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Abstract 

 

One of the major goals of neuroscience is to understand how the external world is represented in the 

brain. This is a neural coding problem: the coding from the external world to its neural representations. 

There are two different kinds of problems with neural coding. One is to study the types of neuronal 

activity that represent the external world. Representative examples here are rate coding and temporal 

coding. In this study, we will present the spike distance method that reads temporal coding-related 

information from neural data. Another is to study what principles make such neural representations 

possible. This is an approach to the computational principle and the main topic of the present study. The 

brain sensory system has hierarchical structures. It is important to find the principles assigning functions 

to the hierarchical structures. On the one hand, the hierarchical structures of the brain sensory system 

contain both bottom-up and top-down pathways. In this bidirectional hierarchical structure, two types 

of neuronal noise are generated. One of them is noise generated as neural information fluctuates across 

the hierarchy according to the initial condition of the neural response, even if the external sensory input 

is static. Another is noise, precisely error, caused by coding different information in each hierarchy 

because of the transmission delay of information when external sensory input is dynamic. Despite these 

noise problems, it seems that sensory information processing is performed without any major problems 

in the sensory system of the real brain. Therefore, a neural coding principle that can overcome these 

noise problems is needed; How can the brain overcome these noise problems? Efficient coding is one 

of representative neural coding principles, however, existing efficient coding does not take into account 

these noise problems. To treat these noise problems, as one of efficient coding principles, we devised 

spatio-temporal efficient coding, which was inspired by the efficient use of given space and time 

resources, to optimize bidirectional information transmission on the hierarchical structures. This 

optimization is to learn smooth neural responses on time domain. In simulations, we showed spatio-

temporal efficient coding was able to solve above two noise problems. We expect that spatio-temporal 

efficient coding helps us to understand how the brain computes. 

 

Keywords – Efficient coding, Hierarchical structure, Neural coding, Neural representation, Neuronal 

noise, Sensory system, Spike distance, Temporal coding. 
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1. Introduction 

 

1.A. Backgrounds and motivations 

One of the most important goals of neuroscience is to understand how the external world is represented 

in the brain, and how the brain adapts to the external world based on those neural representations 

(deCharms and Zador, 2000; Kriegeskorte and Diedrichsen, 2019). This is a neural coding problem: the 

coding from the external world to its neural representations. There are two different kinds of problems 

with neural coding. One is to study the types of neuronal activity that represent the external world. 

Roughly speaking, this is a data-driven approach. Based on neural data, it has been studied that the 

firing rate and firing timing of neurons code such information. This is called rate coding and temporal 

coding, respectively. In the section 2, we will first review this rate coding and temporal coding, and also 

review the spike distance, a method for measuring information of rate coding and temporal coding from 

data. Another is to study what principles make such neural representations possible. This is an approach 

to the computational principle and the main topic of the present study. 

It has long been accepted that the brain, especially sensory system, has a hierarchical structure 

(Felleman and Van Essen, 1991; Mesulam, 1998; Harris et al., 2019; Hilgetag and Goulas, 2020). This 

hierarchical structure is related to gene expression (Burt et al., 2018; Hansen et al., 2021), suggesting 

that the hierarchical structure is genetically determined and a priori. Then, how can a prior hierarchical 

brain structure be given the function to represent the external world? 

The hierarchical structure of the sensory system is bidirectional; The hierarchical structure has not only 

bottom-up pathway but also top-down pathway, even in early sensory (visual) system such as the lateral 

geniculate nucleus (Murphy and Sillito, 1987; Wang et al., 2006) and the primary visual cortex (Zhang 

et al., 2014; Muckli et al., 2015; Huh et al., 2018). In this bidirectional hierarchical structure, two types 

of neuronal noise can be generated, where neuronal noise is defined as the uncertainty of neural 

responses for given sensory input (Borst and Theunissen, 1999). One of them is noise generated as 

neural information fluctuates across the hierarchy according to the initial condition of the neural 

response, even if the external sensory input is static. It is known that this can occur in interconnected 

structures as a chaotic dynamics sensitive to the initial condition (Rubinov et al., 2009; Tomov et al., 

2014). This is neuronal noise when static sensory inputs are given. Another is noise, precisely error, 

caused by coding different information in each hierarchy because of the transmission delay of 

information (Berry et al., 1999) when external sensory input is dynamic. Because of the information 

transmission delay, (lower) hierarchies close to the sensory organ represent relatively recent information, 



and (upper) hierarchies distant from the sensory organ represent information relatively old, if external 

inputs are dynamic (changed). By the top-down pathway, old information in the upper hierarchy affects 

recent information in the lower hierarchy, and this becomes neuronal noise when dynamic sensory 

inputs are given. Despite these noise (error) problems, it seems that sensory information processing is 

performed without any major problems in the sensory system of the real brain. For the first noise 

problem (static sensory input), neural responses in sensory systems are decodable in both neuronal 

spikes (Berens et al., 2012; Zavitz et al., 2016) and blood-oxygen-level-dependent responses (Kamitani 

and Tong, 2005; Brouwer and Heeger 2009), indicating that the real brain is robust to noise of this type 

because this means the uncertainty of neural responses are not very large. For the second noise (error) 

problem (dynamic sensory input), the sensory system has information of future sensory input (Palmer 

et al., 2015; Chen et al., 2017; Sederberg et al., 2018; Liu et al., 2021), minimizing information 

discrepancy across the hierarchy. This suggests that the real brain is robust to noise (error) of this type 

because the miss-informed noise (erroneous information) across hierarchy decreases as decreasing of 

information discrepancy across the hierarchy. Therefore, a neural coding principle that can overcome 

these noise problems is needed; How can the brain overcome these noise problems? 

 

1.B. Related works 

The traditional view of information processing on the hierarchical structure is that bottom-up 

information processing, where simple features are processed in lower hierarchy and more complex 

features created from simple features are processed in higher hierarchy (Hubel and Wiesel, 1962; Hubel 

and Wiesel, 1968; Riesenhuber and Poggio, 1999; Riesenhuber and Poggio, 2000; Serre et al., 2007; 

DiCarlo et al., 2012; Yamins et al., 2014). However this view cannot take account of the role of top-

down pathways which are abundant in the brain sensory system. 

The role of top-down visual processing is emphasized in predictive coding (Rao and Ballard, 1999; 

Spratling, 2017) which is one of neural coding principles. According to predictive coding higher 

hierarchy performs top-down predictions on the response of lower hierarchy. Both inference and 

learning of predictive coding are to minimize the bottom-up prediction errors. Predictive coding has 

been shown to be able to explain neural responses corresponding to prediction errors (Friston, 2005) 

and has been extended from the explanation of perceptions to actions (Friston, 2010; Clark, 2013). 

Prediction error minimization process in predictive coding may reduce the aforementioned neuronal 

noise where neuronal noise when static and dynamic sensory inputs are given. Nonetheless predictive 

coding has several theoretical disadvantages. Since inference in predictive coding is to minimize the 



prediction errors, it seems that the brain should have an additional information processing subsystem to 

perform the inference. Also, since bottom-up transmitted information is only prediction error, predictive 

coding requires the error units that are hypothetical entities while in some cases it is even difficult to 

observe prediction error responses (Solomon et al., 2021). Moreover, existing predictive coding is the 

problem on real-time information processing (Hogendoorn and Burkitt, 2019). 

Efficient coding, is one of such principles, aims to minimize informational redundancy of neural 

representations for the external world (Attneave, 1954; Barlow, 1961). The informational redundancy 

reduction is to use efficiently the space of neural responses subject to the maximal range of neural 

responses. Its biological plausibility has been verified in sensory systems (Laughlin, 1981). This has 

worked well for several sensory (visual) processing problems (Simoncelli and Olshausen, 2001). 

Efficient coding does not have the theoretical disadvantages of predictive coding; neither it needs 

additional information processing subsystems, hypothetical error units, nor the problem on real-time 

information processing. Efficient coding has been applied to several studies on the hierarchical structure: 

the studies for complex cell property (Karklin and Lewicki, 2009), visual recognition (Hu et al., 2014), 

and acoustic feature encoding (Zhang et al., 2019). However, these studies did not take into account the 

passage of time or studied in a unidirectional hierarchical structure where only bottom-up processing 

exists. In this environment, the aforementioned noise problems do not occur. These noise problems arise 

in bidirectional hierarchical structures on the time domain. The real brain environment is a bidirectional 

hierarchical structure on the time domain. 

 

1.C. Objectives 

The goal of the present study is to present a neural coding principle to overcome the aforementioned 

neuronal noise problem; neuronal noise when static and dynamic sensory inputs are given. We, therefore, 

propose a novel neural coding principle, spatio-temporally efficient coding, for bidirectional 

hierarchical structures on time domain. Spatio-temporally efficient coding, as one of efficient coding, 

underscored by the efficient use of given resources in both neural activity space and processing time. 

Spatio-temporally efficient coding minimizes temporal differences of neural responses (temporally 

efficient coding), and maximizes activity space of neural responses for different external sensory input 

(spatially efficient coding). We call the combination of temporally efficient coding and spatially 

efficient coding as spatiotemporal efficient coding. By spatio-temporally efficient coding, neural 

responses change smoothly but dynamically. 

In the section 3, we will review efficient coding and predictive coding, then will introduce spatio-



temporally efficient coding. In the section 4 and 5, we will show that spatio-temporally efficient coding 

solves the aforementioned neuronal noise problems: static sensory input (section 4) and dynamic 

sensory input (section 5). In the section 6, we will discuss all materials from the present study. 

Contents of the present study were based on the author’s previous studies (Sihn and Kim, 2019; Sihn 

and Kim, 2021; Sihn and Kim, 2022) and descriptions in the studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Scheme of neural coding 

 

In this section, we will cover types of neural activity that represent the external world, which is a kind 

of neural coding problem. These studies mainly deal with neural coding models of how neural data as 

a result of experiments represent experimental stimuli. Typical such neural coding models are rate 

coding and temporal coding. We will introduce these two coding principles first, and then we will cover 

the spike distance, which measures information according to this coding in real data. 

 

2.1. Rate coding and temporal coding 

 

A neuronal action potential is also called a spike. Rate coding claims that information for the external 

world is coded by the spike rate (firing rate) in the brain (deCharms and Zador, 2000). This is perhaps 

the most commonly accepted view. An extreme version of rate coding is that information is coded only 

at the spike rate (Adrian, 1928). Whereas temporal coding asserts that the spike timing also codes 

information (deCharms and Zador, 2000). For example, the spike timing pattern can encode information 

(Tabuchi et al., 2018). Currently, not only rate coding but also temporal coding is widely accepted (Butts 

et al., 2007; Gollisch and Meister, 2008; Johansson and Flanagan, 2009). 

Examples of information on rate coding and temporal coding can be found in figure 1 and 2. For figure 

1 and 2, the extracellular unit recording dataset (Zandvakili and Kohn, 2015; Semedo et al., 2019; 

Zandvakili and Kohn, 2019) was used. The dataset was publicly available at https://crcns.org/data-

sets/vc/v1v2-1/about_v1v2-1. The dataset contains the extracellular unit recording data which recorded 

in the primary visual cortex (V1) of the anesthetized monkey when the oriented grating stimuli were 

presented. Grating stimuli had eight orientations:  , and 7  /8 

(rad). For more experimental information, see Zandvakili and Kohn (2015). We used the 107l003p143 

data, which contains 111 V1 units. 

A spike train is the sequence of spike timings. Figure 1 shows the spike trains of unit #20 while the 

monkey is exposed to two grating stimuli in the 0 and  rad orientations, respectively. It can be 

seen that the spike trains for the two orientation stimuli are different in both spike rate and spike timing. 

This can be more easily seen in the peristimulus time histogram (trial-averaged spike trains) of the same 

unit (Figure 2A). As the orientation gradually changes, the spike rate also gradually changes, and the 



spike timing shifts. To quantify information on rate coding, the spike count was used (Figure 2B). To 

quantify information on temporal coding, the spike distance which is invariant to the spike rate changes 

was used (Figure 2C). This spike distance, is based on the earth mover’s distance, will be covered in 

the section 2.2.1. The unit which was used in figure 1 and 2 is an example of both rate coding and 

temporal coding. 

 

 

Figure 1. Spike trains for grating stimuli. (A) First 20 spike trains for the 0 rad orientation stimuli. 

(B) First 20 spike trains for the  rad orientation stimuli. 



 

 

Figure 2. Example of both rate coding and temporal coding. (A) The peristimulus time histogram 

for the eight orientation stimuli. (B) The spike counts of spike trains for each stimulus, which indicates 

rate coding. Filled square indicates the mean. Scale bar indicates the standard deviation. (C) The spike 

distances between spike trains from 0 rad stimulus to other stimuli, which indicates temporal coding. 

Filled square indicates the mean. Scale bar indicates the standard deviation. 

 



2.2. Spike distances: measures for rate coding and temporal coding 

 

A spike distance is a dissimilarity measure between two or more spike trains. The lower value of the 

spike distance indicates that the two spike trains are similar. The higher value of the spike distance 

indicates that the two spike trains are dissimilar. The measurement of spike distances can be designed 

to represent rate coding, temporal coding, or both (Satuvuori and Kreuz, 2018). 

Several methods to measure a spike distance have been proposed. Victor and Purpura introduced a cost-

based distance that assigns a cost to shifting, adding, or deleting a spike (Victor and Purpura 1996). In 

this method, the spike distance is defined as the minimum of all possible sums of costs. The Victor and 

Purpura distance depends on a time-scale parameter where the smaller value of the time-scale parameter 

emphasizes temporal coding while the larger value does rate coding. van Rossum (2001) also developed 

a spike distance that measures a difference between spike trains convolved with exponential functions. 

Most spike distances are rate-sensitive, reflecting an overall rate difference between spike trains to a 

certain extent even with an extreme time-scale parameter (Satuvuori and Kreuz, 2018). Here, the overall 

rate denotes the total number of spikes in a spike train divided by the time length of the train. If one 

aims to measure a distance between a pair of spike trains independent of the overall rate difference, 

which we call as purely timing-sensitive, the distance should reflect only a difference of spike timing 

distributions, no matter how different the overall spike rate is between trains. 

A purely timing-sensitive spike distance is important to neuroscience studies on temporal coding, which 

assumes that neurons code information in spike timing patterns (Tabuchi et al., 2018). If a spike distance 

is rate-sensitive, it would be difficult to clarify whether a given result from a neural spike train analysis 

is based only on the temporal information. It has been suggested that precise spike timing plays a crucial 

role in neural information processing (Butts et al., 2007; Gollisch and Meister, 2008; Johansson and 

Flanagan, 2009). 

Kreuz et al. developed the rate-sensitive ISI-distance, a spike distance based on a ratio between the 

inter-spike intervals of two spike trains (Kreuz et al. 2007). This was followed by the SPIKE-distance, 

a complementary distance which is still sensitive to rates but with a heightened sensitivity to spike 

timing (Kreuz et al. 2013). Finally, by removing rate dependence from the SPIKE-distance, Satuvuori 

et al. (2017) proposed the RI-SPIKE-distance as a distance purely sensitive to timing. The spike 

distances developed so far have been used in a number of studies for the analysis of neural firing patterns 

(MacLeod et al., 1998; Mechler et al., 1998; Victor and Purpura, 1998; Machens et al., 2001; Di Lorenzo 

and Victor, 2003; Narayan et al., 2006; Wang et al., 2007; Reich et al., 2001; Harvey et al., 2013; 



Fukushima et al., 2015; Logiaco et al., 2015; Vargas-Irwin et al., 2015; Jamali et al., 2016; Krause et 

al., 2017). 

 

2.2.1. Spike distance focused on temporal coding 

 

2.2.1.A. Introduction: a spike distance based on the earth mover’s distance 

If one wants to analyze data by focusing only on rate coding, one can simply use the spike count instead 

of the spike distance. If rate coding and temporal coding are to be considered together, an existing spike 

distance such as the Victor and Purpura distance can be used with the time-scale parameter which 

regulates rate-temporal coding (Victor and Purpura 1996). 

If one wants to focus only on temporal coding, it is necessary to use a rate-invariant spike distance. 

Unfortunately most spike distances are rate-sensitive (Satuvuori and Kreuz, 2018). Although Satuvuori 

et al. (2017) proposed the RI-SPIKE-distance as a distance purely sensitive to timing, it focuses on the 

local similarity between spike trains. Victor and Purpura distance measures the global similarity 

between spike trains; however it is rate-sensitive even in the extreme time-scale parameter (Satuvuori 

and Kreuz, 2018). In the present study, therefore, we adopt the earth mover’s distance (EMD) to measure 

spike distance with a unique shortest length. 

The EMD is also called the Wasserstein metric, which defines the distance between a pair of probability 

distributions. Here, a metric refers to a distance satisfying nonnegativity, symmetry and the triangle 

inequality. It measures the minimal cost based on an underlying distance taken to transfer from a 

probability distribution to another. It initially dealt with transportation problems (Kantorovich, 1940) 

and later modified toward today’s form (Vaserstein, 1969). The EMD also has been implemented as an 

algorithm in the field of computer science for the comparison between two images (Rubner et al., 2000). 

The main idea underlying the EMD is that the shortest distance between two objects is equal to the 

length of the shortest delivery path from one object to the other. For neural spike data, delivery in a 

spike train operates by moving a part of the spike train from one location to another, with a goal to 

match one spike train with the other. A delivery path length is then calculated by summing the delivery 

distance between two locations multiplied by the amount of a delivered part. If we deal with a spike 

train as a distribution with a sum of 1, then the EMD measures a unique shortest distance between a 

pair of spike trains in a non-parametric way. A notable difference of the EMD from that of Victor and 

Purpura (Victor and Purpura 1996) is that delivery in the method of Victor and Purpura moves an entire 



spike at once while delivery in the EMD can move a part of a spike. 

Two different spike trains may contain a different number of spikes. However, the total number of spikes 

of each spike train should be equalized to measure the distance between them based only on shifting 

spikes in time. Victor and Purpura (1996) solved this problem by assigning a cost to adding/deleting a 

spike and to shifting a spike in time. However, this solution cannot produce a unique distance because 

it varies with the ratio of two different costs. To address this shortcoming, in the proposed method, we 

first define a spike train in which each spike is assigned a fixed quantity of 1. Then, we normalized 

individual spikes by the total number of spikes, N, so that each spike’s quantity becomes 1/N after 

normalization. For the normalization, we consider a spike train as a function  of time  such that  

                                         (2.2.1.1) 

where  is the number of spikes in the spike train. The overall summation of  must be one except 

the case of . Hereafter, a spike train will be expressed as functions  or . 

In our method, the EMD between  and  proposed in Rubner et al. (2000) was adjusted for one-

dimensional data (i.e. a spike train) with a constraint that the sum of  or  should be equal to 1 

(Rubner et al., 2000). The EMD is described as follows. We first rewrite the spike trains, 

 and  from Equation 

(1) where  and  are a sequence of spike timings. Let  be an absolute difference between 

two spike timings  and . Let  be a flow (amount of delivery) from  to  and let  

be a matrix of these flows (amount of deliveries) such that it transports  to  satisfying the following 

conditions: 1)   is nonnegative; 2)  ,  ; and 3)  . 

Condition 1 fixes the direction of the delivery from  to . Condition 2 indicates an effective delivery 

in the sense that it does not take back what has been delivered. Condition 3 indicates that it delivers the 

entire spike train. The transportation here means that it makes  equal to  by moving parts of . 

Then, the EMD between  and  is given by 

.        (2.2.1.2) 

This concept of spike distance is illustrated in Figure 3A. 

When  (i.e. no spike in the train), the proposed method cannot calculate the distance directly. 

However, it can deal with such a case indirectly if we consider a spike train with no spike similar to a 

spike train with spikes everywhere so that the distance of it to any other trains becomes irrelevant to a 

certain spike timing pattern. Let  be a spike train with no spike and let  be another spike train to 



be compared. To calculate , let  be a spike train with  spikes generated from a uniform 

probability distribution defined on a certain bounded analysis domain. The bounded analysis domain 

prevents the distance from increasing to infinity, although the distance measurement depends on how 

the analysis domain is determined. Then, the EMD calculates  where  

indicates an expected value. To deal with an empty spike train in the EMD, we attended to an idea that 

there was also no information about spike timing if spikes are everywhere, uniformly distributed. It 

means that a spike train with one spike at a specific location holds more information about spike timing 

than a spike train with uniformly distributed spikes. In this regard, an empty spike train would be more 

similar to a spike train with uniformly distributed spikes at every location than a spike train with one 

spike. 

The EMD is a mathematical metric, that is, it satisfies the three conditions: nonnegativity, symmetry 

and the triangle inequality (Rubner et al., 2000). This property shows that the EMD conforms to our 

intuition about distance. Moreover, from the fact that the EMD is calculated solely based on spike timing 

data, it can be seen that the EMD is the shortest length based on spike timing between two spike trains. 

The EMD is calculated in a non-parametric way so that it produces a unique value. Due to its non-

parametric approach, the EMD can avoid the dependency of distance outcomes on parameters. 

Moreover, there is an efficient way to calculate the restricted version of the EMD as follows (Cohen, 

1999). Let  and  be the cumulative functions of  and , respectively. Then, the EMD is given 

by 

 .                                               (2.2.1.3) 

An example of the calculation procedure above is illustrated in Figure 3B. 

 



 

Figure 3. Calculation of the spike distance based on the earth mover’s distance. (A) Illustration of 

the basic concept of the earth mover’s distance (EMD) to measure a distance between spike trains. The 

objective is to take the smallest value among all possible delivery (flow, terminology in EMD) path 

lengths between two objects (red and green). In this illustrative example, the red object (e.g., spikes) is 

delivered to the green object in three possible paths. Assuming the size of the red object is 1, the path 

length is calculated by delivery distance (in time) multiplied by the amount of delivery (i.e., size of the 

object). It is also possible to deliver only a fraction of the object, as shown in the third case. If there are 

multiple deliveries toward the target object, the final delivery path length is the sum of individual 

delivery path lengths. (B) Illustration of the calculation procedure of the EMD described in Cohen 

(1999). The distance between two spike trains, A and B, is calculated. Initially, the nonnegative values 

are assigned to every spike such that the sum of the values in each train is equal to 1 (e.g., 1/2 for each 

spike in A or 1/3 for each in B). The next step is to produce the cumulative functions (CF) for each spike 

train (red bold line indicates the CF of spike train A and green dotted line indicates the CF of spike train 

B). The next step is to integrate the absolute difference between the two CFs (gray shading area). The 

final result of the calculation procedure is 7/3. 

 

2.2.1.B. Evaluation 



Our new spike distance was compared to four existing spike distances: 1) the Victor-Purpura distance 

(Victor and Purpura, 1996) with parameter values, q = 0.1, 0.2, …, 12.8 s-1; 2) the van Rossum distance 

(van Rossum, 2001) with parameter values,  = 1, 2, …, 16 s. Note that an alternative calculation 

method (Houghton and Kreuz, 2012) was used here instead of the original one (van Rossum, 2001); 3) 

the SPIKE-distance (Kreuz et al., 2013); and 4) the RI-SPIKE-distance (Satuvuori et al., 2017). 

The tested time-scale parameters of the Victor-Purpura distance and the van Rossum distance were 

determined as follows. For the Victor-Purpura distance parameter q, the time range of a spike train in 

which we performed the analysis was set to 0 - 10 s. Then we opted for values of q varying between 

two opposite cases: q = 0.1 s-1 and q = 12.8 s-1. The smallest q = 0.1 s-1 in the Victor-Purpura distance 

made the metric focus on a “spike timing shift” by assigning a cost of 1 to add/delete each spike, whereas 

it costed at most   for time-shifting a spike. Then, the value of q was 

increased by a factor of 2 up to the largest q = 12.8 s-1, which turned the algorithm to focus on “spike 

adding/deleting” by increasing the cost for time-shifting such as  even 

for shifting a spike by 1 s. 

Similarly, for the van Rossum distance, the smallest value of  = 1 s makes the convolved range narrow 

by setting the width of the exponential function to 1 s. Then, the value of  was increased by a factor 

of 2 up to the largest value of  = 16 s, which makes the convolved range cover the overall spike train 

by setting the width of the exponential function to 16 s. 

Taking spike counts into dissimilarity is a key difference between the EMD and the Victor-Purpura 

distance or the van Rossum distance. In fact, while the EMD is focused on temporal coding, both the 

Victor-Purpura distance and the van Rossum distance cover from a mixture of temporal coding and rate 

coding to pure rate coding by varying the time scale parameter q or , as they are so designed originally. 

We demonstrated such differences between the EMD and the Victor-Purpura distance or the van Rossum 

distance in the simulations. 

A comparison of the five spike distances was conducted to assess how well each distance represented 

two aspects of similarity between spike trains: spike timing difference, temporal similarity. Furthermore, 

each distance’s robustness to changes in firing rates was examined for temporal similarity. 

To avoid potential errors while replicating the existing distance calculation procedures, we directly 

utilized the available source code for each distance. The code to calculate the Victor-Purpura distance 

was obtained from http://www-users.med.cornell.edu/~jdvicto/spkdm.html. The code for the van 

Rossum distance was from http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/images/vanRossum.m. The 

codes for both the SPIKE-distance and the RI-SPIKE-distance were from 



http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html. 

For the calculation of the SPIKE-distance and the RI-SPIKE-distance, we always set the time range of 

the underlying dissimilarity profiles exactly equal to the spike generation interval. 

 

2.2.1.B.1. Spike timing difference 

A pair of spike trains with three spikes each was synthesized to test spike timing difference. The 

locations of the 1st and 3rd spikes were fixed and matched between the trains. The 2nd spike of the first 

train was fixed close to the 1st spike. Then, the location of the 2nd spike of the second train was moved 

toward the 3rd spike. This test paradigm was performed in the previous study by Kreuz et al. (2011) to 

compare several distances. We adopted it here with the inclusion of the van Rossum distance, the RI-

SPIKE-distance, and the EMD. In the test, we located the 1st spike at 0 s and the 3rd at 10 s in the two 

trains. The 2nd spike of the first train was fixed at 1 s. Then, the 2nd spike of the second train was moved 

from 1 s to 9 s in steps of 1 s (see Figure 4A). We measured the distance for each shift of the 2nd spike 

of the second train. 

The spike distance measurements exhibited differences among the five spike distances tested in this 

study. The Victor-Purpura distance linearly increased as the spike timing difference increased with one 

parameter value (q = 0.1 s), but was saturated with the other parameter values (q = 0.8, 12.8 s). Similarly, 

the van Rossum distance monotonically increased as the spike timing difference increased with one 

parameter (  = 16 s), but was saturated with another parameter (  = 1, 4 s). Both the SPIKE-distance 

and the RI-SPIKE-distance increased first but later decreased as the spike timing difference increased. 

The EMD linearly increased as the spike timing difference increased (Figure 4B). 

Also, we observed that the SPIKE-distance and the RI-SPIKE-distance consider the spike trains to be 

more similar if a middle spike is close to the edge spikes than if the middle spike is located at an equal 

distance from both edge spikes. The reason is that these methods focus on the local dissimilarity 

between spike trains. Two spike trains are locally similar when the middle spike is close to the edge 

spikes since then it becomes easier to see it as part of a doublet that together is quite synchronous with 

the single spike in the other spike train. In contrast, if the middle spike is located at an equal distance 

from both edge spikes, then the distance to the nearest spike in the other train is maximized, increasing 

local dissimilarity. The van Rossum distance seems to evaluate a similarity of two spike trains based on 

synchronization of spike timings within a certain temporal range, where the temporal range was 

determined by the time-scale parameter . Then, if two spikes from each spike train occurred within 

the temporal range, these spikes were deemed to be synchronized. The Victor-Purpura distance with the 



parameter q = 0.1 s (i.e. emphasizing temporal differences) and the EMD linearly increase as the 

difference of middle spikes is linearly increased, because these methods focus on equalizing two spike 

trains. Hence, for instance, if a difference in the latency of neural responses between spike trains is of 

interest, the Victor-Purpura distance with a small q and the EMD can provide an appropriate measure. 

The characteristics of distances for small spike timing differences (for example, the middle spike is 

shifted by 0, 1, or 2 in Figure 4B) can provide information about temporal precision of the spike timing. 

The Victor-Purpura distance (q = 0.1 s) and the EMD are linearly decreasing when the spike timing 

difference converges to zero. This linear property allows them to have the information about temporal 

precision, but with no conclusive answer to whether a timing difference between spike trains is precise 

or not. On the other hand, the van Rossum distance, the SPIKE-distance and the RI-SPIKE-distance are 

rapidly decreasing when the spike timing difference is nearing zero so that they can provide precise 

information whether timing difference falls within some range or not. 

 

 

Figure 4. Spike distance results for the measurement of spike timing differences. (A) Spike train A 

is fixed whereas spike train B is changed as the location of a middle spike is shifted from left to right 

so that the spike timing difference between A and B increases linearly. (B) The spike distance results of 

each of the five distances: the Victor-Purpura distance, the van Rossum distance, the SPIKE-distance, 

the RI-SPIKE-distance, and the EMD. The horizontal axis represents the amount of the shift of the 

middle spike in train B. The Victor-Purpura distance showed a linear increase in distance only for a 

certain parameter (e.g., q = 0.1 s). The van Rossum distance showed an increase in distance nonlinearly 

but monotonically. The SPIKE-distance and the RI-SPIKE-distance did not show monotone increases. 

The EMD showed a linear increase as the spike timing difference increased. VP: Victor-Purpura 



distance. vR: van Rossum distance. 

 

2.2.1.B.2. Temporal similarity and robustness to firing rate change 

A simulation experiment was performed to test the robustness of each distance against firing rate 

changes when measuring temporal similarity between spike trains. Spike trains were generated 

according to a simple probabilistic model. The probabilistic model was built following a certain firing 

rate profile. Temporal similarity would increase if a pair of spike trains were generated from a 

probabilistic model sharing a similar profile and decrease if the profiles become more dissimilar. Note 

that temporal similarity describe here depends only upon firing rate profiles, not firing rates themselves. 

The probabilistic model used here consisted of two intervals where each interval had a nonzero 

probability of containing a spike. Spikes in the intervals were randomly generated from a uniform 

distribution centered at 0 s and 10 s with a halfwidth of 1 s. Then, we built three spike trains denoted as 

spike trains A, B1, and B2. In the probabilistic model of spike train A, the probability of generating a 

spike in the 1st interval was twice as high as that in the 2nd interval. Spike train B1 had the same 

probabilistic model as spike train A. On the other hand, it was reversed in spike train B2 such that the 

probability of generating a spike in the 2nd interval was twice that in the 1st interval (see Figure 5A). 

Hence, the distance between A and B1 should be smaller than that between A and B2, because temporal 

patterns would be more similar between A and B1 than between A and B2. 

To test the robustness of the distances against firing rate changes, we varied the number of spikes in the 

trains. We first set the number of spikes in A to , where 23 spikes were generated three times 

(twice in the 1st interval and once in the 2nd interval). Then, five levels of the number of spikes were 

used to vary the firing rates in B1 or B2. The number of spikes in B1 or B2 was varied as , 

, , , and , making the spike count ratios of A to B1 or B2 , , , 

, and . If a spike distance is robust to firing rate changes, distance variability over all the ratios 

should be negligible compared to the difference in distance between A to B1 and between A and B2. 

We calculated the difference in distances between these two pairs (A & B1, A & B2) using each of the 

five distances by varying the firing rates in B1 or B2. 

We evaluated distance measurements between a pair of spike trains with a high or low temporal 

similarity when the ratio of the firing rates between the trains varied. Let DL be a distance with a low 

temporal similarity (i.e., between A and B2) and DH be a distance with a high temporal similarity (i.e., 

between A and B1). First, we calculated the ratios of DL to DH from each distance for the case when the 

firing rates of two spike trains were equal, and the result is summarized in Figure 5C. The Victor-



Purpura distance (q = 0.1, 0.8 s), the van Rossum distance (  = 4, 16 s), and the EMD clearly resulted 

in a smaller distance with a high temporal similarity than with a low temporal similarity (Figure 5B). 

These low and high temporal similarities reflect the global difference between two spike trains in Figure 

5A, not the local difference. The spike trains B1 and B2 in Figure 5A are globally different, but locally 

similar (near 0 s and 10 s). Since both the SPIKE-distance and the RI-SPIKE-distance focus on the local 

difference, these distances show less sensitivities for the discrimination between low and high temporal 

similarity in a global sense. In contrast, the EMD is a global measurement, showing an ability to 

discriminate global temporal similarity. Although the RI-SPIKE-distance is robust to firing rate changes 

just as the EMD is, this point indicates a key difference between the RI-SPIKE-distance and the EMD. 

Next, to assess the robustness to firing rate changes when unequal firing rates exist between the spike 

trains, we calculated the ratio (DL(i) – DH(i)) / |DH(1) – DH(i)|, where i denotes the firing rate ratio of 

spike train B1 (or B2) to that of spike train A for i = ¼, ½, 2, 4 (e.g., DH(1/2) refers to distance 

measurements when the firing rate ratio is ½). The distance results for each value of i are given in Figure 

5D. As for the robustness to firing rate changes, the Victor-Purpura distance and the van Rossum 

distance increased as the ratio of the firing rates deviated from 1, which indicates that variability in the 

distance across the firing rate ratios was larger than the difference in distances between high and low 

temporal similarities, revealing that the distances were not robust to firing rate changes. This was not 

the case for the SPIKE-distance and the RI-SPIKE-distance, where the distances remained at similar 

levels across the ratios of firing rates although variability in the distance across the ratios was larger 

than the difference in distances between high and low temporal similarities, showing that they were also 

not robust to firing rate changes. On the other hand, the EMD showed that variability in the distance 

across the ratios was much smaller than the difference in distances between high and low temporal 

similarities, demonstrating its robustness to firing rate changes (Figure 5B). The SPIKE-distance, the 

RI-SPIKE-distance, and the EMD showed the robustness to firing rate changes relative to the Victor-

Purpura distance and the van Rossum distance. It implies that those three distances are more suitable 

for temporal coding. 

 



 

Figure 5. Spike distance results for the measurement of temporal similarity. (A) The probabilistic 

models of spike generation for spike trains A, B1, and B2 are described. In the simulation, spike trains 

A and B1 share the same probabilistic model whereas spike trains A and B2 have different probabilistic 

models. Accordingly, the temporal similarity is high between A and B1, but low between A and B2. (B) 

The spike distance results of each of the five distances as the ratio of firing rates between the spike 

trains varies from 2-2 to 22. The red lines represent distances between the spike trains A and B1 and 

green lines represent those between A and B2. It is clearly shown that the variability of distances by 

changes in the ratio is larger than that by changes in the temporal similarity for the four distances, 

including the Victor-Purpura, the van Rossum, the SPIKE- and the RI-SPIKE- distances. In contrast, 



the distances calculated by the EMD remain almost unchanged as the ratio changes, being robust to the 

firing rate change. (C) Results of spike distance for measuring temporal similarity. DL is a distance with 

a low temporal similarity, and DH is a distance with a high temporal similarity. (D) Quantification of 

robustness as the firing rate changes. DL(i) is the distance with a low temporal similarity when the firing 

rate ratio is i, and DH(i) is the distance with a high temporal similarity when the firing rate ratio is i. The 

results of the RI-SPIKE-distance partly disappear because of negative values. VP: Victor-Purpura 

distance. vR: van Rossum distance. 

 

2.2.1.B.3. Spike time synchrony and robustness to firing rate change 

Another simulation experiment was performed to test the robustness of each distance against firing rate 

changes when measuring spike time synchrony between spike trains. To this end, a pair of spike trains, 

denoted as A and B were synthesized. Spike train A was generated to contain eleven equally spaced 

spikes discharged at 0 s, 1 s, …, 10 s. Spike train B was generated according to a probabilistic model, 

consisting of eleven uniform distributions centered at 0 s, 1 s, …, 10 s. Then, we varied the halfwidth 

of these uniform distributions across ten levels to manipulate the degrees of spike timing jitter; the 

halfwidth was set as 0.05 s, 0.1 s, …, or 0.5 s (see Figure 6A). As the halfwidth was increased, spike 

timing jitter increased, which was likely to desynchronize spike timing more between A and B. It would 

then result in an increase in the distance between A and B. 

Similar to Section 2.2.1.B.2, we varied the number of spikes in B to test the robustness of the distance 

to firing rate change. The number of spikes in B varied across nine levels to reflect firing rate changes. 

It varied as , , …, and  (the first number in the product indicates the number of 

spikes randomly generated in each interval of B) so that the ratios of A to B became 1, 2, …, and 9, 

respectively. We expected that if the spike distance was robust to firing rate changes, variability in the 

distance across the ratios should be negligible compared to variability in distance according to different 

degrees of spike timing jitter. We calculated the distances between A and B for each degree of spike 

timing jitter for each firing rate level in B. 

Spike distances with various synchrony levels were measured using each of the five distances and their 

robustness to firing rate changes was tested. Every distance clearly showed a similar pattern when the 

ratio of firing rates was 1 such that the spike distance increased as the degree of spike timing jitter 

increased (Figure 6B). To assess the robustness to firing rate changes, we quantified the effect of the 

firing rate ratio on the spike train. Here, let Dk(n) be the distance when the firing rate ratio of spike train 

B to spike train A was n, where k denotes the halfwidth of the uniform distribution in B. We first 



calculated the ratio D0.05(9) / D0.05(1) using each distance and obtained the results as summarized in the 

left figure of Figure 6D. Next, we calculated the ratio (D0.5(9) – D0.05(9)) / (D0.5(1) – D0.05(1)) using each 

distance and obtained results, which are listed in the right figure of Figure 6D. A comparison of these 

two ratios showed that when the firing rate ratio increased, the Victor-Purpura distance and the van 

Rossum distance increased rapidly, whereas other distances were almost unchanged. In other words, by 

using the Victor-Purpura distance and the van Rossum distance, variability in distance across the firing 

rate ratios was larger than variability in distance due to different degrees of spike timing jitter, showing 

that the distances were not robust to firing rate changes. The SPIKE-distance, the RI-SPIKE-distance, 

and the EMD revealed that variability in distance across the ratios was smaller than that among different 

levels of synchrony, demonstrating that they were robust to firing rate changes. Moreover, the RI-

SPIKE-distance and the EMD appeared to be most robust (Figure 6C). These results indicate that the 

Victor-Purpura distance and the van Rossum distance are suitable to measure the dissimilarity due to 

both rate difference and temporal synchrony. The SPIKE-distance is also suitable to measure the 

dissimilarity in both rate difference and temporal synchrony although it seems to be less sensitive to 

rate difference than the Victor-Purpura distance and the van Rossum distance. On the other hand, the 

RI-SPIKE-distance and the EMD are suitable to measure temporal synchrony, insensitive to rate 

differences. 

 



 

Figure 6. Spike distance results for the measurement of spike time synchrony. (A) Spike train A is 

fixed to have equally spaced eleven spikes. Spike train B is generated by a probabilistic model of spike 

generation with various spike timing jitter. The spike timing jitter is manipulated by increasing the 

halfwidth of eleven uniform distributions each centered at the spike timing of train A. Spike time 

synchrony between A and B decreases as spike timing jitter increases. (B) The spike distance results of 

the five distances as the ratio of firing rates of B over A are equal to 1. All the distances exhibit 

approximately linear increases with increases in spike timing jitter. (C) The spike distance results of 

each of the five distances as ratios of firing rates of B over A increase from 1 to 9. The index of the 

vertical axis corresponds to the index of the spike trains in (A), where increasing index number indicates 

increasing spike timing jitter. Distances proposed by Victor-Purpura and van Rossum are significantly 

affected by the variation in the firing rate ratio, whereas those proposed by the SPIKE-distance, the RI-

SPIKE-distance and the EMD are not. (D) Results of spike distance for measuring spike time synchrony. 



Dk(n) is the distance when the firing rate ratio of one spike train to another was n, and k denotes the 

halfwidth of the uniform distribution in the spike train. VP: Victor-Purpura distance. vR: van Rossum 

distance. 

 

2.2.1.B.4. Comparison with Victor and Purpura’s distance 

The spike distance in the present study is closely related to the Victor-Purpura distance. It is important 

to compare the properties between the Victor-Purpura distance and the EMD. Satuvuori and Kreuz 

already discussed the suitability of the Victor-Purpura distance to rate and temporal coding (Satuvuori 

and Kreuz, 2018). They suggested that the Victor-Purpura distance is suitable to rate coding in general, 

but suitable to temporal coding only for similar firing rates, even with a wide range of time-scale 

parameter q. To verify whether the EMD suffered from a similar issue to the Victor-Purpura distance, 

we applied the analysis of Satuvuori and Kreuz (Satuvuori and Kreuz, 2018) to the EMD. Three spike 

trains were generated in the analysis. Spike train A was generated to contain one spike discharged at 5 

s. Spike train B was generated according to a probabilistic model of a uniform distribution centered at 

5 s with the halfwidth of 1 s. Spike train C was also generated according to a probabilistic model of a 

uniform distribution centered at 5 s with the halfwidth of 5 s. Spike train B had five levels of the number 

of spikes; 20, 21, 22, 23 and 24. By comparison, spike train C had only one spike as in spike train A (see 

Figure 7A). From the point of view of temporal coding, it was expected that the distance between A and 

B was smaller than the distance between A and C and the distance between B and C, because spike 

trains A and B had more similar temporal information compared to C. The Victor-Purpura distance was 

examined for time-scale parameters in the range from 0.01 to 1000. 

The simulation result for the Victor-Purpura distance in the present study was similar to that in the study 

by Satuvuori and Kreuz (2018). The expected result was that the distance between the spike trains A 

and B was smaller than those between A and C and between B and C, because the temporal coding 

between A and B is more similar than that between other pairs (Figure 7A). When the firing rate ratio 

of B to A or C was 20 (i.e. the same firing rates), the Victor-Purpura distance showed the expected result 

for a wide range of time-scale parameters q (Figure 7B top). It indicates that the Victor-Purpura distance 

is suitable for temporal coding if the firing rate ratio is 1. However, as the firing rate ratio of B to A or 

C increased, the Victor-Purpura distance started to show unexpected results. The distances between A 

and B and between B and C were increasing for every time-scale parameter q, reflecting the increased 

rate difference (Figure 7B). It indicates that the Victor-Purpura distance is not suitable for temporal 

coding if the firing rate ratio deviates from 1. The smaller value of the time-scale parameter q 

emphasizes the temporal coding. However, the result showed that the Victor-Purpura distance is still 



rate-sensitive even for a very small value of q. Therefore, the value of q apparently changes sensitivity 

from pure rate coding to combined rate and temporal coding, not to pure temporal coding (Satuvuori 

and Kreuz, 2018). 

On the other hand, the EMD showed the expected results for all tested firing rate ratios. Furthermore, 

the distances between every pair of spike train remained nearly constant even as the firing rate ratio 

changed (Figure 7C). It indicates that the EMD is suitable for temporal coding even though the firing 

rates differ between the spike trains, showing that it does not reflect rate coding. That is, the EMD is 

sensitive to pure temporal coding in contrast to the Victor-Purpura distance. 

Although the EMD is relatively insensitive to firing rate difference than the Victor-Purpura distance, it 

is uncertain whether the EMD is completely insensitive. In order to test the effect of different rate ratios 

on the EMD, we calculated the EMD between two Poisson spike trains that were generated uniformly 

over [0, 1] s with different rates. The spike trains were generated with firing rates of 1, 2, 4, 8, and 16 

Hz. Then, the spike trains with 4 Hz were compared to those with other firing rates (including the 

identical 4 Hz) so that the firing rate ratios varied over 2-2, 2-1, 20, 21, and 22. The resulting EMD values 

are provided in Figure 7D. The EMD between trains with the same temporal pattern varied across 

different firing rate ratios although the EMD variation was much smaller than the firing rate ratios 

variation. 

 



 

Figure 7. Comparison with the Victor-Purpura distance in terms of suitability for temporal coding 
with different firing rates. (A) Spike train A has only one spike with fixed timing. Spike train B has 

five levels of spikes with narrow range spike timing jitters. Spike train C has only on spike with a broad 



range spike timing jitter. The desirable expected results are that the distance between spike trains A and 

B is smaller than the distance between A and C and the distance between B and C. (B) The Victor-

Purpura distance with various values of the time-scale parameter q. The Victor-Purpura distance did not 

show the desirable result with increases in firing rate ratio. (C) The EMD showed desirable results 

overall with increases in firing rate ratio, having a nearly constant scale. (D) The EMD between a 

uniform spike train with different firing rate ratios. It shows that the EMD is not completely insensitive 

to firing rate differences. 

 

2.2.1.B.5. Application to neural data 

We demonstrated the measurement of a temporal similarity between real neuronal spike trains using the 

EMD. The neural data is publicly available from Flint et al. (2012), and can be downloaded from 

https://crcns.org/data-sets/movements/dream. The example of neural spike trains was obtained from the 

primary motor cortex of a behaving non-human primate (Flint et al. 2012). An example of various levels 

of temporal similarity measured by the EMD is shown in Figure 8, in which the spike trains observed 

under the different experimental conditions (i.e., different movement directions of the subject’s arm) 

showed mutually different temporal similarity with the base condition at the arm movement direction 

of 45° (at which the example neuron fired the most). 

A neuron in the primary motor cortex (M1) modulates its firing rates with arm movement directions 

(Georgopoulos et al., 1982). Arm movements induce a certain temporal pattern such that a spike train 

of a M1 neuron contains more spikes around movement onset and less spikes before and after movement 

offset. Also, the firing rate of the neuron is maximal at the preferred direction (PD) of arm movement 

and decreases gradually when the movement direction deviates farther from the PD (Georgopoulos et 

al., 1982; Schwartz et al., 1988; Kalaska et al., 1989; Caminiti et al., 1990). Hence, the temporal patterns 

of spike trains between the PD and other directions are expected to be more dissimilar when the 

movement direction becomes more different from the PD. We found that the EMD could describe 

various levels of temporal similarity to the base condition for various directions and specifically showed 

that distance increased as the angle became orthogonal to the PD. In addition, the EMD on the true data 

(red lines in the inlet graph of Figure 8A) revealed a clearer difference between the PD and orthogonal 

angles than that on the surrogate data with randomized spike timings (gray lines of the inlet graph of 

Figure 8A). Specifically, corresponding to each true spike train, we generated a random spike train by 

generating spike timings from the uniform distribution while maintaining the number of spikes 

unchanged. So, if the difference between directions is mainly represented in the number of spikes, the 

difference between directions should also be maintained in the surrogate data. However, the result 



demonstrated that the EMD difference between spike trains of different directions was not merely due 

to the firing rate difference. 

A spike distance shall yield small values between spike trains obtained under similar experimental 

conditions and large values between spike trains obtained under different conditions. We demonstrated 

that the EMD satisfied such a criterion using the real neuronal spike data of a non-human primate in 

Figure 8. In Figure 8, the EMD showed small values when the subject moved the arm in a direction 

similar to the preferred direction (i.e. similar experimental condition) and large values when the subject 

moved the arm in a direction dissimilar to the preferred direction (i.e. dissimilar experimental condition) 

(see red lines in the inlet graph of Figure 8A). In particular, the EMD calculated this result based on the 

temporal pattern rather than on the firing rate difference. 

We compared EMD and other spike distances in terms of an ability to distinguish primary motor cortical 

spike trains with spiking timing information according to the arm movement directions of a nonhuman 

primate. There were eight equally divided arm movement directions in this 2D center-out arm reaching 

task. As each spike distance covered a different magnitude scale, each spike distance was normalized 

by D_new = (D - D_min) / (D_max - D_min) so that the distance values ranged between 0 and 1. We 

selected one of the eight directions as an anchor (e.g. 45 ) and measured average pairwise distance 

using each spike distance measure between a set of spike trains corresponding to the anchor direction 

and each set of spike trains corresponding to other directions. We found that the EMD well represented 

differences between spike trains according to movement directions such that the distance is 0 at the PD, 

1 at the opposite of the PD, and the intermediate values at other directions (Figure 8B). 

We evaluated how the EMD could be used to discriminate the neural spiking patterns of different upper 

limb movement directions represented in the primary motor cortex (M1) of a non-human primate (Flint 

et al. 2012). The non-human primate moved the upper limb in eight different directions while spiking 

timings of the population of M1 neurons were recorded. There were multiple trials of this task in each 

direction. As the duration of movements varied across trials, we selected an 1-s epoch after the onset of 

a go cue. Before spike distance computation using various methods including the EMD, we normalized 

the overall spike count of every spike train in order to assess each method’s ability to extract movement-

related information only from spiking timing patterns. This normalization was performed based on 

resampling – i.e. randomly selecting a certain number of spikes from the original spike train. In this 

manner, every resampled spike train could have the same number of spikes for every direction while 

retaining the temporal pattern of the original spike trains. 

For resampling, we first selected 113 out of 196 M1 neurons, which fired spikes enough to produce 

spike trains suitable for our distance analysis (a neuron was selected if it fired 50 spikes within the 1-



s epoch on average for each direction). For each selected neuron, we randomly chose R spikes from the 

original spike train, repeating this resampling for every spike train of every direction for that neuron. 

The number of spikes in a resampled spike train, R, was stochastically determined by generating a 

random number from the Poisson distribution with the mean rate of 10. The mean rate of 10 was chosen 

such that the largest number generated from the Poisson distribution with this mean rate was unlikely 

to exceed the half of 50 (i.e. 25), in order to make resampled spike trains vary over trials. This ensured 

that the expected number of spikes in every resampled train in every direction was identical, while 

allowing trial-to-trial variability. Once the resampled spike train was generated, we multiplied 10 to its 

spike timings to change the spike train range from [0, 1] s to [0, 10] s, in order to adjust the range 

adequate for pre-defined time-scale parameters of the Victor-Purpura distance and the van Rossum 

distance. Also, as the SPIKE-distance and the RI-SPIKE-distance calculate the distance in a range from 

the first spike to the last spike, we added two auxiliary spikes at 0 s and 10 s (Figure 9A). 

For the assessment of each spike distance method, we randomly selected a single resampled spike train 

in the k-th direction and calculated distance between it and every other resampled spike trains using a 

given spike distance. Those calculated distances were averaged for each direction, yielding the average 

distances  ( ) for each of the 8 directions. The averaged distances were then normalized 

over direction such that as above. The shorter normalized distance 

toward the correct direction, , represented better discrimination of the spiking patterns for the correct 

direction from other directions. The EMD, as well as the Victor-Purpura distance and the van Rossum 

distance with specific parameter settings, resulted in shorter distances than others (Figure 9B). 

Therefore, it demonstrated that the EMD could decode the directional information of upper limb 

movements in M1 neurons based on spiking timing patterns. 

We applied a clustering analysis (Houghton and Victor (2010) and Victor and Purpura (1996)) to the 

data shown in Figure 9A in order to compare the effect of each distance metrics on decoding the 

information of movement directions from spike trains. For decoding such directional information based 

on the shortest distance to the training samples of spike trains, we used the k-nearest neighbor algorithm 

(Fix and Hodges, 1951). The decoding performance were measured by the normalized transmitted 

information proposed in the study by Houghton and Victor (Houghton and Victor (2010)), which ranges 

from 0 to 1 where a higher value indicates more accurate decoding. The result demonstrated that the 

EMD produced the best decoding output (with the number of neighbors, k=3) (Figure 9C). 

We also applied the same clustering analysis to the data shown in Figure 8A without removing firing 

rate differences, in order to examine the effect of directionally-tuned firing rates on the spike distances. 

We observed that the Victor-Purpura distance and the van Rossum distance produced larger normalized 



transmitted information than the SPIKE-distance, the RI-SPIKE-distance, and the EMD regardless of 

the setting of time-scale parameters. It demonstrates that the first two distances are more suitable for 

rate coding than last three distances, as also shown in the section 2.2.1.B.2 and 2.2.1.B.3. 

 



 



Figure 8. Application of the spike distance to real neuronal data in the primary motor cortex in a 
non-human primate. Data is from Flint et al. (2012). During the data recordings, the subject moved 

its arm from the central position toward one of the eight target positions and repeated this movement 

multiple times for each direction. Multiple spike trains of a single neuron for each of the eight target 

positions are described at each peripheral location, indicated by a directional angle as 0°, 45°, …, and 

315°. Each spike train is obtained for 1 s after the onset of a movement cue. The spike trains exhibit 

different temporal patterns for different directions. (A) The direction at 45° is set as the seed direction, 

where the firing rate is maximum. Then, the spike distance is calculated between the seed direction and 

each of other seven directions. The mean spike distance between each pair is described using red circles 

in the center. The spike distance within the seed direction is also calculated for comparison (no 

calculation between the same spike train). The EMD from actual data (red line of the inner graph) has 

a clearer difference between the base and orthogonal angles than the EMD from data of randomly shifted 

spike timing (gray line of the inner graph), which does not exhibit a temporal pattern, showing the EMD 

difference is not merely due to the firing rate differences. (B) Comparison between the EMD and other 

spike distances for the data in (A). Each spike distance was normalized such that D_new = (D - D_min) 

/ (D_max - D_min) so that the distance values are filled between 0 and 1, because each spike distance 

has different magnitude scale. Throughout our spike distance analyses, we have set up a time-scale of 

spike trains for the Victor-Purpura distance and the van Rossum distance as [0, 10] s, which makes these 

distances applicable to both rate coding and temporal coding. To be consistent with such parameter 

settings of all the analyses done in the study, we also maintained the same time-scale range for the 

analysis of real neuronal spike data in (A). Since the spike trains of the real neurons we analyzed lasted 

for 1 s after a task onset, we extended spike trains by multiplying 10 to spike timings, changing the 

spike train range from [0, 1] s to [0, 10] s and used the same parameter settings as other simulation-

based analyses for the Victor-Purpura and the van Rossum distances. This extension of the spike train 

range does not alter the SPIKE-distance, RI-SPIKE-distance and the EMD because they produce time-

scale independent distance outcomes. VP: Victor-Purpura distance. vR: van Rossum distance.

 



 



Figure 9. Application of the spike distance to resampled neuronal data. (A) Resampled spike trains 

of the neuron in Figure 8. The spikes in the resampled spike train are randomly chosen from the pool 

of spike timings in each direction. The spiking patterns in the original spike train is preserved while the 

number of spikes is controlled. The range of spike trains extended from [0, 1] s to [0, 10] s. (B) The 

directional decoding results using spiking patterns in resampled spike trains. The distance indicates the 

average distance for each direction. The distance for the direction is normalized by other directions. The 

small value of the normalized distance toward the correct direction indicates a high magnitude of 

discrimination of the spiking patterns for the direction from the other directions. (C) Decoding 

directional information from the spike trains in (A) is performed using the k-nearest neighbor algorithm 

(k = 3 in our analysis) and evaluated by the normalized transmitted information (see the text). Higher 

normalized transmitted information indicates better decoding performance. VP: Victor-Purpura distance. 

vR: van Rossum distance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Principle of neural coding 

 

In this section, we will cover the study of which principles enable neural expression. This is an approach 

to the computational principle and the main topic of the present study. 

It has long been accepted that the brain, especially sensory system, has a hierarchical structure 

(Felleman and Van Essen, 1991; Mesulam, 1998; Harris et al., 2019; Hilgetag and Goulas, 2020). This 

hierarchical structure is related to gene expression (Burt et al., 2018; Hansen et al., 2021), suggesting 

that the hierarchical structure is genetically determined and a priori. Then, how can a prior hierarchical 

brain structure be given the function to represent the external world? This is a neural coding (principle) 

problem for sensory system;  

The hierarchical structure of the sensory system is bidirectional; The hierarchical structure has not only 

bottom-up pathway but also top-down pathway, even in early sensory (visual) system such as the lateral 

geniculate nucleus (Murphy and Sillito, 1987; Wang et al., 2006) and the primary visual cortex (Zhang 

et al., 2014; Muckli et al., 2015; Huh et al., 2018). In this bidirectional hierarchical structure, two types 

of neuronal noise can be generated, where neuronal noise is defined as the uncertainty of neural 

responses for given sensory input (Borst and Theunissen, 1999). One of them is noise generated as 

neural information fluctuates across the hierarchy according to the initial condition of the neural 

response, even if the external sensory input is static. It is known that this can occur in interconnected 

structures as a chaotic dynamics sensitive to the initial condition (Rubinov et al., 2009; Tomov et al., 

2014). This is neuronal noise when static sensory inputs are given. Another is noise, precisely error, 

caused by coding different information in each hierarchy because of the transmission delay of 

information (Berry et al., 1999) when external sensory input is dynamic. Because of the information 

transmission delay, (lower) hierarchies close to the sensory organ represent relatively recent information, 

and (upper) hierarchies distant from the sensory organ represent information relatively old, if external 

inputs are dynamic (changed). By the top-down pathway, old information in the upper hierarchy affects 

recent information in the lower hierarchy, and this becomes neuronal noise when dynamic sensory 

inputs are given. Despite these noise (error) problems, it seems that sensory information processing is 

performed without any major problems in the sensory system of the real brain. For the first noise 

problem (static sensory input), neural responses in sensory systems are decodable in both neuronal 

spikes (Berens et al., 2012; Zavitz et al., 2016) and blood-oxygen-level-dependent responses (Kamitani 

and Tong, 2005; Brouwer and Heeger 2009), indicating that the real brain is robust to noise of this type

because this means the uncertainty of neural responses are not very large. For the second noise (error) 



problem (dynamic sensory input), the sensory system has information of future sensory input (Palmer 

et al., 2015; Chen et al., 2017; Sederberg et al., 2018; Liu et al., 2021), minimizing information 

discrepancy across the hierarchy. This suggests that the real brain is robust to noise (error) of this type

because the miss-informed noise (erroneous information) across hierarchy decreases as decreasing of 

information discrepancy across the hierarchy. Therefore, a neural coding principle that can overcome 

these noise problems is needed; How can the brain overcome these noise problems? 

 

3.1. Efficient coding and predictive coding 

 

Efficient coding, is one of neural coding principles, aims to minimize informational redundancy of 

neural representations for the external world (Attneave, 1954; Barlow, 1961). Informational redundancy 

 is given by (Barlow, 1961) 

                                                                (3.1.1) 

where  indicates neural responses,  is an entropy, and  is the channel capacity which is the 

supremum of Shannon mutual information between  and the stimuli (the external world) variable . 

If  is fixed, the minimization of the informational redundancy is equal to the maximization of the 

entropy . Hence, the informational redundancy reduction is to use efficiently the space of neural 

responses subject to the maximal range of neural responses. 

Other literature describes efficient coding as maximizing Shannon mutual information between  and 

 (Friston, 2010): 

                                                       (3.1.2) 

where  is the Shannon mutual information between  and , and  is the conditional 

entropy of  given . Since  if and only if  is a function of , if  is deterministic 

or nearly deterministic (low noise),   is nearly zero. This leads to the result that the 

maximization of   is nearly equal to the maximization of   which is the informational 

redundancy reduction. The biological plausibility of efficient coding has been verified in sensory 

systems (Laughlin, 1981). Efficient coding has been used to explain neural responses from statistics of 

the external world (Simoncelli and Olshausen, 2001). 

Efficient coding has been applied to several studies on the hierarchical structure: the studies for complex 

cell property (Karklin and Lewicki, 2009), visual recognition (Hu et al., 2014), and acoustic feature 



encoding (Zhang et al., 2019). However, these studies did not take into account the passage of time or 

studied in a unidirectional hierarchical structure where only bottom-up processing exists. In this 

environment, the aforementioned noise problems do not occur. These noise problems arise in 

bidirectional hierarchical structures on the time domain. The real brain environment is a bidirectional 

hierarchical structure on the time domain. 

Predictive coding, is one of neural coding principles, is defined on hierarchical structure (Rao and 

Ballard, 1999; Spratling, 2017). According to predictive coding higher hierarchy performs top-down 

predictions on the response of lower hierarchy, and lower hierarchy transmits bottom-up prediction 

error to higher hierarchy. So, according to predictive coding, there are two different types of 

subpopulations in the brain: for prediction and for prediction error. Both inference and learning of 

predictive coding are to minimize the bottom-up prediction errors. Predictive coding has been shown 

to be able to explain neural responses corresponding to prediction errors, which increases at first and 

then decreases during inference (Friston, 2005). Predictive coding has also been extended from the 

explanation of perceptions to actions (Friston, 2010; Clark, 2013). Predictive coding is described as 

informational redundancy reduction because it only sends the unpredicted information of the stimulus, 

i.e., the prediction error, to the higher hierarchy (Huang and Rao, 2011). According to this interpretation, 

predictive coding explains efficient coding. 

Prediction error minimization process in predictive coding may reduce the aforementioned neuronal 

noise; neuronal noise when static and dynamic sensory inputs are given. Nonetheless predictive coding 

has several theoretical disadvantages. Since inference in predictive coding is to minimize the prediction 

errors, it seems that the brain should have an additional information processing subsystem to perform 

the inference. Also, since bottom-up transmitted information is only prediction error, predictive coding 

requires the error units that are hypothetical entities while in some cases it is even difficult to observe 

prediction error responses (Solomon et al., 2021). Moreover, existing predictive coding is the problem 

on real-time information processing (Hogendoorn and Burkitt, 2019). 

 

3.2. Spatio-temporally efficient coding 

 

The goal of the present study is to present a neural coding principle to overcome the aforementioned 

neuronal noise problem; neuronal noise when static and dynamic sensory inputs are given. To overcome 

the aforementioned neuronal noise problems, we devised a new neural coding principle that does not 



have the disadvantages of predictive coding. 

A possible approach to overcome the shortcomings of predictive coding in sensory hierarchical 

structures is to make bottom-up information transmissions similarly to top-down information 

transmissions across hierarchies, instead of transmitting bottom-up prediction errors. For example, 

context-independent bottom-up predictions and context-dependent top-down predictions (Teufel and 

Fletcher, 2020). Such bidirectional information transmissions eliminate the necessity for hypothetical 

error units, while presumably elucidating the neural responses of hierarchical structures underlying 

bottom-up feature integration and top-down predictive coding. A neural coding principle underlying 

bidirectional information transmissions of hierarchical structures can be found in the theory of efficient 

coding that draws upon the efficient use of given resources (Laughlin, 2001; Bullmore and Sporns, 

2012), which crucially include limited time resources related to processing speed (Griffiths et al., 2015; 

Lieder and Griffiths, 2020). A possible solution to promote the most efficient use of limited time 

resources by the bidirectional information transmission system is to render present neural responses 

similar to future ones before the occurrence of future neural responses. This can be achieved by 

minimizing the temporal differences between present and future neural responses. Accordingly, we 

consider this temporal difference minimization as our learning principle, referred to as temporally 

efficient coding. Here, inference simply refers to a bidirectional information transmission mediated by 

top-down and bottom-up pathways. Unlike inference in predictive coding, which requires further error 

minimization, inference in temporally efficient coding involves simple single-step information 

transmission. 

Temporally efficient coding involves a trivial solution: neural responses do not change to changes in 

external events. This trivial solution is comparable to the dark-room problem of predictive coding or 

free-energy principle, where an agent stays and is unchanged in a dark room with no surprise or 

unpredicted parts (Friston et al., 2012; Clark, 2013). We circumvent this issue by adding a 

complementary neural coding (learning) principle that maximizes the informational entropy of neural 

responses to alter neural responses to changing external events. It maximizes the neural response space 

available to represent the external world under the constraints of both the number of neurons and 

maximum firing rates. Maximal entropy coding indicates that the system uses spatial resources of neural 

responses efficiently (Attneave, 1954; Barlow, 1961; Laughlin, 1981), referred to as spatially efficient 

coding. By combining spatially efficient coding and temporally efficient coding, we propose a neural 

coding principle termed spatio-temporally efficient coding (Figure 10). 

Spatially efficient coding has the same objective as existing efficient coding (Barlow, 1961; Laughlin, 

1981), which minimizes informational redundancy because it increases the difference between neural 



responses. Temporally efficient coding, on the other hand, can be regarded to increase informational 

redundancy, as it reduces the difference between neural responses. Two seemingly opposing coding 

objectives can be reconciled by isolating mechanisms that decrease the differences between consecutive 

neural responses on time domain and those that increase the differences between neural responses to 

the apparently different external world. In the real brain, it can be explained that different mechanisms 

are applied depending on the degree of difference in neural response. In the implementation of the 

present study, two coding objectives were applied in different ways. As an implementation of temporally 

efficient coding, we minimize the difference between consecutive neural responses on the time. In 

spatially efficient coding, the neural responses to the apparently different external stimuli are 

implemented in a minibatch method that simultaneously learns different images. We maximized the 

difference between neural responses to different images within each time step (see, Implementation of 

spatio-temporally efficient coding). 

Temporally efficient coding trains the present neural response to be similar to the future neural response 

in order to efficiently use a given time resource. The temporal trajectory of the neural response is 

smoothed as the difference between the present and future neural responses is minimized. It thereby 

minimizes the size of the space represented, when a single stimulus (stimulus in the external world) is 

represented on the time domain. In other words, it reduces neuronal noise which is defined as the 

uncertainty of a neural response for given stimulus (Borst and Theunissen, 1999). This is to decrease 

the conditional entropy of neural response given stimulus,  where  indicates neural response 

and   indicates stimulus. Spatially efficient coding increases  . Spatio-temporally efficient 

coding, thus, increases the Shannon mutual information  simultaneously in 

both terms:   and  . This is also the definition of another existing efficient coding 

(Friston, 2010). Spatio-temporally efficient coding in hierarchical structures, therefore, can also be seen 

as an extension of existing efficient coding into hierarchical structures on time domain. 

By spatio-temporally efficient coding, neural responses change smoothly but dynamically. Those 

dynamical changes of neural responses for the changing external world differs from the slow feature 

analysis (Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005; Creutzig and Sprekeler, 2008) which 

also minimizes temporal differences of neural responses. Similar to slow feature analysis, there have 

been studies on the properties of cells in the visual cortex using temporal coherence to obtain slow 

representations (Hurri and Hyvärinen, 2002; Zou et al., 2011). However, such studies using temporal 

coherence lack the aspect of dynamically reacting to changes in external input or neural responses of 

other hierarchies. 

Neural system homeostasis is associated with maximization of mutual information between neural 



responses and external stimuli (Toyoizumi et al., 2005; Sullivan and de Sa, 2006). Since spatio-

temporally efficient coding increases the Shannon mutual information between neural responses and 

external stimuli, it is related to homeostasis. In particular, temporal difference minimization of neural 

responses in temporally efficient coding is reminiscent of homeostasis of energy metabolism. 

Smoothing the temporal trajectory of a neural responses reduces the variance of the neural response 

distribution so that the neural response stays within a certain range. This is also a consequence of the 

homeostatic plasticity (Turrigiano and Nelson, 2004) of the brain. 

As mentioned earlier, smoothing the temporal trajectories of neural responses reduces the spatial extent 

of neural responses to static stimuli. This leads to a rapid stabilization of the neural response to the static 

stimulus; decodable stable neural representations. The rapid stabilization of neural responses shows the 

characteristic of temporally efficient coding, which makes efficient use of given time resources. Another 

effect of this smoothing the temporal trajectory of neural response is to render smooth neural 

representations that locally preserves the structure of the external world. If a stimulus is static or changes 

smoothly, making the temporal trajectory of the neural response smooth is to render a similar neural 

response to the similar stimuli. This is smooth neural representations that locally preserves the structure 

of the external world. 

Energy limitation in the brain can be seen as an evolutionary selective pressure (Niven and Laughlin, 

2008). Thus the efficient use of given energy is an important neural coding principle (Laughlin, 2001). 

Temporally efficient coding can be viewed as a reduction in the duration of energy consumption. If the 

energy consumed per unit time is similar regardless of the duration of energy consumption, temporally 

efficient coding will lead to a reduction in energy consumption. Spatially efficient coding elicits the 

maximal information representation under a given energy consumption (the firing rate of neurons). Thus, 

spatio-temporally efficient coding can be viewed as a plausible principle from an evolutionary point of 

view. 

By spatio-temporally efficient coding (especially temporally efficient coding), bidirectional hierarchical 

structures learn smooth neural responses. This minimizes temporally differences between neural 

responses. It renders that neural information less fluctuates across the hierarchy. Therefore, we can 

expect that spatio-temporally efficient coding can overcome the aforementioned noise problem of first 

type (case of static sensory inputs). Moreover, to render neural response smooth when sensory input 

changes smoothly is to make similar neural responses for similar sensory inputs. Since sensory inputs 

at adjacent time may be similar, neural responses are also similar. These similar neural responses on 

time domain reduce the discrepancy of represented information across the hierarchy. Therefore, we can 

expect that spatio-temporally efficient coding can overcome the aforementioned noise problem of 



second type (case of dynamic sensory inputs). 

 

 

Figure 10. Spatio-temporally efficient coding. (A) This illustration depicts a hierarchical structure of 

the brain. Open black circles indicate an ensemble of neuronal units in each hierarchy of the brain. Open 

black square indicates visual input. Back arrows indicate information transmissions of bottom-up 

(upward arrow), recurrent (loop arrow), and top-down (downward arrow). (B) This illustration depicts 

a hierarchical structure of the brain and learning objectives. The hierarchical structure learns to represent 

input from the external world, which is depicted as black squares (e.g., visual input). Open black circles 

indicate an ensemble of neuronal units in each hierarchy of the brain. Inference based on spatio-

temporally efficient coding is made by neuronal units as bottom-up, recurrent, and top-down 

information transmissions over time (black arrows). Learning in spatio-temporally efficient coding 

consists of two objectives: minimizing the temporal differences between present and future neural 

responses and maximizing the informational entropy of neural responses. For example, information 

transmissions (purple arrows) are optimised to minimize the temporal differences between present 

neural responses at the corresponding hierarchy (red filled circle) and future neural responses (circle to 

the right of the red filed circle) while concurrently maximizing the informational entropy of neural 

responses at the corresponding hierarchy (red filled circle). 

 

3.3. Implementation of spatio-temporally efficient coding 

 

In the present study, sensory (visual) information processing in hierarchical structures was established 

as biologically inspired temporal processing. Specifically, visual information processing is described as 

a function  for both image  and neural responses  in each hierarchy  such that it maps 



from  and  at time  to those at time : 

 

where  and  are the neural responses  at time  and , respectively, at hierarchy 

. For convenience,  denotes , in particular  denotes the image presented at time 

. The details of the visual information processing  are as follows: If , then 

 

where  is an  value vector at time ,  indicates restricting the range of the function 

value   to  ,   is a synaptic weight matrix from hierarchy   to  ,   is the 

transpose of a matrix,  is a bias vector at hierarchy , and  is a sigmoid function. The terms 

of  ,  , and   indicate top-down, recurrent, and bottom-up 

information transmissions, respectively. In case of   the   term would be 

omitted. If , then 

 

If , . On the other hand, when ,  is the image presented at time , not 

. This function  makes inferences using spatio-temporally efficient coding. Unlike inference 

in predictive coding (Rao and Ballard, 1999; Spratling, 2017) that requires additional processes such as 

minimization of prediction errors, inference in spatio-temporally efficient coding is a function value  

itself. 

Learning in spatio-temporally efficient coding minimizes the ensuing objectives of both temporally and 

spatially efficient coding. The objective of temporally efficient coding is given by: 

 

where  is the function composition, squaring is operated component-wise. In the case of static sensory 

inputs,   indicates that the image is fixed to the  th sample throughout the temporal 

processing (i.e.,   is  th image sample). Otherwise, in the case of 

dynamic sensory inputs,  indicates that the th image is smoothly changed with the 

passage time  . In case of  ,   which is the 

image presented at time  while  is the function value as inference. 



The function composition   of two functions (inferences) in the   allows the 

simultaneous learning of all information transmissions across all hierarchies because the depth of 

hierarchy is  in the present study (bottom-up, recurrent, and top-down information transmission 

across the hierarchy of depth ). The minimization of the given objective minimizes the temporal 

differences between present and future neural responses. The objective of temporally efficient coding 

is to render present neural responses similar to future neural responses that has not yet arrived. By doing 

so, it uses the given time resources efficiently. This minimization of temporal difference creates a 

learning effect in which the temporal trajectory of the neural response becomes smooth. The expected 

effect of this learning effect is to quickly stabilize neural responses when a static external stimulus is 

given. In that aspect, it is also to use the given time resources efficiently. 

The objective of spatially efficient coding is given by 

 

where  in  (so, ) and  is a probability. Because the term 

 is an estimation of negative informational entropy, minimizing the objective maximizes the 

informational entropy of . This objective increases the entropy of each neuron, and it can be seen that 

an increase in marginal entropy in each neuron will increase the joint entropy of the entire system. 

Therefore, spatially efficient coding maximizes the entropy of individual neurons as in Laughlin’s study 

(Laughlin, 1981) and consequently the entropy of the entire system. The objective of spatially efficient 

coding is to render different neural responses to different inputs from the external world. We, therefore, 

can overcome the trivial solution of temporally efficient coding, where there is no change in neural 

response despite changes in the external world. This thereby does not conflict with the learning of 

temporally efficient coding, which decreases differences in consecutive neural responses in the time 

domain to inputs of one stream. 

To minimize , which is the objective of spatially efficient coding, it is necessary to calculate 

the probability   in   (equation 3.3.5). Instead of calculating the exact probabilities, we 

obtained pre-normalised densities in the sense of probabilities without a partition function. As the value 

of the partition function is fixed, it does not affect the minimization process. Note that, when , 

 is the space of all possible neural responses, i.e., . Let  be a value of 

. Kernel density estimation was used to obtain . Using a Gaussian kernel 

with width , the neural response density  and compensation density  at 



 were obtained. Then, the pre-normalized density of interest is 

 

The neural response density  is obtained by kernel density estimation of neural responses on . 

The compensation density   is obtained using pseudo-uniformly generated samples on  

instead of the neural responses. (For implementation of low neural response, i.e., sparse neural 

responses,  is obtained using pseudo-uniformly generated samples on  instead of 

, so that  has a fat distribution around zero.) The compensation density is 

necessary to compensate for the non-uniform intrinsic expectation of  resulting from the fact that 

 is bounded. At the boundary of , the density of neural responses, , measured by kernel 

density estimation is decrease. This intrinsic decrease corresponds to . We compensated for the 

decrease by dividing  by . 

Finally, the objective of spatio-temporally efficient coding is a linear combination of those two 

objectives: 

 

where  is a regularization parameter. A smaller  indicates a greater emphasis on the temporally 

efficient coding objective, whereas a larger   indicates the opposite. As mentioned previously, 

temporally efficient coding decreases the conditional entropy of neural response given stimulus, 

  where   indicates neural response and   indicates stimulus. Spatially efficient coding 

increases . Hence, the regularisation parameter  can be seen as controlling the balance between 

 and . It is a modification of fixed balance of Shannon mutual information 

 of the existing efficient coding (Friston, 2010). 

Temporal trajectories of neural responses are smoothed by temporally efficient coding, but this does not 

mean just slow neural representations. By spatially efficient coding, different neural responses to 

different inputs from the external world should be exhibited. Therefore, it should show rapid changes 

in neural responses to sudden changes in the external world (fast representation). This is the difference 

from slow feature analysis (Wiskott and Sejnowski, 2002; Berkes and Wiskott, 2005; Creutzig and 

Sprekeler, 2008) or temporal coherence (Hurri and Hyvärinen, 2002; Zou et al., 2011), which targets 

slow neural representations. On the one hand, with temporally efficient coding, changes in neural 

responses should be smoothed out quickly when the external input is not changing (fast stabilization). 

Suppose that Gaussian noise is added to a series of temporally correlated external inputs (e.g., static 



images or smoothly moved images + Gaussian noise). If these noisy external inputs are still temporally 

correlated, then smoothing the temporal trajectory of neural responses (by temporally efficient coding 

objective ) is rendering temporally similar neural responses to temporally similar inputs. It 

is also smooth neural representations that locally preserves the structure of the external world. Moreover, 

if the noise is provided independently of the input, the effect of the noise on neural representations will 

be dispelled by multiple independent trials. Therefore, temporally efficient coding objective  

increases the fidelity of the neural representation with respect to a Gaussian noise. 

Smooth neural representation also means making different neural responses to different inputs. In other 

words, it increases discriminability for different inputs. This is achieved by spatially efficient coding 

objective  that maximizes the entropy of neural responses. Assumed that Gaussian noise is 

added to external inputs. Let  be a binary-valued random variable for the discrimination between 

two actually different inputs such that  means the discrimination that two noised inputs differ 

and   means the discrimination that two noised inputs are same.   is probabilistic 

because of the Gaussian noise mentioned earlier. Let  be a binary-valued random variable 

for the discrimination between two neural responses for inputs such that   means the 

discrimination that two neural responses differ and  means the discrimination that two 

neural responses are same. Let  and  be the probability mass functions of  and 

, respectively. Spatially efficient coding objective  decreases the Kullback–Leibler 

divergence from   to  , i.e.,  . Hence it also decreases the binary 

cross entropy  where  is an informational entropy. 

In the present study, the depth  of hierarchies was set to 2, the minimum depth to realise both bottom-

up and top-down pathways in the same hierarchy. Since neural responses in subcortical sensory (visual) 

area are regular while neural responses in cortical sensory (visual) area are sparse (Simoncelli, 2003), 

we implemented low neural responses (sparse neural responses) at upper hierarchy (Figure 11A). Units 

in adjacent hierarchies are fully connected. 

Because   is differentiable, the minimization of the objective in spatio-

temporally efficient coding was performed with a gradient descent. The Adam optimiser (Kingma and 

Ba, 2015) was used to perform the stochastic gradient descent with momentum. The parameters of the 

Adam optimiser used in this study were  ,  ,  , and  . The 

optimisation lasted   iterations for each repetition and restarted with five repetitions. For each 

iteration, the duration of temporal processing  was five (i.e., ), and the minibatch size was 

40. In learning, after temporal processing of five (case of static sensory inputs) or nine (case of dynamic 



sensory inputs) durations was finished, new temporal processing begins, and the initial values of neural 

responses of new temporal processing were the last neural responses values of the previous temporal 

processing. In our simulations, we repeatedly exposed the hierarchical structure to natural scene images, 

which enabled it to learn the bidirectional information transmissions between top-down and bottom-up 

hierarchies using spatio-temporally efficient coding with a range of the balancing parameter  . 

Successful learning was confirmed by minimizing or stabilising   during learning (Figure 11B). 

Further, we verified that the learned hierarchical structure could successfully reconstruct an input image. 

 

 

Figure 11. Implementation of spatio-temporally efficient coding. (A) Architecture of visual 

hierarchy with depth 2 in simulations. Units in the lower hierarchy set up to have regular neural 

responses and units in the higher hierarchy set up to have sparse neural responses. These correspond to 

subcortical and cortical neural responses, respectively. Units in adjacent hierarchies are fully connected. 

(B) Learning curves of spatio-temporally efficient coding. Left panel: mean temporal difference. Right 

panel: mean negative entropy. As the negative entropy of the lower and upper hierarchies decreases, it 

can be observed that the temporal difference increases and then stabilizes or decreases again. Vertical 

axis has the logarithm scale. 

 

 

 

 

 

 



4. Spatio-temporally efficient coding: a case of static sensory input 

 

4.A. Introduction 

In the bidirectional hierarchical structure, two types of neuronal noise can be generated, where neuronal 

noise is defined as the uncertainty of neural responses for given sensory input (Borst and Theunissen, 

1999). One of them is noise generated as neural information fluctuates across the hierarchy according 

to the initial condition of the neural response, even if the external sensory input is static. It is known 

that this can occur in interconnected structures as a chaotic dynamics sensitive to the initial condition 

(Rubinov et al., 2009; Tomov et al., 2014). This is neuronal noise when static sensory inputs are given. 

Another is noise caused by coding different information in each hierarchy because of the transmission 

delay of information (Berry et al., 1999) when external sensory input is dynamic. Because of the 

information transmission delay, (lower) hierarchies close to the sensory organ represent relatively recent 

information, and (upper) hierarchies distant from the sensory organ represent information relatively old, 

if external inputs are dynamic (changed). By the top-down pathway, old information in the upper 

hierarchy affects recent information in the lower hierarchy, and this becomes neuronal noise when 

dynamic sensory inputs are given. In this section, we will show that spatio-temporally efficient coding 

can deal with the neuronal noise of first type (case of static sensory inputs). 

By spatio-temporally efficient coding (especially temporally efficient coding), bidirectional hierarchical 

structures learn smooth neural responses. This minimizes temporally differences between neural 

responses. It renders that neural information less fluctuates across the hierarchy. Therefore, we can 

expect that spatio-temporally efficient coding can overcome the aforementioned noise problem of first 

type (case of static sensory inputs). In this section, we will verify this expectation through simulation. 

 

4.B. Methods 

For the simulations, van Hateren’s natural scene image dataset (van Hateren and van der Schaaf, 1998) 

was used. The dataset was downloaded from http://bethgelab.org/datasets/vanhateren/. The images were 

downsized to  pixels. For the comparison tests, the MNIST handwritten digit dataset (Lecun 

et al., 1998) was used. The dataset was downloaded from http://yann.lecun.com/exdb/mnist/. The 

images were resized to  pixels to fit the images used in the simulations. All image data were 

rescaled between 0 and 1. 

For a given static image, the duration of temporal processing of  was given as 5 (i.e., ) in 



learning (Figure 12A), because four time steps are required for the image information to reach the top 

hierarchy and return over   hierarchies, in addition to one time step to obtain future neural 

responses. The learning via Adam optimizer lasted  iterations for each repetition and restarted with 

five repetitions. For each iteration, the duration of temporal processing  was five (i.e., ) as 

above, and the minibatch size was 40. Learning was deemed to be successful when the value of the 

objective function ( , Eq. 3.3.7) was sufficiently stabilized over repetitions. 

We set , where  is a regularization parameter in the objective function, 

  (see Eq. 3.3.7). The condition   was set the balanced condition between spatially 

efficient coding and temporally efficient coding objectives (STEC). The condition  was set 

one of the control conditions which is overweighted toward spatially efficient coding (SEC). This 

indicates the strict efficient condition. 

A change in balance between the two objectives also altered the relative strengths between bottom-up 

and top-down synaptic connections. Simulation results demonstrated that top-down synaptic strengths 

from upper hierarchy to lower hierarchy were increased compared to bottom-up synaptic strengths from 

images to lower hierarchy and recurrent synaptic strengths from lower hierarchy to lower hierarchy 

when  (SEC), with an emphasis on spatially efficient coding (Figure 12B). 

We set important control condition, random networks, based on STEC and SEC: Random [STEC] and 

Random [SEC]. Random [STEC] was made by random permutations of synaptic weights and bias of 

STEC at each pathway (bottom-up, top-down, and recurrent). Random [SEC] was similarly made from 

SEC. Therefore, Random [STEC] and Random [SEC] have same synaptic weight magnitude level with 

STEC and SEC shown in Figure 12B. Example neural responses trajectories of all conditions are shown 

in Figure 12C. 

 



 

Figure 12. A simulation method for static sensory input. (A) Learning in the case of static sensory 

input. (B) The magnitude of synaptic weights on lower hierarchy units is compared for different s, 

where  is a regularization parameter in the objective function,  (see Eq. 

3.3.7). Each cross indicates the  norm of synaptic weights for each unit. Black squares indicate the 

mean. (C) Left: Four different original input images and their reconstructions from the neuronal 

responses of lower hierarchy. Right: Representative neural responses of the lower (upper row) and upper 

(lower row) hierarchy units for different conditons. The neural response is the output of the sigmoid 

function and is therefore normalized to a range between 0 and 1. Note that 0. The condition 

 was set the balanced condition between spatially efficient coding and temporally efficient coding 

objectives (STEC). The condition   was set one of the control conditions which is 

overweighted toward spatially efficient coding (SEC). Random [STEC] and Random [SEC] were 

random networks based on STEC and SEC, respectively. 



 

4.C.1. Results: Decodable and rapidly stable neural representations 

In this subsection, we will show that spatio-temporally efficient coding can overcome the 

aforementioned noise problem (case of static sensory inputs). 

The objective of temporally efficient coding is to render present neural responses similar to future neural 

responses that has not yet arrived. This minimization of temporal difference creates a learning effect in 

which the temporal trajectory of the neural response becomes smooth. It thereby minimizes the size of 

the space represented, when a single stimulus is represented on the time domain. In other words, it 

reduces neuronal noise which is defined as the uncertainty of a neural response for given stimulus (Borst 

and Theunissen, 1999). The expected effect of this learning effect is to quickly stabilize neural responses 

when a static external stimulus is given. The objective of spatially efficient coding is to render different 

neural responses to different stimuli. The expected effect of spatio-temporally efficient coding is to 

render decodable and rapidly stable neural representations which is an appropriate function to 

hierarchical brain structures on the time domain. If neural responses are decodable and rapidly stable, 

then neural information less fluctuates across the hierarchy. Hence this indicates overcoming the 

aforementioned noise problem. 

To confirm these expectations, we performed four simulation experiments. The first simulation is to 

present multiple images for five time step for each image and check the neural responses for those 

images. When each image was given, it was checked whether the neural response was quickly stabilized 

(Figure 13A). The second simulation measures the amount of noise in the neural responses when each 

image is presented during 25 time step. Neuronal noise is defined as the uncertainty of a neural response 

for given stimulus (Borst and Theunissen, 1999), so we measured the conditional entropy of neural 

responses during each five time step as neuronal noise. That is, 

  for each   where   is an image,   is the set of all images, 

 is the conditional entropy, and  is the neural response at time . Probability was estimated 

by kernel density estimation without a partition function, and thus shifted conditional entropy was 

measured. We checked the amount of neuronal noise (Figure 13B). In the third simulation, we checked 

whether the neural responses to each image stabilized over time. To do this, we measured how confused 

the neural response over time (9 time step) to one image was with the neural response to a similar image. 

This is represented by the confusion index. 

 where   is the neural response for image   at time   and   is the 

nearest image of  based on the global feature based distance (Di Gesù and Starovoitov, 1999). If the 



confusion index is less than 1, it can be said that the neural response is well stabilized. We checked 

whether the neural response was stabilized by reducing the confusion index to less than 1 (Figure 13C). 

In fourth simulation, we checked how decodable the neural responses was. To measure how decodable 

the neural response is, the neural responses of time steps 1, ..., 9 were decoded using the neural 

responses of time steps 10 and 11 as a training set. The linear discriminant analysis was selected as the 

decoder, and each of the 4212 natural scene images was defined as one class (Figure 13D). 

As a result of the simulation, different neural responses to different stimuli were shown in the STEC 

condition, and these neural responses were rapidly stabilized. On the other hand, neural responses were 

less stabilized under other conditions (Figure 13A). The factor affecting the stabilization of the neural 

response was the amount of neuronal noise. To quantify the amount of neural noise, conditional entropy 

of neural responses given stimulus was measured. Conditional entropy was measured by collecting 

neural responses at every five time step. The STEC condition showed lower neuronal noise than the 

other conditions (Figure 13B). 

We checked whether the neural response was well stabilized through the confusion index. Under STEC 

condition, the confusion index was kept below 1 on average for the majority of time steps at each 

hierarchy (Figure 13C). This means that the neural representations are rapidly stabilized in STEC 

condition. On the other hand, the confusion index was not sufficiently reduced in SEC and Random 

[SEC], and was more slowly reduced in Random [STEC] condition (Figure 13C). This means that 

sufficient stabilization of neural representations is difficult with only strict efficient coding. Furthermore 

STEC more rapidly stabilized than random networks. Since initial neural responses were randomly set 

so that they cause the aforementioned noise (case of static sensory input), the fact that neural responses 

in STEC more rapidly stabilized than in others suggests that spatio-temporally efficient coding can 

overcome the aforementioned noise problem. 

Finally, we checked whether the neural response is decodable. In the STEC condition, the decoding 

accuracy gradually increased over time, suggesting decodable stable neural representations. On the 

other hand, the decoding accuracy was low in SEC and Random [SEC] condition, and slowly increased 

in Random [STEC] conditions (Figure 13D). Since initial neural responses were randomly set so that 

they cause the aforementioned noise (case of static sensory input), the fact that decoding accuracy in 

STEC more rapidly increased than in others suggests that spatio-temporally efficient coding can 

overcome the aforementioned noise problem. 

 



 



Figure 13. Decodable and stable neural representations. (A) Examples of neural responses in the 

lower hierarchy. These were neural responses of 1st, 17th, and 33th units in Figure 12C. Dotted vertical 

black lines indicate the presentations of new external input. (B) Neuronal noise that measured as shifted 

conditional entropy of neural responses given stimulus. Conditional entropy was measured by collecting 

neural responses at every five time step. Left and right panel showed different vertical axis scales of 

same data. (C) Confusion index that a measure of how much it confuses neural responses to one stimulus 

with neural responses to another similar stimulus. The dotted lines denote the confusion index of 1 

which indicates the confusion. (D) Decoding accuracy via the naïve Bayes classifier. The upper dotted 

line denotes the maximum decoding accuracy, 1. The lower dotted line denotes the chance level, 1/4212. 

Error bars indicate standard deviations. 

 

4.C.2. Results: Relation to homeostasis 

The following subsections do not relate to the aforementioned noise problem, but reveal the 

characteristics of spatio-temporally efficient coding. 

Neural system homeostasis is associated with maximisation of mutual information between neural 

responses and external stimuli (Toyoizumi et al., 2005; Sullivan and de Sa, 2006). Since spatio-

temporally efficient coding increases the Shannon mutual information between neural responses and 

external stimuli, it is related to homeostasis. In particular, temporal difference minimisation of neural 

responses in temporally efficient coding is reminiscent of homeostasis of energy metabolism. 

Smoothing the temporal trajectory of a neural responses reduces the variance of the neural response 

distribution so that the neural response stays within a certain range. We confirmed this through 

simulation. It was checked whether the neural response had a middle value, not an extreme value such 

as 0 or 1, which is homeostasis of neural responses. In STEC condition emphasizing temporally efficient 

coding objective, neural responses were concentrated at the middle value than in SEC condition (Figure 

14). Figure 14B showed specific cases corresponding to stimuli in Figure 14A. Figure 14C showed the 

distribution of overall neural responses, indicating that this is general phenomena of STEC. This is also 

a consequence of the homeostatic plasticity (Turrigiano and Nelson, 2004) of the brain. 

 



 

Figure 14. Neural response distributions. (A) Examples of natural scene images. (B) Examples of 

neural response distributions of lower hierarchy units for each of the five time steps of bidirectional 

information transmissions, corresponding to images in (A). The colour scale indicates the proportion. 

(C) Overall neural response distributions in response to all input images (either STEC or SEC) at lower 

and upper hierarchies, respectively. The colour scale indicates the proportion. 

 

4.C.3. Results: Deviant neural responses to unlearned inputs 

The visual system often responds selectively to sensory inputs (Margoliash, 1983; Waydo et al., 2006). 

Even for the type of sensory inputs to which the visual system is responsive, unfamiliar inputs induce 

larger neural responses compared to familiar inputs (Huang et al., 2018; Issa et al., 2018). These large 

neural responses to unfamiliar inputs are thought to be due to prediction errors (Issa et al., 2018). On 

the one hand, spatio-temporally efficient coding renders smooth neural representations, i.e., locally 

preserving the structure of the external world. Because unlearned inputs differ from learned inputs, if 

their neural representations are smooth, their neural representations will also differ. By STEC 

homeostasis, since the neural response to the learned input has a middle value (Figure 14), the neural 

responses to the unlearned input (if these differ from the neural responses to the learned input) may be 

closed to extreme values such as 0 or 1. These are deviant neural responses to unlearned inputs. 

Accordingly, we can expect that spatio-temporally efficient coding could predict the phenomenon of 

deviant neural responses to unlearned inputs without the introduction of prediction error responses 

mediated by error units. We checked whether the distribution of neural responses to unlearned input is 

close to extreme values such as 0 or 1, unlike the distribution of neural responses to learned input. 

In the simulations, the visual hierarchical structure learned to be learned with natural scene images, and 

novel handwritten digit images were used as unlearned visual inputs (Figure 15A). The simulation 



results revealed that neural responses were distributed over middle values for learned images and over 

smaller or larger values for unlearned inputs (Figure 15B and 15C), suggesting that spatio-temporally 

efficient coding could predict the phenomenon of deviant neural responses to unlearned inputs. The 

same conclusion could also be reached if the learned images were handwritten digit images and the 

unlearned images were natural scene images (Figure 15D, 15E, and 15F). 

 

 

Figure 15. Neural response distributions for learned and unlearned inputs. (A) Natural scene 

images are used as learned inputs (for learning in the visual hierarchical structure) and handwritten digit 

images are used as unlearned inputs (not used in learning). (B) Examples of neural response 

distributions of lower hierarchy units for each of the five time steps of bidirectional information 

transmissions, corresponding to images in (A). The colour scale indicates the proportion. (C) Overall 

neural response distributions in response to all input images (either learned or unlearned) at lower and 

upper hierarchies, respectively. (D), (E), (F) are similar to (A), (B), (C), but handwritten digit images 

are used as learned inputs and natural scene images are used as unlearned inputs. 

 

4.C.4. Results: Preferred orientation biases of receptive fields 



Neurons in the visual system prefer horizontal and vertical orientations over oblique orientations 

(Furmanski and Engel, 2000; Li et al., 2003). Indeed, orientation discrimination is more sensitive to 

horizontal and vertical orientations than to oblique orientations (Girshick et al., 2011). This is a bias 

towards cardinals (Girshick et al., 2011). Since smooth neural representations of spatio-temporally 

efficient coding reflects the structure of the external world well, we predicted that it would also reflect 

the environmental statistics of natural scenes. We investigated whether units in the visual hierarchical 

structure that learned by spatio-temporally efficient coding of natural scene images exhibited such 

biases. We checked whether the neural responses of the units were highest to the horizontal/vertical 

orientation stimuli. Units in the lower hierarchy had the Gabor-like visual receptive fields, while units 

in the upper hierarchy had more complex visual receptive fields (Figure 16A). Because the units had an 

oriented Gabor-like receptive field, we used oriented bar stimuli to measure the unit's preferred 

orientation. We presented a static bar oriented in one of eight angles that moved in the direction 

perpendicular to the orientation angle (Figure 16B) and defined the response of each unit to that 

orientation by the largest response during presentation. We then defined the preferred orientation of 

each unit as the orientation that elicited the largest response. Example neural responses were shown in 

Figure 16C. Simulation results revealed that units clearly prefer horizontal and vertical orientations over 

oblique orientations (Figure 16D), consistent with the orientation bias of visual cortical neurons and in 

accordance with context-independent bottom-up prediction (Teufel and Fletcher, 2020). This means that 

smooth neural representations when well-balanced between temporally efficient coding objective and 

spatially efficient coding objective reflect the environmental statistics of natural scenes. 

 



 

Figure 16. Orientation preference. (A) Examples of visual receptive fields of lower and upper 



hierarchy units. (B) Orientation images used to test the visual orientation preference of neuronal units 

at lower hierarchy in the visual hierarchical structure that learned by the spatio-temporally efficient 

coding of natural scene images. White bars in each of the eight orientations are moved in the 

perpendicular directions denoted by blue dotted arrows. (C) Examples of lower hierarchy neural 

responses for bar stimuli. Each colour indicates each orientation. The neural responses of each 

orientation were obtained from the bar positions with the largest neural responses at time step 5. These 

four example units correspond to 1st, 3rd, 5th, and 7th units in (A). (D) Histograms of the orientation 

preference at time step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Spatio-temporally efficient coding: a case of dynamic sensory input 

 

5.A. Introduction 

In the bidirectional hierarchical structure, two types of neuronal noise can be generated, where neuronal 

noise is defined as the uncertainty of neural responses for given sensory input (Borst and Theunissen, 

1999). One of them is noise generated as neural information fluctuates across the hierarchy according 

to the initial condition of the neural response, even if the external sensory input is static. It is known 

that this can occur in interconnected structures as a chaotic dynamics sensitive to the initial condition 

(Rubinov et al., 2009; Tomov et al., 2014). This is neuronal noise when static sensory inputs are given. 

Another is noise, precisely error, caused by coding different information in each hierarchy because of 

the transmission delay of information (Berry et al., 1999) when external sensory input is dynamic. 

Because of the information transmission delay, (lower) hierarchies close to the sensory organ represent 

relatively recent information, and (upper) hierarchies distant from the sensory organ represent 

information relatively old, if external inputs are dynamic (changed). By the top-down pathway, old 

information in the upper hierarchy affects recent information in the lower hierarchy, and this becomes 

neuronal noise when dynamic sensory inputs are given. In this section, we will show that spatio-

temporally efficient coding can deal with the neuronal noise (error) of second type (case of dynamic 

sensory inputs). 

By spatio-temporally efficient coding (especially temporally efficient coding), bidirectional hierarchical 

structures learn smooth neural responses. To render neural response smooth when sensory input changes 

smoothly is to make similar neural responses for similar sensory inputs. Since sensory inputs at adjacent 

time may be similar, neural responses are also similar. These similar neural responses on time domain 

reduce the discrepancy of represented information across the hierarchy. Therefore, we can expect that 

spatio-temporally efficient coding can overcome the aforementioned noise (error) problem of second 

type (case of dynamic sensory inputs). In this section, we will verify this expectation through simulation. 

 

5.B. Methods 

The natural scene image dataset created by van Hateren (van Hateren and van der Schaaf, 1998) was 

used for simulations. The dataset was publicly available at http://bethgelab.org/datasets/vanhateren/. 

The images were downsized to  pixels and rescaled between zero and one. 

A sensory input  was composed of a series of parts (  pixels) of a natural scene image, 



where each part was obtained by moving a gaze at a constant velocity starting at a random location over 

the whole image ( ). The magnitude of the velocity was randomly selected from an integer 

between 0 and 4 pixels per time step. If the selected velocity magnitude is too large to move within the 

whole image, the velocity magnitude was adjusted to be the maximum magnitude that allowed moving 

within the whole image. The direction of the velocity was randomly selected in the two-dimensional 

pixel space, and speed was kept as  norm (Figure 17A and 17B). 

Minimization via Adam optimizer persisted   iterations per one repetition. We restarted the 

repetition five times. For each minimization iteration above (one of  iterations),  lasted on nine-

time steps (i.e., ), as we assumed that a gaze shifted 9 times in every natural scene image 

(Figure 17B). The minibatch size was set to 100. 

Although smoothly-moving natural scene images were used for learning, bar stimuli that were 

accurately controlled position and orientation were used for testing. A bar stimulus was created as a 

 image with a value of one on the bar and zero elsewhere. Bar stimuli had eight orientations: 

 , and   (rad). For each orientation, we created 41 bar 

stimuli at different positions covering the whole image uniformly. At each position, the length of a bar 

extended from one edge to the opposite of an image. The width of the bar was kept constant across eight 

orientations and occupied four pixels in the case of the horizontal orientation (Fig. 17C). Over these 41 

positions, we moved the bar stimulus smoothly or randomly. A smoothly-moving bar in a certain 

orientation sequentially moved from one end position to the other end, taking 41 time-steps to present 

a smoothly-moving bar. The same bar stimulus was also moved in a reversed order. For convenience, 

we hereafter denote one of these bidirectional movements as moving forward and the other as moving 

backward, although there is no specific reason to call one as forward and the other as backward. These 

bidirectional movements of a bar stimulus generated a total of 16 smoothly-moving bar stimuli. A 

randomly-moving bar moved from one position to another randomly with no repeated visit to the same 

position, thus appearing at each of the 41 positions once and taking 41 time-steps, too. We generated 41 

randomly-moving bars in each of the eight orientations. 

We set , where  is a regularization parameter in the objective function, 

  (see Eq. 3.3.7). The condition   was set the balanced condition between spatially 

efficient coding and temporally efficient coding objectives (STEC). The condition  was set 

one of the control conditions which is overweighted toward spatially efficient coding (SEC). This 

indicates the strict efficient condition. 

We set important control condition, random networks, based on STEC and SEC: Random [STEC] and 



Random [SEC]. Random [STEC] was made by random permutations of synaptic weights and bias of 

STEC at each pathway (bottom-up, top-down, and recurrent). Random [SEC] was similarly made from 

SEC. Therefore, Random [STEC] and Random [SEC] have same synaptic weight magnitude level with 

STEC and SEC. Example neural responses trajectories of all conditions are shown in Figure 17D. 

 

 

Figure 17. A simulation method for dynamic sensory input. (A) Example dynamic sensory inputs on 

the natural scene image for learning. Yellow square indicates each visual scene. (B) Spatio-temporally 

efficient coding for dynamic visual scene. Each yellow square corresponds to one of yellow squares in 

A. Green arrow indicates information transmission. (C) Bar stimuli with eight orientations, for test. (D) 

Neural responses of learned sensory hierarchies for smoothly-moving bar stimuli (0 rad orientation).

 



5.C. Results: Consistent neural responses for static and dynamic sensory inputs 

In this subsection, we will show that spatio-temporally efficient coding can overcome the 

aforementioned noise (error) problem (case of dynamic sensory inputs). 

As one method to measure the robustness to the aforementioned noise (error), the distance between the 

neural responses to static bars and moving bars in various positions and same orientations was measured. 

Neural responses to moving bars in the brain hierarchy transmit the aforementioned noise (error) to 

other hierarchies. On the other hand, neural responses to static bars do not have such the aforementioned 

noise (error). Therefore, it can be said that neural coding overcomes the aforementioned noise (error) if 

the distance between neural responses for static and moving bars in the same position is small. 

When learned with spatio-temporally efficient coding (STEC), the distance between neural responses 

for static and moving bars in the same position was small in both upper and lower hierarchies (Fig. 

18A), indicating the neural coding is robust to the aforementioned noise (error). On the other hand, the 

distance between neural responses for static and moving bars in the same position was large in the 

control conditions (SEC, Random [STEC], Random [SEC]) (Fig. 18B, 18C, and 18D), indicating the 

neural coding was not robust to the aforementioned noise (error). Distances of off-diagonal entries 

increase gradually around diagonal entries, indicating that neural responses locally preserve the 

structure of the external world (Fig. 18A). This robustness in spatio-temporally efficient coding could 

be achieved by smoothness. The neural response in the cortical hierarchy to a randomly-moving bar is 

no longer smooth, which leads to the result that the neural coding was not robust to the aforementioned 

noise (Fig. 18E). This suggests that the robustness to the aforementioned noise (error) is achieved by 

the smoothness of dynamic sensory inputs. 

As another method to measure the robustness of neural coding, the neural response to a static bar was 

used as a training set and the neural response to a smoothly-moving bar was used as a test set to measure 

the decoding accuracy for the same position. It can be said that neural coding overcomes the 

aforementioned noise (error) if information about moving bars can be accurately decoded from neural 

responses to moving bars using neural response distribution for static bars in the same position. 

When learned with spatio-temporally efficient coding (STEC), it was showed higher accuracy than 

control conditions (SEC, Random [STEC], Random [SEC]) in both upper and lower hierarchies in case 

of position decoding (Fig.19A). In the case of orientation decoding, it was also showed lower accuracy 

in the control conditions than when learned with spatio-temporally efficient coding (STEC) (Fig. 19B). 

These results indicate that smooth neural coding via spatio-temporally efficient coding is robust to miss-

informed noise (erroneous information). 



 

 

Figure 18. Distance between neural responses denoting consistent neural representations. (A) 

Distances between neural responses for static and smoothly-moving bar stimuli with different positions 

and the 0 rad orientation. STEC. (B) Similar to A, but SEC. (C) Similar to A, but Random [STEC]. (D) 

Similar to A, but Random [SEC]. (E) Distances between neural responses for static and randomly-

moving bar stimuli with different positions and the 0 rad orientation. STEC. A low distance value of 

diagonal entries indicates consistent neural response between static and moving bar stimuli, denoting 

consistent neural representations. Gradually increasing distances of off-diagonal entries around 

diagonal entries indicate that neural responses locally preserve the structure of the external world. 

 



 

Figure 19. Decoding of bar stimuli denoting consistent neural representations. (A) Position 

decoding accuracy at various noise level for nine-centered-bar positions. Training set is the neural 

responses for static bar stimuli and test set is the neural responses for smoothly-moving bar stimuli. 

Black dash-dotted line indicates the chance level. (B) Orientation decoding accuracy at various noise 

level for eight orientations of three-centered-bar. Training set is the neural responses for static bar 

stimuli and test set is the neural responses for smoothly-moving bar stimuli. Black dash-dotted line 

indicates the chance level. A high accuracy value indicates consistent neural response between static 

and moving bar stimuli, denoting robust neural representations. Noise levels are the standard deviations 

of the adding random noise to bar stimuli. Decoding is performed with naïve Bayes classifier (Hastie et 

al., 2009). 

 

 

 

 

 

 

 

 

 

 

 



6. Discussion 

 

The brain sensory systems have bidirectional hierarchical structures. These bidirectional hierarchical 

structures can cause neuronal noise problems of two kinds. One of them is noise generated as neural 

information fluctuates across the hierarchy according to the initial condition of the neural response, 

even if the external sensory input is static. It is known that this can occur in interconnected structures 

as a chaotic dynamics sensitive to the initial condition (Rubinov et al., 2009; Tomov et al., 2014). This 

is neuronal noise when static sensory inputs are given. Another is noise, precisely error, caused by 

coding different information in each hierarchy because of the transmission delay of information (Berry 

et al., 1999) when external sensory input is dynamic. Because of the information transmission delay, 

(lower) hierarchies close to the sensory organ represent relatively recent information, and (upper) 

hierarchies distant from the sensory organ represent information relatively old, if external inputs are 

dynamic (changed). By the top-down pathway, old information in the upper hierarchy affects recent 

information in the lower hierarchy, and this becomes neuronal noise (error) when dynamic sensory 

inputs are given. 

In the present study, spatio-temporally efficient coding was devised to overcome two aforementioned 

noise (error) problems (Section 3). In the section 4, we showed that spatio-temporally efficient coding 

can overcome the aforementioned noise problem of first kind (case of static sensory inputs) by 

simulations. In the section 5, we showed that spatio-temporally efficient coding can overcome the 

aforementioned noise (error) problem of second kind (case of dynamic sensory inputs) by simulations. 

Appropriate neural representations in the present study were decodable stable neural representations 

which is an appropriate function to hierarchical brain structures on the time domain. To demonstrate 

this, we compared spatio-temporally efficient coding (STEC condition) with other conditions (SEC, 

Random [STEC], and Random [SEC]) as shown in Figure 13. Only spatio-temporally efficient coding 

showed decodable stable neural representations. Existing predictive coding is problematic to apply to 

such real-time information processing (Hogendoorn and Burkitt, 2019). It would be interesting to 

compare the results with the conceptually improved predictive coding as well. Temporal coherence 

(Hurri and Hyvärinen, 2002; Zou et al., 2011) or slow feature analysis (Wiskott and Sejnowski, 2002; 

Berkes and Wiskott, 2005; Creutzig and Sprekeler, 2008) elicits smooth changes in neural responses, 

similar to temporally efficient coding in the present study. However, they were not used as comparative 

models because they are not intended to elicit different neural responses to different external inputs and 

are not suitable for direct application to the bidirectional multiple hierarchical structure of in the present 



study. Nevertheless, they can be substituted to the role of temporally efficient coding in the present 

study. 

In the present study, neural responses were rate coded such that they can have continuous value between 

0 and 1. However, we can choose spike event coding which has binary value such as 0 and 1. In this 

case, neural response space is a high-dimensional lattice instead of hypercube, and neural response 

density function of Equation 3.3.6 should be estimated on a high-dimensional lattice. In this space, 

implementation of low neural response (sparse neural response) will become sparseness constraint. 

Such space could treat temporal coding of spike event, which has important meanings. 

Since its initial proposal (Attneave, 1954; Barlow, 1961), spatially efficient coding has been validated 

experimentally (Laughlin, 1981). However, observed correlations between neurons, which maximise 

entropy to a lesser extent compared to mere spatially efficient coding assuming no inter-neuronal 

correlations, have yet to be incorporated into the principle of spatially efficient coding. Empirically 

observed neuronal correlations may drive computational processes of the brain away from strict 

spatially efficient coding. Recent studies suggest that biological visual systems are intermediate 

between strict spatially efficient coding and correlated neural responses (Stringer et al., 2019). 

Therefore, to create biologically plausible computational models, it is necessary to mitigate the spatially 

efficient coding objective by combining firing-rate-dependent correlations (de la Rocha et al., 2007). 

This enables more accurate information transmissions of visual perception mediated by visual 

hierarchical structures. As we focused on integrating spatially efficient coding with temporally efficient 

coding for computation in hierarchical structures, this study did not incorporate the correlations between 

neurons in spatially efficient coding, which will be pursued in follow-up studies. 

Based on our simulations, we observed that the learning of bidirectional information transmission 

networks with spatio-temporally efficient coding was hindered when the balancing parameter  was 

too small or too large (Figure 12C). Therefore, it was necessary to confine  within a certain range, in 

which the magnitude of  affected neural responses such that a larger  rendered responses more 

variable (Figure 12C). Such increased variability is likely to originate from recurrent responses via 

higher hierarchies. This was confirmed by the observation that top-down synaptic weights become 

larger than bottom-up synaptic weights when  increased (Figure 12B). A large  rendered stronger 

top-down synaptic connections in lower hierarchy (Figure 12B), which is consistent with the previous 

finding that top-down synaptic connections are stronger than bottom-up connections in the lateral 

geniculate nucleus (Sillito et al., 2006). As to why top-down synaptic weights increase with a larger  

value (Figure 12B), we speculate that learning via spatio-temporally efficient coding may increase the 

range of neural responses to maximise entropy through top-down pathways. While the bottom-up 



pathways originating from external inputs are invariant during learning, the top-down pathways 

originating from higher hierarchy neural responses are more flexible to adjustment to maximise entropy 

during learning. An increase in these top-down synaptic weights predicts impairment of eye movement 

tracking partially occluded visual targets in schizophrenic patients (Adams et al., 2012). This may be 

due to an increased higher hierarchy’s influence in patients with schizophrenia. The increased higher 

hierarchy’s influence in our simulations is that they do not stabilize neural responses sufficiently to 

distinguish a given input from other inputs (Figure 13C). 

The deviant neural responses to unlearned inputs observed in this study (Figure 15) arise from smooth 

neural representations for learned inputs (distributed over the middle value). As such, neural 

representations for learned inputs extrude neural responses to unlearned inputs into a range of deviant 

neural responses. We conjecture that the visual system may generate deviant neural responses via a 

similar mechanism.  

Spatio-temporally efficient coding predicted a bias in preferred orientations (Fig 16). In this regard, 

spatially efficient coding alone has been reported to predict bias in preferred orientations (Ganguli and 

Simoncelli, 2014). Notably, spatio-temporally efficient coding was able to predict this bias well, even 

when  was low, that is, when the spatially efficient coding objective was less weighted (Fig 16D). 

Therefore, this bias prediction should be viewed as a result of spatio-temporally efficient coding, not as 

a result of spatially efficient coding alone. 

Spatio-temporally efficient coding minimizes temporal differences between the present and future 

neural responses. It thereby renders the temporal trajectories of neural responses smooth. Smoothing 

the temporal trajectory of a neural response when external inputs changes smoothly is a coding method 

that preserves smoothness. In other words, the smoothly changing external world creates smooth neural 

representations in the brain via spatio-temporally efficient coding. This was also shown in the 

simulations of the present study using bar stimuli which are frequently selected as experimental stimuli 

in the early visual system (Figure 17D). 

Since there is a transmission delay when information is transmitted between each hierarchy (Berry et 

al., 1999), when a moving object is represented in the visual system, the upper hierarchy far from the 

eyes has more past information, and the lower hierarchy close to the eyes has more present information. 

Inter-hierarchy interconnection conveys this different information to other hierarchies, which becomes 

noise at each hierarchy. This is the aforementioned noise (error) of second kind (case of dynamic 

sensory inputs). Neural responses to moving bars in the brain hierarchy transmit the aforementioned 

noise (error) to other hierarchies. On the other hand, neural responses to static bars do not have such 

aforementioned noise (error). Therefore, if the neural responses to static bars and moving bars are 



similar, it can be said that this neural coding is robust to the aforementioned noise (error). This was 

shown through the distance between neural responses (Figure 18) and the decoding of bar stimuli 

(Figure 19) in our simulations, indicating that the smooth coding via spatio-temporally efficient coding 

is robust to the aforementioned noise (error). 

This robustness could be achieved because spatio-temporally efficient coding is smooth coding that 

preserves structures of the external world locally in the brain. When the external world changes 

smoothly, smooth coding, which reflects the smooth change in neural response, preserves the difference 

in appearance of the external world as a difference in neural response. This was also confirmed in the 

simulations in the present study; gradually increasing distances of off-diagonal entries around diagonal 

entries indicate that neural responses locally preserve the structure of the external world (Figure 18A). 

If the structure of the external world is preserved in the neural response and the time difference between 

the present and the past is not very large, a similar appearance of the external world will be reflected in 

the similar neural response. This similar neural responses between the present and the past will reduce 

the difference in information represented in different hierarchies due to transmission delay. This means 

that the impact of the aforementioned noise (error) is reduced. 

Reducing the difference in information represented between the present and the past also means that 

the difference in information represented between the present and the future is decreasing. This is 

consistent with the predictive information that the real visual system has information about future 

stimuli in advance (Palmer et al., 2015; Chen et al., 2017; Sederberg et al., 2018; Liu et al., 2021). It is 

known that a receptive field similar to reality can be obtained by using such future predictive coding 

(Singer et al., 2018). The efficient coding principle for future prediction through information bottleneck 

framework was also presented (Chalk et al., 2018). 

The trial-to-trial variability of neural responses can be widely observed in the brain (Malins et al., 2018; 

Daniel et al., 2019; Nogueira et al., 2020; Li et al., 2021; Zhang et al., 2022). It is observed as both 

electrophysiological signals (Daniel et al., 2019; Li et al., 2021) and blood-oxygenation-level-

dependent signals (Malins et al., 2018; Zhang et al., 2022). These trial-to-trial variability of neural 

responses are neuronal noise. Assuming strict efficient coding, neurons must code different information 

to minimise redundancy. This makes neural coding susceptible to neuronal noise (Pryluk et al, 2019). 

If we allow some redundancy, this coding can be made more robust to neuronal noise (Pryluk et al, 

2019). In the real brain, neurons are known to perform robust coding (not strict efficient coding) against 

neuronal noise by having smooth tuning curves (Stringer et al., 2019). These smooth tuning curves are 

observed from many experimental data (Chen and Hafed, 2018; Kutter et al., 2018; Chettih and Harvey, 

2019; Christensen et al., 2019), supporting the mitigation of strict efficient coding. Spatio-temporally 



efficient coding makes the neural responses distributed around the middle value by minimizing the 

temporal difference of the neural responses (Figure 14). This is deviant from strict efficient coding as it 

does not reach entropy maximization. Therefore, it may be closer to the coding principle of the real 

brain. 

The present study has several limitations. First, for simplicity, our simulation model contained only two 

hierarchies. However, it is necessary to explore how spatio-temporally efficient coding operates in 

models with more hierarchies. We also modelled 64 neuronal units at each hierarchy, as we assumed 

that this would be sufficient to represent the natural scene images used in this study. Nevertheless, the 

interactions between the number of neuronal units, levels of hierarchy, and spatio-temporally efficient 

coding require further investigation. Second, the hierarchical structure used in the present study is too 

simplistic to explain complex perceptual phenomena such as optical illusions. In the present study, the 

hierarchical structure has a simple structure that fully connected. However, brain sensory system has 

more complex hierarchical structure which may be able to explain complex perceptual phenomena. It 

is necessary to construct a more complex and realistic structure to implement spatio-temporally efficient 

coding. Third, we assumed that the external sensory input is static or changed smoothly in the present 

study. This does not include sudden changes in sensory input resulting from saccadic eye movements. 

Finally, the scope of the present study was limited to the visual system given that its hierarchical 

structure is well documented, but spatio-temporally efficient coding may be applied to other systems 

(e.g., somatosensory system) or to movements and planning. Recent efficient coding researches are 

expanding their scope to perception generalization (Sims, 2018), subjective value (Polanía et al., 2019), 

and memory (McPherson and McDermott, 2020). It seems that spatio-temporally efficient coding can 

also broaden its scope. 
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