possibility of other contributing or confounding
variants in other genes, and the potential for wide phenotypic
variability.5,8 Proline Rich 12 (PRR12) is such a novel candidate
gene recently encountered in exome studies of individuals with
multisystem developmental disorders.9

PRR12 encodes a 211-kDa nuclear protein with suspected DNA-
binding activity that is highly expressed in mouse and human
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brains, particularly in early development,10,11 and in the mouse
visual system.12 The coding sequence of PRR12 is well conserved
among vertebrates.9 PRR12 seems to be highly intolerant of loss-
of-function (LOF) changes given that predicted LOF variants are
exceedingly rare in the Genome Aggregation Database (gnomAD)
(v3 and v2.1.1).13 The first report implicating PRR12 as a disease
gene described a female patient with a de novo t(10;19)(q22.3;
q13.33) reciprocal translocation disrupting both PRR12 and ZMIZ1
who presented with intellectual disability and neuropsychiatric
changes.10 Consecutively, heterozygous, de novo, apparent loss-
of-function variants in PRR12 were identified in three unrelated
individuals who presented with global developmental delay and
iris abnormalities.9

We collated clinical information from 21 additional individuals
presenting with overlapping developmental features and variable
eye abnormalities, harboring heterozygous apparent loss-of-
function variants in PRR12 (three of whom had additional genetic
findings), along with in silico evidence supporting its pathogeni-
city. We confirm a role for PRR12 in human disease and explore its
variable clinical phenotype.

MATERIALS AND METHODS
Patients
Patients 21–23 were described previously9 and the additional 21 patients
were identified through international collaboration via GeneMatcher/
Matchmaker Exchange.5,14 The whole cohort consists of 11 female and 13
male patients aged between 5 months and 36 years. All patients
underwent chromosomal microarray testing and trio-based clinical ES,
when possible, or alternatively, proband-based clinical ES with parental
follow-up studies. Duo- and proband-based ES was performed on patients
3 and 12, respectively, due to parental unavailability. Patient 24 had
chromosomal microarray analysis only and the deletion was a recombina-
tion product of maternal intrachromosomal insertion, as previously
described.15 All PRR12 variants are reported on the NM_020719.3
(RefSeq)/ENST00000418929.7 (Ensembl) transcript. ES and analysis were
performed at local commercial or research-based diagnostic laboratories.

RESULTS
Most of the observed PRR12 variants are predicted to cause LOF
Twenty-one distinct variants were identified among the 23
patients with PRR12 sequence variants: 12 frameshift, 6 nonsense,
1 splice-site, and 2 missense variants were observed (Fig. 1a). In
addition, patient 24 carried a 3.352-Mb 19q13.33-13.41 deletion
that consisted of 146 annotated genes, including PRR12, with
breakpoints outside of its coding sequence (Fig. 1c). Sequencing
of biological parents, when possible, revealed that all PRR12
variants were de novo. The PRR12 variant was absent in the
mother of patient 3 and maternal half-sister of patient 12
(Supplementary Table 1). The frameshift and nonsense variants
occurred within exons 3–7, out of the 14 exons of this gene.
Frameshift variants introduce a premature termination codon
(PTC) after 10 to 148 residues. The de novo splice-site variant
(c.4891-2A>G; patient 19) disrupts the canonical AG splice
acceptor site upstream of exon 8 and if exon 8 is skipped, the
reading frame for downstream translation will shift by −1 and
introduce a PTC after 12 residues. Complete exclusion of exon 8
was previously reported in melanocytes (HsaEX0050423;
VastDB).16 Since the PTCs introduced by the frameshift, nonsense,
and splice-site variants occur prior to the penultimate exon, the
cognate messenger RNA (mRNA) expressed from those alleles is
expected to undergo nonsense-mediated decay (NMD) and the
variants are thus predicted to cause LOF. Finally, the de novo
missense variants observed in two patients (c. 3505C>T [p.
Arg1169Trp] in patient 15 and c.5909T>C [p.Leu1970Pro] in
patient 20) were both predicted to be “probably damaging”
in silico (PolyPhen-2 scores of 0.998 and 1.000, respectively).

They both result in nonconservative substitutions; the former in
the AT-hook domain and the latter in an uncharacterized region of
PRR12 near the C-terminus of the polypeptide chain (Fig. 1b). In
addition, there are four affected individuals reported in the
DECIPHER database with de novo PRR12 variants consisting of two
LOF variants and two missense variants: c.4726G>T (p.Glu1576*)
(280416), c.2585_2586insG (p.Ala863Glyfs*74) (277812), c.5383C>T
(p.Pro1795Ser) (260525), and c.4387C>T (p.Pro1463Ser) (417908).17

The Pro1795Ser and Pro1463Ser missense variants are predicted
to both be “possibly damaging” (PolyPhen-2 score of 0.661 and
0.945, respectively). There is also an entry in DECIPHER of a
patient with a 2.04-Mb deletion (arr[hg19] 19q13.33-q13.41
(50,086,504_52,125,032)x1) (251777).

PRR12 is highly intolerant to LOF variation
According to gnomAD, predicted LOF variants in PRR12 are
exceedingly rare in this large data set of individuals without severe
pediatric disease.13 Indeed, among 2,383 and 1,963 distinct PRR12
variants reported in gnomAD versions v2.1.1 and v3, 1 and 2
predicted LOF variants were reported, respectively, each with an
allele count of 1. The former variant (c.2851delC) causes frameshift
and a PTC after 91 residues, much like the variants reported in this
study. However, the latter two variants, c.2503_2520del and
c.2512_2520del, are expected to cause short in-frame deletions of
a few amino acids and are not expected to cause NMD. There is a
splice isoform of PRR12 produced by alternative promoter usage
within exon 4 and splicing within the exon (Fig. 1). According to
gnomAD, these deletions overlap the downstream intron–exon
boundary unique to this isoform and remove a noncanonical
splice acceptor site. Subsequently, the remainder of exon 4 may
be skipped, but the reading frame would still not be shifted. Thus,
it remains unclear if the latter two variants are cause of LOF. The
probability of being LOF intolerant (pLI) and observed/expected
(o/e) constraint scores for PRR12 are 1.0 and 0.0 (0–0.05; 90%
confidence interval [CI]), respectively, with a LOF observed/
expected upper bound fraction (LOEUF) score of 0.051, supporting
a strongly deleterious role for LOF variants. Furthermore, the
missense constraint Z-score is +2.98 indicating that PRR12 is also
intolerant to missense variation.13 Of note, no additional missense
variants at Arg1169, Pro1795 or Leu1970 are reported in gnomAD.
There is however a Pro1463Leu missense variant. There are also
five structural variants in gnomAD SVs v2.1, consisting of four
overlapping deletions within intron 6 that do not involve splice
sites and one large 4.98-Mb inversion encompassing 184 genes
with breakpoints outside of the PRR12 gene. These variants are
unlikely to affect PRR12 expression or function.

A broad spectrum of overlapping anomalies observed in
individuals with PRR12 predicted LOF variants and deletion
Developmental impairment is a consistent finding. All patients had
documented developmental impairment: 17 patients had a
diagnosis of global developmental delay and 3 and 4 patients
had isolated motor and speech–language developmental delay,
respectively (Table 1; Supplementary Table 1). Mild to severe
intellectual disability (ID) was documented for all patients over the
age of 7 years (n= 11), where these data were available (Table 1).
The four individuals with de novo PRR12 variants and the
additional individual with the microdeletion involving PRR12
reported in DECIPHER also all show developmental impairment.

A variety of structural eye defects are observed. We observed a
striking variety of structural eye abnormalities that affected
50% (12/24) of patients (Table 1, Fig. 3a). The most severe
eye defects were anophthalmia/microphthalmia, which was
observed in patients 1, 11, 13, and 17. Patient 1, in particular,
had bilateral anophthalmia with the absence of optic nerves, optic
tracts, and the optic chiasm on magnetic resonance imaging
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Fig. 1 Variant spectrum of PRR12 observed in this cohort. (a) Exon diagram of the PRR12 coding sequence with variants of the coding
sequence shown on the larger isoform of PRR12. A schematic diagram of the shorter isoform is given below (ENST00000615927.1). The three
variants described by Leduc et al.9 are highlighted in blue and the three PRR12 variants reported in the DECIPHER database are highlighted in
red. (b) PRR12 protein domains with predicted variants of the protein sequence. The corresponding patient number is given with each variant.
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PRR12 variants reported in the DECIPHER database are highlighted in red. (c) Chromosomal region corresponding to the microdeletion
reported in patient 24 shown with OMIM genes with probability of loss-of-function intolerance score (pLI) > 0.7.
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(Supplementary Table 1, Fig. 2a). DECIPHER patient 280416 is a
female with aplasia/hypoplasia of the optic nerve, iris coloboma,
and unilateral microphthalmia. Interestingly, globe defects
(anophthalmia or microphthalmia) were observed only among
female patients although males and females were close to equally
represented in this cohort. Also common was coloboma of the
eye: 29% (7/24) of patients had one or more colobomas, which
most commonly affected the iris. Other areas affected were the
optic nerve, macula, choroid retina, and lens. Two patients
(patients 13 and 21) had bilateral colobomas. In contrast to the
three previously described individuals with PRR12 variants
(patients 21–23) who all had iris abnormalities, these were much
less common in this larger cohort: 3 of the 21 new patients
reported in this study had iris colobomas and 1 had stellate irides.
Other structural eye defects included retinal dysplasia, persistent
pupillary membrane, complex Rieger anomaly, bilateral oblong
optic nerves, optic nerve hypoplasia, and congenital hypertrophy
of retinal pigment epithelium. Patients 3, 15, 16, and 24 had not
received a complete ophthalmological assessment; hence less
obvious eye defects, such as those affecting the posterior

chamber, may have been missed on physical examination. In
addition to structural defects, many patients had visual impair-
ment (77%; 17/22) and strabismus (36%; 8/22), including
intermittent types. There were 12 individuals (50%) with no
documented structural eye abnormalities, in keeping with the
variability of this phenotype in this cohort (Fig. 3a).

Additional common clinical features include anomalies from various
systems. Commonly observed systemic abnormalities were
congenital heart (52%; 12/23) and kidney (35%; 8/23) defects
(Table 1). Among the 12 patients with congenital heart defects, 6
had atrial septal defects, 2 had ventricular septal defects, and 3
had pulmonary stenosis (patient 4 had two defects; Supplemen-
tary Table 1). Congenital kidney anomalies were relatively minor
and included hydronephrosis, duplicated ureters, and vesicour-
eteral reflux. Cryptorchidism (unilateral or bilateral) was common
among male patients (38%; 5/13). Growth phenotypes were also
observed relatively commonly; history of failure to thrive was
documented in 54% (13/24) of patients and 29% (7/24) had
microcephaly. Although a recognizable facial pattern could not

aa

d e

i

f g

j

k l

b c

h

Fig. 2 Facial features of some individuals with PRR12 variants. Dysmorphic features are highly variable among the individuals with available
facial photographs and do not seem to confer a recognizable pattern. Globe defects, in forms of bilateral anophthalmia in patient 1 (a) and
microphthalmia in patient 11 (e) are depicted. Common distinctive features including wide-set eyes, epicanthal folds, low-set ears, upturned
tip of the nose, and thin vermilion of the lips are observed. (a) Patient 1. (b) Patient 3. (c) Patient 8. (d) Patient 10. (e) Patient 11. (f) Patient 12.
(g) Patient 14. (h) Patient 16. (i) Patient 18. (j) Patient 19. (k) Patient 20. (l) Patient 24.
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be discerned from patient photos (Fig. 2), some nonspecific
dysmorphic facial features that were commonly observed (seen in
≥6/24, 25%) included wide-set eyes, epicanthal folds, low-set ears,
upturned nasal tip, and thin vermillion of the lip(s) (Table 1,
Supplementary Table 1). Interestingly, cleft palate was observed
in four individuals (17%). Rare gastrointestinal abnormalities were
also identified; intestinal malrotation in 2 (8%) and Meckel’s
diverticulum in 1 (4%) individuals, respectively. A history of
hypotonia during or beyond the neonatal period was commonly
observed (61%; 14/23).
Coexisting variants in other disease genes were reported in

some individuals in our cohort (Table 1, Supplementary Table 2).
Patient 9 had macrocephaly in contrast to the smaller head size
generally observed in the rest of the cohort (Supplementary
Table 1). This patient carried a pathogenic PIK3CA variant known
to cause an overgrowth disorder hallmarked by megalence-
phaly18 (Supplementary Table 2). Patient 6 was recently described
in a report delineating the KDM6B-related disorder.19 Finally,
patient 7 carried a likely pathogenic variant in LZTR1 (Noonan
syndrome 10, OMIM 616564), providing a possible alternative
explanation to history of failure to thrive, developmental delay,
and dysmorphic features.

Reduced predicted expression of PRR12 is associated with
acquired eye- and kidney-related disease
To assess the potential clinical consequences of PRR12 dysfunc-
tion, we retrieved data on PRR12 from a transcriptome-wide
association study performed previously by Unlu et al.20 using
PrediXcan analysis to identify clinical phenotypes associated with
changes in predicted PRR12 expression, specifically when reduced.
Cross-tissue analysis of the BioVU biobank (which consists of
25,000 SNP-typed European Americans with linked electronic
health records) revealed several clinical phenotypes associated
with whole-body reduction of predicted PRR12 expression
(representative of constitutive de novo LOF variants) that were
enriched for acquired eye- and kidney-related diseases (Table 2).

Of the 30 phenotypes associated with reduced expression (as
defined by an odds ratio [OR] per unit of standard deviation [SD]
less than 1.00), 7 and 4 pertained to the visual or renal system,
respectively. In alignment with the pLI, o/e, and LOEUF constraint
scores reported in gnomAD, fewer associations with increased
predicted PRR12 expression were noted, suggesting greater
intolerance to loss of PRR12 function. PrediXcan analysis was
used previously to link GRIK5 loss-of-function to eye and
peripheral vascular disease.20 Similar to GRIK5, the 7 significant
associations of eye phenotypes to reduced predicted PRR12
expression were also unlikely to have occurred by chance. Thus,
there is a potential role for loss of PRR12 expression in acquired
eye and kidney pathology, common findings in our cohort with
predicted constitutional loss of PRR12 function.

DISCUSSION
A review of available clinical features in the total cohort of 24
individuals (and the 3 reported in DECIPHER), consisting of one
deletion variant and almost exclusively predicted LOF variants in
PRR12, a gene highly intolerant of such changes, revealed a
consistent presentation of developmental delay/intellectual dis-
ability, and eye abnormalities. We noted marked variability in the
type and severity of eye phenotypes with increased patient
numbers, expanding the phenotype of consistent iris abnormal-
ities reported previously in three patients.9 The larger cohort also
allowed for the delineation of additional common systemic
features, including congenital heart and kidney defects, hypoto-
nia, failure to thrive, and microcephaly. A very recent report
documents four additional truncating PRR12 variants in a cohort of
individuals with microphthalmia/anophthalmia/coloboma, further
supporting the impact of PRR12 loss in eye development.21

The microdeletion observed in patient 24 resulted in the
heterozygous loss of 146 annotated genes, 86 of which are listed
in OMIM, and 15 of which have associated disease phenotypes.
However, only 2 of these 15 genes are seemingly highly intolerant
of loss-of-function changes: NUP62 (pLI: 0.95) and PPP2R1A

Structural eye defect

Functional eye defect

Motor delay

Speech delay

FTT

Microcephaly

Hypotonia

Heart defect

Kidney anomaly

Long isoform affected only
(n = 6)

Both isoforms affected
(n = 14)

Globe defect

Ocular coloboma

Iris abnormality

Other structural defects

Visual impairment

Other functional defects

1 11 13 17 21 22 12 23 14 20 2 4 5 18 19 15* 3* 8 10 16*

Globe defects
(n = 4)

Globe-sparing eye defects
(n = 8)

Functional defects only
(n = 8)

No apparent defects
(n = 4)

a

b

Fig. 3 Subgrouping of the variable eye findings and comparison of phenotypes between variants that affect one or both isoforms. A
filled square indicates the presence of the listed clinical feature and a blank square indicates absence. An X denotes that the presence of the
listed feature has not been ascertained. (a) Summary of eye phenotypes within our cohort organized into four distinct categories, including
those with no apparent defects. Listed above are the patient numbers corresponding to Table 1. The “iris abnormality” feature excludes iris
coloboma. * No obvious abnormalities on physical examination; incomplete ophthalmological assessment. † Individuals with multiple genetic
diagnoses. (b) Comparison of clinical features among individuals with PRR12 variants affecting the long isoform (patients 1, 2, 4, 5, 21, and 22)
or both splice isoforms. This graph excludes individuals with multiple genetic diagnoses (patients 6, 7, 9, and 24). Rows depict the prevalence
of each listed feature in each subset. FTT failure to thrive.
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(pLI: 0.98). Biallelic variants in NUP62 are associated with
autosomal recessive infantile striatonigral degeneration (OMIM
271930), thus heterozygous loss of this gene is likely noncon-
tributory to this patient’s phenotype. PPP2R1A is associated with
autosomal dominant intellectual disability (OMIM 616362) and its
loss may have contributed to the developmental impairment

observed in patient 24. None of 15 morbid genes are currently
associated with eye, heart, or kidney abnormalities. When looking
only at genes in this region that are somewhat intolerant of loss-
of-function changes (pLI ≥ 0.76; the pLI of the remaining genes
is ≤0.40) (n= 12) (Fig. 1c), PRR12 is one of the top candidates for
this particular patient, especially given the presence of bilateral iris

Table 2. Clinical phenotypes significantly associated with changes in predicted PRR12 expression (p < 0.05).

Phecode Clinical phenotype OR per unit SD p value Cases Controls

X286.4 Acquired coagulation factor deficiency 0.64 0.00249 87 17012

X363 Chorioretinal inflammations, scars, and other disorders of choroid 0.65 0.00212 97 22414

X362.22 Macular degeneration, wet 0.68 0.00186 112 22010

X523.31 Acute periodontitis 0.70 0.00942 89 23546

X377.3 Optic neuritis/neuropathy 0.71 0.00683 102 22063

X523.3 Periodontitis (acute or chronic) 0.74 0.00815 122 23546

X531.3 Duodenal ulcer 0.76 0.00806 138 23989

X349 Other and unspecified disorders of the nervous system 0.77 0.00611 155 18740

X367.9 Blindness and low vision 0.77 0.00027 283 23597

X362.21 Macular degeneration, dry 0.79 0.00820 180 22010

X430.2 Intracerebral hemorrhage 0.80 0.00137 286 18765

X362.29 Macular degeneration (senile) of retina NOS 0.81 0.00578 241 22010

X526 Diseases of the jaws 0.83 0.00399 304 23546

X276.42 Alkalosis 0.83 0.00871 260 13810

X285.21 Anemia in chronic kidney disease 0.84 0.00005 723 13984

X295.3 Psychosis 0.85 0.00730 369 15613

X362.2 Degeneration of macula and posterior pole of retina 0.87 0.00065 774 22010

X295 Schizophrenia and other psychotic disorders 0.88 0.00953 512 15613

X695 Erythematous conditions 0.90 0.00192 955 21921

X585.33 Chronic kidney disease, stage III 0.90 0.00027 1547 16389

X580 Nephritis; nephrosis; renal sclerosis 0.90 0.00554 900 16389

X627.2 Symptomatic menopause 0.91 0.00250 1158 21708

X585.34 Chronic kidney disease, stage IV 0.91 0.00918 900 16389

X599.5 Frequency of urination and polyuria 0.92 0.00223 1422 17766

X287.3 Thrombocytopenia 0.93 0.00207 2107 17012

X287 Purpura and other hemorrhagic conditions 0.93 0.00203 2222 17012

X627 Menopausal and postmenopausal disorders 0.93 0.00938 1849 21708

X386.9 Dizziness and giddiness (lightheadedness and vertigo) 0.93 0.00353 2241 21029

X285.2 Anemia of chronic disease 0.94 0.00833 1992 13984

X599 Other symptoms/disorders or the urinary system 0.95 0.00191 4223 17766

X153 Colorectal cancer 1.11 0.00374 708 20486

X513.4 Hyperventilation 1.11 0.00858 555 22564

X153.2 Colon cancer 1.12 0.00246 591 20486

X965 Poisoning by analgesics, antipyretics, and antirheumatics 1.13 0.00695 413 19177

X278.4 Abnormal weight gain 1.19 0.00040 338 19458

X260.1 Cachexia 1.25 0.00617 111 17943

X358.1 Myasthenia gravis 1.39 0.00195 57 22224

Associations were identified via PrediXcan analysis on the BioVU biobank in which PRR12 expression is predicted based on single-nucleotide polymorphism
(SNP) genotypes. Phecodes refer to clinical phenotypes described by ICD-9. Phecodes representing eye or kidney disease are shown in bold and italic font,
respectively. The odds ratio (OR) per unit standard deviation (SD) is a measure of effect size of the change in predicted PRR12 expression on the likelihood of
the associated phenotype. A value greater or less than 1.00 indicates that increased or decreased expression is associated with the phenotype,
respectively. NOS not otherwise specified.
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colobomata, which was commonly observed in individuals with
sequence variants (Table 1). Altogether, the consistent clinical
features among individuals with PRR12 sequence variants and a
microdeletion including PRR12 strongly support the pathogenicity
of PRR12 haploinsufficiency.
The high conservation of its amino acid sequence9 and

intolerance to LOF and missense variants suggest that PRR12
likely serves an important, conserved biological function, but the
gene remains poorly characterized. Specific functional studies are
currently limited to expression analysis in the initial patient with
the de novo translocation, and in fetal and adult brains in mice.10

However, functional information gleaned from publicly available
data sets strongly supports the potential role of PRR12 in human
disease.
PRR12 (also known as KIAA1205) is a ubiquitously expressed

gene with highest levels of expression in the brain (particularly in
the cerebellum and pituitary gland), the thyroid gland, and the
female reproductive system (GTEx). It was shown previously that
expression of the 212-kDa PRR12 protein product was restricted to
the nucleus and was strongest in fetal E15 mice brains compared
with adult brains.10 Similarly, across multiple brain structures,
PRR12 RNA expression is elevated in fetal human samples
compared with adult samples.11 The role of PRR12 in early
neurodevelopment is further supported by its association with 4
of 5 promoter/enhancer regions (GeneHancer scores between 2.0
and 2.7) that exist in a poised chromatin state in several human
embryonic and induced pluripotent stem cell lines and in neural
progenitors cells.22,23 A poised state is thought to permit precise
spatiotemporal regulation of genes during cell differentiation,
especially during embryonic development, and has classically
been associated with developmental genes, such as mFgf8 and
mProk1.24,25 These findings suggest an important role for PRR12 in
neural progenitor cells and early neurodevelopment.
In addition to the regular transcript, PRR12 also produces a

shorter 130-kDa (1,215-aa) isoform via alternative splicing
(ENST00000615927.1) that lacks exons 1–3 and the majority of
exon 4 (Fig. 1). In contrast to the larger isoform, its expression
seems to be elevated in adult brains compared with fetal brains.
The complementary DNA (cDNA) of the short human isoform was
also isolated from the brain.26 Given the differential subcellular
localization and expression pattern between these isoforms in the
brain, we can hypothesize that the short isoform has other
neuronal functions in the adult brain. Alternative splicing is
predicted to remove the mutated site for eight patients (patients
1, 2, 4, 5, 6, 7, 21, and 22) and to maintain expression of the short
isoform from the mutant allele. Clinical features between this
group and the remaining individuals whose variants are predicted
to truncate both isoforms were not found to be significantly
different (Fig. 3b). Growth phenotypes (failure to thrive and
microcephaly) appeared more commonly, while kidney and heart
defects appeared less commonly in the former group. However,
there are too few individuals to make a meaningful conclusion.
This finding supports that disruption of the nuclear function of the
larger isoform is likely the basis of this developmental disorder, as
suggested previously.9

The role of PRR12 in neural and eye development may involve
its predicted ability to bind USP7,27 SOX2,28 and ESR2,29 as shown
in publicly available protein interaction databases. Haploinsuffi-
ciency of USP7 (OMIM 616863) was recently shown to cause
syndromic intellectual disability and developmental delay.30

Variants in SOX2 are a well-established cause of syndromic
microphthalmia/clinical anophthalmia with variable defects of
the optic nerve and/or central nervous system (OMIM 206900).31

ESR2 encodes a known estrogen receptor but is expressed in the
developing eye of human embryos.32 While these predicted
interactions remain to be experimentally proven, and the exact
functional consequences are unknown, we speculate that
substochiometric binding between PRR12 and these proteins,

especially SOX2, may be a possible explanation for the occurrence
of eye abnormalities. Further functional studies in animal models
targeting this group of genes and their interactors would provide
evidence into the pathogenesis of this novel disorder.
The significant phenotypic variability in neurodevelopmental

and ophthalmological features within our cohort may be
explained by other patient-, test-, and gene-related factors.
Multiple molecular diagnoses, mostly identified with genome-
wide sequencing, have been shown to occur in 3–5% of patients
receiving a molecular diagnosis by these methods33,34 and was
observed in three individuals in this cohort. The presence of these
additional variants in genes associated with other multisystem
disorders, as well as potential contributions from noncoding
variants, limit our ability to ascribe phenotypes specifically to
PRR12 loss of function. Also, patient 15 has a brother with a similar
phenotype who does not share the de novo missense PRR12
variant that he harbors. As encountered with most of the recently
identified disease genes, by taking the genotype-first approach
based on ES (which has become increasingly available to a larger
number of patients worldwide), we may have already captured
milder forms of PRR12-related disorder in our large cohort. There
are several well known single-gene disorders affecting both the
eyes and kidneys, some of which are caused by defects in
transcription factors with important roles in development, such as
CHD7 in CHARGE syndrome (OMIM 214800), PAX2 in oculorenal
syndrome (OMIM 120330), TBX22 in CHARGE-like syndrome (OMIM
302905), and SALL4 in acroreno-ocular syndrome (OMIM 607323).
The clinical features in these syndromes are also notoriously
variable, mostly evidenced by the huge clinical spectrum of
CHARGE syndrome,35 as well as the variable eye findings in PAX2-
and SALL4-related disorders, where presentations range from
microphthalmia, to many types of colobomas, dysplastic optic
discs, or other ocular features.36,37

PRR12, similar to the above genes, likely has roles in early
development and remains a reasonable target to study its role in
genetic, and perhaps epigenetic, regulation. PRR12 has suspected
DNA-binding activity owing to its two predicted AT-hook domains
and it may participate in gene regulation given that it is a nuclear-
restricted protein.10 Interestingly, the top 100 genes that
coexpress with PRR12 in humans are enriched for genes involved
in transcription and its regulation (p < 10−18), chromatin regulators
(p= 1.5 × 10−7), and SET domain-containing proteins (p= 9.7 ×
10−7) (COXPRESdb7; DAVID).38,39 Moreover, similar terms are
enriched among the top 200 genes that coexpress with PRR12
across different brain tissues from 8 weeks postconception to 40
years of age (r ≥ 0.748) and also include zinc finger proteins (p=
7.0 × 10−19), BAH domain-containing proteins (p= 2.1 × 10−6),
and bromodomain-containing proteins (p= 1.0 × 10−6). These
classes of proteins include transcription factors and chromatin
regulators and may function in a complex network involving
PRR12 to establish specific transcriptional programs. Of interest
are the SET domain-containing proteins (which methylate histone
lysine residues) and the bromodomain-containing proteins (which
recognize acetylated lysine residues, including those on histones),
which suggest a potential mechanism involving histone modifica-
tions and downstream chromatin regulation. Curiously, Lysine-402
of PRR12 is also acetylated and may be bound by coexpressed
bromodomain proteins to modulate or mediate its function(s).9,40

The exact role of PRR12 in transcriptional regulation remains
unclear and will require further functional studies to elucidate.
While we can only speculate about the interactions between
PRR12 and coexpressed genes, these associations are suggestive
of a role for PRR12 in widespread gene regulation via epigenetic
mechanisms.
We provide strong genetic evidence to indicate that haploin-

sufficiency of PRR12, a gene with potential roles in neurodevelop-
ment and gene regulation, causes a neurodevelopmental disorder
with variable features, including eye, kidney, and heart anomalies,
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and growth failure. Further studies are needed to establish the
exact genotype–phenotype correlation and potential effects of
other modifiers. These may include analyses of epigenetic
modifications in these patients to help identify an epigenomic
signature to aid in molecular diagnosis and variant interpretation.
Functional studies in animal models, such as mice and zebrafish,
will be invaluable in elucidating the molecular function of PRR12
and the exact pathogenetic mechanisms of PRR12 loss-of-function
in human disease.
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