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Abstract

We present a spherical harmonics-based convolutional neural network (CNN) for cortical parcel-

lation, which we call SPHARM-Net. Recent advances in CNNs offer cortical parcellation on a fine-

grained triangle mesh of the cortex. Yet, most CNNs designed for cortical parcellation employ spatial

convolution that depends on extensive data augmentation and allows only predefined neighborhoods

of specific spherical tessellation. On the other hand, a rotation-equivariant convolutional filter avoids

data augmentation, and rotational equivariance can be achieved in spectral convolution independent of

a neighborhood definition. Nevertheless, the limited resources of a modern machine enable only a finite

set of spectral components that might lose geometric details. In this work, we propose (1) a constrained

spherical convolutional filter that supports an infinite set of spectral components and (2) an end-to-end

framework without data augmentation. The proposed filter encodes all the spectral components without

the full expansion of spherical harmonics. We show that rotational equivariance drastically reduces the

training time while achieving accurate cortical parcellation. Furthermore, the proposed convolution is

fully composed of matrix transformations, which offers efficient and fast spectral processing. In the

experiments, we validate SPHARM-Net on two public datasets with manual labels: Mindboggle-101

(N=101) and NAMIC (N=39). The experimental results show that the proposed method outperforms the

state-of-the-art methods on both datasets even with fewer learnable parameters without rigid alignment

and data augmentation. Our code is publicly available at https://github.com/Shape-Lab/SPHARM-Net.
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1 Anatomical variability. Top: overall structures on the unit sphere are well aligned after

rigid alignment. Bottom: in pars orbitalis colored by dark green (yellow dotted ellipse),

an instance to be inferred (Subject 5) can be spatially far off from the majority (Subjects

1-4) due to high anatomical variability, which may be difficult to annotate even after

flawless rigid alignment unless rotational equivariance is considered. . . . . . . . . . . . 2

2 A schematic overview of the proposed cortical parcellation. Left: From an input cortical

surface, K extracted geometric features are mapped onto the unit sphere to serve as the

input channels of SPHARM-Net. In the encoding (decoding) phase, each block halves

(doubles) the harmonic bandwidth L while doubling (halving) the number of channels

C. The final block (orange) aggregates the learned information to infer M parcellation

labels that are then mapped back to the original cortical surface. Right: the proposed

blocks perform SHT on a spherical signal followed by rotation-equivariant spectral con-

volution and ISHT. The SHConv-FB block (yellow) further adds a scaled spherical sig-

nal to the SHConv block (blue) to support constrained full-bandwidth convolution (see

the technical details in this work). In the encoding and decoding phases, every block is

composed of batch normalization and nonlinear activation layers following the proposed
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3 An example learned filter. Top: unlike a conventional filter (left), the proposed filter
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(middle) loses geometric details due to the truncation of the high-frequency components.

On the other hand, the proposed convolution (right) maintains geometric details without
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5 Learned feature maps with SHConv-FB. Top: learned filters at different bandwidth L.
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Bottom: zoomed-in signals. No huge visual difference between L = 80 and 120 may

indicate similar parcellation performance (see Fig. 4(b-c)). . . . . . . . . . . . . . . . . 15

6 ROI-wise Dice score on Mindboggle-101. The statistical significance is reported after

multi-comparison correction among the 32 ROIs (FDR at q = 0.05). SPHARM-Net
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Net against the baseline CNNs, whereas the insula (35) achieves worse performance than
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9 Visual inspection of improved parcellation accuracy in a small region. The zoomed-in

frontal pole colored by violet (yellow dotted ellipse) is illustrated from a coronal view.

The overall size in FreeSurfer is smaller than the manual annotation, whereas longer

tails are annotated by the baseline spherical CNNs. SPHARM-Net without SHConv-FB

improves the accuracy but shrinks the overall size, which is likely because geometric

details are overly smoothed out by the harmonic truncation. This limitation is further

overcome by the use of SHConv-FB that supports full-bandwidth convolution. The in-

flated surface is used for better visualization. . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Area variance of common ROIs between Mindboggle-101 and NAMIC. To test equal
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I Introduction

Cortical parcellation is a key tool that supplies regions of interests (ROIs) in cortical morphological stud-

ies. Regarding anatomical/functional associations, the cortex can be subdivided into non-overlapping

sub-regions by tracing regional boundaries defined by parcellation protocols [1–3]. Nevertheless, earlier

cortical parcellation was a tedious and error-prone task as often handcrafted by experts, which requires

tremendous human resources. This necessitates an automatic parcellation technique to reduce such ex-

tensive manual effort significantly. An initial attempt was to employ label fusion, in which the reference

labels are aggregated on a target after surface registration [4]. This approach yet requires non-rigid warp-

ing [5–7] of all references to a target, and the label fusion needs to be carefully designed to incorporate

anatomical variability across the references.

Recently, convolutional neural networks (CNNs) have shown remarkable success for their flexibility

and scalability in semantic segmentation with the continuing evolution of computing power. In neu-

roimaging studies, CNNs become more popular for tissue segmentation of volumetric data [8–12] than

the conventional approaches that require either handcrafted features or extensive non-rigid registration.

In particular, an encoder-decoder architecture such as U-Net [13] can jointly learn both local and global

geometric details without handcrafted feature definitions [8–12]. An important note is that most CNNs

are generally designed for structured data (i.e., uniform grid) that simplify a semantic segmentation task.

Yet, the extension to cortical parcellation is rather non-trivial because surface data form an irregular grid

in general.

Later, CNNs have been evolved to support semantic segmentation on an unstructured grid (mesh) of

surface data [14–19]. A graph representation is used to define convolutional filters on an unstructured

grid using either node-wise message passing [14–17] or spectral decomposition [18, 19] regardless of

graph regularity. As a cortical surface is already of a graph form, this approach can be straightforwardly

extended to accomplish a cortical parcellation task in cortical sub-regions [19] or whole cortex [16].

These studies reported that the graph CNNs achieve higher parcellation accuracy than non-CNN-based

cortical parcellation.

Another popular approach is spherical CNNs that can support a spherical form of data with rotational

convolution. Spherical CNNs define their convolutional filters via either known spatial tessellation [20–

24] or spherical harmonic decomposition [25,26]. In neuroimaging studies, a cortical surface is enforced

to be genus-zero in modern cortical surface reconstruction pipelines such as FreeSurfer [6]. They offer

spherical parametrization of the cortical surfaces, which may enable spherical CNNs to accomplish a

cortical parcellation task. To date, nevertheless, only a few spherical CNNs are available for cortical

parcellation yet [22, 27, 28] perhaps due to (1) fine data resolution and (2) lack of manual annotation,

which is seldom discussed in most spherical CNNs.

Several spherical CNNs [20–24] define convolutional filters on a known spherical grid such as icosa-

hedral [29] or HEALPix [30] tessellation. They extended convolutional filters of Euclidean CNNs, by

which spherical convolution can be applied over spherical data in a similar way to conventional Eu-

clidean CNNs. Yet, such spherical convolution is feasible under a certain neighborhood definition.
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure 1: Anatomical variability. Top: overall structures on the unit sphere are well aligned after rigid

alignment. Bottom: in pars orbitalis colored by dark green (yellow dotted ellipse), an instance to be

inferred (Subject 5) can be spatially far off from the majority (Subjects 1-4) due to high anatomical vari-

ability, which may be difficult to annotate even after flawless rigid alignment unless rotational equivari-

ance is considered.

Moreover, one of the main challenges in cortical parcellation is anatomical variability. Even with flaw-

less rigid alignment, some ROIs having similar patterns can be spatially far off from the majority as

shown in Fig. 1. Recent cortical parcellation approaches [22,27,28] attempted to relieve such variability

by employing an extra preprocessing step such as random rotation. However, the preprocessing may

not fully cover the entire configuration space of spherical rotation, and the increased sample size takes

longer training time. This suggests that we should consider rotational equivariance to learn anatomical

variability. Some spherical CNNs [23, 24] can support rotation-equivariant convolution with a specific

neighborhood definition, which might be promising to incorporate anatomical variability.

Spherical harmonics can transform any spherical function (signal) into a series of spectral compo-

nents akin to Fourier transform. The convolution theorem [31] states that spherical convolution is equiva-

lent to point-wise multiplication of harmonic coefficients and can be independent of a neighborhood def-

inition. Here, spherical convolution can achieve rotational equivariance by integrating over SO(3) [25]

or imposing a rotational symmetry constraint [26,32], yielding zonal convolutional filters [26]. Although

promising, the extension to semantic segmentation especially in neuroimaging studies is not popular yet

perhaps due to limited machine capacity. On a modern machine, the expansion of spherical harmonics

is limited up to a certain bandwidth, by which geometric details encoded in high-frequency components

can be smoothed out in the existing spectral convolution.

In this work1, we present a novel spherical harmonics-based spherical CNN (SPHARM-Net) for

cortical parcellation. SPHARM-Net seeks the following key features: (1) rotational equivariance, (2)

constrained full-bandwidth convolution, and (3) an end-to-end framework for semantic segmentation of

1The work is based on the previously published paper, Ha and Lyu [33], and partially adapts text descriptions and figures

from the published paper.
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cortical surface data. To this end, we follow the foundations of spectral convolution proposed by [26].

In particular, we adapt a standard U-Net architecture [13] for cortical parcellation that extends [26] orig-

inally designed for object recognition tasks. Furthermore, we propose a constrained spherical convolu-

tional filter that supports an infinite set of spectral components. The resulting filter avoids the harmonic

truncation in the original spectral convolution [26] that might lose geometric details. This can thus bridge

a gap between theoretical consideration and its practical realization. Thanks to rotational equivariance,

SPHARM-Net handles anatomical variability by extracting vertex-wise features without extensive data

augmentation and rigid alignment required in conventional cortical parcellation. Moreover, the proposed

convolution including harmonic decomposition is fully composed of matrix transformations, which is

well suitable for parallel computing for efficient data processing. Fig. 2 illustrates a schematic overview

of the proposed cortical parcellation.
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Figure 2: A schematic overview of the proposed cortical parcellation. Left: From an input cortical

surface, K extracted geometric features are mapped onto the unit sphere to serve as the input channels of

SPHARM-Net. In the encoding (decoding) phase, each block halves (doubles) the harmonic bandwidth

L while doubling (halving) the number of channels C. The final block (orange) aggregates the learned

information to infer M parcellation labels that are then mapped back to the original cortical surface.

Right: the proposed blocks perform SHT on a spherical signal followed by rotation-equivariant spectral

convolution and ISHT. The SHConv-FB block (yellow) further adds a scaled spherical signal to the

SHConv block (blue) to support constrained full-bandwidth convolution (see the technical details in

this work). In the encoding and decoding phases, every block is composed of batch normalization and

nonlinear activation layers following the proposed convolution.
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II Background

2.1 Spherical Harmonic Transform

We briefly review concepts of the spherical harmonic transform and its properties as a core of our

methodology. More technical details are discussed in the review literature [31, 34, 35]. Despite various

definitions of spherical harmonics, they can be defined in a complex domain as follows:

Y m
l (θ ,ϕ) =

√
2l +1

4π

(l −m)!
(l +m)!

Pm
l (cosθ)eimϕ , (1)

Y−m
l (θ ,ϕ) = (−1)mȲ m

l (θ ,ϕ), (2)

where Pm
l is the associated Legendre polynomial and Ȳ m

l is the conjugate of Y m
l . In our problem setting,

real harmonic basis functions are more intuitive to handle spherical signals from the cortex since the

real-valued signals are often provided by cortical geometry (e.g., mean curvature or cortical thickness).

Formally, we denote a real harmonic function of degree l and order m (|m| ≤ l) by Ylm. At a spherical

location (θ ,ϕ) ∈ [0,π]× [−π,π], the standard irreducible real harmonic basis is written by

Ylm =


i√
2

(
Y m

l − (−1)mY−m
l

)
, m < 0

Y 0
l , m = 0

1√
2

(
Y−m

l +(−1)mY m
l

)
, m > 0.

(3)

Given a real-valued function f : S2 → R, its spherical harmonic expansion is obtained by

f (θ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

f̂lmYlm(θ ,ϕ), (4)

where f̂lm is the associated coefficient of Ylm as follows:

f̂lm =
∫

S2
f (θ ,ϕ)Ylm(θ ,ϕ)dθ dϕ. (5)

We refer Eqs. (5) and (4) to the spherical harmonic transform (SHT) of f and its inverse spherical

harmonic transform (ISHT), respectively. A key property of SHT is that the spectral energy distribution

of f is independent of a rotation of f . SHT can thus offer a rotation-invariant representation of f in

the spectral domain. More formally, consider the l2 norm of coefficients calculated over the orders at a

given degree l:

∥ f̂l∥=

√√√√ l

∑
m=−l

( f̂lm)2. (6)

The norm remains unchanged regardless of the orientation of f [34]. Hence, a collection of the l2 norm

across harmonic degrees encodes a rotation-invariant descriptor of f :(
∥ f̂0∥,∥ f̂1∥, · · · ,∥ f̂l∥, · · ·

)
. (7)

Interested readers are referred to [34] for in-depth proof.
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2.2 Rotation-Equivariant Convolution

Consider two spherical functions f ,h : S2 → R, and we let h be a convolutional filter (kernel). Their

convolution is then defined as an integral over the 3D rotation group SO(3):

( f ∗h)(x) =
∫

g∈SO(3)
f (gη)h(g−1x)dg, (8)

where η is the north pole and ∥x∥2 = 1. Unfortunately, the solution is not of a closed form in general.

This hence necessitates some special manipulation to make spherical convolution feasible: (1) spatial

sampling along a spherical grid or (2) spectral transformation. A popular approach is to re-tessellate

the unit sphere along a semi-uniform grid via well-known tessellation techniques such as icosahedral

subdivision [29], in which the integral can be approximated as a sum over the entire spherical grid.

Also, 1-ring or 2-ring neighborhoods are usually considered to simplify spherical convolution for com-

putational efficiency. Despite such a simple operation, the solution heavily depends on the quality of

spatial sampling (graph regularity, edge length, etc.) due to the absence of uniform spacing on a spheri-

cal grid. Moreover, the approximated integral is incapable of looping through the entire SO(3) because

any spherical grid is finite, on which the resulting spherical convolution (i.e., numerical accuracy) is al-

ways sensitive to a choice of tessellation techniques. Furthermore, these reasons make rotation-invariant

convolution non-trivial to be maintained in the grid-based approach.

Alternatively, spherical convolution is performed by point-wise multiplication of harmonic coeffi-

cients followed by ISHT that converts the harmonics back into the spherical domain [25, 26]. In par-

ticular, our interest is to define spherical convolution that holds rotational equivariance. In this context,

spherical convolution can be achieved by transforming either a function of SO(3) [25] or a spherical

function [26] via SHT. The former offers a flexible filter by lifting spherical functions onto SO(3) to

enable rotation-equivariant convolution. On the other hand, the entire processing in the latter lies in

the spherical domain without the costly lifting despite its relatively strict constraints on a convolutional

filter. In this work, we employ the latter approach for computational efficiency and more intuitive inter-

pretation.

More formally, we denote the SHT of f and h at degree l and order m by f̂lm and ĥlm, respectively. As

stated in [31], there exists a convolutional filter h supporting a rotation-equivariant spherical convolution

if h is indirectional and axis-symmetric (also known as a spherical zonal/isotropic function), i.e., ĥlm = 0

(m ̸= 0). This consequently reduces the spherical harmonics to the ordinary Legendre polynomials. To

this end, we have the following operation for asymmetry (or left-) convolution in the spectral domain

[31]:

( f̂ ∗h)lm =C(l) f̂lmĥl0, (9)

where C(l) = 2π
√

4π/(2l +1). To verify that the resulting convolution holds rotational equivariance,

5



we use the properties of the rotation-invariant descriptor in Eq. (7).

∥( f̂ ∗h)l∥=C(l)∥ f̂l,−l ĥl0 + · · ·+ f̂ll ĥl0∥

=C(l)∥ĥl0 · ( f̂l,−l + · · ·+ f̂ll)∥

=C(l)|ĥl0|∥ f̂l,−l + · · ·+ f̂ll∥

=C(l)|ĥl0|∥ f̂l∥.

(10)

This suggests that the resulting convolution is rotation-equivariant regardless of the orientation of f for

a given zonal function h. Finally, the spatial convolution can be recovered by a linear combination of

spherical harmonic basis functions with their associated harmonic coefficients (see Eq. (4)).

( f ∗h)(θ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

( f̂ ∗h)lmYlm(θ ,ϕ) (11)

=
∞

∑
l=0

l

∑
m=−l

C(l) f̂lmĥl0Ylm(θ ,ϕ). (12)

On a modern machine, the harmonic expansion is band-limited yet because of limited machine capac-

ity. This hinders the realization of such well-defined harmonic behaviors by the harmonic truncation,

yielding overly smoothed effects. We will address this challenge under a certain condition and discuss

detailed discretization techniques in the next section.
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III Methods

3.1 Problem Statement

Our goal is to subdivide a cortical surface into M sub-regions. Suppose that a cortical surface consists

of K distinct geometric features such as mean curvature. By valid spherical parametrization, the i-th

geometric feature can be mapped onto the unit sphere as a spherical function fi : S2 → R, i = 1, · · · ,K.

Here, cortical parcellation can be achieved by estimating discriminant functions given the cortical ge-

ometry. More formally, we denote a collection of spherical locations by V = {v ∈ S2 : v = (θ ,ϕ) ∈
[0,π]× [−π,π]}. At a spherical location v, we infer its label z ∈ {1,2, · · · ,M}. Consider a discriminant

that v belongs to z. In cortical parcellation, we have M discriminant functions F : RK → R:

F ( f1(v), · · · , fK(v);z). (13)

Once F is optimized, the highest discriminant is calculated to assign cortical labels to unseen instances.

In supervised learning, F is a model that can be learned from observations of f and their labels. In the

remainder of this work, we will describe the SPHARM-Net architecture to model F .

3.2 Constrained Convolution with Full Bandwidth

As stated, expanding an infinite set of spherical harmonics is practically infeasible because of limited

machine capacity. Existing approaches thus employ the band-limited spherical harmonic expansion up to

a certain bandwidth L [26, 35]. Despite their computational benefits, such harmonic truncation discards

geometric details; overly smoothed signals might discourage local feature detection. To support the

full harmonic expansion, we propose a convolutional (zonal) filter, where the coefficients of the high-

frequency components are constrained. Formally, we decompose Eq. (12) into two terms as follows:

( f ∗h)(θ ,ϕ) =
L

∑
l=0

l

∑
m=−l

C(l) f̂lmĥl0Ylm(θ ,ϕ)+
∞

∑
l=L+1

l

∑
m=−l

C(l) f̂lmĥl0Ylm(θ ,ϕ), (14)

where {ĥl0}∞
l=0 are learnable parameters. As learning an infinite set of ĥl0 is infeasible, the second

term is discarded in the conventional band-limited convolution. Our goal is to design a specialized

convolutional filter h that can maintain high-frequency components. Here, we constrain ĥl0 = α/C(l),

∀l > L for a single learnable parameter α ∈ R. This yields

( f ∗h)(θ ,ϕ) =
L

∑
l=0

l

∑
m=−l

C(l) f̂lmĥl0Ylm(θ ,ϕ)+
∞

∑
l=L+1

l

∑
m=−l

C(l) f̂lm
α

C(l)
Ylm(θ ,ϕ). (15)

By arithmetic manipulation, we rewrite Eq. (15) as follows:

( f ∗h)(θ ,ϕ)

=
L

∑
l=0

l

∑
m=−l

[C(l) f̂lmĥl0Ylm(θ ,ϕ)−C(l) f̂lm
α

C(l)
Ylm(θ ,ϕ)]+

∞

∑
l=0

l

∑
m=−l

C(l) f̂lm
α

C(l)
Ylm(θ ,ϕ)

(16)

=
L

∑
l=0

l

∑
m=−l

C(l) f̂lm

(
ĥl0 −

α

C(l)

)
Ylm(θ ,ϕ)+

∞

∑
l=0

l

∑
m=−l

C(l) f̂lm
α

C(l)
Ylm(θ ,ϕ). (17)
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This indicates that the proposed convolutional filter can be decomposed into band-limited and full-

bandwidth components. To investigate the proposed filter, we consider its spatial form:

h(θ ,ϕ) =
L

∑
l=0

(
ĥl0 −

α

C(l)

)
Yl0(θ ,ϕ)+

∞

∑
l=0

α

C(l)
Yl0(θ ,ϕ). (18)

The first term is a band-limited zonal filter. We will show that the second term hFB has a closed form.

Since hFB is a zonal filter and Yl0 is involved in the ordinary Legendre polynomial, we have

hFB(θ ,ϕ) =
∞

∑
l=0

α

C(l)
Yl0(θ ,ϕ)

=
∞

∑
l=0

α

C(l)
·
√

2l +1
4π

P0
l (cosθ)

=
∞

∑
l=0

α
2l +1
8π2 P0

l (cosθ)

=
α

4π2

∞

∑
l=0

2l +1
2

P0
l (cosθ).

(19)

Since the Dirac delta function δ has the following series of the Legendre polynomials for x,y ∈ [−1,1]:

δ (x− y) =
∞

∑
l=0

2l +1
2

P0
l (x)P

0
l (y), (20)

and P0
l (1) = 1 for all l, we can simplify Eq. (19):

hFB(θ ,ϕ) =
α

4π2 δ (cosθ −1). (21)

We now have a closed form of hFB as an impulse response at the north pole (θ = 0) and zero, otherwise.

Hence, the spatial form of h is composed of a band-limited zonal filter and an impulse response at the

north pole, which can maintain the high-frequency components of f as shown in Fig. 3. From Eq. (4), we

can show that the second term of Eq. (17) becomes a scaled ISHT of f̂ . By letting ĥ′l0 = ĥl0 −α/C(l),

we further simplify Eq. (17):

( f ∗h)(θ ,ϕ) =
L

∑
l=0

l

∑
m=−l

C(l) f̂lmĥ′l0Ylm(θ ,ϕ)+α f (θ ,ϕ), (22)

where {ĥ′l0}L
l=0 and α are learnable parameters. Consequently, the proposed full-bandwidth convolution

is feasible without the infinite harmonic expansion of both f and h. We can also verify that rotational

equivariance holds in the convolution by Eq. (10). It is noteworthy that the conventional band-limited

convolution is a special case of the proposed approach, where no impulse response is learnable (i.e.,

α = 0).

One may observe that the formula of the proposed convolution is similar to that of the residual net-

works proposed in [36]. However, we emphasize that our approach stems from a different perspective of

how high-frequency components are efficiently maintained associated with geometric details in spectral

convolution. This has not been studied well in existing spherical harmonics-based CNNs. Moreover, the

proposed full-bandwidth convolution can be further simplified by the spectral pooling operation [26] in

our framework unlike [36], which will be described in the next section.
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Band-limited filter Proposed filter

Geometry Band-limited conv. Proposed conv.

Figure 3: An example learned filter. Top: unlike a conventional filter (left), the proposed filter (right) has

a learnable impulse response at the north pole. Bottom: after spectral convolution of cortical geometry

(left) with the filters above, the band-limited convolution (middle) loses geometric details due to the

truncation of the high-frequency components. On the other hand, the proposed convolution (right)

maintains geometric details without the infinite expansion of spherical harmonics.

3.3 Spectral Pooling

In CNNs, a pooling operation is widely used on a uniform grid, which resamples input data by extracting

a maximal or average activation within a sub-region of the input data. In spherical CNNs, the pooling

operation on a uniform grid can be easily generalized over a spherical grid, on which the neighbor-

hoods are used to define a spherical sub-region for local data aggregation [20–22]. As expected, their

performance relies on the quality of ruling a spherical grid; unfortunately, uniform spatial tessellation

of the unit sphere is topologically implausible, which can likely over-/under-estimate local activation.

Moreover, the spatial pooling typically tends to suffer from stairstep artifacts as the reduction of spatial

resolution is enforced [37]. This motivates a spectral pooling technique [26,37] that limits the harmonic

expansion to address the tessellation issue posed in the spatial pooling. The spectral pooling naturally

allows low-pass filtering of the input data to smoothly adjust spatial changes while maintaining the

original spatial resolution.

In particular, the spectral pooling proposed in [26] has the following advantages over the conven-

tional spatial pooling: fast operation in the spectral domain, independence of spherical tessellation, and

rotational equivariance. To employ the spectral pooling, we simply limit the bandwidth of the proposed

convolution by L′ ≤ L without adjusting the spatial resolution. Formally, the spectral pooling is applied

to the convoluted signals from Eq. (22) as follows:

L′

∑
l=0

l

∑
m=−l

C(l) f̂lmĥl0Ylm(θ ,ϕ). (23)

Hence, geometric details can be easily controlled by tuning L′. Specifically, we decrease L′ as the
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encoding level increases akin to [26]. Similarly, we refine geometric details by increasing L′ as the

decoding level increases.

3.4 Numerical Implementation

Spherical Harmonic Basis

In our approach, spherical harmonics need to be expanded to encode spherical signals sufficiently. Al-

though the analytic expansion is readily available, numerical stability should be considered due to ma-

chine precision in practice. Consider the following Schmidt semi-normalized associated polynomial

P̄m
l (cosθ) =

√
2−δm0

√
(l −|m|)!
(l + |m|)!

P|m|
l (cosθ). (24)

where δm0 is the Kronecker delta function. By plugging Eq. (24) into Eq. (3), we can rewrite a real

harmonic basis without introducing complex terms.

Ylm(θ ,ϕ) =


(−1)m

√
2l+1
4π

P̄m
l (cosθ)sin(−mϕ), m < 0√

2l+1
4π

P̄0
l (cosθ), m = 0

(−1)m
√

2l+1
4π

P̄m
l (cosθ)cos(mϕ), m > 0.

(25)

From a numerical perspective, evaluating Eq. (25) may suffer from numerical instability as l becomes

larger due to the factorial expansion in Eq. (24) [38]. However, Eq. (24) can be efficiently computed

by a standard three-term recursion without the explicit factorial expansion [38, 39]. The approach is

known to guarantee numerical stability up to a harmonic degree of 2,700 on a modern machine [38]. As

the harmonic expansion at each spherical location is computationally independent, the expansion over

the entire sphere can be further accelerated by parallel processing for computational efficiency. Since

we assume that spherical data share common tessellation in this work, the harmonic bases need to be

computed once.

SHT and ISHT

In our approach, spatial signals need to be recovered via ISHT to enable nonlinear activation of the

networks. Then, SHT converts the spatial activation back into the spectral domain, which requires proper

tessellation of the unit sphere. Conventionally, a linear least squares is widely used to estimate spherical

harmonic coefficients in SHT by collecting spherical signals over a discrete grid [35]. However, this

approach is computationally expensive due to the pseudo-inverse of discretized harmonic bases. For

computational efficiency, we rather utilize icosahedral subdivision [29] to employ a nearly uniform grid

on the unit sphere. Motivated by [40], we numerically approximate the integral of Eq. (5) by a finite

sum over the icosahedral tessellation without solving the least squares. This consequently simplifies

both SHT and ISHT into a form of matrix multiplication. More formally, we denote the sampling points

of the icosahedral tessellation by vi ∈ S2, i = 1, · · · ,N. Given a proper resolution of the tessellation, we
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have the following approximation of SHT from Eq. (5):

f̂lm ≈
N

∑
i=1

f (vi)Ylm(vi)∆(vi), (26)

where ∆(vi) is the area at vi calculated across the adjacent triangles of vi. As reported in [40], the

approximation error becomes negligible for N ≥ 40,962. As the triangles of the icosahedral tessellation

are nearly regular, the area at vi can be estimated by

∆(vi) =
1
3

ki

∑
j=1

Tj(vi), (27)

where ki is the number of the adjacent triangles of vi and Tj(vi) is the associated area [40]. From Eqs. (26)

and (27), SHT can be thus rewritten as a form of matrix multiplication. We denote the respective

collections of spherical signals and harmonic coefficients by

f = [ f (v1), · · · , f (vN)]
⊤ and f̂ l =

[
f̂l,−l, · · · , f̂ll

]⊤
, (28)

and the discretized harmonic basis at degree of l by

ylm = [Ylm(v1), · · · ,Ylm(vN)]
⊤ and Yl =

[
yl,−l, · · · ,yll

]
. (29)

Given a bandwidth L, we have

Y = [Y0, · · · ,YL] and f̂ =


f̂ 0
...

f̂ L

 . (30)

Hence, the harmonic coefficients of ylm can be obtained by

f̂lm = y⊤lmdiag(a) f , (31)

where a = [∆(v1), · · · ,∆(vN)]
⊤. This yields the following form of matrix multiplication:

f̂ = Y⊤diag(a) f . (32)

For ISHT, we can easily show

f = Y f̂ . (33)

This suggests that both SHT and ISHT can be efficiently solved by parallel processing while reducing

the order of computation compared to the least squares approach.

3.5 SPHARM-Net

We adapt a standard U-Net architecture [13] that consists of encoder (contracting networks) and sym-

metric decoder (expanding networks) layers. Specifically, SPHARM-Net is composed of successive

convolutional blocks that include multiple components in order: SHT (Eq. (32)), a convolutional layer

11



(either Eqs. (22) or (23)), ISHT (Eq. (33)), a batch normalization layer [41], and a rectified linear unit

(ReLU) [42]. Like [13], SPHARM-Net contracts the convolutional networks in the encoding phase

while analogously expanding the convolutional networks in the decoding phase (see Fig. 2). As stated,

we can control the contraction/expansion of the convolutional networks by harmonic bandwidth L′ rather

than spatial resolution. We set L′ = L/2 for the entry/final pooling operation. We then halve (double)

L′ and double (halve) channels in the encoding (decoding) phase like a standard U-Net [13]. As de-

scribed already, our convolutional layers support two types of operations: spectral convolution with full

bandwidth (SHConv-FB, Eq. (22)) and with the spectral pooling (SHConv, Eq. (23)). The proposed con-

volutional block uses SHConv except for the entry and final layers that maintain fine geometric details.

This follows the original concept of fine feature representations in a standard U-Net. Furthermore, we

parameterize the spectrum by every i-th degree (we empirically set i = 5) and linearly interpolate the

harmonic coefficients to encourage spatial localization of the convolutional filter and to achieve com-

putational efficiency [26, 43]. Once again, the proposed convolution including SHT and ISHT is fully

composed of matrix transformations, which offers fast learning and inference.
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IV Results

Table 1: ROIs defined by the Desikan-Killiany Protocol. *: unavailable in Mindboggle-101. *: merged

in NAMIC.

*0. Unknown *1. Bank of Superior Temporal 2. Caudal Anterior Cingulate 3. Caudal Middle Frontal

*4. Corpus Callosum 5. Cuneus 6. Entorhinal 7. Fusiform

8. Inferior Parietal 9. Inferior Temporal 10. Isthmus Cingulate 11. Lateral Occipital

12. Lateral Orbitofrontal 13. Lingual 14. Medial Orbitofrontal 15. Middle Temporal

16. Parahippocampal 17. Paracentral 18. Pars Opercularis 19. Pars Orbitalis

20. Pars Triangularis 21. Pericalcarine 22. Postcentral 23. Posterior Cingulate

24. Precentral 25. Precuneus 26. Rostral Anterior Cingulate 27. Rostral Middle Frontal

28. Superior Frontal 29. Superior Parietal 30. Superior Temporal 31. Supramarginal

*32. Frontal Pole *33. Temporal Pole 34. Transverse Temporal *35. Insula

16 (77K) 32 (280K) 64 (1.1M) 128 (4.3M) 256 (17M)
Channel C (param)

87.8

88.0

88.2

88.4

88.6

Di
ce

 (%
)

SPHARM-Net w/o SHConv-FB

1 2 3 4
Depth D (C=64)

87.8

88.0

88.2

88.4

88.6

1 2 3 4
Depth D (C=128)

87.8

88.0

88.2

88.4

88.6

SPHARM-Net (L=40)
w/o SHConv_FB (L=40)

SPHARM-Net (L=80)
w/o SHConv_FB (L=80)

SPHARM-Net (L=120)
w/o SHConv_FB (L=120)

(a) (b) (c)

Figure 4: Ablation study. Starting from a base configuration (C = 128, L = 80, and D = 3), the ab-

lation study is performed by controlling each of them while fixing others. (a) at L = 80 and D = 3, a

constant performance gap is observed across C between with and without SHConv-FB. (b) at C = 64,

a performance gap is relatively constant across D at L = 40, while it becomes significantly wider from

D = 3 at L = 80 and 120. (c) similar trends to (b) are observed at C = 128. The performance becomes

plateau both with and without SHConv-FB from D= 3. (b-c) it is noteworthy that SHConv-FB at C = 64

outperforms the ablated SPHARM-Net at C ≥ 64.

4.1 Experimental Setup

Imaging Data

We validated SPHARM-Net on two public datasets: Mindboggle-101 (101 participants) [3] and NAMIC

(39 participants) [1]. In both datasets, the cortical surfaces were reconstructed with their invertible

spherical mappings by a standard FreeSurfer pipeline [6] and then manually annotated with 35 sub-

regions (M = 35) via the Desikan-Killiany (DK) protocol [1] (see Table 1). In [3], they released the

Mindboggle-101 dataset with the revision of the DK protocol to avoid spatial ambiguity: the insula was

additionally defined from the unknown region (0 in Table 1), while 4 regions (1, 4, 32, and 33 in Table 1)
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were merged into their neighboring ROIs. This results in a total of 32 regions (M = 32). Following

[27, 44], we used three geometric features (K = 3) to represent multi-resolution of cortical geometry:

mean curvature of both inflated and smoothed gray/white surfaces as well as average convexity [6]. All

the individual spheres were re-tessellated via icosahedral subdivision of 40,962 vertices [29]. Finally,

we only used the left hemisphere for training due to similar anatomical patterns observed in the right

hemisphere.

Training and Evaluation

To train our model, we used the Dice loss proposed in [8] and the Adam optimizer [45] at an initial

learning rate of 0.01 with decay by a factor of 0.1 if no improvement is made in two consecutive epochs.

We employed 5-fold cross-validation, in which the original datasets are split into 5 partitions with 60%

(3 partitions) for training, 20% (1 partition) each for validation and test. For each fold, we then circulated

the partitions to achieve full validation. In the test phase, we used the learned model parameters at the

peak accuracy in the validation set. The vertex-wise discriminant in the test set was then transferred to

the original surface tessellation to determine final labels [44]. Furthermore, we shuffled the datasets prior

to the cross-validation by setting 5 different random seeds to reduce a potential data bias introduced in

the training phase (i.e., a total of five 5-fold cross-validation procedures). To evaluate performance, we

computed the mean Dice score for each ROI across the random seeds. We used the gray/white surfaces

to compute Dice overlap as they are fed to the spherical mapping [6], where sphere-based parcellation

can be evaluated with minimal area distortion. All the experiments were conducted on an NVIDIA

GeForce RTX 3090 with 24 GB memory.

4.2 Baseline Methods

We compared SPHARM-Net to the state-of-the-art cortical parcellation methods: FreeSurfer [4] and

spherical CNNs [21, 22, 27]. For fair comparisons, we aligned the sphere of each cortex using its corti-

cal geometry to reduce potential misalignment errors that might affect the performance of the baseline

methods. It is noteworthy that our approach is independent of initial alignments because of rotational

invariance, which we report in the experimental results. We also followed the same training configura-

tions of the baseline methods as their original work [22, 27], which are optimally tweaked for a cortical

parcellation task (data augmentation strategy, hyperparameter settings, etc.). For [4], we co-registered

the individual spheres for each dataset in an atlas building scheme [5] using [6] as surface registration

is required in [4]. We applied the same evaluation criteria as used in SPHARM-Net to the baseline

methods. We evaluated the performance of SPHARM-Net over the baseline methods in terms of Dice

overlap (whole cortex and individual ROIs) by conducting paired t-tests.

4.3 Ablation Study

We evaluated the impact of SHConv-FB on the Mindboggle-101 dataset. To this end, we replaced

SHConv-FB with SHConv by fixing α = 0. For three tunable hyperparameters in SPHARM-Net (chan-
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Geometry L = 40 L = 80 L = 120

Figure 5: Learned feature maps with SHConv-FB. Top: learned filters at different bandwidth L. More

global patterns are observed at lower bandwidth while local details are sharpened as L increases. Middle:

filtered signals. Overall patterns become closer to the original geometry at lower bandwidth while more

local responses are added as L increases. Bottom: zoomed-in signals. No huge visual difference between

L = 80 and 120 may indicate similar parcellation performance (see Fig. 4(b-c)).

nel size C, encoder-decoder depth D, and harmonic bandwidth L), we varied each of them by fixing

others in this work. To determine the reference degree L, we followed the harmonic reconstruction error

in [35]. As the encoding block halves L, we chose L = 80 for divisibility by 2 up to D = 4 and for the

spectral parametrization at every 5th degree. We also probed the importance of the spectral pooling.

Channel Size

Due to the GPU memory limit, we validated SPHARM-Net up to a channel size of 256 at D = 3 and

L = 80. Overall, we observed the improved performance as C increases in SPHARM-Net both with and

without SHConv-FB as shown in Fig. 4(a). This is likely because the increased channel size offers more

flexibility in the spherical convolution. Nevertheless, a constant performance gap is observed across all

the channel sizes, in which we found statistically significant difference for the respective channel sizes

(p < 1.0×10−4). It is noteworthy that SHConv-FB at C = 64 outperforms the ablated SPHARM-Net at

C ≥ 64.
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Depth and Bandwidth

We further validated SPHARM-Net by controlling D and L at C = 64 (Fig. 4(b)) and 128 (Fig. 4(c)),

respectively. In both scenarios, we observed similar trends at L = 40, where a performance gap is

relatively constant across D (p < 0.05). At L = 80 and 120, a performance gap is marginal between with

and without SHConv-FB up to D = 2 while it becomes significantly wider from D = 3 (p < 5.0×10−5

at C = 64 and p < 1.0× 10−4 at C = 128). At C = 128, the performance then becomes plateau both

with and without SHConv-FB from D = 3 (p > 0.12). Like the ablation study of C, it can be observed

that SHConv-FB at D = 3 outperforms the ablated SPHARM-Net for all the depths at L = 80 and

120. This reduces the computing burden while improving parcellation performance. Therefore, we

could conclude from this experiment that SHConv-FB can consistently offer more accurate inference

by considering high-frequency components than the ablated SPHARM-Net in terms of Dice overlap

under the controlled configurations of the three hyperparameters. Throughout the ablation study, we

suggest C = 128, D = 3, and L = 80, which can fit a GPU device with 8 GB memory, and we used this

configuration throughout the remaining experiments. Fig. 5 shows an example of the learned feature

maps after the proposed convolution varying L with SHConv-FB.

Spectral Pooling

We investigated the impact of the spectral pooling on SPHARM-Net. Since the original pooling [26]

was proposed for object recognition tasks, its impact on cortical parcellation needs to be justified. For

each block of SPHARM-Net, we replaced SHConv with SHConv-FB, and L was fixed at 80. Due to

the GPU memory limit, we used C = 64 in this evaluation. SPHARM-Net without the spectral pooling

achieves 88.51 ± 1.87% in Dice overlap on the Mindboggle-101 dataset, which is comparable to that

with the spectral pooling (88.49 ± 1.83%, p = 0.32). Nevertheless, it is noteworthy that 3.26 times

more learnable parameters (3.58M) are required without the spectral pooling. This suggests that the

spectral pooling can efficiently capture global geometric features while reducing the number of learnable

parameters.

4.4 Comparisons to Baseline Methods

We compared SPHARM-Net to the baseline methods and investigated the importance of rotational

equivariance in spherical convolution. In addition to the suggested configuration (C = 128, L = 80,

and D = 3, SPHARM-Net (128)), we further adjusted the hyperparameters to match the number of

learnable parameters to that of the baseline methods for fair comparisons (see Tables 2 and 3). We then

reported Dice scores for all the methods and their p values against SPHARM-Net (128) after paired

t-tests. As SPHARM-Net is independent of rigid alignment, we reported the performance before and

after rigid alignment, and no augmented samples were used.
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Table 2: Mean Dice score on Mindboggle-101. Param: # of learnable parameters. Rot: rigid alignment.

Aug: data augmentation.

Method Param Dice (%) p value Rot Aug

SPHARM-Net (128) 4.31M 88.64 ± 1.83 - Yes No

SPHARM-Net (64) 1.10M 88.49 ± 1.83 2.3×10−11 Yes No

SPHARM-Net (16) 77K 87.86 ± 1.84 2.3×10−40 Yes No

FreeSurfer [4] - 87.41 ± 1.82 5.6×10−21 Yes No

SU-Net [22] 1.67M 87.04 ± 1.90 4.2×10−31 Yes No

SU-Net+Aug [22] 1.67M 88.33 ± 1.57 2.1×10−5 Yes Yes

UGSCNN [21] 5.18M 84.16 ± 2.85 6.9×10−33 Yes No

UGSCNN+Aug [27] 5.18M 86.28 ± 2.54 3.5×10−18 Yes Yes

SPHARM-Net (128) 4.31M 88.64 ± 1.83 0.66 No No

SPHARM-Net (64) 1.10M 88.49 ± 1.87 8.6×10−8 No No

SPHARM-Net (16) 77K 87.86 ± 1.85 9.0×10−41 No No

Mindboggle-101 Dataset

Statistical tests reveal that SPHARM-Net at C = 64 (SPHARM-Net (64)) and 128 outperforms the base-

line methods as summarized in Table 2. The minimal SPHARM-Net (C = 16, SPHARM-Net (16))

achieves even better performance than the baseline methods except for SU-Net with data augmentation.

However, it should be noted in this case that SPHARM-Net (16) utilizes only 77K learnable parameters

compared to 1.67M of SU-Net (21 times more than ours). As observed in Table 2, data augmentation in

the baseline spherical CNNs is key to improving their performance. This is mainly due to the absence

of rotational equivariance in their spherical convolution, which needs rotational data augmentation to

cover the configuration space of spherical rotation. By contrast, rigid alignment and rotational data aug-

mentation statistically have no effects on SPHARM-Net for all the channels (p = 0.96 at C = 16 and

p = 0.80 at C = 64) because the proposed rotation-equivariant convolution already encodes SO(3). In

ROI-wise evaluation, we found that 21, 32, and 15 regions are significantly improved by SPHARM-Net

(128) against FreeSurfer, UGSCNN with data augmentation, and SU-Net with data augmentation, re-

spectively. No regions show worse performance than the baseline spherical CNNs but the insula than

FreeSurfer after multi-comparison correction using false discovery rate (FDR) [46] at q = 0.05 (see

Fig. 6). We further investigated the performance of SPHARM-Net in a worst-case scenario. Fig. 8 il-

lustrates an example subject with the lowest Dice score of the whole cortex in SPHARM-Net. Despite

comparable performance to the baseline method even in this case, SPHARM-Net still improves small

regions in visual inspection.
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NAMIC Dataset

To investigate the effectiveness of rotational equivariance, we further evaluated SPHARM-Net on the

NAMIC dataset that includes a smaller number of participants but more parcellation labels than the

Mindboggle-101 dataset. Since the number of ROIs is a bit larger than that of the Mindboggle-101

dataset, the learnable parameters increase in all the methods. As expected, the overall performance

across all the methods becomes worse than that on the Mindboggle-101 dataset. Nevertheless, we ob-

served similar trends to the Mindboggle-101 dataset and even SPHARM-Net (16) outperforms all the

baseline spherical CNNs (p < 4.2× 10−3). It is noteworthy that the importance of data augmentation

in this dataset is much stressed in the baseline spherical CNNs. A huge performance gap is clearly ob-

served between before and after introducing data augmentation as shown in Table 3. On the other hand,

SPHARM-Net achieves comparable performance regardless of rigid alignment (p = 0.75 at C = 16 and

p = 0.98 at C = 64). Once again, this suggests that rotational equivariance in the proposed convolution

avoids extensive data augmentation without losing performance. Meanwhile, no significant difference

in overall Dice overlap is revealed between FreeSurfer and SPHARM-Net (128). In ROI-wise evalu-

ation, we found that 1, 35, and 14 regions are significantly improved by SPHARM-Net (128) against

FreeSurfer, UGSCNN with data augmentation, and SU-Net with data augmentation, respectively. No

regions show worse performance than the baseline methods after FDR at q = 0.05 as shown in Fig. 7.

Fig. 9 illustrates an example of the improved Dice overlap in a small region by SPHARM-Net.

Table 3: Mean Dice score on NAMIC. Param: # of learnable parameters. Rot: rigid alignment. Aug:

data augmentation.

Method Param Dice (%) p value Rot Aug

SPHARM-Net (128) 4.32M 85.48 ± 2.52 - Yes No

SPHARM-Net (64) 1.10M 85.33 ± 2.45 2.0×10−4 Yes No

SPHARM-Net (16) 78K 84.88 ± 2.61 1.2×10−14 Yes No

FreeSurfer [4] - 85.51 ± 2.53 0.86 Yes No

SU-Net [22] 1.67M 76.79 ± 2.73 4.5×10−26 Yes No

SU-Net+Aug [22] 1.67M 84.50 ± 2.14 1.4×10−10 Yes Yes

UGSCNN [21] 5.18M 76.74 ± 5.63 7.3×10−15 Yes No

UGSCNN+Aug [27] 5.18M 81.53 ± 4.36 2.3×10−8 Yes Yes

SPHARM-Net (128) 4.32M 85.45 ± 2.46 0.16 No No

SPHARM-Net (64) 1.10M 85.33 ± 2.46 4.1×10−4 No No

SPHARM-Net (16) 78K 84.86 ± 2.56 2.9×10−17 No No

4.5 Further Performance Evaluation

We further investigated the performance of SPHARM-Net in terms of spherical tessellation, runtime

benchmark, and rotation-equivariant inference on the right hemisphere from the left hemisphere. We
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Figure 6: ROI-wise Dice score on Mindboggle-101. The statistical significance is reported after multi-

comparison correction among the 32 ROIs (FDR at q = 0.05). SPHARM-Net shows higher Dice scores

than FreeSurfer, UGSCNN+Aug, and SU-Net+Aug in 21, 32, and 15 ROIs, respectively. No ROI is

observed with worse performance in SPHARM-Net against the baseline CNNs, whereas the insula (35)

achieves worse performance than FreeSurfer. *: statistical significance with better performance. *:

statistical significance with worse performance. Label number: see Table 1.
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Figure 7: ROI-wise Dice score on NAMIC. The statistical significance is reported after multi-

comparison correction among the 35 ROIs (FDR at q = 0.05). SPHARM-Net shows Dice scores than

FreeSurfer, UGSCNN+Aug, and SU-Net+Aug in 1, 35, and 14 ROIs, respectively. No ROI is observed

with worse performance in SPHARM-Net against the baseline methods. *: statistical significance. Label

number: see Table 1.

used the Mindboggle-101 dataset for the evaluation, and the same baseline spherical CNNs as in the

previous section were employed to evaluate runtime benchmark and rotational equivariance.

Spherical Tessellation

The proposed filter is independent of a neighborhood definition as it is a collection of spherical harmonic

coefficients. Meanwhile, SHT approximates the integral of Eq. (5) by Eq. (26) in SPHARM-Net and

can be thus affected by sampling uniformity. To investigate this, we evaluated SPHARM-Net on an

equiangular grid along θ and ϕ with an interval of π/144 (40,898 vertices) as well as a lower resolution

of icosahedral subdivision (10,242 vertices). Table 4 summarizes Dice scores with respect to spherical

tessellation. A performance gap is observed between with and without rigid alignment in the equiangular

sampling (p = 2.4× 10−4) as denser sampling points exist around the poles than the equator in a unit
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Manual annotation FreeSurfer UGSCNN+Aug

Dice (%) 82.07 83.43

SU-Net+Aug SPHARM-Net (128)

85.07 84.52

Figure 8: Visual inspection of worst-case scenario (lowest mean Dice) in SPHARM-Net within

Mindboggle-101 and its comparison to the baseline methods. Overall, all the methods achieve com-

parable Dice scores in this example while a subtle visual difference is observed in small regions. On

the boundary of Triangularis (orange), the upper (green arrow) and lower (red arrow) boundaries are

underestimated by the baseline methods, whereas SPHARM-Net offers improved inference on the upper

boundary. The inflated surface is used for better visualization.

Dice (%) 81.00 67.60 72.64 85.63 87.73

Manual annotation FreeSurfer UGSCNN+Aug SU-Net+Aug w/o SHConv-FB SPHARM-Net (128)

Figure 9: Visual inspection of improved parcellation accuracy in a small region. The zoomed-in frontal

pole colored by violet (yellow dotted ellipse) is illustrated from a coronal view. The overall size in

FreeSurfer is smaller than the manual annotation, whereas longer tails are annotated by the baseline

spherical CNNs. SPHARM-Net without SHConv-FB improves the accuracy but shrinks the overall size,

which is likely because geometric details are overly smoothed out by the harmonic truncation. This

limitation is further overcome by the use of SHConv-FB that supports full-bandwidth convolution. The

inflated surface is used for better visualization.

area, compared to the icosahedral subdivision. In the icosahedral subdivision, consistent performance is

observed regardless of rigid alignment (p = 0.39) while Eq. (26) becomes less accurate than the higher

resolution, yielding lower accuracy.
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Table 4: SPHARM-Net (128) with different spherical tessellation on Mindboggle-101. Vertices: # of

vertices. Rot: rigid alignment.

Method Vertices Dice (%) Rot

Icosahedron 40,962 88.64 ± 1.83 Yes

Icosahedron 10,242 88.57 ± 1.85 Yes

Equiangle 40,898 88.24 ± 1.83 Yes

Icosahedron 40,962 88.64 ± 1.83 No

Icosahedron 10,242 88.55 ± 1.82 No

Equiangle 40,898 88.17 ± 1.82 No

Runtime Benchmark

Table 5 summarizes runtime comparisons to the baseline spherical CNNs. As SPHARM-Net reserves

spherical harmonic bases (1,001 MB GPU memory on 40,962 vertices in single precision), it tends

to utilize more memory than the baseline spherical CNNs. Meanwhile, SPHARM-Net is free from

rotational data augmentation, by which it converges in 20 epochs, whereas [22] and [27] converge in

15 and 30 epochs with a large number of samples. As SPHARM-Net (128) has a higher iteration-per-

second rate than [22] and [27], the training time of SPHARM-Net (128) is 38.85 and 19.21 times faster

than [22] and [27], respectively, as summarized in Table 5. Although [22] achieves the fastest inference

time, all the methods take less than a second. Note that the data preprocessing is excluded in measuring

training and inference time. In this experiment, we observed that SPHARM-Net can achieve comparable

performance to that of the baseline methods with a small sample size but while offering fast training.
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Figure 10: Area variance of common ROIs between Mindboggle-101 and NAMIC. To test equal vari-

ance, ROIs are mapped onto the unit sphere. Because some ROIs are merged into their neighbors in

Mindboggle-101, computing variance can have a scaling issue. Hence, the mapped area of each ROI is

divided by the mean area of that ROI in each dataset. F-tests reveal that 13 regions have different vari-

ance between the two datasets after FDR at q = 0.05, potentially indicating a performance gap between

the two datasets. *: statistical significance. Label number: see Table 1.
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Table 5: Benchmark on Mindboggle-101 at batch size of 1. The GPU memory consumption may vary

depending on CUDA kernels. Samples: # of training samples. Ips: iteration-per-second rate. Epoch:

maximum epochs. Param: # of learnable parameters.

Method Memory (MB) Samples Ips Epoch Training (min) Inference (msec) Param Dice (%)

SPHARM-Net (128) 8,081 60 9.19 20 2.18 44.14 4.31M 88.64 ± 1.83

SPHARM-Net (64) 4,297 60 15.17 20 1.32 25.54 1.10M 88.49 ± 1.83

SPHARM-Net (16) 2,817 60 16.55 20 1.21 17.60 77K 87.86 ± 1.84

SU-Net+Aug [22] 1,665 3,000 8.87 15 84.55 6.44 1.67M 88.33 ± 1.57

UGSCNN+Aug [27] 2,331 660 7.89 30 41.82 261.25 5.18M 86.28 ± 2.54

Rotational Equivariance

We further investigated rotational equivariance. We used the right hemisphere as an external validation

set for the trained models in Table 2. Since the right hemisphere is reflected and potentially rotated, we

built the two respective test sets with and without reflection and rigid alignment of the right hemisphere.

As shown in Table 6, huge performance degeneration is observed without reflection and rigid alignment

in the baseline spherical CNNs, whereas SPHARM-Net consistently subdivides the right hemisphere

regardless of the data preprocessing (p = 0.75). This is because the data orientation is learned by rota-

tional equivariance and the proposed zonal (isotropic) filters generate consistent responses independent

of the data reflection.

Non-rigid Data Augmentation

To understand the impact of non-rigid data augmentation, we investigated the performance of SPHARM-

Net on the augmented training samples generated by [27]. As shown in Table 7, no significant difference

was revealed between with and without the augmentation technique (p = 0.68). This consistency may

occur because the proposed filter is isotropic, implying limited flexibility in fully capturing non-rigid

local changes. Further investigation into the filter representation could improve SPHARM-Net.

Table 6: Inference on the right hemisphere using the models (Table 2) trained from the left hemisphere

in Mindboggle-101. Ref+Rot: reflection and rigid alignment of test data.

Method Dice (%) Ref+Rot

SPHARM-Net (128) 86.46 ± 1.84 Yes

SU-Net+Aug [22] 85.83 ± 1.88 Yes

UGSCNN+Aug [27] 84.01 ± 3.74 Yes

SPHARM-Net (128) 86.45 ± 1.84 No

SU-Net+Aug [22] 14.91 ± 2.11 No

UGSCNN+Aug [27] 15.83 ± 2.04 No
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Table 7: SPHARM-Net (128) with non-rigid augmentation on Mindboggle-101. Rot: rigid alignment.

Aug: data augmentation.

Method Dice (%) p value Rot Aug Samples

SPHARM-Net (128) 88.64 ± 1.83 - Yes No 60

SPHARM-Net (128)+Aug 88.62 ± 1.86 0.68 Yes Yes 660

V Conclusion

In this work, we proposed SPHARM-Net, a novel spherical harmonics-based CNN built on the convolu-

tion theorem. The main motivation of using spherical harmonics is to model full-bandwidth convolution

and to preserve rotational equivariance while avoiding a specific neighborhood definition for spherical

convolution. To overcome limited machine capacity, we introduced a learnable impulse response at the

north pole, where a single learnable parameter covers full bandwidth. This improves the flexibility of

the proposed filter in spherical convolution by allowing high-frequency components. The experimental

results show that the enhanced descriptive features can be extracted from spherical signals and rotational

equivariance can capture spatially varying anatomical sub-regions. We observed that rotational equiv-

ariance can drastically reduce the training time while improving parcellation performance. Furthermore,

the proposed convolution is fully composed of matrix transformations, which offers efficient and fast

training and inference. On public datasets, we showed that SPHARM-Net outperforms the state-of-the-

art methods with fewer learnable parameters without extensive data augmentation.
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