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Abstract

Major mergers between two sub-clusters drive shocks with Mach number, Ms ∼ 2˘4 inside the hot “in-

tracluster medium”(ICM) with temperature, T ∼ 107 − 108 K and plasma beta, β ∼ 50− 100. Those

merger-driven shocks, like most astrophysical shocks, are collisionless shocks and Cosmic-ray (CR) are

expected to be accelerated at such shocks through Diffusive Shock Acceleration (DSA; a.k.a 1st-order

Fermi acceleration). Mpc-scale diffuse radio synchrotron emissions from the outskirts of galaxy clusters

(i.e., the so-called radio relics) indicate electron acceleration at ICM shocks and future observation of

π0-decay gamma-ray emission could provide an evidence for the production of CR protons as well. To

investigate the kinetic plasma processes that govern the particle preacceleration for DSA at ICM shocks,

we performed Particle-in-Cell (PIC) simulations with relevant parameters for ICM plasmas. In particu-

lar, both electron and proton are energized effectively through the preacceleration mechanism mediated

by the multi-scale plasma waves in the shocks with Ms ≳ 2.3, and so the origin of observed radio relics

could be explained through such preacceleration process. In addition, considering the results obtained

from our PIC simulations, we proposed a DSA model for CR proton acceleration and examined the fea-

sibility of detecting gamma-ray from galaxy clusters. We have confirmed that the predicted gamma-ray

emission is below the Fermi-LAT upper limits for observed clusters. Our findings will help to understand

high-energy astrophysical processes in galaxy clusters.





Contents

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II Properties of Merger Shocks in Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III Proton Acceleration at Weak Quasi-parallel Shocks in Intracluster Medium . . . . . . . 20

3.1 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

IV Gamma-ray and Neutrino Emissions due to Cosmic-ray Protons Accelerated at Intra-

cluster Shocks in Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 CR protons in Simulated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Gamma-Rays and Neutrinos from Simulated Clusters . . . . . . . . . . . . . . . 50

4.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

V Electron Preacceleration at Weak Quasi-perpendicular Shocks in Intracluster Medium:

1. Plasma Instabilities in Shock Upstream . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Linear Analysis of ETAFI and EBFI . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 PIC Simulations of EBFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



5.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VI Electron Preacceleration at Weak Quasi-perpendicular Shocks in Intracluster Medium:

2. Plasma Instabilities in the Shock Downstream . . . . . . . . . . . . . . . . . . . . . 72

6.1 Linear Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Nonlinear Evolution of Induced Waves in Periodic-Box Simulations . . . . . . . 81

6.3 Implications for Shock Simulations . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VII Electron Preacceleration at Weak Quasi-perpendicular Shocks in Intracluster Medium:

3. Preacceleration Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Basic Physics of Q⊥-Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

VIII Electron Preacceleration at Weak Quasi-perpendicular Shocks in Intracluster Medium:

4. Effects of Preexisting Nonthermal Electrons . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

IX Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



List of Figures

1 Schematic diagram of merging galaxy clusters undergoing a head-on collision (a) two

subclumps undergo a head-on approach. (b) Due to the gas compression along the

merger axis (i.e., magenta dashed line), “equatorial shocks” are first induced and propa-

gating perpendicular to the merger axis. (c) two “axial shocks” are generated and prop-

agating along the merger axis as follows. While Light DM clump (LDMC) and heavy

DM clump (HDMC) are undergoing core passage because of the collisionless feature

of DM, two gas subclumps become a single gas clump. Green lines in (c) express the

cone and disk over which the average quantities such as Mach number and energy flux

of axial and equatorial shocks are estimated (see Section "Properties of Merger Shocks"). 7

2 Three dimensional distributions of X-ray (left panels; colorbar Lx = 1048 ergs/s (red)

to 1039 ergs/s (blue)), shock Mach number (middle panels; colorbar Ms = 7 (blue) to

1.5 (red)) and DM (right panels; colorbar ρDM/⟨ρDM⟩ = 2× 103 (red) to 1 (blue)) for

Cluster 1 of Table 1 in a comoving box of 5.7 Mpc size (white box) are displayed at four

different epochs: (a) compression, (b) shock launching, (c) DM core passage and single

gas core formation, and (d) the time of radio relic observation. . . . . . . . . . . . . . . 10

3 1D line plot along the merger axis in Cluster 1 of Table 1 at four different timesteps,

same as those in Figure 2. The gas temperature (in units of K, black), the gas density

(ρgas/
〈
ρgas
〉
, blue), and the DM density (ρDM/⟨ρDM⟩, red) are shown. Red and blue

arrows In the panels of z = 0.34 and 0.25 stand for the axial shock ahead of LDMC and

the axial shock ahead of HDMC, respectively. . . . . . . . . . . . . . . . . . . . . . . 11

4 Two-dimensional density (upper panels; colorbar ρgas/
〈
ρgas
〉
= 104 (red) to 1 (blue))

and temperature (bottom panels; colorbar T = 108 K (red) to 104 K (blue)) are plotted

in a comoving size of 10.5 Mpc for three clusters listed in Table 1 at z = 0.25, 0.24, and

0.14 (i.e., the time epochs of shock observation). Here, the X-ray peak is employed to

define the cluster center of each image. . . . . . . . . . . . . . . . . . . . . . . . . . . 12



5 Time evolution of physical quantities for merger-driven shocks during ∼ 1.4 Gyr af-

ter the axial shock launching, ti. Red, blue and balck are for axial shocks ahead of

LDMCs, axial shocks ahead of HDMCs, and equatorial shocks, respectively. (a) Mach

number ⟨Ms⟩, (b) kinetic energy flux-weighted Mach number ⟨Ms⟩φ
, (c) CR energy flux-

weighted Mach number ⟨Ms⟩CR, (d) shock speed ⟨vs⟩, (e) kinetic energy flux through

shock surfaces
〈

fφ

〉
, (f) CR energy flux through shock surfaces ⟨ fCR⟩, (g) proper dis-

tance from the center of cluster ⟨ds⟩, (h) integrated kinetic energy through shock surfaces

Fφ , and (i) integrated CR energy through shock surfaces FCR are shown. Here, vs is in

units of km s−1, ds in units of Mpc, f ’s in units of 1040 ergs s−1 Mpc−2, and F’s in units

of 1040 ergs s−1. Squares denote averaged values and error bars (standard deviations) are

displayed along with squares. Except Fφ and FCR, the vales for all shock tagged zones in

5 clusters listed in Table 1 were considered to calculate the averages and standard devi-

ations the averages and standard deviations. For Fφ and FCR, the averages and standard

deviations are for 5 cluster samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 The shock statistics, d fφ/dlogMs as a function of Mach number for different cone open-

ing angles, ∆θ ’s, for Cluster 1 at z = 0.25 (the time epoch of shock observation). Here,

fφ is in units of 1040 ergs s−1 Mpc−2 and the logarithmic Mach number bin, logMs to

logMs+dlogMs is considered. Red, blue and black are for axial shocks ahead of LDMC,

axial shocks ahead of HDMC, equatorial shocks, same as those in Figure 5. . . . . . . . 15

7 Stack plots of total magnetic field strength, B(x), and electric potential for eφ(x), aver-

aged over the transverse direction in M3.2-2D (left) and M2.0-2D (right) models for five

different time epochs (from wpet = 0.8×105 (purple) to 1.2×105 (red)). . . . . . . . . 24

8 Shock structure of the M3.2-2D (left panels) and M2-2D (right panels) at wpet ≈ 4.5×
104 (Ωcit ≈ 12). Here, xsh denotes the shock position and the length scale is expressed

in the unit of c/ωpe. From top to bottom, the ion momentum phase space plots x− pix,

x− piy & x− piz (normalized by mic and colorbar indicates log f (pi,α)), and the one-

dimensional profile of ion density (normalized by number density of incoming plasma)

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



9 Panels (a) & (b) show downstream ion energy spectrum at wpet ≈ 1.3×105 (Ωcit ≈ 35)

in M3.2 and M2.0 models. Downstream ion spectra of 1D M3.2 model for 5 different

time epochs from wpet ≈ 4.5×104 (Ωcit ≈ 12) to 3.4×105 (Ωcit ≈ 90) are displayed in

panel (c). Downstream ion spectra at wpet ≈ 3.4×105 of Ms ≈ 3.2 shocks for 4 different

obliquity angles are plotted in panel (d). The energy spectra shown in all panels are

taken from the downstream region [1.5− 2.5]rL,i behind the shock position. The black

and purple dashed lines indicate the test-particle power-law spectrum and the thermal

Maxwellian distribution in the postshock region, respectively. In (c) and (d), the injec-

tion energy, Einj ≈ 5× 10−3mic2 for the M3.2 model is marked as the orange dashed

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Ion energy spectra measured in the shock downstream at wpet ≈ 3.4× 105 (Ωcit ≈ 90)

for M2.0, M2.25, M2.5, and M3.2 models. Here, energy spectra are taken from three

different positions: Post-shock (black; (0− 1)rL,i behind the shock), near downstream

(red; (1−2)rL,i behind the shock), far downstream (blue; (5−6)rL,i behind the shock).

The black and purple dashed lines show the test-particle spectrum expected for a shock

with given Ms and thermal Maxwellian distribution in the postshock region, respectively.

In (b), (c) and (d), the injection energy, Einj for each model is marked as the orange

dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 Injection fraction ξ as a function of Ms at tend of 1D simulations for M2.0 - M4.0 models

(black dots). The red line is a fitting line which follows a scaling relation, ξ ∝ M1.5
s . The

blue squares and green triangles are for β = 50 and β = 30 models, respectively. . . . . 32

12 Self-excited magnetic field, δB⊥, in the shock precursor (0 < (x− xs)wpe/c < 2×103)

at wpet ≈ 3.4× 105 for M2.0, M2.25, and M3.2 models. Top panels: Spatial profiles

of δBy(x)/B0 (Red) and δBz(x)/B0 (Black). Middle panels: Spectral distribution of

δB⊥/B0(k). Bottom panels: Polarization angle χ , where +(−) sign corresponds to

right-(left-)handed modes. The red dashed line indicates the inverse of the mean CR

gyroradius, while the blue dashed line shows the characteristic power-law, k(q−6)/2, due

to the resonant streaming instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13 Downstream ion energy spectra for different models with Ms ≈ 3.2 (upper panels) and

2.0 (lower panels). (a)-(b) Models with plasma β = 30, 50 and 100 at wpet ≈ 3.4×105

(c)-(d) Models with the mass ratio mi/me = 100, 400, and 800 at wpet ≈ 8.4×104 (e)-(f)

models with the resolution parameter N = c/(wpe∆x) = 5, 10, and 20 at wpet ≈ 8.4×104.

The purple dashed line shows the thermal Maxwellian distribution. . . . . . . . . . . . . 34



14 Self-excited magnetic field, δB⊥, in the shock precursor (0 < (x− xs)wpe/c < 2×103)

at wpet ≈ 3.4× 105 for M3.2-β30, M3.2-β50, and M2.0-β30 models. Upper panels:

Spatial profiles of δBy(x)/B0 (Red) and δBz(x)/B0 (Black). Lower panels: Spectral

distribution of δB⊥/B0(k). The red dashed line indicates the inverse of the mean CR

gyroradius, while the blue dashed line shows the characteristic power-law, k(q−6)/2, due

to the resonant streaming instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

15 Mass versus temperature relation for 58 sample clusters at z = 0, found in a set of cos-

mological simulations for the LSS formation of the universe. The total (baryon plus

DM) mass and the X-ray emission-weighted temperature inside the spherical volume of

r ≤ r200 are shown. The filled squares denote 12 clusters used to show the shock ener-

getics plotted in Figures 16. The virial scaling relation of TX ∝ M2/3
200 is represented as

the red solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

16 Kinetic energy flux, Fφ , and energy flux dissipated to CRp production, FCR, in units

of erg s−1(h−1Mpc)−3, as a function of Ms, processed through shock surfaces inside

the sphere of r200 of sample clusters with the X-ray emission-weighted temperature (a)

TX ∼ 2 keV, (b) TX ∼ 3 keV and (c) TX ∼ 4 keV. Each panel shows the fluxes averaged

over 4 clusters with similar TX , denoted with the filled squares in Figure 15. The black,

red and blue solid lines show Fφ through all the shocks, Q⊥-shocks and Q∥-shocks,

respectively. In addition, FCR produced by supercritical Q∥-shocks is plotted as the

magenta lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

17 Slope of the volume-integrated CRp momentum spectrum, produced by all supercriti-

cal Q∥-shocks inside the sphere of r200, as a function of the X-ray emission-weighted

temperature (left panel) and the total mass (right panel), for all 58 sample clusters. The

black and red open circles draw the slopes without (αp) and with (αr
p) reacceleration

process, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

18 Volume-integrated CRp momentum spectrum, NCR(p), produced by all supercritical

Q∥-shocks inside the sphere of r200, without (black solid lines) and with (red dashed

lines) the reacceleration process, for three simulated clusters. Here, δ = 0.75 is adopted

in the calculation of reacceleration. The volume-averaged slopes without and with reac-

celeration, αp and αr
p, are given in all three panels. . . . . . . . . . . . . . . . . . . . . 48



19 The amount of γ-ray photons produced per second in the energy band of [0.5, 200] GeV,

Lγ , as a function of the total cluster mass, for all 58 sample clusters (black circles). The

red symbols are the upper limits suggested by Fermi LAT for observed clusters. The

blue dashed lines represent the mass-luminosity relation, Lγ ∝ M5/3
200 , assuming virial

equilibrium and a constant CRp-to-gas energy ratio. The panels (a) - (c) show Lγ esti-

mated from the CRp production model with reacceleration process; the three panels are

for the different spatial distribution models of CRp with different δ . Note that smaller δ

indicates flatter spatial distribution). Lγ values from the CRp production model without

reacceleration for δ = 0.75 is displayed in the panel (d), for comparison. . . . . . . . . . 49

20 Neutrino energy spectra from the sample clusters of TX ∼ 2 keV (blue dashed dot lines),

3 keV (red dashed lines), and 4 keV (black solid lines). All the spectra shown here are

obtained by averaging over 4 clusters with similar TX . For the momentum distribution of

CRp, αr
p = 2.4 and δ = 0.75 are adopted in the upper panel, and αr

p = 2.5 and δ = 0.75

in the lower panel, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

21 Predicted neutrino fluxes from five nearby clusters. For the momentum distribution of

CRp, the model with αr
p = 2.4 and δ = 0.75 is employed. The gray box shows the Ice-

Cube flux [116], and the black solid and dashed lines indicate the fluxes of atmospheric

muon and electron neutrinos, respectively [117]. . . . . . . . . . . . . . . . . . . . . . . 54

22 Real frequency, ωr (black), and imaginary frequency (i.e., growth rate), γ (red), of

the ETAFI as a function of wavenumber, k, for different propagation angle θ , the an-

gle between the wavevector and the background magnetic field. Here, the follow-

ing parameters are employed: β = 100 (i.e., βe∥ = 72.3, βe⊥ = 38.9, and βp = 50),

A = Te∥/Te⊥ = 1.86, vA/c = 6×10−4, and mp/me = 1836. . . . . . . . . . . . . . . . 60

23 Maximum growth rate, γm (top), and wavenumber, km (bottom), for the propagating

(dashed line) and nonpropagating (solid line) modes of the ETAFI, as a function of

θ . The left panels show dependence on the βe∥ values with a set of fixed parameters:

A = 1.67; β = 2βe∥(1+ 2/A )/3, vA/c = 10−4, and mp/me = 1836. The right panels

present dependence on A and mp/me with a set of fixed parameters: β = 100 and

vA/c = 6 × 10−4/[(mp/me)/1836]1/2 In the right panels, the gray solid lines almost

completely overlap with the black solid lines. . . . . . . . . . . . . . . . . . . . . . . . 61

24 Real frequency, ωr (black), and growth rate, γ (red), of the EBFI for the Lu0.3 model

in Table 1, as a function of wavenumber, k, for different propagation angle, θ . Here,

modes have a nonpropagating characteristics when γ is larger than ω . . . . . . . . . . . 62



25 The growth rate, γ , of the EBFI for four models is displayed in the wavenumber k

versus wave propagating angle θ space, (a) Lu0.3, (b) Lu0.22, (c) Lu0.3β50, and (d)

Lu0.3m100, in Table 1. The symbol X marks the location of the maximum growth rate

in the k-θ space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

26 Top panels: the growth rate of the EBFI, γ(k)/Ωe, in the k∥-k⊥ space for four models

in Table 1, obtained by the linear analysis. Bottom panels: the magnetic energy density,

δB2
y(k)/B2

0, in the k∥-k⊥ space for four models in Table 2, estimated at Ωet = 5, from

PIC simulations. Note that γ(k)/Ωe is displayed in the linear scale, while the colorbar

of δB2
y(k)/B2

0 is in the logarithmic scale (see the corresponding text for more details).

The parameters of Su models are identical to those of their respective Lu models, except

that mp/me = 100 for Su models while mp/me = 1836 for Lu models. The symbol X

marks the wavenumber of the maximum linear growth rate, γm, of the Lu models. . . . . 65

27 Time evolution of magnetic field power spectra (top panels: PBy(k); bottom panels:

PBy(θ)) as a function of k and θ , at different times in the PIC simulations for the Su0.22,

Su0.26 and Su0.3 models in Table 5. The gray lines show the power spectrum at a later

time, Ωet ∼ 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

28 Two-dimensional slices of magnetic field fluctuation, δBy/B0, at three different times in

the PIC simulation for the Su0.3 model. The black arrows draw the direction of back-

ground magnetic field, while the blue arrows indicates the wavevector corresponding to

the peak of power spectrum, PBy(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

29 Two-dimensional slice of y-magnetic field, δBy/B0, at Ωet ∼ 5000 in the PIC simulation

of the M3.0 model shock of KRH19. The black arrow draw the direction of background

magnetic field, while the blue arrow points the wavevector corresponding to the peak of

power spectrum, PBy(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

30 (a) In this study, the background magnetic field, B0 = B0ẑ, and the wavevector, k =
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0 , lies in the x-y plane, and the obliquity angle between Bup

0 and the y-axis is
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results are shown in the region of −2.5 ≤ (x− xsh)/rL,i ≤ 1.5 at Ωcit ∼ 32, where xsh is

the shock position. The gyromotion of reflected ions (green circular arrows) generates

the overshoot/undershoot structure in the shock transition, while the backstreaming of

SDA-reflected electrons (magenta cone) induces the temperature anisotropy and the EFI

in the the preshock region. The colored arrows indicate the regions where DSA (cyan),

SSDA (dark green), and Fermi-like acceleration (light green) operate. The labels for the

three instabilities, AIC, whistler, and EFI, are placed in the regions where the respective

instabilities are excited. During a SDA cycle, electrons drift in the negative z-direction

(into the paper here) anti-parallel to the convection electric field E⃗conv =−(1/c)U⃗1 × B⃗0. 90

38 Shock structure in the M2.0 and M3.0 models in the region of −255 ≤ (x−xsh)ωpe/c ≤
55 at Ωcit ∼ 32. Panels (a)-(b) show the ion number density, ni/n0. Panels (c)-(d) show

the magnetic field strength, B/B0. Panels (e)-(f) show the ion temperature, ⟨Ti∥⟩y,avg/Ti0

(red), and ⟨Ti⊥⟩y,avg/Ti0 (blue), averaged over the y-direction. Here rL,i ≈ 91(c/ωpe) ·
(Ms/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

39 (a) Instability parameter, IAIC, in Equation (51), estimated using the mean temperature

and plasma beta, ⟨Ti⊥⟩, ⟨Ti∥⟩ and ⟨βi∥⟩, in the region of (x− xsh)ωpe/c = [−50,0] and

yωpe/c = [0,310]. The results for the fiducial models with β = 50 are shown by the

black circles connected with the black line, while the models with β = 100 and 20 are

presented by the blue triangles and red squares, respectively. (b) Ion number density,

⟨ni⟩y,avg(x), averaged for yωpe/c = [0,310] in the fiducial models, M2.0(blue), M2.3

(red), M2.5 (green), and M3.0 (black). (c) Ion number density, ⟨ni⟩x,avg(y), averaged

for (x− xsh)ωpe/c = [−50,0] in the same fiducial models as in panel (b). For all the

quantities, the simulation results at Ωcit ∼ 32 are used. . . . . . . . . . . . . . . . . . . 97



40 Panels (a)-(c): Magnetic field fluctuations, Bz/B0, in the region of (x − xsh)ωpe/c =
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I Introduction

According to the current observations, the matters distributed in the universe are not homogenous but

they form the cosmic web which is the so-called the large-scale structure (LSS) of the universe. Based

on the current ΛCDM cosmology, the LSS of the universe has been evolved through hierarchical cluster

and it consists of clusters and filaments of galaxies and void regions. In particular, cluster of galaxies

is the largest gravitationally bounded object which contains the thousands of galaxies and the range of

mass is ∼ 1014 − 1015M⊙. Along with tons of galaxies and dark matters, the hot (T ∼ 107 − 108 K)

and weakly magnetized (B ∼ 10−6G) plasma permeates a galaxy cluster which is called the intracluster

medium (ICM).

In the astrophysical environments, shock waves are ubiquitous due to the supersonic motions such

as solar winds, supernova remnants and relativistic jets from active galactic nuclei. Because of the

hierarchical structure formation, the complex supersonic flow motions exist inside the galaxy clusters as

well, and thus shock waves are naturally induced in the ICM. Those ICM shocks, like most astrophysical

shocks, are collisionless shocks and their kinetic energy fluxes are dissipated into gas thermalization and

particle acceleration. Using cosmological hydrodynamic simulations for the large-scale structure (LSS)

formation of the universe, the properties and roles of shocks in the ICM as well as around clusters have

been extensively studied [1–9].

According to such numerical studies, the cosmological shocks can be classified into two types,

which are summarized as follows: external accretion shocks form around galaxy clusters due to the gas

accretion from void regions with T ∼ 104 K. With the accretion velocity of ∼ 102 − 103 km s−1 and

the sound speed of cs ∼ 10 km s−1, their Mach number is in the range of Ms ∼ 10− 100. Although

the external shocks are strong shocks, the kinetic energy flux dissipated through those shocks, fφ =

(1/2)ρ1v3
s (where ρ1 is the preshock gas density and vs is the shock speed) is very small because they

propagate in the very low density regions. Inside clusters, internal shocks are induced by supersonic

flow motions such as the major mergers between two sumclumps, gas infall from filaments of galaxies

and turbulent flow motions [2]. Because they propagate in the hot ICM, they have lower Mach numbers

(Ms ∼ 2− 4). But the gas density of ICM is higher than that of the medium around galaxy clusters,

kinetic energy dissipation through such internal shocks is much more substantial for heating ICMs and

producing CRs, compared to external shocks.

Depending on the type of supersonic flow motions, internal shocks can be further categorized into

three types. turbulent shocks, induced by turbulent flow motions, are mostly weak with at most Ms ≲ 2

[10], since ICM flow motions are subsonic with turbulent Mach number Mt ∼ 0.5 [11–15]. Infall shocks

are formed by continuous infall of the WHIM of T ∼ 105−107 K, often with streams of minor mergers,

into the hot ICM of T ∼ 107−108 K [16–18]. They can have higher Mach numbers of up to Ms ∼ 10 [8].

With relatively high Mach numbers, infall shocks could be sites for efficient CR acceleration. But they

form mostly in the cluster outskirts, since the gas accretion from filaments normally halts around the

virial radius and does not penetrate into the core. Moreover, they have small cross sections. merger

shocks are induced by “major mergers” between two small galaxy clusters. A merger of M ∼ 1014Msun
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clumps with speed ∼ 103 km s−1 involves the kinetic energy of Emerg ∼ 1063 ergs, and a substantial

fraction of it could be dissipated at merger shocks in the time-scale of ∼ 1− 2 Gyr [19]. Because a

substantial fraction of the merger kinetic energy during ∼ 1− 2 Gyr, Emerg ∼ 1063 erg is dissipated

through merger shocks, merger shocks should be energetic enough to result in observable phenomena.

For this reason, most shocks observed in X-ray and/or radio, usually in the outskirts of merging clusters,

have been interpreted as merger shocks (see Section II for further details such as properties of merger

shocks).

Typical collisionless shocks in the astrophysical enviroments accelerate cosmic rays (CRs) via the

first-order Fermi acceleration (in other words, diffusive shock acceleration (DSA)) [20–22]. In order to

understand kinetic plasma processes for CR acceleration at collisionless shocks, particle-in-cell (PIC)

and hybrid plasma simulations have been extensively performed (e.g., [23–29]). In particular, majority

of such studies have focused on the strong shocks in front of supernova remnants (SNRs) with Ms ∼
10− 100, β ∼ 1 and T ∼ 104 K (e.g., [26–28]), where the plasma beta, β is the ratio between thermal

energy and magnetic energy (i.e., lower β indicates that plasma is strongly magnetized). In the higher

β -range, on the other hand, not many PIC simulations have been performed. This is partly because

simulating high-β plasma is computationally very expansive compared to the low-β system. Moreover,

compared to the SNR, the evidence of CR proton acceleration by ICM shocks has failed to be detected.

It is important that the micro physics at the collisionless shocks for particle acceleration is sensitively

affected by the shock Mach number and the plasma beta (e.g., [29, 30]). Compared to the SNR shocks,

the ICM shocks are very weak (Ms ∼ 2− 4) and propagate in the weakly magnetized medium (β ∼
50 − 100 ≫ 1) and thus more detailed numertical studies with the relevant parameters for the ICM

plasma shoud be required to understand particle acceleration at the ICM shocks. In this regards, we

have performed sets of PIC simulations to investigate kinetic plasma processes for particle acceleration

at the ICM shocks.

By studying particle acceleration process through numerical simulations, in this thesis, we address

two outstanding problems regarding particle acceleration in the galaxy clusters, which are summarized

as follows:

1. Non-detection of diffuse γ-ray emission from galaxy clusters: It is expected that CR protons

could be accelerated at the ICM shocks via DSA and the diffuse γ-ray emission from galaxy clusters is

also expected to be detected due to the inelastic collision between CR protons and thermal ICM protons.

However, currently available γ-ray telescopes such as Fermi-LAT and Veritas have yet to detect the

cluster-wide γ-ray emission from galaxy clusters. To resolve this problem, it is necessary to understand

the detailed proton acceleration process at the ICM shocks and estimate the expected γ-ray flux from

galaxy clusters more precisely, compared to the previous works (e.g., [31]). In particular, in this thesis,

we present the early DSA process at the ICM shocks by following micro plasma instabilities in the first

principle through a set of PIC simulations.

2. The origin of observed radio relics in the outskirts of galaxy clusters: The shocks in the outskirts

of galaxy clusters have been detected through radio observations and such radio emission has been in-

terpreted as synchrotron radiation emitted by CR electrons produced at the ICM shocks via DSA. While
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the DSA theory states that particles can be accelerated by the crossing the shock and interacting plasma

waves near the shock surface many times, thermal electrons are hard to be directly accelerated through

DSA because the width of shock transition layer is an order of the gyroradius of thermal electrons. In

this context, in order to be injected into DSA, thermal electrons should be preaccelerated to become

suprathermal electrons with suprathermal momentum, pe ≳ a few× pth,p (i.e., the so-called electron

injection problem; e.g., [32]). Here, pth,p = (2mpkBT2)
1/2 is the proton thermal momentum in the post-

shock gas of temperature T2, mp is the proton mass, and kB is the Boltzmann constant. In this thesis, we

present the recent PIC simulation results to examine the microinstabilites and electron preacceleration

mechanisms mediated by plasma waves induced by such microinstabilities.

The thesis is organized as follows. Note that all results shown in this thesis are originally from the

papers cited below.

In Section II, to understand dynamical evolution of merging galaxy clusters and merger-driven

shocks in there, we study properties of such shocks based on a set of cosmological hydrodynamic simu-

lations (Ha, J.-H., Ryu, D., & Kang, H. 2018, The Astrophysical Journal, 857, 26; [33]).

In Sections III and IV, the detailed proton acceleration process at the ICM shocks and the detectabil-

ity of high energy γ-ray and neutrino emission from galaxy clusters are covered (Ha, J.-H., Ryu, D.,

Kang, H., & van Marle, A. J. 2018, The Astrophysical Journal, 864, 105; Ha, J.-H., Ryu, D., & Kang,

H. 2020, The Astrophysical Journal, 892, 86; [83, 105]).

In Sections V, VI, VII & VIII, the recent PIC simulation results regarding electron acceleration at

the ICM shocks are provided. Especially, microinstabilities in the shock upstream and downstream are

examined in Sections V and VI and the electron acceleration mechanisms mediated by such microinsta-

bilities are given in Sections VII and VIII as follows ( Kim, S., Ha, J.-H., Ryu, D., & Kang, H. 2020,

The Astrophysical Journal, 892, 85; Kim, S., Ha, J.-H., Ryu, D., & Kang, H. 2021, The Astrophysical

Journal, 913, 35; Ha, J.-H., Kim, S., Ryu, D., & Kang, H. 2021, The Astrophysical Journal, 915, 18 ;Ha,

J.-H., Ryu, D., Kang, H., & Kim, S. 2022, The Astrophysical Journal, 925, 88; [143, 163, 164, 194]).
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II Properties of Merger Shocks in Galaxy Clusters

As mentioned in the Introduction, shocks driven by major merger between two subclumps play an im-

portant role in energy dissipation inside the galaxy clusters and so they have been detected through

X-ray and/or radio observations. In this Section, we study merger shocks in merging galaxy clusters that

produced with a set of cosmological hydrodynamic simulations. Note that all results shown here are

originally presented in the paper (Ha, J.-H., Ryu, D., & Kang, H. 2018, The Astrophysical Journal, 857,

26; [33]).

Because the ICM gas is heated by shock propagating to the outskirts of galaxy clusters, thermal

bremsstrahlung is emitted by the heated gas in the X-ray range. As consequence of that, merger-driven

shocks have been observed through X-ray telescopes such as Chandra, XMM-Newton, and Suzaku [34–

37]. For example, the well-known Bullet Cluster (1E 0657-56) contains the shock driven by major

merger [38]. They are very weak with Ms ∼ 1.5− 3 and typically located at the outskirts of galaxy

clusters (i.e., ∼ 1 Mpc from the cluster center).

Along with the X-ray observations, merger-driven shocks have been detected through radio observa-

tion in the outskirts of galaxy clusters as well. Their radio emission has been interpreted as synchrotron

radiation from CR electrons accelerated at shocks. Including well studied radio relics such as the so-

called Sausage relic in the cluster CIZA J2242.8+5301 [39,40], double relics in ZwCl 0008.8+5215 [41]

and PLCK G287.0+32.9 [42, 43], and the so-called Toothbrush relic in RX J0603.3+4214 [44, 45], tons

of observed radio relics [14, 46–48] indicate that CRs are efficiently produced through the shocks in the

galaxy clusters. They are also located at the outskirts of galaxy clusters, but it is interesting that the

shock Mach number inferred from X-ray and radio observations for the same object does not always

agree with each other. In the case of the Sausage relic, for instance,the estimated mach number based

on the radio spectral index near the edge is Mradio ≈ 4.6 [39], while the Mach number calculated by the

temperature jump obtaind from the X-ray observations is in the range of MX ≈ 2.5−3.1 [35,49]. In the

case of the Toothbrush relic, the Mach number estimated with the radio spectral index, Mradio ≈ 2.8 [45]

is also larger than that obtained from X-ray observations, MX ≲ 2 [36, 45].

Understanding the discrepancy between MX and Mradio explained above still remains as an outstand-

ing problem. The so-called reacceleration model has been recognized as a possible scenario to resolve

this problem. This model states that a shock with ∼ MX sweeps through and reaccelerates pre-existing

“fossil CR electrons” of a flat energy spectrum consistent with the observed radio spectrum [50] (see

also Section VIII for further details). In contrast, [51] proposed that generating and/or maintaining such

flat spectrum fossil CR electrons may not be feasible considering the short cooling time scales of GeV

electrons, so a shock with ∼ Mradio is needed to reproduce the aforementioned radio observations. Al-

ternatively, from mock X-ray and radio observations of relic shocks in clusters from simulations of the

LSS formation, [52] reported that the surfaces of ICM shocks are highly inhomogeneous with different

Ms values at various locations. In the nonuniform shock surfaces, radio emissions come from parts with

higher Ms and thus higher electron acceleration, while X-ray observations pick up the parts with higher

shock energy flux but lower Ms. Therefore, Ms inferred from X-ray discontinuities is generally lower
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than that derived from radio spectral indices, explaining the discrepancy between the Ms derived from

X-ray and radio observations. Indeed, according to the recent numerical studies for electron preaccel-

eration at ICM shocks including the detailed kinetic plasma processes (see sections V to VIII for more

details), acceleration efficiency increases as Ms increases, in agreement with the interpretation about the

nonuniform nature of shocks.

The mass distributions of observed clusters can be reconstructed through weak lensing observations.

Especially, merging galaxy clusters contain at least two Dark matter (DM) peaks because of the colli-

sionless feature of DM and thus multiple peaks have been detected through weak lensing techniques.

The weak lensing analysis have provided the results to confine the interpretation and modeling of re-

ported shocks in numerous merging clusters. Several findings are summarized as follows. DM clumps

behind shocks were discovered in a weak lensing investigation of the Bullet Cluster, for example, whose

peaks are offset from the X-ray peaks [53]. [54] discovered two DM clumps of almost identical masses,

whose distributions are offset from the galaxy distribution as well as the X-ray emission, in a weak

lensing mass reconstruction of CIZA J2242.8+5301. On the other hand, [55] suggested that the clump

behind the Sausage relic is less massive, while the one on the other side of the cluster and close to the

X-ray emission peak is around twice more massive. Furthermore, mass reconstructions identified, for

instance, two DM clumps of mass ratio ∼ 5 in ZwCl 0008.8+5215 [56], two dominant DM clumps of

mass ratio ∼ 3 and a few smaller clumps in RX J0603.3+4214 [57], and one dominant DM clump and

several smaller clumps in PLCK G287.0+32.9 [58]. In these clusters, heavy clumps are seen behind the

major relics in these clusters.

In merging clusters, “cold fronts” have been observed along with merger shocks [19, 38, 59, 60]. In

fluid dynamics, cold fronts indicate the structures with opposite density and temperature gradients (a.k.a.

contact discontinuities). They are frequently modeled as the edges of cool clumps [61], alternatively

clump sloshing motions possibly form the cold front [62]. Some of them show up behind merger shocks

in merging clusters, usually half way between the cluster core and the shocks [38, 63] and we have

confirmed that the cold front found inside the simulated clusters through cosmological simulation is also

located behind merger shocks. Weak lensing observations show that their locations are close to the DM

distribution’s peak [64, 65].

All of the observations mentioned above suggest that the nature of merger shocks, as well as other

observables like X-ray and DM distributions, should be understood and described in the context of

the LSS formation. However, formation of merger-driven shocks inside merging galaxy clusters have

been mainly investigated through a controlled-box simulation, modelling modeling specific objects, i.e.,

merger shocks in 1E 0657-56, CIZA J2242.8+5301, or ZwCl 0008.8+5215 [66–69]. Here, a controlled-

box indicates that only two massive clumps are distributed in the box and there is no further mass and

energy injection from outside of box, therefore, the effects of LSS are omitted in the simulation em-

ploying a controlled-box. Properties of shocks have been examined through cosmological simulations,

on the other hand, previous works have not focused on the properties of merger-driven shocks. For in-

stance, some previous studies performed cosmological simulations examined on the overall statistics of

cosmological shocks, however, did not particularly highlight merger-driven shocks (e.g., [2]). Moreover,
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Table 1: Merging Cluster Sample

Mheavy/Mlight
a TX ,heavy (keV)b TX ,light (keV)b TX (keV)c zi

d

Cluster 1 1.84 4.26 2.99 5.12 0.36

Cluster 2 1.97 3.88 2.20 4.65 0.35

Cluster 3 1.96 4.08 2.33 4.92 0.23

Cluster 4 2.00 3.79 2.15 4.55 0.30

Cluster 5 1.99 3.83 2.18 4.60 0.25
a: Mass ratio between two merging clusters, estimated by including both baryon gas and DM at 0.174

Gyr before the axial shock launching time.

b: X-ray weighted temperatures of two merging clumps, estimated at 0.174 Gyr before the axial shock

launching time.

c: X-ray weighted temperature of merged clusters, estimated at 1 Gyr after the axial shock launching

time.

d: Redshift of axial shock launching time (see Section Properties of Merger Shocks).

paul2011 and [70] studied merging clusters in the context of the LSS formation, but the properties of

merger shocks are not examined in detail.

In this Section, we study properties of merger shocks and their time evolution by performing a set of

comsmological hydrodynamic simulations. In particular, the main improvement compared to previous

studies listed above is that we fully follow LSS evolution and analyze major merger events during LSS

formation. While observed merger events have a wide parameter space of subclump number, mass and

impact parameter (e.g., [53, 55–57]), we focus on a particular case for CIZA J2242.8+5301 [55] that

contains bright and giant Mpc-scale radio relic. According to the previous weak lensing analysis [55]

and numerical modeling [68], the impact parameter of that event is very small (i.e., very close to head-on

collision) and clump mass ratio is around 2. We leave the study of mergers with different parameter space

of mass ratios and impact parameters as future works. In the Results Section, We first provide the spatial

distributions of gas, temperature, X-ray emission, and DM to understand the dynamical evolution of

major merger including shock propagation. Especially, using cosmological hydrodynamic simulations,

merger-driven shocks quantified here are propagating in the realistic turbulent ICM and gas accretion

from filament is considered as well. In addition, the quantities, such as the means and variations of vs

and Ms at shock surfaces and their time evolution, should provide informations for detailed modeling

of synchrotron emissions [50, 51] and also constrain MX and Mradio obtained from X-ray and radio

observations of radio relics [52].
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Figure 1: Schematic diagram of merging galaxy clusters undergoing a head-on collision (a) two sub-

clumps undergo a head-on approach. (b) Due to the gas compression along the merger axis (i.e., ma-

genta dashed line), “equatorial shocks” are first induced and propagating perpendicular to the merger

axis. (c) two “axial shocks” are generated and propagating along the merger axis as follows. While

Light DM clump (LDMC) and heavy DM clump (HDMC) are undergoing core passage because of the

collisionless feature of DM, two gas subclumps become a single gas clump. Green lines in (c) express

the cone and disk over which the average quantities such as Mach number and energy flux of axial and

equatorial shocks are estimated (see Section "Properties of Merger Shocks").
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2.1 Numerics

Simulations and Cluster Sample

Merging cluster samples used in this Section are produced by performing a set of numerical simulations

of the LSS formation of the universe for a ΛCDM cosmology model with baryon density ΩBM = 0.044,

DM density ΩDM = 0.236, cosmological constant ΩΛ = 0.72, rms density fluctuation σ8 = 1.05, Hubble

parameter h ≡ H0/(100 km s−1Mpc−1) = 0.7, and primordial spectral index n = 0.96. Except σ8,

the parameters are consistent with the WMAP7 data [71]. While σ8 ≈ 0.82 is the most reasonable

value based on the WMAP7 data, for the sake of producing more massive clusters in the simulation

boxes, we here adopted a slightly larger σ8. Some previous works argued that the properties of clusters

produced in the simulation box and shocks inside those samples weakly depend on σ8 [7,72] and we have

also confirmed the cluster properties such as luminosity-temperature and mass-temperature relations are

almost independent of σ8, although the detailed results are not provided here.

We employ a PM/Eularian hydrodynamic cosmology code [73] to generate cosmological structure.

A cubic box of comoving size of 50h−1 Mpc with periodic boundaries was employed. A grid of 10243

uniform zones was used, so the spatial resolution is ∆l = 48.8h−1 kpc. Nongravitational effects such

as radiative and feedback processes were not included because most of energetic shocks are located

outskirts of galaxy clusters and thus nongravitational effects are expected to be negligible (see e.g., [4]).

10 simulation boxes with different realizations of the initial condition were performed to obtain

sample clusters. As mentioned above, we here focus on mergers with clump mass ratio ∼ 2, going

through almost head-on collisions (i.e., accroding to the modeling for CIZA J2242.8+5301 the impact

parameter is roughly ∼ 140 kpc, which is corresponding to ∼ 2 grid zones). In addition, we constrained

the epoch of the launching of axial shocks to the redshift range of 0.23 ≲ zi ≲ 0.36, ensuing the shocks

have the best chance to be observed in X-ray and radio at 0.14 ≲ z ≲ 0.25 (∼ 1 Gyr after the shock

launching). The latter z’s match the redshift range of most of giant radio relics; for instance, CIZA

J2242.8+5301 and RX J0603.3+4214 have z = 0.188 and 0.225, respectively (see the references in

the Introduction). Finally, for the uniformity of the sample, we chose clusters with the X-ray weighted

temperature TX ∼ 5 keV after merger. CIZA J2242.8+5301 and RX J0603.3+4214, on the other hand, are

observed to have TX ∼ 7−10 keV [49,74], higher than those of sample clusters. Because the temperature

and mass of clusters depend on the box size of simulation, the box size, 50h−1 Mpc is not enough to

produce such massive clusters, even with extremely large σ8 = 1.05. Characteristic parameters of 5

selected clusters are listed in Table 1. The virial masses of merging clumps (baryons plus DM) are in

the range of
〈
Mheavy

〉
∼ [2−3]×1014M⊙ and

〈
Mlight

〉
∼ [1−1.5]×1014M⊙, respectively, and the total

mass of clusters after merger is in the range of ∼ [3−5]×1014M⊙.

Compared to different numerical techniques such as smoothed particle hydrodynamic (SPH) or adap-

tive mesh refinement (AMR) methods, the resolution of our simulation is not enough to capture shocks

with small surface areas that located in the cluster core. However, we are mostly concerned about shocks

in the outskirts of galaxy clusters, which have been observed as X-ray shocks and radio relics. Because

such outskirts shocks have large enough shock surfaces, the statistics of those shocks weakly depend on
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the resolution of simulation box [8, 75].

Shock Identification and Energy Flux Calculation

In sample clusters, shocks (actually grid zones containing shocks) were identified with the algorithm

described in [2] and [8] (See [75] for comparisons of different shock identification algorithms). Shocked

grid zones were tagged if they satisfy the following three conditions: (1) ∇ · v < 0, i.e., converging local

flow, (2) ∆T ×∆ρ > 0, i.e., same temperature and density gradient signs, and (3) |∆ logT | > 0.11, i.e.,

the Mach number greater than 1.3. In numerical simulations, shocks are represented by jumps typically

spread over 2 - 3 zones, and “shock zones” were defined as the minima of ∇ · v. The sonic Mach

number can be estimated from the temperature jump across the shock jump, T2/T1 = (5M2
s − 1)(M2

s +

3)/(16M2
s ). Here, the subscripts 1 and 2 denote the preshock and postshock quantities, respectively.

The Mach number of shock zones was defined as Ms = max(Ms,x,Ms,y,Ms,z). Very weak shocks are not

energetically important, yet are easily confused with sonic waves, so only shocks with Ms ≥ 1.5 were

considered. Note that a shock surface consists of a number of shock zones.

At shock zones, the shock kinetic energy flux was calculated as

fφ = (1/2)ρ1v3
s , (1)

where vs = Ms(γPth,1/ρ1)
1/2. A part of the shock kinetic energy is dissipated to accelerate CRs via DSA

as well as to heat the gas, since ICM shocks are collisionless, as noted in the Introduction. The energy

flux of CRs emerging from shock zones was estimated as

fCR = η(Ms)× fφ (2)

[2]. Here, η(Ms) is the CR acceleration efficiency as a function of Mach number, and we employed the

model presented in [76]. While our model η converges to ∼ 0.23 for strong shocks with Ms ≫ 1, it is

much smaller with 7×10−3 ≲η ≲ 4×10−2 for 3≲Ms ≲ 4, and almost negligible for Ms ≤ 2 (see Figure

2 of [8]). Such behavior of η is consistent with the recent hybrid plasma simulations by [26], although

the magnitudes of two model η’s differ by up to a factor of two in the shock parameter range where a

comparison can be made. This difference is not important here, since we concern mainly the relative

importance of shocks with different Mach numbers, rather than the absolute amount of CR generation

at these shocks.

The integrated kinetic and CR energies through shock surfaces were also calculated as

Fφ or CR = ∑
shocks

fφ or CR ∆S, (3)

where ∆S is the surface area of shock zone.

In the following section, we will present the quantitative properties of merger shocks averaged over

the entire population in the our sample clusters of relatively uniform characteristics.
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Figure 2: Three dimensional distributions of X-ray (left panels; colorbar Lx = 1048 ergs/s (red) to 1039

ergs/s (blue)), shock Mach number (middle panels; colorbar Ms = 7 (blue) to 1.5 (red)) and DM (right

panels; colorbar ρDM/⟨ρDM⟩= 2×103 (red) to 1 (blue)) for Cluster 1 of Table 1 in a comoving box of

5.7 Mpc size (white box) are displayed at four different epochs: (a) compression, (b) shock launching,

(c) DM core passage and single gas core formation, and (d) the time of radio relic observation.
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Figure 3: 1D line plot along the merger axis in Cluster 1 of Table 1 at four different timesteps, same as

those in Figure 2. The gas temperature (in units of K, black), the gas density (ρgas/
〈
ρgas
〉
, blue), and

the DM density (ρDM/⟨ρDM⟩, red) are shown. Red and blue arrows In the panels of z = 0.34 and 0.25

stand for the axial shock ahead of LDMC and the axial shock ahead of HDMC, respectively.
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Figure 4: Two-dimensional density (upper panels; colorbar ρgas/
〈
ρgas
〉
= 104 (red) to 1 (blue)) and

temperature (bottom panels; colorbar T = 108 K (red) to 104 K (blue)) are plotted in a comoving size of

10.5 Mpc for three clusters listed in Table 1 at z = 0.25, 0.24, and 0.14 (i.e., the time epochs of shock

observation). Here, the X-ray peak is employed to define the cluster center of each image.

2.2 Results

Overview of Merging Process

To set the scenario for presenting the merging process, Figure 1 depicts a general overview of an ide-

alized binary merger [67, 68]. As two clumps are approaching and being compressed, shocks form

and first propagate outwards in the equatorial plane, perpendicular to the merger axis. We name these

shocks equatorial shocks. Later, two axial shocks launch into the opposite directions along the merger

axis. Following the shock launch, the core passage of DM clumps and the formation of a single gas core

occur.

Major mergers are, of course, far more complicated in our structure formation simulations. They

drive turbulent flow motions and are frequently accompanied by multiple minor mergers and secondary

infall along connected filaments. As a result, the generation of merger shocks is more complicated than

the generation shown in the idealized binary mergers.

Figure 2 shows the merging process in a representative cluster, Cluster 1 (see Table 1). Two clumps,

composed of baryons and DM, are approaching in an almost head-on collision, and for the sake of

convenience, we refer to the four epochs in Figure 2 as the following terms: (a) compression phase

(z = 0.38) during which the two clumps are approaching, (2) shock launching phase (z = 0.36) when the

first axial shocks launch, (3) DM core passage phase (z = 0.34) when the two DM cores pass each other

and two gas clumps merge to form a single core, (4) the time of radio relic observation (z = 0.25) at ∼ 1

Gyr after the first axial shocks launch (see Section "Properties of Merger Shocks").
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The middle column of Figure 2 shows the presence of complex shock surface networks in the ICM,

even before the two clumps come into contact and compress. With filamentary structures of high Mach

number areas, shock surfaces generated during the merger are patchy and very intermittent.

Figure 3 shows the one-dimensional (1D) distributions of gas temperature (black), gas density (blue),

and DM density (red) along Cluster 1’s merger axis at the same four epochs as Figure 2. Except at earlier

epochs (z = 0.38 and 0.36), we define the zero point of distance, d, along the merger axis as the position

of maximum X-ray peak at a given time. At z = 0.36, d = 0 corresponds to the X-ray peak that appeared

during compression, and at z= 0.38, the same zero point as at z= 0.36 is used. The heavy (light) gas and

DM clumps are arriving from the left-hand side (right-hand side), as described in the panel for z = 0.38.

A temperature peak forms between the gas clumps when they are being compressed. Axial shocks begin

to occur at d = 0 in the panel for z = 0.36, but the density peaks of gas clumps are still moving near to

one other. A single DM peak near the zero point is visible in the panel for z = 0.34, indicating that it is

close to the DM core passage epoch. The gas density and temperature distributions both show a single

peak at d = 0 at that moment, indicating the formation of a merged core. Two axial shocks in the both

sides of the peak are apparent.

The last epoch at z = 0.25 represents the time, around when the axial shocks have the “best chance”

to be observed as a radio relic or double radio relics (see Section "Properties of Merger Shocks"). This

corresponds to ∼ 1 Gyr after the axial shock launching. The axial shocks are identified at ds ∼ 1− 2

Mpc from the X-ray peak. The Mach number of the axial shock traveling ahead of the light DM clump

(LDMC, hereafter) is Ms ≈ 3.5 (the red arrow), while that of the shock traveling ahead of the heavy DM

clump (HDMC, hereafter) is Ms ≈ 4 (the blue arrow). Earlier studies for idealized binary mergers also

found that the shock ahead of HDMC is stronger than that ahead of LDMC [67, 68].

Figure 4 shows the two-dimensional (2D) slices of the gas density (top panels) and temperature

(bottom panels), passing through X-ray peaks in the first three clusters of Table 1 at the times of radio

relic observation. The heavy clumps approached from the left in all three sample clusters, while the light

clumps approached from the right. The clumps merged into cores, and the X-ray peaks are visible in

the images’ center. The merging axes are roughly represented by the elongation axis of density cores.

Merger shocks (both axial and equatorial shocks) are characterized by abrupt changes in temperature

and density distributions.

In addition, all three merging galaxy clusters contain other structures induced by other dynamical

activities and/or complex turbulent flow motions. Especially, we identify two cold fronts behind the

axial shocks from the merger galaxy clusters produced by the cosmological simulation, as noticed in the

observations (e.g., [19, 38, 61, 63]). We interpret that cold fronts formed in the merging clusters shown

in Figures 3 & 4 represents the bolder of cluster core, as modeled through observational results [61],

however, more detailed study in a wide range of merging parameters such as mass ratio between two

subclumps and impact parameter should be required to understand the formation of cold front. In this

study, we focus on the properties of shock and so we leave the detailed fluid dynamics regarding the

cold front as future works.
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Figure 5: Time evolution of physical quantities for merger-driven shocks during ∼ 1.4 Gyr after the axial

shock launching, ti. Red, blue and balck are for axial shocks ahead of LDMCs, axial shocks ahead of

HDMCs, and equatorial shocks, respectively. (a) Mach number ⟨Ms⟩, (b) kinetic energy flux-weighted

Mach number ⟨Ms⟩φ
, (c) CR energy flux-weighted Mach number ⟨Ms⟩CR, (d) shock speed ⟨vs⟩, (e)

kinetic energy flux through shock surfaces
〈

fφ

〉
, (f) CR energy flux through shock surfaces ⟨ fCR⟩, (g)

proper distance from the center of cluster ⟨ds⟩, (h) integrated kinetic energy through shock surfaces Fφ ,

and (i) integrated CR energy through shock surfaces FCR are shown. Here, vs is in units of km s−1, ds

in units of Mpc, f ’s in units of 1040 ergs s−1 Mpc−2, and F’s in units of 1040 ergs s−1. Squares denote

averaged values and error bars (standard deviations) are displayed along with squares. Except Fφ and

FCR, the vales for all shock tagged zones in 5 clusters listed in Table 1 were considered to calculate the

averages and standard deviations the averages and standard deviations. For Fφ and FCR, the averages and

standard deviations are for 5 cluster samples.
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Figure 6: The shock statistics, d fφ/dlogMs as a function of Mach number for different cone opening

angles, ∆θ ’s, for Cluster 1 at z = 0.25 (the time epoch of shock observation). Here, fφ is in units of 1040

ergs s−1 Mpc−2 and the logarithmic Mach number bin, logMs to logMs + dlogMs is considered. Red,

blue and black are for axial shocks ahead of LDMC, axial shocks ahead of HDMC, equatorial shocks,

same as those in Figure 5.

Properties of Merger Shocks

In the merging cluster samples listed in Table 1 from cosmological hydrodynamic simulations, numerous

shocks are induced due to the supersonic flow motions from turbulence and gas accretion from filaments

of galaxies. As a result, it is hard to characterize merger shocks and distinguish them from other types

of shocks (i.e., turbulence and infall shocks). For this reason, bearing the merging process described

above in mind, we simply attempted to pick up merger shocks "visually" by using three-dimensional

(3D) images like those in Figure 2, as well as 1D and 2D distributions like those in Figures 4 and 3.

Merger shocks were divided into three different categories, axial shocks ahead of LDMC, axial

shocks ahead of HDMC, and equatorial shocks. As illustrated in Figure 1, for the axial shocks we

counted those within the two polar cones with opening angles of ∆θ = 45◦, confined by either the polar

angle of θ ≤ 22.5◦ or θ ≥ 157.5◦ around the merger axis. For the equatorial shocks, we considered

those located within a disk-like zone confined by −22.5◦ ≤ (θ − 90◦) ≤ 22.5◦ around the equatorial

plane. Here, the cluster center is the peak of X-ray emission at each epoch. The mean distance, ⟨ds⟩, of

the three shock categories were estimated by taking the average value of ds of the shocks that belong to

each category. Then, the shock selection process was repeated and refined with shocks within ⟨ds⟩±0.3

Mpc for axial shocks, and with shocks within ⟨ds⟩± 0.5 Mpc for equatorial shocks. A larger distance

span was considered for equatorial shocks, because they form over 360◦ of the azimuthal angle, thus

showing a larger fluctuation in the position. Figure 5(g) shows the time evolution of the converged value

of ⟨ds⟩. In this iteration procedure, some of merger shocks could be missed, and some shocks of other

types, particularly turbulent shocks, could be counted in erroneously. However, we interpret that such

limitations would not change the main results shown in this Section, because the major source for shock

generation is the major merger event. Indeed, according to the shock statistics shown in Figure 6, the
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statistical properties of merger shocks are overall insensitive to the choice of the opening angle, nor to

the distance spanning.

As a reference point of time, we define the axial shock launching time, ti, which was calculated as

follows. Once the axial shock launching was identified, the average distance between two axial shocks

as a function of time, D(t), was estimated. At the initial stage of mergers, shocks are hard to be identified

reliably, since they have very low Mach number with Ms ∼ 1−2 and small shock surfaces and form in

the turbulent core regions. Reliable identification of axial shocks becomes feasible typically after the

core passage epoch. So ti was estimated by extrapolating the shock distance backward in time, that is,

as the time when D(ti) = 0. The redshift of ti is given in the last column of Table 1.

To follow the detailed time evolution of merger shocks, physical quantities and their statistics ob-

tained at 15 different time epochs after ti with separation ∆z ∼ 0.01 (corresponding ∆t ∼ 0.09 Gyr) were

considered for the five sample clusters in Table 1. The means and dispersions of shock properties were

calculated for each shock category over all the shocks detected in five sample clusters. The number of

counted shocks (shock zones) in each category increases from Ns ≲ 100 at the axial shock launching

time to ∼ 1500− 2000 (corresponding to the shock surface area of ∼ 2− 3 (Mpc)2) during the time

period of 1.4 Gyr in each sample cluster.

Figure 5 shows the time evolution of physical quantities averaged over the shock surfaces corre-

sponding to axial shocks ahead of LDMC (red), axial shocks ahead of HDMC (blue), and equatorial

shocks (black). Because of the complex nature inside merging galaxy clusters due to the turbulence and

other dynamical activities induced by consequence of hierarchical clustering, the statistical fluctuations

(error bars in the figure) are very large. In spite of that, all quantities shows clear trends in terms of time

evolution.

As shown in Figure 5(g), the mean distance of equatorial shocks is the largest among three shock

categories, since they launch earlier. And ⟨ds⟩ for axial shocks ahead of LDMC is larger than that

for axial shocks ahead of HDMC, indicating that the X-ray peaks are close to HDMCs in our merging

clusters. The mean distances of all three shock categories increase in time, and axial shocks, for instance,

reach ⟨ds⟩ ∼ 1−2 Mpc by the time t − ti ≃ 1 Gyr.

The top panels of Figure 5 show the mean values of shock Mach numbers, ⟨Ms⟩, ⟨Ms⟩φ
weighted

with shock kinetic energy flux ( fφ ), and ⟨Ms⟩CR weighted with CR energy flux ( fCR). Firstly, the Mach

numbers overall increase in time, while the mean shock speed, ⟨vs⟩, in Figure 5(d) increases in the early

phase during ∼ 0.6 Gyr, but then fluctuates afterward. The overall increase of shock Mach numbers in

the late stage reflects the fact that the gas temperature tends to decrease in the cluster outskirts (≳ 1 Mpc),

as can be seen in Figures 3 and 4. Secondly, both ⟨vs⟩ and ⟨Ms⟩ of equatorial shocks have the largest

values, since they propagate mostly to low density regions surrounding merging clumps. Moreover, ⟨vs⟩
and ⟨Ms⟩ of axial shocks ahead of HDMC are larger than those of axial shocks ahead of LDMC. Yet, ⟨ds⟩
for axial shocks ahead of HDMC is smaller, owing to the fact that ⟨ds⟩ includes not only the propagation

of shocks but also the displacement of X-ray peaks. Thirdly, while ⟨Ms⟩ and ⟨Ms⟩φ
are comparable,

⟨Ms⟩CR is larger by about unity or so, especially in the late stage. This is due to the dependence of the

CR acceleration efficiency, η(Ms), on the shock Mach number; our model η(Ms) is larger for stronger
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shocks (see Section "Shock Identification and Energy Flux Calculation").

The average kinetic energy flux through shock surfaces,
〈

fφ

〉
, in Figure 5(e) tends to decrease in

time as shocks move outwards, since the gas density decreases in the cluster outskirts. The average

CR energy flux produced at shocks, ⟨ fCR⟩, in Figure 5(f), on the other hand, shows complicated time

evolution, reflecting the Mach number dependence of the CR acceleration efficiency. Both
〈

fφ

〉
and

⟨ fCR⟩ for axial shocks ahead of LDMC are the largest, because these shocks propagate into the gas with

higher density that is originally associated with heavier gas clumps.

Figures 5(h) and 5(i) show the shock kinetic and CR energy fluxes integrated over shock surfaces,〈
Fφ

〉
and ⟨FCR⟩, averaged for five sample clusters. Again,

〈
Fφ

〉
and ⟨FCR⟩ of axial shocks ahead of

LDMC are the largest, while those of equatorial shocks are the smallest. Although axial shocks ahead of

LDMC are the weakest with smallest ⟨Ms⟩ among shocks of three categories, they are energetically the

most important; that is, they process the largest amount of kinetic energy and also generate the largest

amount of CRs, especially at late times of t − ti ≃ 0.8−1.4 Gyr.

In particular, in Figure 5(h), Fφ for axial shocks ahead of LDMC peaks at ∼ 1044 − 1045 ergs s−1

during t − ti ≃ 0.8− 1.4 Gyr. The total energy processed during the period is ∼ several ×1060 ergs,

which is a substantial fraction of the merger energy ∼ 1062 ergs (see the Introduction). Fφ for axial

shocks ahead of HDMC is about an order of magnitude smaller, and Fφ for equatorial shocks is even

smaller by a factor of several. So axial shocks ahead of LDMC should have the best chance to be

observed as X-ray shocks, especially at ∼ 1 Gyr after the launching of the shocks. During the peak

period, for these axial shocks, the fφ -weighed Mach number ranges ⟨Ms⟩φ
∼ 2− 3 and their distance

from the cluster center ranges ⟨ds⟩ ≃ 1−2 Mpc. These are in reasonable agreement with the observed

characteristics of X-ray shocks, as noted in the Introduction.

In Figure 5(i), again, FCR for axial shocks ahead of LDMC is several to tens times larger than FCR

for other category shocks during t − ti ≃ 0.8− 1.4 Gyr. So they should have the best chance to light

up as radio relics and thus be observed in radio. The fCR-weighed Mach number for the shocks during

the peak period is, on the other hand, in the range of ⟨Ms⟩CR ∼ 3− 4, higher than ⟨Ms⟩φ
, as noted

above. This range of ⟨Ms⟩CR is consistent with the range of the shock Mach numbers estimated from

the radio spectral indices of observed radio relics (see the references in the Introduction). The potential

manifestation of larger Ms in radio relic observations than in X-ray shock observations was pointed

out in [52]. Our results confirm such tendency, indicating that the difference between MX and Mradio

might be due to the representations of different parts of shock surfaces, that is, higher Ms parts for radio

observations while lower Ms parts for X-ray observations, as noted in the Introduction. The range of

⟨ds⟩ ≃ 1−2 Mpc for axial shocks ahead of LDMC during the peak of CR production is also comparable

to the positions of observed radio relics.

We note that the Sunyaev-Zel’dovich (SZ) decrements found CIZA J2242.8+5301 could be inter-

preted as high pressure regions generated by equatorial shocks propagating in the direction perpendicu-

lar to the merger axis [77]. An X-ray temperature break found in the merger system between Abell 399

and Abell 401 could also indicate a signature of equatorial shocks [78]. Although the nature of these

observed features should be further investigated, their positions are consistent with the equatorial shocks
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defined in this study. These indicate that although energetically sub-dominant, equatorial shocks could

have possibly observable imprints.

From Figure 5(d), one can see that ⟨vs⟩ increases during the peak period of Fφ and FCR. The adiabatic

blast wave solution for a point explosion requires the density gradient steeper than ρ−3 for accelerating

shock fronts [79]. Apparently, the blast wave assumption does not hold for merger-driven shocks, since

the kinetic and gravitational energies of merging clumps are continuously dissipated through shocks

and additional energies are supplied by secondary infall and multiple minor mergers. In addition, ⟨vs⟩
includes the contributions not only from the shock propagation, but also from turbulent flow motions

ahead of shocks. As a matter of fact, large fluctuations in ⟨vs⟩ as well as in ⟨Ms⟩ reflect complicated flow

dynamics of clusters.

2.3 Summary and Discussion

In this work, we examined the properties of merger shocks in galaxy clusters from cosmological hydro-

dynamic simulations for the LSS formation of the universe. We first compiled a sample of five merging

clusters in ten simulations with different initialization; all undergo through almost head-on collisions of

mass ratio ∼ 2 at z < 0.5, which result in merged systems with TX ∼ 5 keV. We then isolated shocks pro-

duced by merger activities, and quantified their properties such as the shock speed, Mach number, and

shock energy flux. Due to the turbulent nature of the ICM, the properties of the shocks can be described

only statistically with means and standard deviations for a population of identified shocks associated

with merger events. We also calculated the time evolution of those shock properties.

Our findings are summarized as follows.

(1) The surfaces of merger shocks are not smooth. The Mach number distribution on the surfaces is

highly intermittent and the high Mach number parts form filamentary structures.

(2) As the merger shocks propagate out from the cores to the outskirts, the shock Mach number, Ms, on

average increases in time, while the shock speed does not necessarily.

(3) The kinetic energy flux through shock surfaces, fφ , decreases in time, since the gas density is lower

in the outskirts. But the CR energy flux produced at shocks, fCR, shows complicated time evolution.

(4) Axial shocks propagating ahead of LDMC are most energetic. They process large amounts of the

kinetic energy, Fφ , and the CR energy, FCR, and thus have the best chance to be observed as X-ray shocks

and radio relics.

(5) Fφ and FCR of axial shocks ahead of LDMC peak at t − ti ∼ 1 Gyr after the shocks launched, or

when the shocks are located at ds ∼ 1− 2 Mpc from the cluster center. At the time, the shocks have

⟨Ms⟩φ
≃ 2−3 (weighted with fφ ), while ⟨Ms⟩CR ≃ 3−4 (weighted with fCR). This is because the CR

acceleration is more efficient at the parts of shock surfaces with higher Mach numbers.

(6) Both DM clumps survive through merger, and their peaks persist. In our sample clusters, after the

DM core passage, the LDMC is located behind the most energetic axial shocks, while the HDMC lies

in the other side but closer to the peak of X-ray emission which coincides with the gas core.

Recently, the evidence of “equatorial shocks” has been suggested through X-ray observations [80,
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81]. For instance, [80] identified the temperature jump corresponding to Ms ∼ 3 in the pre-merger stage

(A1758N & A1758S). In addition, [81] also found the proof of equatorial shocks on the equatorial plane

of an pre-merger cluster pair. Such results are in agreement with the prediction of equatorial shocks

discussed in this Section.

Finally, we note that the properties of merger shocks, as well as their positions relative to X-ray peak

and DM clumps, should depend on a number of merger parameters. For example, according to simple

calculation in the system satisfying energy conservation, Mach number of merger-driven shocks sensi-

tively depends on the clump mass ratio [82] . More comprehensive investigation of such dependence

requires a very large sample of simulated merging clusters, and we will leave it as future works.
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III Proton Acceleration at Weak Quasi-parallel Shocks in Intracluster
Medium

In the observed merging galaxy clusters, the radio synchrotron emission indicates that the ICM shocks

accelerate CRs via DSA, like most astrophysical shocks. While the previous studies using hydrodynamic

simulations have been focused on the properties and dynamical evolution of ICM shocks as shown in

the Section II, it is necessary to understand particle acceleration process in such shocks. In this Section,

we examine the detailed proton acceleration mechanism at the weak ICM shocks including the kinetic

plasma processes. Note that all results shown here are originally presented in the paper (Ha, J.-H., Ryu,

D., Kang, H., & van Marle, A. J. 2018, The Astrophysical Journal, 864, 105; [83]).

Just like Earth’s bow shocks and supernova remnant shocks, ICM shocks are thought to accelerate

cosmic ray (CR) protons and electrons via diffusive shock acceleration (DSA, a.k.a. Fermi I accelera-

tion) [20–22]. Although the acceleration of relativistic electrons by putative shocks has been observed as

the so-called giant radio relics such as the Sausage relic in the merging cluster CIZA J2242.8+5301 [39],

the presence of CR protons produced by ICM shocks has yet to be confirmed [84–86]. Inelastic colli-

sions of CR protons with thermal protons followed by the decay of neutral pions can produce diffuse

γ−ray emission, which has not been detected so far by the Fermi-LAT γ−ray telescope [87]. According

to theoretical estimations using cosmological hydrodynamics simulations that adopt prescriptions for

the CR proton acceleration efficiency at shocks, η(Ms), non-detection of γ−ray emission from galaxy

clusters constrains η(M) to be less than 10−3 for 2 ≤ Ms ≤ 5 [31].

The key element in estimating the DSA efficiency is the so-called ‘injection process’, which ener-

gizes thermal protons to the suprathermal energies sufficient to diffuse across the shock. In order to

understand CR injection and early acceleration at collisionless shocks, kinetic plasma processes have

been studied through particle-in-cell (PIC) and hybrid plasma simulations [23–29]. In PIC simulations,

both ions and electrons are treated kinetically, therefore wave-excitation and wave-particle interactions

can be followed from first principles. In hybrid simulations, on the other hand, only ions are treated

kinetically, while electrons are treated as charge-neutralizing fluid with zero-mass. They are suitable

for studying ion acceleration well into full Fermi-I acceleration regime on many ion gyration periods,

since they are computationally much less expensive than PIC simulations. However, collisioness shock

formation and particle acceleration involve kinetic processes due to both electrons and protons, so PIC

simulations should be more appropriate in the investigation of the ion injection problem.

Comprehensive studies by Caprioli and collaborators using hybrid simulations showed that CR

ions are accelerated efficiently with η ∼ 0.05− 0.15 at strong quasi-parallel shocks with Ms ≳ 5 and

θBn ≲ 45◦, where θBn is the obliquity angle between the shock normal and the background magnetic

field direction [26–28]. The magnetic field obliquity angle θBn is one of the key parameters that govern

the characteristics of shocks: quasi-parallel shocks with θBn ≲ 45◦ versus quasi-perpendicular shocks

with θBn ≳ 45◦. In particular, [28] showed that at quasi-parallel shocks a substantial fraction of ions im-

pinging on the shock potential barrier can be specularly reflected, when the quasi-periodically reforming
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shock potential is in a high state (i.e., e∆φ > 1
2 miv2

x). The reflected ions escaping upstream along the

parallel magnetic field generate low-frequency waves and amplify the transverse magnetic fields via CR

ion-driven instabilities, transforming upstream quasi-parallel fields to locally quasi-perpendicular fields

in the shock transition layer. Then ions arriving subsequently at the shock are reflected at locally per-

pendicular portions of turbulent magnetic fields [88]. Due to perpendicular components of the magnetic

field the reflected ions gain sufficient energies via multiple cycles of shock drift acceleration (SDA), and

then start participating to the Fermi I cycle of shock acceleration. Thus reflection of ions at the overshoot

of the shock potential, self-excitation of turbulent waves, and SDA are integral parts of ion injection at

quasi-parallel shocks.

On the other hand, at quasi-perpendicular shocks the reflected ions are advected downstream along

with the background magnetic fields typically after one gyromotion, so they may undergo only a few

cycles of SDA and do not reach energies sufficient to be injected to Fermi I acceleration [26]. Since

the gyrostream of the reflected ions penetrates upstream less than one ion gyroradius from the shock

ramp, turbulent waves are not excited efficiently in the precursor of quasi-perpendicular shocks [27].

Consequently, Fermi-I acceleration of protons is efficient only at quasi-parallel shocks, which will be

the main focus of this study.

We further comment about particle reflection at the shocks. Firstly, ion reflection is governed by

both the shock potential and the magnetic mirror at the shock, however, the fraction of ion reflection

satisfying the reflection condition in terms of shock potential dominates over that satisfying the condition

for magnetic mirror conditions (i.e., the particles are not in the loss cone). Secondly, while upstream ions

are mainly reflected by the shock potential, the reflection of upstream electrons are suppressed by the

shock potential because electrons have opposite charge. And thus, electron reflection is mainly governed

by the magnetic mirror at the shock surface. In Section VII, we provide the detailed physics regarding

electron reflection at the shock surface.

Unlike collisional shocks, physics of collisionless shocks include complex kinetic plasma processes

such as particle reflection, self-excitation of waves, and wave-particle interaction, well beyond MHD

Rankine-Hugoniot jump conditions [29]. From studies of collisionless shocks such as Earth’s bow

shocks and interplanetary shocks, the concept ’shock criticality’ has been adopted. ’Subcritical shock’

denotes that the shock kinetic energy can be fully dissipated through resistivity so the shock structure

is smooth without complex plasma waves. ’Supercritical’ shock, on the other hand, the shock kinetic

energy cannot be fully dissipated through resistivity alone, so a substantial fraction of incoming ions

must be reflected upstream to satisfy the Rankine-Hunoniot jump conditions [89]. Such shock criticality

can be described through the certain critical Mach number. For instance, the fast mode Mach number

of shock satisfies the condition, Mf > M∗
f where M∗

f stands for the fast first critical Mach number, then

such shock is ’supercritical’ shock. We also provide different critical Mach numbers regarding different

criteria in Section VII.

In typical astrophysical environment, the plasma beta β = Pgas/PB ∼ 1, so the Alfvén Mach number

MA is often used to characterize a shock and the critical Alfvén Mach number M∗
A ≈ 2.76 is commonly

quoted for quasi-perpendicular shocks [29]. As for the papers by Caprioli and collaborators cited above,
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CR acceleration at supercritical shocks has been explored through plasma simulations mainly for β ≲ 1

cases (i.e., MA ∼ Ms). In the typical hot ICM plasma, however, β ∼ 100, so shocks have relatively high

Alfvén Mach number, MA ≈ 10Ms ≈ 20− 30, but low sonic Mach number, Ms ≈ 2− 3. Note that for

these ICM shocks, Mf ≈ Ms. To our knowledge, the supercriticality of weak (Ms ≈ 2−4) quasi-parallel

shocks in such high β environment has not yet been studied by PIC or hybrid simulations.

PIC simulations of Ms = 3 shocks in high β ICM plasmas were considered by [23, 24], focusing

mainly on electron acceleration at quasi-perpendicular shocks. They showed that for the shock model

with β = 20, θBn = 63◦, and Ms = 3, about 20 % of incoming ions are reflected at the shock and gain

a small amount of energy via a few cycles of SDA. Those energized ions overcome the potential barrier

and advect downstream along with the magnetic fields. Note that their simulations were not intended to

study ion acceleration in the DSA regime in sufficiently long ion gyro-time scales.

Excitation of magnetic turbulence by protons streaming upstream of quasi-parallel shocks is an in-

tegral part of injection and acceleration of CR particles. There are two dominant modes: (1) resonant

streaming instability which excites left-handed circularly polarized waves [20], and (2) nonresonant

current-driven instability which excites right-handed circularly polarized wave [90]. Using hybrid sim-

ulations of quasi-parallel shocks in β ∼ 1 plasma, [27] showed that the resonant streaming instability

is dominant in the precursor of shocks with MA ≲ 30, while the nonresonant current-driven instability

operates faster at stronger shocks with MA ≳ 30. The magnetic field amplification factor increases with

increasing Alfvén Mach number as ⟨B/B0⟩2 ∝ MA. Both instabilities amplify primarily transverse com-

ponents of the magnetic field, so they generate locally perpendicular fields in the shock foreshock and

downstream region, which in turn facilitate SDA of the reflected ions and reflect subsequently arriving

ions. Eventually, excited turbulent waves act as scattering centers both upstream and downstream of the

shock, which are required for the Fermi I acceleration.

In this Section, we examine the physics of ‘shock criticality’ in weak ICM shocks by using PIC

simulations. To identify ion injection and early stage acceleration, we study shock structures and ion

energy spectra. In order to understand the nature of CR ion-driven instabilities and turbulent magnetic

field amplification, we perform Fourier analysis of upstream self-excited magnetic field components.

We then discuss dependence of ion injection and CR ion-driven instabilities on the pre-shock conditions

such as Ms, β , and θBn.

3.1 Numerics

We use the parallel electromagnetic PIC code TRISTAN - MP to study non-relativistic collisionless

shocks in 2D planar geometry, while the particle velocity and the electromagnetic fields are solved in

3D [91, 92]. Here the same simulation setup as that of [23, 24] is adopted: an ion-electron magnetized

plasma with the Maxwell distribution moves with the bulk velocity v0 = −v0x̂ toward a reflecting wall

at the leftmost boundary (x = 0). Due to the interactions between the incoming and reflected flows, a

shock propagates along +x̂ direction. So in effect the simulations are performed in the rest frame of the

shock downstream flow.
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Table 2: Model Parameters for the Simulations

Ms ≈ Mf MA v0/c θBn β Te = Ti[K(keV)] mi
me

Lx[c/wpe] Ly[c/wpe] tend[Ω
−1
ci ]

b

M3.2c 3.2 29.2 0.052 13◦ 100 108(8.6) 100 2×104 2 90.2

M2.0 2.0 18.2 0.027 13◦ 100 108(8.6) 100 2×104 2 90.2

M2.15 2.15 19.6 0.0297 13◦ 100 108(8.6) 100 2×104 2 90.2

M2.25 2.25 20.5 0.0315 13◦ 100 108(8.6) 100 2×104 2 90.2

M2.5 2.5 22.9 0.035 13◦ 100 108(8.6) 100 2×104 2 90.2

M2.85 2.85 26.0 0.0395 13◦ 100 108(8.6) 100 2×104 2 90.2

M3.5 3.5 31.9 0.057 13◦ 100 108(8.6) 100 2×104 2 90.2

M4 4.0 36.5 0.066 13◦ 100 108(8.6) 100 2×104 2 90.2

M3.2-θ23 3.2 29.2 0.052 23◦ 100 108(8.6) 100 2×104 2 90.2

M3.2-θ33 3.2 29.2 0.052 33◦ 100 108(8.6) 100 2×104 2 90.2

M3.2-θ63 3.2 29.2 0.052 63◦ 100 108(8.6) 100 2×104 2 90.2

M2.0-β30 2.0 10.0 0.027 13◦ 30 108(8.6) 100 2×104 2 165

M2.0-β50 2.0 12.9 0.027 13◦ 50 108(8.6) 100 2×104 2 128

M3.2-β30 3.2 16.0 0.052 13◦ 30 108(8.6) 100 2×104 2 165

M3.2-β50 3.2 20.6 0.052 13◦ 50 108(8.6) 100 2×104 2 128

M2.0-m400 2.0 18.2 0.013 13◦ 100 108(8.6) 400 2×104 2 22.6

M2.0-m800 2.0 18.2 0.009 13◦ 100 108(8.6) 800 2×104 2 22.3

M3.2-m400 3.2 29.2 0.026 13◦ 100 108(8.6) 400 2×104 2 22.6

M3.2-m800 3.2 29.2 0.018 13◦ 100 108(8.6) 800 2×104 2 22.3

M2.0-r2 2.0 18.2 0.027 13◦ 100 108(8.6) 100 2×104 2 22.3

M2.0-r0.5 2.0 18.2 0.027 13◦ 100 108(8.6) 100 2×104 2 22.3

M3.2-r2 3.2 29.2 0.052 13◦ 100 108(8.6) 100 2×104 2 22.3

M3.2-r0.5 3.2 29.2 0.052 13◦ 100 108(8.6) 100 2×104 2 22.3

M2.0-2D 2.0 18.2 0.027 13◦ 100 108(8.6) 100 2×104 60 34.6

M3.2-2D 3.2 29.2 0.052 13◦ 100 108(8.6) 100 2×104 60 34.6
a: See the Section "Numerics" for model-naming convention

b: Ω
−1
ci = mic/(eB0) is the ion gyration period.

c: The fiducial model.
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Figure 7: Stack plots of total magnetic field strength, B(x), and electric potential for eφ(x), averaged

over the transverse direction in M3.2-2D (left) and M2.0-2D (right) models for five different time epochs

(from wpet = 0.8×105 (purple) to 1.2×105 (red)).

In typical PIC simulations, due to severe requirements for computational resources, ‘ions’ with a

reduced mass ratio mi/me ≪ 1836 are adopted to represent the real proton population. Thus, hereafter

we will refer ‘ions’ as positively charges particles with a reduced mass ratio mi/me = 100−800.

The flow Mach number M0 of the upstream bulk flow is specified as

M0 ≡
v0

cs
=

v0√
2ΓkBTi/mi

, (4)

where cs is the sound speed in the upstream medium, Γ = 5/3 is the adiabatic index, and kB is the

Boltzmann constant. Here, thermal equilibrium is assumed for the incoming flow, so the ion temperature

Ti is the same as the electron temperature Te. In the weakly magnetized limit, the sonic Mach number,

Ms, of the induced shock is related with M0 as follows:

Ms ≡
vsh

cs
≈ M0

r
r−1

. (5)

Here vsh = v0 · r/(r−1) is the upstream flow speed in the shock rest frame and

r =
Γ+1

Γ−1+2/M2
s

(6)

is the Rankine–Hugoniot compression ratio across the shock.

The strength of the uniform background magnetic field B0 in the x-y plane is parameterized by

plasma beta β as follow:

β =
8πnkB(Ti +Te)

B2
0

=
2
Γ

M2
A

M2
s
. (7)
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Figure 8: Shock structure of the M3.2-2D (left panels) and M2-2D (right panels) at wpet ≈ 4.5× 104

(Ωcit ≈ 12). Here, xsh denotes the shock position and the length scale is expressed in the unit of c/ωpe.

From top to bottom, the ion momentum phase space plots x− pix, x− piy & x− piz (normalized by

mic and colorbar indicates log f (pi,α)), and the one-dimensional profile of ion density (normalized by

number density of incoming plasma) are shown.
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Then the Alfvén Mach number of the shock, MA, is defined as:

MA ≡ vsh

vA
=

v0

B0/
√

4πnmi

r
r−1

= MA,0
r

r−1
, (8)

where n = ni = ne is the number density of the incoming plasma, vA = B0/
√

4πnmi is the Alfvén speed

along the background magnetic field, and MA,0 = v0/vA is the flow Alfvén Mach number. The fast mode

Mach number is defined as

Mf ≡
vsh

vf
=

vsh√
c2

s + v2
A

, (9)

where vf is the fast mode speed for the wave propagating perpendicular to the magnetic fields (i.e.

magnetosonic speed). For β ≫ 1, Mf ≈ Ms, since vA ≪ cs.

The orientation of magnetic field is given by the obliquity angle θBn, which is the angle between the

shock normal direction (n̂ = x̂) and B0. Thus the background magnetic field is given by

B0 = B0(cosθBnx̂+ sinθBnŷ). (10)

Initial electric field is zero, but the incoming magnetized plasma carries a uniform magnetic field B0 and

the motional electric field, E0 =−v0/c×B0, is induced, where c is the speed of light. Since ion injection

and acceleration depends only weakly on the obliquity angle as shown by [26], we choose θBn = 13◦ for

our fiducial model.

PIC simulations follow kinetic plasma processes on different length scales for different species:

the electron skin depth, c/wpe, and the ion skin depth, c/wpi, where wpe =
√

4πe2n/me and wpi =√
4πe2n/mi are the electron plasma frequency and the ion plasma frequency, respectively. Here the

simulation results are presented in term of x/[c/wpe] and t/[w−1
pe ]. On the other hand, the shock structure

varies and evolves at length scales of the Larmor radius for ions with the particle speed v0,

rL,i ≡
miv0c
eB0

= MA,0

√
mi

me

c
wpe

, (11)

and in timescales of the ion gyration period Ω
−1
ci = mic/(eB0) = rL,i/v0.

The simulations are performed in two-dimensional computational domains. The longitudinal dimen-

sion, Lx, corresponds to 2×104c/wpe, which is represented by Nx = 2×105 cells with a grid resolution

of ∆x = 0.1c/wpe. The transverse dimension, Ly, comes in two different modes: Ny = 20 cells for “al-

most 1D" simulations and Ny = 600 cells for 2D simulations (∆y = ∆x). We place 32 particles per cell

(16 per species). The time step is wpe∆t = 0.045.

Based on the previous studies on one-dimensional PIC simulations for strong shocks [25], we assume

“almost 1D" simulations would be good enough to investigate ion injection at weak ICM shocks (see

Section "shock structures and ion injection" for the dependence of the simulation results on transverse

box size). We also find that simulations with different spatial resolutions give essentially the same

results.

The model parameters of our simulations are summarized in Table 2. We consider β = 30− 100

and kBT = kBTe = kBTi = 0.0168mec2 = 8.6 keV, relevant for typical ICM plasmas [10, 11]. For given
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Figure 9: Panels (a) & (b) show downstream ion energy spectrum at wpet ≈ 1.3× 105 (Ωcit ≈ 35)

in M3.2 and M2.0 models. Downstream ion spectra of 1D M3.2 model for 5 different time epochs

from wpet ≈ 4.5×104 (Ωcit ≈ 12) to 3.4×105 (Ωcit ≈ 90) are displayed in panel (c). Downstream ion

spectra at wpet ≈ 3.4×105 of Ms ≈ 3.2 shocks for 4 different obliquity angles are plotted in panel (d).

The energy spectra shown in all panels are taken from the downstream region [1.5−2.5]rL,i behind the

shock position. The black and purple dashed lines indicate the test-particle power-law spectrum and

the thermal Maxwellian distribution in the postshock region, respectively. In (c) and (d), the injection

energy, Einj ≈ 5×10−3mic2 for the M3.2 model is marked as the orange dashed line.
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Figure 10: Ion energy spectra measured in the shock downstream at wpet ≈ 3.4× 105 (Ωcit ≈ 90) for

M2.0, M2.25, M2.5, and M3.2 models. Here, energy spectra are taken from three different positions:

Post-shock (black; (0−1)rL,i behind the shock), near downstream (red; (1−2)rL,i behind the shock), far

downstream (blue; (5−6)rL,i behind the shock). The black and purple dashed lines show the test-particle

spectrum expected for a shock with given Ms and thermal Maxwellian distribution in the postshock

region, respectively. In (b), (c) and (d), the injection energy, Einj for each model is marked as the orange

dashed line.
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β and cs, the incident flow velocity, v0, is specified to induce the shock with the sonic Mach number,

Ms ∼ 2− 4, which is characteristic for cluster merger shocks [33]. The model M3.2 in the first row

of Table 2 represents the fiducial model in 1D with the following parameters: Ms = 3.2, θBn = 13◦,

β = 100, and mi/me = 100. Models with different Ms are named with the combination of the letter

‘M’ and the sonic Mach numbers (for example, M2.25 model has Ms = 2.25). Models with parameters

different from the fiducial model have names that are appended by a character for the specific parameter

and its value. For example, M3.2-θ33 model has θBn = 33◦, while M3.2-m400 model has mi/me = 400.

We refer M3.2-2D and M2-2D models as 2D runs with the larger transverse dimension. M3.2-r2 and

M3.2-r0.5 models are considered to explore the effects of different spatial resolution.

The last two columns of Table 2 show the end of simulation time for each model in units w−1
pe and

Ω
−1
ci . For the fiducial model M3.2, tendwpe ≈ 3.4× 105, which corresponds to tendΩci ≈ 90. The ratio

of the ion gyration period to the electron oscillation period scales as wpe/Ωci ∝ (mi/me)
√

β . So with a

smaller mass ratio mi/me a shorter simulation time is required to see ion acceleration at early stage of

Fermi I acceleration. On the other hand, with β = 100, it would take 10 times longer simulation time to

reach the similar stage of ion acceleration, compared to simulations with β = 1.

3.2 Results

shock structures and ion injection

Supercritical quasi-parallel shocks with Mf > M∗
f (the fast first critical Mach number) are nonstationary

and subject to quasi-periodic reformation due to the accumulation of self-generated magnetic waves in

the foreshock region, resulting in the time-varying overshoots in electric shock potential and magnetic

field structure [29]. At such shocks the specular reflection of inflowing ions is thought to provide addi-

tional dissipation to steepen the shock structure and seed particles to Fermi I acceleration. [89] calculated

M∗
f (β ,θBn) for 0 ≤ β ≤ 4 and 0◦ ≤ θBn ≤ 90◦ from the condition that the downstream flow speed nor-

mal to the shock equals the downstream sound speed (vn2 = cs2) by solving the Rankine-Hugoniot jump

condition. Based on their Figure 4, we may deduce that for β ≫ 1, M∗
f ≈ 1.0− 1.1 for quasi-parallel

shocks, implying that all ICM shocks could be supercritical and accelerate CR protons efficiently. How-

ever, wave excitation and wave-particle interactions can provide anomalous dissipation inside the shock

transition, which may suppress ion reflection. In fact, the ion reflection process is expected to depend

on the reforming shock potential, time-varying magnetic shock ramp structure, and turbulent wave spec-

trum in the shock [29]. In addition, thermal motions in high β plasma can smooth out the overshoot in

the shock potential. So anomalous dissipation and thermal effects could suppress ion reflection at weak

shocks at the high β ICM plasma, resulting in a higher value of M∗
f than estimated by [89].

The shock potential energy is estimated to be

e∆φ ≈ α(Ms, t)
mv2

sh
2

, (12)

where the factor α(Ms, t)∼ 1/2 depends on Ms and varies with time [93,94]. According to [28], during

low states without the overshoot most of ions have miv2
x/2 > e∆φ and advect downstream across the
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shock, while in high states a substantial fraction of ions are reflected by the overshoot in ∆φ . This

results in periodic bursts of back-streaming ions along the upstream parallel magnetic field. In addition,

the reflected ions excite waves and amplify the transverse magnetic fields, which in turn changes the

quasi-parallel background field to locally quasi-perpendicular fields (see Section "dependence on shock

parameters"). Then incoming ions can be reflected by magnetic mirrors at those quasi-perpendicular

parts of the shock transition [88, 95]. Obviously, shock reformation is closely related with the quasi-

periodic growth and decay of the overshoot and ensuing ion reflection. It is expected that α decreases

and the overshot does not develop for low Mach number ‘subcritical’ shocks.

Figure 7 compares the spatial structures of the shock potential and total magnetic field strength aver-

aged over the transverse dimension for M2.0-2D and M3.2-2D models during wpet = (0.8−1.2)×105.

The fluctuations in B are mainly due to the transverse waves (By and Bz), since the parallel component

remains almost the same. M3.2-2D model displays the characteristics of supercritical shocks such as the

overshoots in φ(x) and B(x), self-reforming shock jump, and turbulent waves with ⟨δB2⟩1/2/B0 ≈ 1. On

the other hand, M2.0-2D model has much weaker turbulence, compared to M3.2-2D model, and it does

not exhibit distinct overshoots.

Figure 8 compares the phase space distribution and the density of ions for M2.0-2D and M3.2-2D

models at wpet ≈ 4.5×104. The presence of reflected ions moving along +x̂ direction in the foreshock

region is evident in the M3.2-2D model, while there is no beam of reflected ions in the shock upstream

in the M2.0-2D model. In the M3.2-2D model most ions are advected and trapped in the downstream as

thermal ions, while about ∼ 20% are reflected back to the upstream flow. During the shock reformation

cycle of M3.2-2D the shock discontinuity is almost steady for ∼ 5.4Ω
−1
ci , until the beam of reflected

ions produce a new discontinuity ∼ 2.4rL,i ahead of original discontinuity. The mean density in the far-

downstream region is compressed by the expected factor, r ≈ 3.1 in M3.2-2D and r ≈ 2.3 in M2.0-2D.

Figures 9 (a) and (b) compare the ion spectra at wpet = 1.3× 105 (Ωcit ≈ 35) in M3.2 and M3.2-

2D, and in M2.0 and M2.0-2D, respectively. They confirm that the results of ‘almost’ 1D simulations

are consistent with those of 2D simulations. Since 2D simulations are computationally much more

expensive, we therefore use ‘almost’ 1D simulations to investigate shocks with wide ranges of the model

parameters as listed in Table 2.

As mentioned before, the reflected ions gain energy initially via multiple cycles of SDA and continue

to be accelerated to nonthermal energies sufficient to diffuse across the shock. In the test-particle regime

of DSA, the non-thermal momentum distribution in the downstream region becomes a power-law form

f (p)≈ fN

(
p

pinj

)−q

exp

[
−
(

p
pmax

)2
]
, (13)

where fN(t) is the normalization factor, q = 3r/(r−1), and pmax(t) is the maximum momentum of CR

protons that increases with the shock age [22, 96]. In the non-relativistic regime (E = (γ − 1)mic2 ≈
p2/2mi) the energy distribution function f (E) can be approximated as f (E) = 4π p2 f (p)d p/dE ∝ (γ −
1)−

q−1
2 .

Figure 9 (c) displays the time evolution of downstream ion spectra during wpet ≈ 4.5×104 −3.4×
105 in the M3.2 model, proceeding from pre-energization and to the early-stage of DSA. As shown in
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the red line, at wpetend ≈ 3.4× 105 the energy spectrum develops roughly a power-law tail, dN/dγ ∝

(γ −1)−p, where p ≈ 1.72 is consistent with the test-particle slope expected for a Ms = 3.2 shock. We

also see that the downstream energy spectrum changes from Maxwellian to power-law distributions at

Einj ≈ 5.0×10−3mic2 ≈ 4.9Eth, where Eth = (3/2)kBT2 and T2 is the downstream temperature. Here we

designate Einj as the injection energy, which corresponds to the so-called the injection momentum, pinj,

to mark the boundary between the thermal and nonthermal distributions. Then suprathermal particles are

somewhat loosely defined as energized ions that belong to ‘a superathermal bridge’ between the thermal

Maxwellian distribution and the nonthermal power-law population, as shown intuitively in Figure 2

of [26]. The parameter Einj (or pinj) should depend on both Ms and MA as well as θBn, because the

ability of ions to cross the shock depends on the flow compression ratio, strength of self-generated

magnetic waves, and magnetic field configuration at the shock transition zone. Our results at tend for

M3.2 model indicates pinj/pth ≈ 2.7 (where pth =
√

2mikBT2).

Long-term evolution of the downstream ion spectrum well into full Fermi-I acceleration regime

is beyond the reach of our PIC simulations. However, 2D hybrid simulations of [26] that ran up to

Ωit = 2500 showed that the nonthermal power-law tail extends to increasingly higher pmax(t) with time,

and that pinj/pth ≈ 3.0−3.5 at strong quasi-parallel shocks in β ∼ 1 plasma. For the M3.2 model shown

in Figure 9, the ratio, pinj/pth ≈ 2.7, is smaller and the normalization factor fN is higher than the values

inferred from those hybrid simulations. Such differences may come from the different dimensionality

(i.e. 1D versus 2D) and different physical models (with or without electron kinetic processes) of the

two simulations as well as different shock parameters (i.e. Ms and β ). Considering the trend during

wpetend ≈ (1.3−3.4)×105 shown in Figure 9 (c), we expect the ratio pinj/pth increases and fN decreases

gradually with time as high energy particles well above pinj undergo the full Fermi I acceleration.

Figure 10 shows ion energy spectra in three downstream regions, post-shock ([0 − 1]rL,i behind

the shock), near downstream ([1− 2]rL,i), and far downstream ([5− 6]rL,i), at Ωitend ≈ 90 of the 1D

simulations for M2.0, M2.25, M2.5, and M3.2 models. The shock models with Ms ≥ 2.25 develop a

nonthermal power-law-like tail with a slope p, which is similar to that expected for a given sonic Mach

number. On the other hand, the M2.0 model does not show nonthermal particles beyond the Maxwellian

distribution. From these results, we can deduce that in β ≈ 100 ICM plasma the fast first critical Mach

number occurs at M∗
f ≈ 2.2, which is higher than the values M∗

f ≈ 1.0− 1.1 for β ∼ 4 quasi-parallel

shocks estimated by [89]. In summary, at ICM shock with Ms ≳ 2.2 ions are reflected and injected into

the Fermi I process, and then accelerated to high energy CRs.

Although our simulations have reached only very early stage of DSA, we attempt to estimate the ion

injection fraction at Ωitend ≈ 90 as the fraction of nonthermal ions with p ≳ pinj in the downstream ion

energy spectrum,

ξ ≡ 1
n2

∫ pmax

pmin

4π f (p)p2d p, (14)

where pmin =
√

2pinj. Figure 11 shows ξ (tend,Ms) for 1D models with θBn = 13◦ and Ms ≈ 2.0−4.0. As

shown in the red line, it increases with the Mach number as ξ (Ms) ∝ M1.5
s for Ms ≳ 2.2. Since the shock

compression ratio decreases with decreasing Ms for weak shocks, the fractional energy gain at each
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Figure 11: Injection fraction ξ as a function of Ms at tend of 1D simulations for M2.0 - M4.0 models

(black dots). The red line is a fitting line which follows a scaling relation, ξ ∝ M1.5
s . The blue squares

and green triangles are for β = 50 and β = 30 models, respectively.

shock-crossing cycle is smaller, and so ions need to undergo more cycles of reflection to gain energies

sufficient for injection. Moreover, the size factor, α(Ms), of ∆φ in Equation 12 should decreases with

decreasing Ms. As a result, the injection fraction is expected to decrease at lower Ms shocks and drops

rather abruptly to a small value for Ms < 2.2. In the test-particle limit of weak shocks, the power-law

slope q is greater than 4 and approximately constant. So the normalization factor, fN(t) determines ξ (t)

but the growth of pmax(t) with time does not increase ξ . In fact, both fN and ξ decrease with time during

wpetend ≈ (1.3−3.4)×105 in the M3.2 simulation, so in DSA regime ξ is expected to be much smaller

than what is shown in Figure 11.

The blue squares and the green triangles in Figure 11 show the results for β = 50 and 30 cases, re-

spectively. For higher β , the self-excited waves are stronger due to higher MA (see Section "dependence

on shock parameters"), which should facilitate ion injection, So the trend of higher ξ at higher β shown

in Figure 11 is consistent with such expectation.

magnetic field amplification

As shown in Figures 7 and 8, at supercritical shocks ions are reflected by the shock potential barrier

and stream upstream along the magnetic fields, which excite turbulent waves via CR-driven instabilities.

To analyze the nature of the excited wave modes, we perform Fourier analysis of the self-generated

components, δBy(k) and δBz(k), in a region of width ∼ 2×103c/wpe upstream of the shock transition,

where δB(x) = B(x)−B0 with B0y = B0 sinθBn, and B0z = 0.

Following [27], we consider the stationary equation for magnetic energy density of the Alfvén waves

produced by resonant streaming instability [97]. The spectrum of the transverse component of self-

generated magnetic turbulence, δB⊥, is represented by F (k), the magnetic energy density per unit

logarithmic bandwidth of waves with wavenumber k, normalized to the initial energy density, B2
0/(8π).

Using their Equations (7)-(8),

F (k) ∝ P(pk) ∝
4π

3
p4

kv(pk) f (pk), (15)
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Figure 12: Self-excited magnetic field, δB⊥, in the shock precursor (0 < (x− xs)wpe/c < 2× 103)

at wpet ≈ 3.4× 105 for M2.0, M2.25, and M3.2 models. Top panels: Spatial profiles of δBy(x)/B0

(Red) and δBz(x)/B0 (Black). Middle panels: Spectral distribution of δB⊥/B0(k). Bottom panels:

Polarization angle χ , where +(−) sign corresponds to right-(left-)handed modes. The red dashed line

indicates the inverse of the mean CR gyroradius, while the blue dashed line shows the characteristic

power-law, k(q−6)/2, due to the resonant streaming instability.

where pk = mΩci/k is the ion momentum resonant with waves of k and P(pk) corresponds to the CR

pressure per unit logarithmic momentum bandwith. For nonthermal ion distribution with the test-particle

spectrum, f (p) ∝ p−q, the wave spectrum of turbulence driven by the resonant instability is expected to

be

F (k) = k(
δB⊥
B0

)2
∝ kq−5, (16)

where δB2
⊥ = δBy(k)

2 + δBz(k)
2 . Then, the Fourier transform of the self-excited magnetic field δB⊥

becomes
δB⊥
B0

∝ k
q−6

2 , (17)

which depends on the sonic Mach number, Ms. For strong shocks with q = −4, F (k) ∝ k−1 and

δB⊥/B0 ∝ k−1.

The polarization angle χ of a monochromatic, elliptically polarized wave of a given k can be calcu-

lated by

χ(k) =
1
2

sin−1
(

V
I

)
, (18)

where I(k) and V (k) are the Stokes parameters for the two transverse magnetic field components in

k-space. Positive (negative) values of χ indicate right-handed (left-handed) polarization of the excited

waves. In particular, χ =+(−)45◦ corresponds to right-handed (left-handed) circularly polarized waves.

Figure 12 shows the spatial distribution of the transverse components, δBy(x) and δBz(x), and the

Fourier analysis of δB⊥(k) with the polarization angle, χ(k) in the shock precursor (0 < (x−xs)wpe/c <
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Figure 13: Downstream ion energy spectra for different models with Ms ≈ 3.2 (upper panels) and 2.0

(lower panels). (a)-(b) Models with plasma β = 30, 50 and 100 at wpet ≈ 3.4× 105 (c)-(d) Models

with the mass ratio mi/me = 100, 400, and 800 at wpet ≈ 8.4× 104 (e)-(f) models with the resolution

parameter N = c/(wpe∆x) = 5, 10, and 20 at wpet ≈ 8.4×104. The purple dashed line shows the thermal

Maxwellian distribution.

2× 103) in M2.0 (MA ≈ 18), M2.25 (MA ≈ 20), and M3.2 (MA ≈ 29) models. In all three models, the

excited waves due to CR ion-driven instabilities become marginally nonlinear with both δBy/B0 ∼ 1 and

δBz/B0 ∼ 1 at tend. The red vertical line marks kCR = 1/ρCR, where ρCR is the average gyroradius of non-

thermal ions in the upstream region of (x−xs)wpe/c = [1.75−2.0]×103 for each model. At higher Ms,

ions are accelerated to higher energies, so ρCR is larger and the characteristic wavelength of resonant

waves is longer, as shown in the top panels. Moreover, the blue dashed line shows the quasilinear

turbulence spectrum, k
q−6

2 , of the waves excited by the resonant streaming instability for each model.

The magnetic energy spectrum. δB(k), seems roughly consistent with the expected spectrum, except

some excess power at large scales near k ≳ kCR in M2.25 and M3.2 models. This probably comes from

nonlinear amplification due to the faster-growing nonresonant instability at higher MA shocks. At higher

Ms, higher flux of reflected ions induces stronger turbulence, so the amplitude of δB(k) increases with

increasing Ms.

Negative polarization angles near kCR shown in the bottom panels of Figure 6 seem to agree with

the fact that the resonant instability excites left-handed circularly polarized waves with χ =−45◦ in the

quasilinear regime. On the other hand, the nonresonant instability is expected to excite right-handed

circularly polarized waves with χ = +45◦ with higher growth rates on smaller scales at shocks with

MA > 30 [27]. Thus, the nonresonant instability becomes important for the M3.2 model with MA ≈ 29.

dependence on shock parameters

In this section, we investigate the dependence of the shock criticality on the shock obliquity angle and

plasma beta. Figure 9 (d) compares the models with different θBn. As shown in [26], ion injection and
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acceleration depends only weakly on θBn for quasi-parallel shocks, while it is severely suppressed for

quasi-perpendicular shocks. The M3.2-θ63 model agree well with the model with θBn = 63◦, Ms = 3,

and β = 20, considered by [23]. The injection energy, Einj, is higher at shocks with higher obliquity

angles, so a larger number of SDA cycles is required for injection into DSA [28]. Despite that fact that

at quasi-perpendicular shocks ions are reflected more efficiently and a significant fraction (∼ 20%) of

the downstream ions form a supra-thermal component, the reflected ions do not gain sufficient energies

for injection to full Fermi I before they advect downstream behind the shock. Recently, [98] found a

different behavior of perpendicular shocks using a combined PIC-MHD approach. Their results show

that SDA can energize the non-thermal ions sufficiently that they can travel upstream where they excite

long-wavelength fluctuations in the magnetic field. These fluctuations will eventually distort the shock

and excite turbulence in the downstream medium. However, this result depends on having a much larger

simulation domain in order to capture long-wavelength fluctuations. A computational domain of that

size is not practical for pure PIC simulations.

Next, we explore the dependence on β in Figures 13 (a) and (b). Here B0 ∝ β−1/2, while other shock

parameters (i.e. n and T ) are fixed. So the models with β = 30, and 50 have stronger B0 and smaller

MA, compared to the fiducial model. So in the case of M3.2 models MA ≈ 16, 21, and 29 for β = 30, 50,

and 100, respectively. Based on [27], it is expected that δB/B0 ∝ MA ∝ β 1/2, and so stronger turbulence

is generated at higher β . Since the average gyroradius of nonthermal ions ρCR ∝ B−1
0 , the resonant

wavelength, k−1
CR ∝ β 1/2, increases with increasing β . One can see in the upper panels of Figures 12

and 14 that the characteristic wavelength of excited waves is longer at higher β . The middle panels of

Figure 12 and the lower panels of Figure 14 show that the amplitude of the magnetic turbulent spectrum

is higher at higher β . Stronger levels of magnetic turbulence at higher β are expected to lead to smaller

injection fraction (smaller fN), since reflected ions are more likely to advect downstream due to stronger

interactions with excited waves. Comparison of M3.2 models with different β in Figure 13 (a), we may

infer that DSA power-law is more mature at higher β . Comparison of Figures 13 (a) and (b) shows that

a Ms = 2.0 shock do not reflect and accelerate ions at ICM plasma with β = 30−100.

dependence on simulation parameters

Finally, we examine how our findings depend on the simulation parameters such as the ion-to-electron

mass ratio, mi/me, and the spatial resolution parameter, N = (c/wpe)/∆x. Figures 13 (c) and (d) show

that our simulation results do not depend sensitively on the mass ratio, so the critical Mach, M∗
s ≈ 2.2

remains the same even for simulations with more realistic mass ratio. Figures 13 (e) and (f) explore

the dependence of the ion energy spectra on the grid resolution of our PIC simulations. All three cases

resolve essentially the same ion spectra at the given time, Ωcit ∼ 22.3. Figures 13 (c)-(f) confirm that in

high β plasma the critical sonic Mach number is M∗
s ∼ 2.2 for quasi-parallel obliquity. In summary, the

main results of this study can be considered as being converged numerically in terms of mi/me and N.
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Figure 14: Self-excited magnetic field, δB⊥, in the shock precursor (0 < (x− xs)wpe/c < 2× 103)

at wpet ≈ 3.4× 105 for M3.2-β30, M3.2-β50, and M2.0-β30 models. Upper panels: Spatial profiles

of δBy(x)/B0 (Red) and δBz(x)/B0 (Black). Lower panels: Spectral distribution of δB⊥/B0(k). The

red dashed line indicates the inverse of the mean CR gyroradius, while the blue dashed line shows the

characteristic power-law, k(q−6)/2, due to the resonant streaming instability.

3.3 Summary

At supercrical quasi-parallel shocks incoming ions are specularly reflected by the overshoot in the elec-

trostatic shock potential and locally perpendicular magnetic field in the shock transition [29]. The

reflected ions escaping upstream along the magnetic field excite left-handed (right-handed) circularly

polarized waves via CR-driven resonant (nonresonant) instabilities, amplifying transverse components

of the magnetic field [27]. This induces locally quasi-perpendicular fields in the shock ramp, which in

turn facilitates the specular reflection of ions due to magnetic deflection and SDA due to drift along the

motional electric field [88]. In β ∼ 1 environment, the critical fast Mach number is expected to approach

to M∗
f ≈ 1.0−1.5 for the shock obliquity angle θBn ≲ 45◦ [89]. In this study, we study such plasma pro-

cesses and estimate the critical sonic Mach number M∗
s , above which ion reflection and acceleration is

efficient, by performing PIC simulations for quasi-parallel shocks in β ≈ 100 plasmas. A wide range of

shock parameters are considered as summarized in Table 2.

The main results are summarized as follows:

1. We find that the critical Mach number is M∗
s ≈ 2.2 for quasi-parallel shocks at high β environment,

which is higher than the values M∗
f ≈ 1.0−1.1 estimated from Rankine-Hugoniot relations by [89]. We

conjecture that anomalous dissipation inside the shock transition due to wave generation and wave-

particle interactions may provide the necessary shock dissipation at shocks with Ms ≲ 2.2, since high

β plasma is more prone to self excitation of turbulent waves via CR-driven instabilities. Thus only

at supercritical quasi-parallel shocks with Ms ≳ 2.2 ions impinging on the shock ramp are reflected to

upstream and gain sufficient energies via SDA to become nonthermal particles.

2. For high β (≈ 100), weak ICM shocks with Ms ≈ 2 − 3 have relatively large Alfvén Mach

numbers, MA ≈
√

βMs ≈ 20−30. Since δB/B0 ∝ MA ∝ β 1/2 for Alfvén waves generated via resonant

streaming instability, magnetic turbulence is stronger for higher β . According to [27], nonresonant Bell

instability is predicted to grow faster than resonant instability for MA ≳ 30. In the M3.2 model with
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Ms ≈ 3.2 and MA ≈ 29, for instance, both instabilities must operate efficiently, while at the weaker

shocks resonant streaming instability should be dominant.

3. We estimate the CR injection fraction, ξ , the number fraction of nonthermal ions with the kinetic

energy E ≳ 10Eth in the downstream ion spectrum at the end of the 1D simulations, which corresponds to

the very early stage of DSA. For quasi-parallel shocks, it ranges ξ (Ms)∼ 10−3−10−2 for Ms ≈ 2.2−4.0

and increases with increasing Ms as M1.5
s . Although a quantitative estimate of ξ in the full Fermi I regime

is beyond the scope of this study, we expect ξ (t) decreases on many ion gyration period and becomes

be smaller than what is presented in Figure 11.

4. If quasi-parallel ICM shock with Ms < 2.2 were unable to generate CR protons as implied by

this study, the level of gamma-ray flux due to shocks accelerated CR protons would be much lower

than previously estimated [31]. This may explain non-detection of gamma-ray emission from galaxy

clusters [87].

More follow-up works have been conducted to investigate proton acceleration at ICM shocks for

longer timescale than the timescale considered in this work (e.g., [99–101]. While PIC simulation re-

quires lots of computational memory to resolve the detailed shock structure in multi-dimensional space

(i.e., 2D and 3D) for a sufficiently long time (∼ O(102)Ω−1
ci , such follow-up works employ alternative

numerical methods to overcome the computational challenge to simulate shocks in high β -regime. The

first method is using hybrid simulation code, which treats ions kinetically while electrons are modeled

as a fluid. With this method, computational cost for simulation is substantially reduced compared to the

PIC simulation. [99] recently performed hybrid simulations to simulate ICM shocks with Ms = 3.2 and

β = 100 and has examined ion acceleration process. Especially, the early injection and DSA process are

consistent with the results presented in this Section and the spectral evolution via DSA beyond the early

stage is identified. Moreover, some works implement new method to investigate particle acceleration

process [100, 101]. Such works suggest a method combining PIC method and magnetohydrodynamics.

Here, the thermal plasma is treated as a fluid and non-thermal particles are added and treated kineti-

cally. Because the shock structure are fully generated by the thermal plasma and the CR-driven reso-

nant (nonresonant) instabilities are induced by the injected non-thermal particles, so the microphysics

for particle acceleration could be explored. In the parameter space for ICM shocks, Ms = 2− 4 and

β = 100, [100,101] again confirmed that CR-driven instabilities are efficiently generated only at the su-

percritical shocks with Ms ≳ 2.25 and DSA operates only at such supercritical shocks as well. Based on

those results, we interpret that the preacceleration physics described in this Section could be applicable

even in the sufficiently long timescale.

Furthermore, while we investigate only proton acceleration in quasi-parallel ICM shocks with Ms ∼
2−4 and β = 30−100, [25] showed that proton and electron can be simultaneously energized through

the DSA mediated by ion-beam driven instabilities in the quasi-parallel shock with Ms ≈ 20 and β ≈
1. Further studies regarding electron acceleration at quasi-parallel ICM shocks should be required,

however, we expect that electron acceleration efficiency at quasi-parallel ICM shock is much lower than

that obtained at the quasi-parallel shocks in low-β medium. In order to operate electron DSA process,

thermal electrons need to be preaccelerated at the shock surface through the motional electric field,

37



|E| ∝ v0B0 ∝ v0/cs/
√

β ∝ Ms/
√

β . Because the amount of energy gain via the motional electric field

decreases as β increases or Msincreases, electron preacceleration process at low-Ms and high-β ICM

shock becomes more ineffcient compared to the preacceleration at high-Ms and low-β shock.

Before closing this Section, we further comments about initial distribution function of upstream

magnetized beam and turbulent nature of ICM. Firstly, while we considered only initial Maxwellian

distribution for the upstream magnetized beam, realistic particle distribution may have a chance to de-

viate from Maxwellian due to the previous episodes of acceleration via shocks and/or turbulence. Such

upstream condition may enhance the acceleration efficiency. Secondly, numerical studies including

this work typically focus on the self-excited plasma waves, however, preexisting waves should exist as

consequence of turbulence in the realistic ICM. It has been shown that the kinetic turbulence is pos-

sibly transferred energy up to the scale comparable to the gyroradii of thermal ion and electron (see

e.g., [102, 103]), so the preexisting waves near the ICM shock surfaces could be scattering off the up-

stream ions. Further studies should be necessary to investigate the ingredients listed here.
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IV Gamma-ray and Neutrino Emissions due to Cosmic-ray Protons Ac-
celerated at Intracluster Shocks in Galaxy Clusters

We have confirmed that protons are possibly energized at the ICM shocks through the mechanism me-

diated by plasma waves near the shock surface (Section III). As a follow-up work of the Section III,

we followed long-term evolution of ICM shock produced by PIC simulation up to Ωcit ∼ 270, which is

about 3 times longer than tend of the simulation shown in this Section [104]. As we expected through

this work, the injection fraction decreases as time increases. This tendency can be explained as follows:

(1) The shock kinetic energy is continuously dissipated into CR acceleration and the post-shock region

has cooled down as well. (2) As the post-shock temperature decreases, the ratio between injection mo-

mentum and post-shock thermal momentum increases, which is the key parameter to determine injection

fraction (see [104] for more details). Adopting PIC simulation results, we then proposed a DSA model

for ICM shocks based on the test-particle approach [96]. Since the dynamical feedback of CR is not

substantial in the weak shock regime with low CR acceleration efficiency and injection fraction, the

test-particle approach is reasonable way to conduct DSA model for ICM. In this Section, employing

the DSA model, the detectability of γ-ray and neutrino emissions due to CR protons produced at ICM

shocks is investigated. Note that all results shown here are originally presented in the paper (Ha, J.-H.,

Ryu, D., & Kang, H. 2020, The Astrophysical Journal, 892, 86; [105]).

If CRp are produced at ICM shocks, most of them are expected be accumulated in galaxy clusters

because the lifetime of CRp could be longer than the age of current universe [106]. Then, inelastic

collisions between CRp with E ≳ 1.22 GeV (i.e., the threshold of the reaction; corresponding kinetic

energy threshold is ∼ 0.78 GeV) and thermal protons (CRp-p collisions) in the ICM produce neutral and

charged pions, which produce γ-ray and neutrino through the following channels [107]:

π
0 → γγ,

π
± → νµ/νµ +µ

± → νe/νe +νµ +νµ + e±. (19)

The observation of diffuse cluster-wide gamma-ray emission caused by CRp-p collisions could thus

give evidence for CRp production at ICM shocks. In this context, such emission has been estimated

using galaxy clusters obtained by cosmological hydrodynamic simulations (see [31, 84, 85]). However,

currently available telescopes like Fermi-LAT and Veritas have so far failed to detect γ-rays from clusters

[87, 108] and thus future γ-ray observation should be required to explain CRp production inside galaxy

clusters. The observation of high-energy neutrinos released by the same CRp-p collisions should be

another evidence for CRp production at ICM shocks. For example, [109, 110] calculated neutrinos due

to the CRp produced at AGNs and SNRs in the ICM and cluster galaxies. [111] and [112], on the

other hand, stated that ICM shocks, as well as accretion shocks surrounding clusters, are unlikely to be

substantial sources of CRp that contribute considerably to the IceCube neutrino flux with Eν ≳ 10 TeV.

Moreover, detecting point neutrino source in the lower energy range, Eν ≲ 1 TeV, is not straightforward

because of atmospheric neutrino background (e.g., [113, 114]).
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Based on fluid simulations of DSA where the time-dependent diffusion-convection equation for the

isotropic part of CRp momentum distribution is solved along with a thermal leakage injection model,

[76] suggested that η could be as large as ∼ 0.1 for shocks with Ms ≃ 5. According to the hybrid

simulations performed by [26], however, η ≈ 0.036 for the Ms ≈ 6.3 (M = 5 in their definition) shock

in β ∼ 1 plasmas. On the other hand, [31] argued that the overall efficiency of CRp acceleration at ICM

shocks with 2 ≲ Ms ≲ 5 should be limited to η ≲ 10−3, if the predicted γ-ray emissions from simulated

clusters are to be consistent with the upper limits set by Fermi-LAT for observed clusters [108]. This

apparent discrepancy between the theoretical expectation and the observational constraint remains to be

further investigated and is the main focus of this work.

To resolve such discrepancy, in this work, we adopt the DSA model proposed in [104] including

the detailed microphysics for proton acceleration by ICM shocks. We first estimate the CRp produced

via fresh-injection DSA at ICM shocks in simulated sample clusters. Assuming that those CRp fill the

cluster volume and serve as the preexisting CRp, and adopting a simplified model for reacceleration

based on the “test-particle” solution, we also estimate the boost of the CRp energy due to the multiple

passages of the ICM plasma through shocks. We then calculate γ-ray and neutrino emissions from

simulated clusters using the approximate formalisms presented in [107] and [115]. The predicted γ-ray

emissions are compared to the Fermi-LAT upper limits [108]. The neutrino fluxes from nearby clusters

are compared with the IceCube flux [116] and the atmospheric neutrino flux [117].

4.1 CR protons in Simulated Clusters

Simulations and Galaxy Cluster Sample

Cluster samples used in this study were obtained from a set of cosmological hydrodynamic simulations

as described in Section II. All parameters for ΛCDM cosmology are identical to that used in Section II,

except the σ8 = 0.82 value.

Because the cosmological simulation performed for this study is hydrodynamic simulation, so mag-

netic field modeling is necessary for differentiating between Q∥ and Q⊥-shocks (see Section "Shock

Identification"). We here obtain the passively evolved magnetic field including the Biermann Battery

mechanism at shocks [118]. Here, the Biermann Battery mechanism states the magnetic field amplifi-

cation through the kinematic process induced by density and temperature gredients. In our simulations,

the following equation along with the equations for fluid and gravity were solved:

∂B
∂ t

= ∇× (v×B)+
c∇pe ×∇ne

n2
ee

, (20)

where ne and pe are the electron number density and pressure, respectively, and v is the flow speed. The

second term on the right hand side accounts for the Biermann battery mechanism. The passive evolution

of B implies that the Lorenz force term in the momentum equation is ignored, so the magnetic field does

not affect the fluid motions. Further detailed descriptions can be found in [119].

In the simulation box, the local peaks of X-ray emissivity are identified as the centers of clusters,

and the total (baryons plus DM) mass, M200, and the X-ray emission-weighted temperature, TX , of
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Figure 15: Mass versus temperature relation for 58 sample clusters at z = 0, found in a set of cosmolog-

ical simulations for the LSS formation of the universe. The total (baryon plus DM) mass and the X-ray

emission-weighted temperature inside the spherical volume of r ≤ r200 are shown. The filled squares

denote 12 clusters used to show the shock energetics plotted in Figures 16. The virial scaling relation of

TX ∝ M2/3
200 is represented as the red solid line.

clusters inside r200 are calculated [120]. Here, r200 is the virial radius defined by the gas overdensity

of ρgas/⟨ρgas⟩ = 200. From the z = 0 data of four simulations, a sample of 58 clusters with 1 keV ≲

TX ≲ 5 keV are found. They have 1014M⊙ ≲ M200 ≲ 5× 1014M⊙ and r200 ≈ 1− 2h−1Mpc. Figure 15

shows the mass versus temperature relation of the sample clusters, which follows TX ∝ M2/3
200 , expected

for virial equilibrium.

Shock Produced in Galaxy Cluster Sample

We identify ICM shocks formed inside simulated clusters through shock capturing method described in

Section II. Shocks with Ms ≥ 1.5 are identified, although only Q∥-shocks with Ms ≥ 2.25 are accounted

for the CRp production. Typically, a shock surface consists of a number of shock zones, and the surface

area is estimated assuming each shock zone contributes ssh = 1.19(∆l)2, which is the mean projected

area of a zone for random shock normal orientation.

For shock zones, the shock obliquity angle is calculated as θBn ≡ cos−1[|∆u ·B1|/(|∆u||B1|)], where

∆u = u2 − u1 and B1 is the preshock magnetic field. Inside r ≤ r200 of simulated clusters, typically

∼ 30% of identified shock zones are Q∥ with θBn ≤ 45◦, while the rest are Q⊥ with θB > 45◦ [121].

Because the statistics of ICM shocks (see below) are insensitive on nongravitational effects such as

radiative process [4], so such effects are not taken into account our simulations as argued in Section II.

Although the CRp production in the core of galaxy clusters might affect nongravitational effects, we
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Figure 16: Kinetic energy flux, Fφ , and energy flux dissipated to CRp production, FCR, in units of

erg s−1(h−1Mpc)−3, as a function of Ms, processed through shock surfaces inside the sphere of r200 of

sample clusters with the X-ray emission-weighted temperature (a) TX ∼ 2 keV, (b) TX ∼ 3 keV and (c)

TX ∼ 4 keV. Each panel shows the fluxes averaged over 4 clusters with similar TX , denoted with the filled

squares in Figure 15. The black, red and blue solid lines show Fφ through all the shocks, Q⊥-shocks

and Q∥-shocks, respectively. In addition, FCR produced by supercritical Q∥-shocks is plotted as the

magenta lines.

expect such CRp production gives only minor contribution because shocks in the core region of clusters

are very weak and CR acceleration could be very inefficient [83].

CRp Production via Fresh-Injection DSA

To estimate the CRp produced via DSA, followed by in insu injection at shock zones from the back-

ground thermal plasma, we adopt the analytic model presented in Paper I. The main ideas of this model

can be summarized as follows. (1) The proton injection and DSA are effective only at supercritical

Q∥-shocks with Ms ≳ 2.25. (2) At weak Q∥-shocks with Ms ≲ 5, the postshock CR distribution, fCR(p),

follows the test-particle DSA power-law with the slope, q = 3χ/(χ −1), determined by the shock com-

pression ratio, χ . (3) The transition from the postshock Maxwellian to the CRp power-law distribution

occurs at the so-called injection momentum, pinj. The amplitude of fCR(p) at pinj is anchored at the

thermal Maxwellian distribution. (4) As a fraction of the shock energy is transferred to CRp, the energy

density of postshock thermal protons and hence the postshock temperature T2 decrease self-consistently.

At the same time, the normalization of fCR(p) reduces. The weakening of the subshock due to the dy-

namical feedback of the CR pressure to the shock structure and the resulting reduction of fCR(p) have

been observed in numerical simulations [26, 83, 122]. (5) In the model, the CR energy density is kept

to be less than 10 % of the shock kinetic energy density for shocks with Ms ≲ 5, consistent with the

test-particle treatment.

The analytic DSA model gives the momentum spectrum of CRp at shock zones as

fCR(p)≈ n2 π
−1.5 p−3

th,p exp(−Q2
i )

(
p

pinj

)−q

for p ≥ pinj, (21)
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for Q∥-shocks with Ms ≥ 2.25. Here, n2 and pth,p ≡
√

2mpkBT2 are the postshock number density

and momentum of thermal protons, respectively, and mp is the proton mass, and kB is the Boltzmann

constant. The injection momentum, pinj, is expressed in terms of the injection parameter, Qi, as

pinj = Qi · pth,p. (22)

In the model, Qi =Qi,0/
√

RT with a fixed initial Qi,0 increases gradually, but approaches to an asymptotic

value as the CR energy density increases. Considering the results from the hybrid simulations of [26]

and [28] and the extended PIC simulation presented in Paper I, Qi,0 ≈ 3.3−3.5 is suggested. RT is the

reduction factor of the postshock temperature, which depends on both Ms and Qi,0. Here, we present the

production of CRp with Qi,0 = 3.5, along with RT from Figure 4 of Paper I (see below for discussions

on the dependence on Qi,0).

Then, the postshock energy density of CRp can be evaluated as

ECR = c
∫

∞

pmin

(
√

p2 +(mpc)2 −mpc) fCR(p) 4π p2d p, (23)

where c is the speed of light. For the lower bound of the integral, pmin = 0.78 GeV/c is used, which is

the threshold energy of π-production reaction. Note that pmin is much larger than pinj of typical ICM

shocks. For the shock with Ms ∼ 3 propagating in the medium with T ∼ 108 K, for instance, the injection

momentum is roughly pinj ∼ 2.5×10−2GeV/c, so pinj is more than an order of magnitude smallar than

pmin. The postshock CRp energy flux is given as FCR = ECRu2.

With the shock kinetic energy flux, Fφ = (1/2)ρ1u3
s , the DSA efficiency, η(Ms)≡ FCR(Ms)/Fφ (Ms)

(see the introduction), is given. The analytic DSA model of Paper I, adopted in this paper, suggests

η(Ms)≈ 10−3 −10−2 for Q∥-shocks with Ms = 2.25−5.0. Here, FCR at ICM shocks is estimated using

Equations (21) and (23), rather than as η(Ms)Fφ . However, for shocks with Ms > 5, which are beyond

the Mach number range of the analytic DSA model (see Figure 4 of [104]), RT is adjusted, so that

FCR(Ms)/Fφ (Ms) is limited to 0.01. We note that the contribution from shocks with Ms > 5 in the ICM

is rather insignificant (see Figure 16).

A few comments are in order. (1) In the case of weak shocks with low Ms, where the CRp spectrum

is dominated by low-energy particles, the estimated FCR depends rather sensitively on pmin, although the

π-production rate does not once pmin ≤ 0.78 GeV/c. (2) If Qi,0 = 3.3, instead of Qi,0 = 3.5, is adopted,

FCR would be ∼ 2 times larger. (3) As mentioned in the introduction, [76] suggested η(Ms) ∼ 0.1 for

Ms ≃ 5, while [26] presented η ≈ 0.036 for Ms ≈ 6.3. The analytic DSA model, adopted in this paper,

assumes η(Ms) and hence FCR, which are about several to ten times smaller than those of [76] and [26].

To quantify the CRp production at ICM shocks, we evaluate the energy flux processed through

shocks inside sample clusters, as a function of the shock Mach number, as

FA(Ms) d logMs =
1

V<r200
∑sshFA(Ms), (24)

where A = φ and A = CR are used to denote the shock kinetic energy flux and the CRp energy flux,

respectively. The summation goes over the shock zones with the Mach number between logMs and
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Figure 17: Slope of the volume-integrated CRp momentum spectrum, produced by all supercritical Q∥-

shocks inside the sphere of r200, as a function of the X-ray emission-weighted temperature (left panel)

and the total mass (right panel), for all 58 sample clusters. The black and red open circles draw the

slopes without (αp) and with (αr
p) reacceleration process, respectively.

logMs+d logMs inside r200, V<r200 = (4π/3)r3
200, and ssh is the area of each shock zone. Figure 16 shows

Fφ and FCR at the present epoch (z = 0) for clusters with the X-ray emission-weighted temperature

close to TX ∼ 2 keV, ∼ 3 keV, and ∼ 4 keV. Weaker shocks dissipate a larger amount of shock kinetic

energy, as pointed in previous works [2,7]. Specifically, ∼ 97% of Fφ is processed through shocks with

Ms ≲ 5, and the fraction is not sensitive to cluster properties, such as TX . We find that for all sample

clusters, ∼ 30% of Fφ is processed through Q∥-shocks (blue lines) and the rest through Q⊥-shocks

(red lines); the partitioning is about the same as that of the frequency of Q∥ and Q⊥-shocks. Moreover,

∼ 23% of Fφ associated with all Q∥-shocks goes through supercritical shocks with Ms ≥ 2.25. As a

result, only ∼ 7%, or ∼ 6−8% including the range for different clusters, of the shock kinetic energy is

dissipated through supercritical Q∥-shocks that are expected to accelerate CRp.

Figure 16 demonstrates that FCR (magenta lines), produced by supercritical Q∥-shocks, is several

orders of magnitude smaller than Fφ . We find that for all sample clusters, the total FCR, integrated over

Ms, is ∼ (1−2)×10−4 of the total Fφ . This can be understood as the average value of η(Ms)×Fφ (Ms),

convoluted with the population of supercritical Q∥-shocks. It means that the fraction of the shock kinetic

energy transferred to CRp is estimated to be ∼ (1−2)×10−4, based on the analytic DSA model adopted

in this paper. If Qi,0 = 3.3 is used (the results are not shown), FCR, and hence the amount of CRp

produced, would be ∼ 2 times larger.

The number of CRp in the momentum bin between p and p+d p, produced by ICM shocks, can be

evaluated as follow:
dNCR(p)

dt
d p = ∑

Q∥, Ms≥2.25
4πsshu2 fCR(p) p2d p, (25)

where the summation includes the entire population of supercritical Q∥-shocks with Ms ≥ 2.25 inside

r200. Note that dNCR(p)/dt is defined in a way that
∫

dNCR(p)/dtd p is the total rate of CRp production

in the ICM. We fit it to a power-law, i.e., dNCR(p)/dt ∝ p−αp , with the volume-averaged slope αp.
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Figure 17 show the values of αp, calculated for all 58 simulated galaxy clusters at z = 0 (black open

circles). The slope spreads over a range of αp ∼ 2.4−2.6, indicating that the average Mach number of

the shocks of most efficient CRp production is in the range of Ms ∼ 2.8−3.3, which is consistent with

the Mach number range of large FCR, Ms ∼ 2.5− 3.5, in Figure 16. We point that the slope in Figure

17 is a bit larger than the values presented in [8] (see their Figure 10, where q̄ = αp +2). The difference

can be understood with the difference in η(Ms); η(Ms = 5)/η(Ms = 2.25) is, for instance, ∼ 10 in the

analytic model adopted in this paper, while it is ∼ 100 in the DSA efficiency model used in [8]. Hence,

shocks with higher Ms are counted with larger weights for the calculation of αp in [8].

CRp Distribution in Sample Clusters

Inside clusters, the CRp produced by ICM shocks are expected to be accumulated over the cosmological

timescale, owing to their long lifetimes, as mentioned in the introduction. Although streaming and dif-

fusion could be important for the transport of highest energy CRp, most of lower energy CRp should be

advected along with the background plasma and magnetic fields [123–125]. Hence, the CRp distribution

would be relaxed over the cluster volume via turbulent mixing on the typical dynamical timescale of the

order of ∼ Gyr. Then, the total number of CRp in the momentum bin between p and p+d p accumulated

inside clusters can be evaluated as

NCR(p) =
∫ dNCR(p)

dt
dt. (26)

In our LSS formation simulations, we did not follow self-consistently in run-time the production of

CRp at ICM shocks and their transport behind shocks. Instead, we identify shocks and calculate fCR(p)

at shock zones in the post-processing step. We here attempt to approximate the above integral as

NCR(p)≈ τacc
dNCR(p)

dt
, (27)

with dNCR(p)/dt estimated at z = 0. Here, τacc is the mean acceleration time scale. Note that the

estimation of dNCR(p)/dt at earlier epochs for a specific cluster found at z = 0 is not feasible in post-

processing, since the cluster has gone through a hierarchical formation history involving multiple merg-

ers. Hence, in [2], [5], and [7], for instance, the shock population and the shock kinetic energy flux, Fφ ,

at different epochs were estimated, over the entire computational volume of LSS formation simulations,

rather than inside the volume of a specific cluster. The Mach number distribution of Fφ was presented

in those studies; Fφ (M) shows only a slow evolution from z = 1 to 0, whereas it is somewhat smaller

at higher redshifts. By considering the time evolution of the shock population and the shock energy dis-

sipation in LSS formation simulations, we use τacc ∼ 5 Gyr for all sample clusters. This approximation

should give reasonable estimates within a factor of two or so.

Previous studies, in which the generation and transport of CRp were followed in run-time in LSS

formation simulations, on the other hand, showed that CRp are produced preferentially in the cluster

outskirts and then mixed, leading to the radial profile of the CR pressure, PCR(r), which is broader than

that of the gas pressure, Pgas(r) [31, 126, 127]. This is partly because the shocks that can produce CRp
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(Ms ≳ a few) are found mostly in the outskirts [8, 33], and also because the DSA efficiency is expected

to increase with Ms in the DSA theory [76, 104]. Hence, we here employ an illustrative model for the

radial profile of the CRp density that scales with the shell-averaged number density of gas particles as

nCR(r, p) ∝ n̄gas(r)
δ . We take δ = 0.5− 1, which covers most of the range suggested in the previous

simulation studies cited above and observations [128]. Considering that the ICM is roughly isothermal,

δ < 1 results in the radial profile of PCR broader than that of Pgas. For a smaller value of δ , nCR is less

centrally concentrated, so the rate of inelastic CRp-p collisions occurring in the inner part of the cluster

volume with high ngas is lower.

Energization of CRp through Reacceleration

The ICM plasma passes through ICM shocks more than once. In the medium with temperature, T ∼
5× 107 K, for instance, the sound speed is ∼ 1000 km/s and the average velocity of Ms = 2 shock

inside the sample cluster is roughly ⟨us⟩ ∼ 2000 km/s. During τacc, the shock swept up the volume,

∼ τacc ×⟨us⟩ ∼ 10 Mpc, while the average diameter of the sample clusters are ∼ 3.2 Mpc. Therefore,

shocks inside clusters typically swept ∼ 3.1 times during τacc. To estimate the number of shock passages

during τacc more rigorously, we estimate the amount of volume swept through shocks within the virial

radius during τacc as

Npassage =
τacc

V<r200
∑sshus. (28)

Here, the summation goes over all the identified shock zones inside r200. For all 58 sample clusters,

Npassage is in the range of ∼ 3−4 and the averaged value is ⟨Npassage⟩ ≈ 3.2. Hence, the CRp produced

via fresh-injection DSA during the first shock passage could be further energized by reacceleration, on

average at two subsequent shock passages.

Here, we attempt to estimate the energization of CRp through reacceleration in the post-processing

step, adopting the following “simplified model”. It involves a number of assumptions, including the

test-particle treatment for reacceleration, as follows. (1) The ICM plasma passes through ICM shocks

“three times”. The three shock passages occur in sequence during each period of τacc/3, and hence the

CRp production is a three-stage procedure. In the first stage, only fresh-injection DSA occurs. In the

second and third stages, along with fresh-injection DSA, a fraction of the preexisting CRp, produced in

the previous stages, is reaccelerated. (2) Reacceleration operates only at supercritical Q∥-shocks with

Ms ≥ 2.25, as in the case of fresh-injection DSA. Even in the presence of preshock CRp, the reflection

of protons at the shock front and the ensuing generation of upstream waves due to streaming protons

is likely to be ineffective at subcritical shocks and Q⊥-shocks. (See below for a discussion on the

consequence of relaxing this assumption.) (3) If the preexisting CRp, upstream of shock, has a power-

law spectrum, fpre(p) = f0
(

p/pinj
)−s, the reaccelerated, downstream spectrum is given as

f (1)reacc(p) =

{
[q/(q− s)]

[
1− (p/pinj)

−q+s
]

fpre(p), if q ̸= s,

q ln(p/pinj) fpre(p), if q = s,

(29)
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where q = 3χ/(χ − 1) with the shock compression ratio, χ , is the test-particle power-law slope [129].

If the momentum spectrum of the preexisting CRp for the subsequent shock passage is taken as f (1)reacc in

Equation (29), then, after the second reacceleration episode, the downstream spectrum has the following

analytic form:

f (2)reacc(p) =


{q2/(q− s)2 − [q2/(q− s) ln(p/pinj)

−q2/(q− s)2](p/pinj)
−q+s} fpre(p), if q ̸= s,

q2/2 [ln(p/pinj)]
2 fpre(p), if q = s.

where q is again the test-particle power-law slope [22, 129]. In the case that fpre(p) has a simple form,

freacc(p) can be written down analytically. (4) During each acceleration stage, CRp are advected and

spread over V<r200 , and the radial profile of the CRp density is described as nCR(r) ∝ n̄gas(r)
δ .

In the model, after the first stage, the CRp, produced solely via fresh-injection DSA and accumulated

inside clusters, has the volume-integrated momentum distribution

N 1st
CR (p)≈ τacc

3
dNCR(p)

dt
, (30)

where dNCR(p)/dt is the CRp production rate in Equation (25).

After the second stage, the volume-integrated CRp momentum distribution is given as

N 2nd
CR (p)≈

(
2
3
− ϕ

3

)
τacc

dNCR(p)
dt

+
ϕ

3
τacc

dN
(1)

reacc(p)
dt

. (31)

Here, ϕ is the fraction of preexisting CRp that passes through supercritical Q∥-shocks and hence is

reaccelerated. It may be inferred as

ϕ ≈ ∑
Q∥, Ms≥2.25

sshρ1us

/
∑sshρ1us, (32)

which is estimated to be ϕ ∼ 6− 8% for sample clusters. Note that ϕ is almost identical to the frac-

tion of the shock kinetic energy dissipated at supercritical Q∥-shocks. dN
(1)

reacc(p)/dt incorporates the

reacceleration of CRp, and is estimated as follows. Assuming that the preexisting CRp produced in the

first stage have a power-law momentum distribution, fpre(p) ∝ (p/pinj)
−s, and the radial density profile

of ∝ n̄gas(r)
δ , f (1)reacc(p) in Equation (29) is calculated at each supercritical Q∥-shock zone; then all the

contributions of reacceleration from shocks inside r200 are added.

After the third, final stage, the volume-integrated CRp momentum distribution is given as

N 3rd
CR (p)≈

(
1−ϕ +

ϕ2

3

)
τacc

dNCR(p)
dt

+

(
ϕ − 2ϕ2

3

)
dN

(1)
reacc(p)
dt

+
ϕ2

3
τacc

dN
(2)

reacc(p)
dt

. (33)

Here, dN
(2)
reacc(p)/dt represents the CRp that undergo the reacceleration twice. Similarly to dN

(1)
reacc/dt,

dN
(2)
reacc/dt is evaluated with f (2)reacc(p) in Equation (30).

In Figure 18, the volume-integrated momentum distributions without (Equation (27)) and with

(Equation (33)) the energization of reacceleration are compared for three simulated clusters at z = 0;

δ = 0.75 is used in the calculation of reacceleration contribution. Reacceleration conserves the number
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Figure 18: Volume-integrated CRp momentum spectrum, NCR(p), produced by all supercritical Q∥-

shocks inside the sphere of r200, without (black solid lines) and with (red dashed lines) the reacceleration

process, for three simulated clusters. Here, δ = 0.75 is adopted in the calculation of reacceleration. The

volume-averaged slopes without and with reacceleration, αp and αr
p, are given in all three panels.
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Figure 19: The amount of γ-ray photons produced per second in the energy band of [0.5, 200] GeV, Lγ ,

as a function of the total cluster mass, for all 58 sample clusters (black circles). The red symbols are the

upper limits suggested by Fermi LAT for observed clusters. The blue dashed lines represent the mass-

luminosity relation, Lγ ∝ M5/3
200 , assuming virial equilibrium and a constant CRp-to-gas energy ratio. The

panels (a) - (c) show Lγ estimated from the CRp production model with reacceleration process; the three

panels are for the different spatial distribution models of CRp with different δ . Note that smaller δ

indicates flatter spatial distribution). Lγ values from the CRp production model without reacceleration

for δ = 0.75 is displayed in the panel (d), for comparison.

of CRp, and hence, the total number of CRp,
∫

NCR(p)d p, remains the same. On the other hand, it

makes the momentum spectrum harder, that is, NCR(p) becomes flatter, as shown in Figure 18. For all

sample clusters, NCR(p) in Equation (33) including the energization of reacceleration is again fitted to

a power-law form with the slope, αr
p. In Figure 17, the estimated values of αr

p are compared to those

without reacceleration, αp; αr
p ∼ 2.35− 2.5, while αp ∼ 2.4− 2.6, that is, the momentum spectrum

flattens by ∼ 0.05−0.1 due to reacceleration.

A flatter spectrum means a larger number of high energy CRp, and hence, the total energy contained

in the CRp component (see Equation (23)) should be larger. We find that the total CRp energy increases

due to reacceleration by ∼ 40− 80% with a mean value of ∼ 60% when averaged for all clusters, if

δ = 0.75 is assumed; the averaged increment is ∼ 75% and ∼ 50% for δ = 0.5 and 1, respectively.

This number can be understood as follows. In Equation (33), the major contribution of reacceleration is

included in the ϕdN
(1)
reacc(p)/dt term. The boost of the CRp energy with Equation (29) is, for instance,

≲ 10 for shocks with Ms ∼ 3 [129], while ϕ ∼ 6−8%.

For completeness, a few additional numbers are given here. If reacceleration operates at all (both

supercritical and subcritical) Q∥-shocks, the total CRp energy contained in sample clusters increases by

∼ 90% on average (when δ = 0.75 is assumed). If reacceleration were to operate at all shocks, that is,

both Q∥ and Q⊥-shocks, then the CRp energy would be increased by several times, which is probably

too large to be compatible with the Fermi upper limits.
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Below, for the estimations of γ-ray and neutrino emissions, we use the CRp expressed as

nCR(r, p) d p ≈ nCR0

[
n̄gas(r)
ngas(0)

]δ ( p
GeV/c

)−αr
p d p

GeV/c
, (34)

where ngas(0) is the gas particle number density at the cluster center. The normalization factor, nCR0, is

fixed by the condition ∫
<r200

∫
nCR(r, p) d p dV =

∫
NCR(p) d p, (35)

where the volume integral is over the sphere inside r200.

4.2 Gamma-Rays and Neutrinos from Simulated Clusters

In this section, we calculate γ-ray and neutrino emissions from simulated clusters, using nCR(r, p) in

Equation (34), which includes the energization due to reacceleration. To speculate the consequence

of reacceleration, we first compare the numbers of CRp with and without reacceleration, in the three

momentum ranges: (1) pinj < p < pmin, (2) pmin < p < 103 GeV/c (pmin = 0.78 GeV/c) where most

of the γ-rays observed by Fermi-LAT in the energy band of [0.5, 200] GeV are produced, and (3)

106 < p < 108 GeV/c where most of the high-energy neutrinos detected by IceCube are produced (see

below). Because the reacceleration process makes the CRp spectrum more flatter, so the number of CRp

in pinj < p < pmin is increased when the reacceleration process is considered. In the higher momentum

range, however, the flatter spectral slope due to the reacceleration is the main factor for increasing the

CRp number fraction. The number of CRp is increased by ∼ 1.3−2.5 times in pmin < p < 103 GeV/c

and that is increased by ∼ 4.1−6.8 times in 106 < p < 108 GeV/c. This indicates that the CRp number

fraction in the higher momentum range depends more sensitively on the presence of reacceleration. In

this context, reacceleration would have a limited consequence on the γ-rays observation with Fermi-LAT

(see the results and relevant text of Figure 19). On the other hand, it substantially boosts high-energy

neutrinos from clusters.

Gamma-Ray Emissions

The number density of γ-ray photons in the unit of GeV−1s−1cm−3 as a function of the distance from

the cluster center, r and the γ-ray energy, Eγ is estimated by employing the formula proposed in [107];

qγ(r,Eγ)dEγdV ≈ cσppn̄gas(r)ñCR(r)
24−αγ

3αγ

×
(

GeV
mπ0c2

)αγ

[(
2Eγ

mπ0c2

)δγ

+

(
mπ0c2

2Eγ

)δγ

]− αγ

δγ

×
dEγ

GeV
dV, (36)

where αγ = 4/3(αr
p−1/2) is the slope of γ-ray spectrum, δγ = 0.14α−1.6

γ +0.44 is the shape parameter,

σpp = 32× (0.96+ e4.4−2.4αγ ) mbarn is the effective cross-section of inelastic CRp-p collision, and mπ0

is the pion mass. In our model, ñCR(r) = nCR0[n̄gas(r)/ngas(0)]δ is the shell-averaged number density
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of CRp. Then, the number of γ-ray photons emitted per second per GeV from a cluster, dLγ/dEγ is

calculated by integrating qγ(r,Eγ) over the cluster volume.

Using n̄gas(r) and αr
p calculated for simulated clusters with δ = 0.5, 0.75, and 1, we estimate Lγ of

58 sample clusters. We integrate dLγ/dEγ in the energy band of [E1, E2] = [0.5, 200] GeV to compare

the estimates with the Fermi-LAT upper limits presented in [108]. Figure 5 shows the estimates for Lγ as

a function of the cluster mass M200, along with the Fermi-LAT upper limits. A few points are noted. (1)

Because clusters with similar masses may undergo different dynamical evolutions, they could experience

different shock formation histories and have different CRp productions. Hence, the Lγ −M200 relation

exhibits significant scatters. (2) Assuming virial equilibrium and a constant CRp-to-gas energy ratio, the

mass-luminosity scaling relation, Lγ ∝ M5/3
200 , is predicted [31, 84, 111]. Although there are substantial

scatters, Lγ ’s for our sample clusters seem to roughly follow the predicted scaling relation. (3) Different

CRp spatial distributions with different δ give different estimates for Lγ within a factor of two (see the

panels (a), (b), and (c)). Being the most centrally concentrated, the model with δ = 1 produces the

largest amount of γ-ray emissions. (4) The panels (b) and (d) compare Lγ ’s from the CRp with and

without reacceleration boost (δ = 0.75). As speculated above, the difference in Lγ ’s is small, indicating

that estimated Lγ is not sensitive to whether the reacceleration of CRp at ICM shocks is included or not.

All the models shown in Figure 19, including the one with reacceleration for δ = 1, result in Lγ ’s that

are mostly below the Fermi-LAT upper limits. Hence, although there are uncertainties in our estimation

for the production of CRp at ICM shocks, we conclude that the DSA model proposed in Paper I is

consistent with the Fermi-LAT upper limits.

We attempt to compare our results with the predictions made by [31], in particular, the one for

their CS14 model of the DSA efficiency, ηCS14(Ms), which adopted the efficiency based on the hybrid

simulations of [26] for high Ms along with the fitting form of [76] for the Ms dependence in low Ms. For

instance, the red triangles (labeled as CS14) in Figure 7 of [31] shows Lγ ≈ 2−4×1043 photons s−1 for

simulated clusters with M200 ≈ 2− 3× 1014M⊙, while our estimates for the model with δ = 0.75 vary

as Lγ ≈ 0.5− 2× 1043 photons s−1 for the same mass range. The ICM shock population and energy

dissipation should be similar in the two works [2, 7]; also the fraction of Q∥-shocks is ∼ 30% in both

works. One of differences in the two modelings is that for subcritical Q∥-shocks with Ms < 2.25, we

assume no production of CRp at all, while ηCS14(Ms) is not zero. However, this may not lead to a

significant difference in the CRp production, since ηCS14(Ms) sharply decreases with decreasing Ms in

the regime of Ms ≲ 3. On the other hand, with the DSA model adopted here, η(Ms)≈ 10−3 −10−2 for

Ms = 2.25− 5, which is lower by up to a factor of three to four times than ηCS14(Ms), explaining the

difference in the predicted Lγ in the two studies. To comfirm this argument, we estimated the amount of

γ-ray photons produced by the CRp production through all Q∥-shocks and have confirmed that the γ-ray

production by the subcritical Q∥-shocks with Ms ≲ 2.25 increases the total γ-ray flux within a factor of

two.

While we focus on the GeV-range γ-ray emission, our results could be extended to explain non-

detection of γ-ray in the higher energy range such as TeV-range. Likewise Fermi-LAT, Veritas and HESS

focusing on the TeV-range γ-ray have failed to detect diffuse cluster-wide γ-ray as well. For the case of
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Figure 20: Neutrino energy spectra from the sample clusters of TX ∼ 2 keV (blue dashed dot lines), 3 keV

(red dashed lines), and 4 keV (black solid lines). All the spectra shown here are obtained by averaging

over 4 clusters with similar TX . For the momentum distribution of CRp, αr
p = 2.4 and δ = 0.75 are

adopted in the upper panel, and αr
p = 2.5 and δ = 0.75 in the lower panel, respectively.

shocks in supernova remnants, the shock-accelerated CRp spectrum may follow a broken power-law due

to the nonlinear DSA process (see e.g., [130]) and such CRp spectrum enhances the TeV-range γ-ray

emission. While the dynamical feedback and complex process due to the shock-produced CRp would

be substantial in the very strong SNR shocks with Ms ∼ 100 because of the efficient CRp acceleration

(i.e., roughly ∼ 10% of kinetic energy goes to CRp acceleration), CRp acceleration in ICM shocks is

much inefficient and such nonlinear process due to the CRp feedback would be negligible. This aspect is

also consistent with the test-particle assumption adopted in [104]. In this context, the cluster-wide γ-ray

spectrum produced by weak ICM shocks is generally expected as a single power-law spectrum and our

interpretation described through Figure 19 can be also applicable to explain non-detection of γ-ray in

the higher energy range.
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Neutrino Emissions

To calculate neutrino emissions from simulated clusters, we employ the analytic prescription described

in [115]. Assuming that the pion source function as a function of pion energy Eπ has a power-law form,

qπ(r,Eπ) ∝ E−αγ

π , the neutrino source function at the neutrino energy Eν = Eγ is approximately related

to the γ-ray source function as

qν(r,Eν) = qγ(r,Eγ)[Zνµ
(αγ)+Zνe(αγ)]. (37)

Here,

Zνµ
(αγ) =

4[3−2k− kαγ (3−2k+αγ − kαγ)]

αγ(1− k)2(αγ +2)(αγ +3)

+ (1− k)αγ−1, (38)

Zνe(αγ) =
24[(1− k)αγ − k(1− kαγ )]

αγ(1− k)2(αγ +1)(αγ +2)(αγ +3)
, (39)

with k = m2
µ±/m2

π± = 0.573 account for the contributions of muon and electron neutrinos, respectively.

Then, the energy spectrum of neutrons emitted per second from a cluster is estimated by

dLν

dEν

=
∫
<r200

qν(r,Eν) dV. (40)

Figure 20 plots E2
νdLν/dEν as a function of Eν for simulated clusters; the lines with different colors

are for the sample clusters with TX close to ∼ 2 keV, ∼ 3 keV, and ∼ 4 keV, respectively. The upper and

lower panels show the estimated spectra for the volume-averaged slope of CRp momentum distribution,

αr
p = 2.4 and 2.5, respectively, which cover the range of αr

p of simulated clusters (see Figure 3); for the

spatial distribution of CRp, δ = 0.75 is used. The spectrum has the energy dependence of ∝ E−2.53
ν for

αr
p ∼ 2.4 and ∝ E−2.67

ν for αr
p ∼ 2.5, according to αγ = 4/3(αr

p−1/2). The number of neutrinos emitted

from clusters of TX ∼ 2−4 keV is estimated to be ∼ 1033 −1034 GeV−1s−1 at Eν ∼ 1 TeV and ∼ a few

×(1024 −1026) GeV−1s−1 at Eν ∼ 1 PeV.

We also try to assess neutrino fluxes from the five nearby clusters listed in Table 1. Due to the limited

box size of the LSS formation simulations here, the parameters of our sample clusters (see Figure 1) do

not cover those of some of the nearby clusters. Hence, we employ the scaling relation Lν ∝ T 5/2
X , along

with the neutrino energy spectrum for αr
p = 2.4 in the upper panel of Figure 19, to guess dLν/dEν for

these nearby clusters. Then, the neutrino flux of each cluster can be calculated as

dΦν

dEν

=
1

4π2R2
vir

dLν

dEν

, (41)

where Rvir is the virial radius of the cluster. Note that the above has the units of neutrinos GeV−1cm−2s−1

sr−1.

Figure 21 shows E2
νdΦν/dEν as a function of Eν , predicted for the nearby clusters in Table 1, along

with the IceCube flux [116] and the atmospheric muon and electron neutrino fluxes [117] for comparison.

A few points are noticed. (1) Among the nearby clusters, the Coma, Perseus, and Ophiuchus clusters are

expected to produce the largest fluxes. Yet, at Eν = 1 PeV, the predicted fluxes are ≲ 10−4 times smaller
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Table 3: List of Nearby Clusters

d [Mpc] a TX [keV] b Rvir [Mpc] b

Virgo 16.5 2.3 1.08

Centaurus 41.3 3.69 1.32

Perseus 77.7 6.42 1.58

Coma 102 8.07 1.86

Ophiuchus 121 10.25 2.91
a: References for the cluster distances: [131] for the Virgo cluster, [132] for the Centaurus

cluster, [133] for the Perseus cluster, [134] for the Coma cluster, and [135] for the Ophiuchus cluster.

b: The X-ray temperature and virial radius of the Virgo cluster are from [136]. Those of the Centaurus,

Perseus, Coma, and Ophiuchus clusters are from [137].

Figure 21: Predicted neutrino fluxes from five nearby clusters. For the momentum distribution of CRp,

the model with αr
p = 2.4 and δ = 0.75 is employed. The gray box shows the IceCube flux [116],

and the black solid and dashed lines indicate the fluxes of atmospheric muon and electron neutrinos,

respectively [117].
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than the IceCube flux. Hence, it is unlikely that high-energy neutrinos from clusters would be reckoned

with IceCube, even after the stacking of a large number of clusters is applied. (2) At the neutrino energy

range of several GeV to TeV, for which the flux data of the Super-Kamiokande detector are available

[113], the fluxes from nearby clusters are smaller by ≲ 10−6 times than the atmospheric muon neutrino

flux and smaller by ≲ 10−4 times than the atmospheric electron neutrino flux. Hence, it is unlikely

that the signature of neutrinos from galaxy clusters could be separated in the data of ground detectors

such as Super-Kamiokande and future Hyper-Kamiokande [138]. (3) Our neutrino fluxes from nearby

clusters are substantially smaller than the ones estimated in previous works. For instance, our estimates

are ∼ 10−3 times smaller than those for αp = 2.4 at Eν = 250 TeV in Table 3 of [111]. This discrepancy

comes about mainly because our DSA model has a smaller acceleration efficiency, compared to the

efficiency model adopted in their work (see Section "CRp Production via Fresh-Injection DSA"), but

also partly due to different approaches for modeling the CRp production in simulated clusters.

4.3 Summary and Discussion

In this Section, we investigated the production of CRp in galaxy clusters as well as the possibility of

detecting γ-ray and neutrino emissions from galaxy clusters. The main results of our study can be sum-

marized as follows:

1) Inside simulated clusters, ∼ 30 % of identified shocks are Q∥, and ∼ 23 % of the shock kinetic energy

flux at Q∥-shocks is dissipated by supercritical shocks with Ms ≥ 2.25. As a result, only ∼ 7 % of the

kinetic energy flux of the entire shock population is dissipated by the supercritical Q∥-shocks that are ex-

pected to accelerate CRp. The fraction of the shock kinetic energy transferred to CRp via fresh-injection

DSA is estimated to be ∼ (1−2)×10−4.

2) The CRp, produced via fresh-injection DSA at supercritical Q∥-shocks, have the momentum distri-

bution, well fitted to a power-law. The volume-averaged power-law slope is αp ∼ 2.4−2.6, indicating

that the average Mach number of CRp-producing shocks is Ms ∼ 2.8−3.3, which is typical for shocks

in the cluster outskirts.

3) Reacceleration due to the multiple shock passages of the ICM plasma makes the CRp spectrum harder.

After the energization through reacceleration is incorporated in our model, the volume-averaged power-

law slope reduces to αr
p ∼ 2.35−2.5, that is, the CRp spectrum flattens by ∼ 0.05−0.1 in slope. At the

same time, the total amount of CRp energy contained in sample clusters increases by ∼ 40−80%.

4) The predicted γ-ray emissions from simulated clusters are mostly below the Fermi-LAT upper limits

for observed clusters [108]. Our estimates are lower than those of [31] based on the DSA model of [26],

because our DSA efficiency, η , is smaller than their ηCS14 in the range of Ms = 2.25− 5. In addition,

we believe future γ-ray observation could provide the evidence of CRp production and further refine the

DSA model of ICM shocks as well.

5) The predicted neutrino fluxes from nearby clusters are smaller by ≲ 10−4 times than the IceCube

flux at Eν = 1 PeV [116] and smaller by ≲ 10−6 times than the atmospheric neutrino flux in the range

of Eν ≤ 1 TeV [117]. Hence, it is unlikely that they will be observed with ground facilities such as
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IceCube, Super-Kamiokande, and future Hyper-Kamiokande.

While hadronic originated γ-ray emission due to the π0 decay is only considered in this work, lep-

tonic originated γ-ray emission could be also emitted due to the CRp. As explained above, the inelastic

collisions between CRp and background thermal protons could produce both neutral and charged pions

and charged pions are decayed into neutrinos and electrons. Such electrons are the so-called secondary

electrons and inverse-Compton (IC) emissions could be emitted in the γ-ray energy range as conse-

quence of interaction between secondary electrons and cosmic macrowave background photons. In the

ICM, the γ-ray emission produced by π0-decay is expected to dominate over the γ-ray emission due to

the IC via secondary electrons. [107], for instance, showed that the γ-ray flux produced by IC is more

than an order of magnitude smaller than that produced by π0-decay and thus the contribution of IC is

negligible.

In addition, while we only consider the CRp production inside clusters via ICM shocks, it would

be interesting if CRp produced around cluster by cluster accretion shocks are advected into the cluster

virial radius. Because the radiative timescale of CRp is longer than the cosmological age, so CRp can be

sufficiently advected several Mpc scales. In such cases, the number density of CRp inside cluster could

be increased. We interpret that such contribution could be negligible because the gas density around

galaxy clusters is roughly two order of magnitude lower than the mean gas density inside clusters so the

CRp density produced around clusters is expected to be lower than that produced inside clusters as well.
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V Electron Preacceleration at Weak Quasi-perpendicular Shocks in In-
tracluster Medium: 1. Plasma Instabilities in Shock Upstream

As argued in the previous kinetic plasma simulation studies, the electron acceleration process at the

shocks in various astrophysical environments is mediated by the microinstabilities near the shock sur-

face (e.g., [23–27, 139–141]). Again, the radio observations have provided the evidence of electron

acceleration at the ICM shocks, however, the detailed acceleration mechanism has yet to be understood.

From observations of the so-called radio relics [39,44], in particular, the electron acceleration is inferred

to operate in low Mach number, quasi-perpendicular (Q⊥, hereafter) shocks with θBn ≳ 45◦ in the hot

ICM [142]. Here, θBn is the obliquity angle between the background magnetic field and the shock nor-

mal. In this regards, from this Section to Section VIII, we examine the electron acceleration including

microinstabilities at the ICM Q⊥-shocks using PIC simulations. In particular, we here study the prop-

erties plasma instability driven at the shock upstream due to the dynamics of shock reflected electrons

through linear stability analysis and PIC simulation (the results shown in this section are presented in

the paper (Kim, S., Ha, J.-H., Ryu, D., & Kang, H. 2020, The Astrophysical Journal, 892, 85; [143])).

According to prevous numerical works for simulating Q⊥-shocks [144, 145], self-excited waves in

the shock upstream are essential. The upstream waves could be induced by the following process:

(1) the upstream ions and electrons are reflected due to the magnetic mirror deflection at the shock

surface, (2) the reflected particles are energized through the motional electric field at the shock (i.e.,

shock drift acceleration (SDA, hereafter)), (3) because the reflected and SDA energzied electrons are

backstreaming along the upstream magnetic field, such SDA energized electrons drive upstream plasma

waves. Depending on the plasma conditions, electrostatic waves or electromagnetic waves are generated.

(4) Through the wave-particle mediated by such upstream waves, electrons can undergo multiple SDA

cycles [23, 24, 139, 140, 146–148]. The injection problem can be followed from first principles only

through particle-in-cell (PIC) simulations, which fully treat kinetic microinstabilities and wave-particle

interactions on both ion and electron scales around the shock transition.

More precisely, the shock-reflected electrons stated above can drive plasma instabilities because they

could generate anisotropy in electron velocity space. Regarding the growth of such plasma instabilities,

the following parameters would be substantial: the plasma beta, β = Pgas/PB (the ratio of the gas to mag-

netic pressures), the sonic Mach number Ms, the Alfvén Mach numbers, MA (MA =
√

βΓ/2Ms where

Γ = 5/3 is the gas adiabatic index), the obliquity angle, θBn, and the adopted ion-to-electron mass ration,

mp/me [149, 150]. Those parameter effects could be understood as follows: (1) higher Mach number

generates larger density and magnetic field jumps and thus the number fraction of shock-reflected ions

and electrons typically increases as Mach number increases when the shock surface potential is small

enough. (2) If magnetic field is strong (i.e., low β plasma), plasma system is easily stabilized because

large magnetic pressure suppress plasma instability. In high β plasma, on the other hand, plasma insta-

bility could be easily induced because the system is almost independent of magnetic suppression.

To understand the electron acceleration at ICM shocks, [23, 24, 140] performed two-dimensional
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(2D) PIC simulations of Ms = 2− 3, Q⊥-shocks in β = 6− 200 plasmas with kBT = 8.6− 86 keV.

They argued that the temperature anisotropy (Te∥ > Te⊥) due to reflected electrons, backstreaming along

the background magnetic fields with small pitch angles, derives the electron firehose instability (EFI,

hereafter), which excites mainly nonpropagating oblique waves in the shock upstream. Here, Te∥ and Te⊥

are the electron temperatures, parallel and perpendicular to the background magnetic field, respectively.

The SDA-reflected electrons are scattered back and forth between the magnetic mirror at the shock ramp

and the EFI-driven upstream waves, but they are still suprathermal and do not have sufficient energies to

diffuse downstream across the shock transition. On the other hand, [151] and [141] have recently shown

through 2D and 3D plasma simulations of supercritcal Q⊥-shocks that shock surface ripplings generate

multi-scale perturbations that can facilitate the electron acceleration beyond the injection momentum.

In the following Section VI, we seperately present the results regarding multi-scale perturbations in the

shock transition layer and in this Section, we focus only on the EFI waves driven in shock upstream.

The EFI in homogeneous, magnetized, collisionless plasmas has been extensively studied in the

space-physics community as a key mechanism that constrains the electron anisotropy in the solar wind

[152]. It comes in the following two varieties: (1) the electron temperature-anisotropy firehose insta-

bility (ETAFI, hereafter), driven by a temperature anisotropy, Te∥ > Te⊥ [153–155], and (2) the electron

beam firehose instability (EBFI, hereafter), also known as the electron heat flux instability, induced by a

drifting beam of electrons [156–158]. In the EBFI, the bulk kinetic energy of electrons is the free energy

that drives the instability. In the linear analyses of these instabilities, typically ions are represented by

an isotropic Maxwellian velocity distribution function (VDF, hereafter) with Tp, while electrons have

different distributions, that is, either a single anisotropic bi-Maxwellian VDF with Te∥ > Te⊥ for the

ETAFI, or two isotropic Maxwellian VDFs (i.e., the core with Tc and the beam with Tb) with a relative

drift speed, urel, for the EBFI.

[24] and [140] (KRH19, hereafter) argued that the upstream waves in the shock foot in their PIC sim-

ulations have the characteristics consistent with the nonprogating oblique waves excited by the ETAFI.

Considering that backstreaming electrons would behave like a drifting beam, however, it would have

been more appropriate to interpret the operating instability as the EBFI. So we here consider and com-

pare the two instabilities, in order to understand the nature of the upstream waves in Q⊥-shocks in high-β

plasmas. Another reason why we study this problem is that the ETAFI and EBFI in high-β plasmas have

not been examined before. In particular, we study the instabilities at both parallel and oblique propaga-

tions through the kinetic Vlasov linear theory and 2D PIC simulations, focusing on the kinetic properties

of the EFI in high-β (βp ≈ 50 and βe ≈ 50) plasmas relevant for the ICM.

5.1 Linear Analysis of ETAFI and EBFI

The ETAFI and EBFI in a homogeneous, collisionless, magnetized plasma are considered. For the case

of the ETAFI, the anisotropic bi-Maxwellian distribution of electrons is assumed with the parameter

describing the temperature anisotropy, A = Te∥/Te⊥, wherease the ion population follows Maxwellian

with a single temperature. For the case of the EBFI, two population of electrons are assumed (i.e.,
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the core and beam populations) and the core and beam populations are drifting along the background

magnetic field with drift speeds of uc and ub, respectively. The ion Maxwellian is simply placed with

zero drift speed. We employ the realistic proton-to-electron mass ratio, mp/me = 1836 as a fiducial

model. For the sake of comparing with a corresponding PIC simulation results, reduced mass ratios,

mp/me = 100 and 400 are adopted as well.

The VDF of a drifting bi-Maxwellian population is given by the following form,

fa(v⊥,v∥) =
na

n0

π−3/2

α2
a⊥αa∥

exp

[
−

v2
⊥

α2
a⊥

−
(v∥−ua)

2

α2
a∥

]
. (42)

The subscript a denotes the population of core electrons (c), beam electrons (b), or ions (p). Here, na and

ua are the number density and the drift speed of the particle species a, respectively. Note that the charge

neutrality condition (n0 = nc + nb = np) and the zero net current condition (ncuc + nbub − npup = 0)

are satisfied. The thermal velocities are αa∥ =
√

2kBTa∥/ma and αa⊥ =
√

2kBTa⊥/ma, respectively. The

variables for describing plasma system and normalization factors are defiend as follows: the plasma beta,

βa = 8πn0kBTa/B2
0, the plasma frequency, ω2

pa = 4πn0e2/ma, and the gyro-frequency, Ωa = eB0/mac.

The Alfvén speed, given as vA = (B2
0/4πn0mp)

1/2, is also used. Note that for the ion (proton) population,

Tp∥ = Tp⊥ = Tp in the ETAFI analysis, while up = 0 in the EBFI analysis in the following subsections.

To examine the linear properties of EM modes for the ETAFI and EBFI, we solve the linear disper-

sion relation (see [159, 160] for more details) which is given as

det
(

εi j −
c2k2

ω2

(
δi j −

kik j

k2

))
= 0, (43)

with the dielectric tensor, εi j, where ki and k j are the components of the wavevector k. Then, the complex

frequency, ω = ωr + iγ , can be expressed as a function of the wave number, k, and the propagation

angle, θ . Note that [143] provides the dielectric tensor for the general VDF. Here, both the background

magnetic field B0 = B0ẑ and k lie in the z−x plane, the components of εi j for the VDF in Equation (42)

is obtained by using the Equation (3) in [143].

Electron Temperature Anisotropy Firehose Instability (ETAFI)

We first examine the ETAFI in the ICM environment, triggered by the temperature anisotropy of elec-

trons; hence, Te∥ > Te⊥, while Tp∥ = Tp⊥, and uc = ub = 0 (no drift of electrons). For the anisotropic

distribution of electrons in Equation (42), the plasma beta is given as βe⊥ = βe∥/A and βe = (βe∥+

2βe⊥)/3 = βe∥(1+2/A )/3. We restrict the analysis to the case of βe = βp, because βe = βp (or Te = Ti)

is expected to be generally satisfied in shock upstream. Then, the analysis is reduced to a problem of

five parameters, for instance, Te∥, Te⊥, n0, B0 and mp/me. We specify the problem with four dimen-

sionless quantities, A = Te∥/Te⊥, β = βe + βp, vA/c, and mp/me, and use ωpe to normalize k. We

then calculate ωr/Ωe + iγ/Ωe as a function of ck/ωpe and θ . Note that Ωe is given as a combination

of other quantities, Ωe = ωpe(vA/c)(mp/me)
1/2. Considering that n0 ∼ 10−4 cm−3, Te ∼ Tp ∼ 108 K

(8.6 keV), and B0 is of the order of µG in the ICM (see the introduction), we adopt β = 100 and

vA/c = [(2/βp)(kBT/mpc2)]1/2 ≡ 6×10−4/[(mp/me)/1836]1/2 as fiducial values.
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Figure 22: Real frequency, ωr (black), and imaginary frequency (i.e., growth rate), γ (red), of the ETAFI

as a function of wavenumber, k, for different propagation angle θ , the angle between the wavevector and

the background magnetic field. Here, the following parameters are employed: β = 100 (i.e., βe∥ = 72.3,

βe⊥ = 38.9, and βp = 50), A = Te∥/Te⊥ = 1.86, vA/c = 6×10−4, and mp/me = 1836.

Figure 22 shows the analysis results of the ETAFI for the model of A = 1.86, β = 100, vA/c =

6× 10−4, and mp/me = 1836. The normalized real frequency, ωr/Ωe (black line), and the normalized

growth rate, γ/Ωe (red line), are plotted as a function of ck/ωpe for different θ . At small, quasi-parallel

angles (θ < 35◦), the propagating mode with ωr ̸= 0 dominates over the nonpropagating mode with

ωr = 0 in all the range of k. As θ increases, γ of both the modes increase, but γ of the nonpropagating

mode increases more rapidly than that of the propagating mode (see the panels of θ = 35◦, 40◦, and

45◦). As θ increases further, the nonpropagating mode dominates in all the range of k (see the panel of

85◦). The maximum growth rate, γm, appears at ckm/ωpe ≈ 0.49 and θm ≈ 85◦, while nonpropagating

modes with a broad range of ck/ωpe ∼ 0.2− 0.8 have similar γ . This agrees with the previous finding

that the ETAFI predominantly generates oblique phase-standing waves (see the introduction).

Figure 23 shows the analysis results for different parameters. The left panels exhibit the dependence

on βe∥ with βe∥ = 5, 25, and 50 for a fixed A = 1.67; then, β = 7.33, 36.6, and 73.3, respectively,

and other parameters are vA/c = 10−4 and mp/me = 1836. The maximum growth rate, γm, and the

corresponding wavenumber, km, for given θ , are plotted as a function of θ for both the propagating

(dashed line) and nonpropagating (solid line) modes. The results of the βe∥ = 5 model are in perfect

agreement with the solutions provided by [153] (see their Figure 2), demonstrating the reliability of our

analysis. The peak of γm occrus at the nonpropagating mode, again indicating that the fastest-growing

mode is nonpropagating, regardless of β . For higher β , the peak is higher and appears at larger θ and

smaller k; that is, for higher β , the ETAFI grows faster, and the fastest-growing mode has a longer
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Figure 23: Maximum growth rate, γm (top), and wavenumber, km (bottom), for the propagating (dashed

line) and nonpropagating (solid line) modes of the ETAFI, as a function of θ . The left panels show

dependence on the βe∥ values with a set of fixed parameters: A = 1.67; β = 2βe∥(1+2/A )/3, vA/c =

10−4, and mp/me = 1836. The right panels present dependence on A and mp/me with a set of fixed

parameters: β = 100 and vA/c = 6× 10−4/[(mp/me)/1836]1/2 In the right panels, the gray solid lines

almost completely overlap with the black solid lines.
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Table 4: Model Parameters for the Linear Analysis of the EBFI

βe = βp nb/n0 uc/c ub/c Aeff vA/c mp/me γm/Ωe θm ckm/ωpe

Lu0.22 50 0.2 0.044 -0.176 1.46 6×10−4 1836 0.17 79◦ 0.31

Lu0.26 50 0.2 0.052 -0.208 1.65 6×10−4 1836 0.21 80◦ 0.34

Lu0.3 50 0.2 0.06 -0.24 1.86 6×10−4 1836 0.24 81◦ 0.38

Lu0.3β50 25 0.2 0.06 -0.24 1.86 8.5×10−4 1836 0.21 79◦ 0.41

Lu0.3m100 50 0.2 0.06 -0.24 1.86 2.6×10−3 100 0.24 81◦ 0.38

Figure 24: Real frequency, ωr (black), and growth rate, γ (red), of the EBFI for the Lu0.3 model in Table

1, as a function of wavenumber, k, for different propagation angle, θ . Here, modes have a nonpropagat-

ing characteristics when γ is larger than ω .

wavelength and a larger propagation angle.

The right panels of Figure 23 examine the dependence on A in the range of A = 1.46−1.86 for a

fixed β = 100; then, βe∥ = 63.3−72.3, and other parameters are vA/c = 6×10−4 and mp/me = 1836.

For larger A , the peak of γm is higher and appears at larger θ and larger k; that is, for larger A , the ETAFI

grows faster, and the fastest-growing mode has a shorter wavelength and a larger propagation angle. The

right panels also compare the models of mp/me = 1836 and 100 for A = 1.86. While the growth rate

of the propagating mode strongly depends on mp/me, the characteristics of the nonpropagating mode is

insensitive to mp/me once mp/me is sufficiently large. This is consistent with the findings of [153].
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Figure 25: The growth rate, γ , of the EBFI for four models is displayed in the wavenumber k versus

wave propagating angle θ space, (a) Lu0.3, (b) Lu0.22, (c) Lu0.3β50, and (d) Lu0.3m100, in Table 1.

The symbol X marks the location of the maximum growth rate in the k-θ space.

Electron Beam Firehose Instability (EBFI)

In this subsection, we examine the EBFI in the ICM environment, induced by a drifting beam of elec-

trons. Three populations of core electrons, beam electrons, and ions are involved, and we assume that all

follow isotropic Maxwellian VDFs. We again restrict the analysis to the case of βe = βp, or equivalently

Te = Tp. Then, with the charge neutarlity and zero net current conditions, the analysis is reduced to a

problem of six parameters, for instance, Te, nc, nb, urel ≡ uc −bb, B0, and mp/me. We specify the prob-

lem with five dimensionless quantities, β , nb/n0, urel/c, vA/c, and mp/me, again using ωpe to normalize

k.

Emulating backstreaming electrons in the foot of a simulated shock in the ICM environment, specifi-

cally, the M3.0 model shock (Ms = 3.0, β = 100) of KRH19, we adopt the model of β = 100, nb/n0 = 0.2

(then, nc/n0 = 0.8), urel/c = 0.3 (uc = 0.06 and ub = −0.24), vA/c = 6× 10−4, and mp/me = 1836 as

the fiducial model. We also consider four additional models to explore the dependence of the EBFI on

urel/c, β , and mp/me, as listed in Table 4. The model name in the table has the following meaning. The

first character ‘L’ stands for ‘linear analysis’. The letter ‘u’ is followed by urel/c; the Lu0.3 model in

the third row is the fiducial case. The models in the last two rows are appended by a character for the

specific parameter and its value that is different from the fiducial value; the Lu0.3β50 model has β = 50,

and the Lu0.3m100 model has mp/me = 100. The last three columns of the table show γm, θm and km of

the fastest-growing mode.

To compare the characteristics of the EBFI with those of the ETAFI, we define an “effective” tem-

63



Table 5: Model Parameters for the PIC Simulations of the EBFI

βe = βp nb/n0 uc/c ub/c Aeff Te = Tp[K(keV)] mp/me Lx = Ly[c/ωpe]

Su0.22 50 0.2 0.044 -0.176 1.46 108(8.6) 100 100

Su0.26 50 0.2 0.052 -0.208 1.65 108(8.6) 100 100

Su0.3 50 0.2 0.06 -0.24 1.86 108(8.6) 100 100

Su0.3β50 25 0.2 0.06 -0.24 1.86 108(8.6) 100 100

Su0.3m400 50 0.2 0.06 -0.24 1.86 108(8.6) 400 100

perature anisotropy as follows. The “effective” parallel and perpendicular temperatures of the total (core

plus beam) electron population are estimated as

T eff
e∥ =

me

kBn0

∫
d3v
(
v∥−⟨v∥⟩

)2 fe

= Te +
me

kB

(
u2

c
nc

n0
+u2

b
nb

n0

)
,

T eff
e⊥ =

me

kBn0

∫
d3v

v2
⊥
2

fe = Te, (44)

where fe = fc + fb. Note that

⟨ve∥⟩=
1
n0

∫
d3v v∥ fe =

nc

n0
uc +

nb

n0
ub = 0, (45)

with the zero net current condition in the ion rest frame. Then, the effective temperature anisotropy,

arsing from the drift of electrons, is given as Aeff = T eff
e∥ /T eff

e⊥ ; it is listed in the sixth column of Table 4.

Figure 24 shows the normalized real frequency, ωr/Ωe (black line), and the normalized growth

rate, γ/Ωe (red line), for the Lu0.3 model of the EBFI, as a function of ck/ωpe for different θ . This

model has Aeff = 1.86, which is the same as A of the ETAFI model of Figure 1. The magnitude of

γ and the unstable wavenumber range in Figure 24 are comparable to those in Figure 1, and in both

the figures, γ increases with increasing θ . For the Lu0.3 model, the maximum growth, γm/Ωe = 0.24,

appears at θm ≈ 81◦, and at this angle, modes with a broad range of ck/ωpe ∼ 0.2− 0.8 have γ close

to γm. The wavenumber of γm is ckm/ωpe ≈ 0.38 for the Lu0.3 model, smaller than ckm/ωpe ≈ 0.49 at

θm ≈ 85◦ in Figure 1. The more notable difference is that fast-growing oblique modes of the EBFI have

ωr ̸= 0, while those of the ETAFI have ωr = 0. However, ωr < γ , for most of the modes; for the Lu0.3

model, γm/Ωe ≈ 0.24 and ωr/Ωe ≈ 0.06 at km and θm, and hence, (ωr/km)/γm ≈ 0.66 c/ωpe ≪ λm(≡
2π/km) ≈ 16.5 c/ωpe, that is, the fastest-growing mode propagates the distance much smaller than its

wavelength during the linear grow time of 1/γm. It means that EM fluctuations grow much faster than

they propagate. Thus, the oblique mode of the EBFI may be regarded as “nearly phase-standing", while

the oblique mode of the ETAFI is truly nonpropagating.

Figure 25 demonstrates the effects of urel/c, β , and mp/me on the growth rate, γ , of the EBFI in the

k-θ plane. The black “X” denotes the location (km,θm) of the fastest-growing mode. The comparison

of the Lu0.22 and Lu0.3 (also Lu0.26, although not shown) models indicates that for larger urel (i.e.,
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Figure 26: Top panels: the growth rate of the EBFI, γ(k)/Ωe, in the k∥-k⊥ space for four models in

Table 1, obtained by the linear analysis. Bottom panels: the magnetic energy density, δB2
y(k)/B2

0, in

the k∥-k⊥ space for four models in Table 2, estimated at Ωet = 5, from PIC simulations. Note that

γ(k)/Ωe is displayed in the linear scale, while the colorbar of δB2
y(k)/B2

0 is in the logarithmic scale (see

the corresponding text for more details). The parameters of Su models are identical to those of their

respective Lu models, except that mp/me = 100 for Su models while mp/me = 1836 for Lu models. The

symbol X marks the wavenumber of the maximum linear growth rate, γm, of the Lu models.
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Figure 27: Time evolution of magnetic field power spectra (top panels: PBy(k); bottom panels: PBy(θ))

as a function of k and θ , at different times in the PIC simulations for the Su0.22, Su0.26 and Su0.3

models in Table 5. The gray lines show the power spectrum at a later time, Ωet ∼ 500.

larger Aeff), γ peaks at larger km and larger θm. This is consistent with the result of the ETAFI, shown in

the right panels of Figure 23. The panels (a) and (c), which compare the Lu0.3 and Lu0.3β50 models,

illustrate that for smaller β , km is larger, while θm is smaller. Such β dependence is also seen in the case

of the ETAFI, shown in the left panels of Figure 2. The panels (a) and (d), which compare the Lu0.3 and

Lu0.3m100 models, manifest that mp/me is not important, especially at high oblique angles of θ ≳ 40◦,

as in the ETAFI. In summary, these characteristics of the EBFI are similar to those of the ETAFI. Hence,

we expect that the EBFI would behave similarly to the ETAFI.

5.2 PIC Simulations of EBFI

Simulation Setup

To further explore the development and evolution of the EBFI in the foot of weak Q⊥-shocks in the

ICM, we study the instability through 2D PIC simulations. We consider the setup equivalent to that

of linear analysis; electrons, described with an isotropic Maxwellian VDF, drift along the direction of

the background magnetic field, B0 = B0ẑ. In fact, [24] performed similar PIC simulations to describe

the triggering instability and the properties of excited upstream waves, seen in their shock study. The

difference is that in their simulations, the beam electrons are drifting within the maximum pitch angle

and have a power-law energy distribution.

The PIC simulations were performed using TRISTAN-MP, a parallelized EM PIC code [91, 92].

All the three components of the particle velocity and the EM fields are calculated within a periodic

box. The background plasma consists of core electrons, beam electrons, and ions. The core and beam

electron populations drift, satisfying the zero net current condition, while the ion population is at rest.
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Figure 28: Two-dimensional slices of magnetic field fluctuation, δBy/B0, at three different times in the

PIC simulation for the Su0.3 model. The black arrows draw the direction of background magnetic field,

while the blue arrows indicates the wavevector corresponding to the peak of power spectrum, PBy(k).

The simulation domain is in the z− x plane. Again, the case of βe = βp, or equivalently Te = Tp, is

considered.

Parallel to the models for the linear analysis shown in the previous section, we ran simulations for

the five models listed in Table 5. The model name in the first column has the same meaning as that in

Table 4, except that the first character ‘S’ stands for ‘simulation’. Su0.3 in the third row is the fiducial

model; β = 100, nb/n0 = 0.2, urel/c = 0.3, Te = Tp = 8.6 keV, and mp/me = 100. Again, this model

is to intended to reproduce the upstream condition of the M3.0 model shock of KRH19. Note that here

mp/me = 100 is used to speed up the simulations, but the early, linear-stage evolution of fast-growing

oblique modes should be insensitive to the mass ratio, as mentioned above. Four additional models are

considered to explore the dependence on urel/c, β , and mp/me.

The simulation domain is represented by a square grid of size Lz = Lx = 100 c/ωpe, which consists

of cells of ∆z = ∆x = 0.1 c/ωpe. In each cell, 200 particles (100 for electrons and 100 for ions) are

placed. The time step is ∆t = 0.045 [ω−1
pe ], and the simulations ran up to tend = 1000 Ω−1

e .

Simulations Results

As in the ETAFI (see the introduction), for fast-growing oblique modes of the EBFI, the magnetic

field fluctuations are induced predominantly along the direction perpendicular to both k and B0, i.e.,

along the y axis in our geometry. Hence, below, we present the simulation results associated with

δBy to describe the evolution of the EBFI. With its Fourier transformation, δBy(k), we first compare

ln(δB2
y(k)/B2

0), calculated in the PIC simulations, with the linear growth rate, γ(k), since δBy(k) ∝

exp(γ(k)) in the linear regime. Figure 26 shows such comparison between γ(k) of the linear analysis

models in Table 4 (top panels) and δB2
y(k)/B2

0 of their respective simulation models in Table 5 (bottom

panels). Here, δBy(k) is at Ωet = 5, close to the linear growth time of the fastest-growing mode, Ωe/γm.

In the linear analysis, the fastest-growing mode occurs at kmc/ωpe ∼ 0.31− 0.41 and θm ∼ 79◦− 81◦

(see Table 5), which corresponds to the positions of the black “X” marks in the figure. The figure
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Figure 29: Two-dimensional slice of y-magnetic field, δBy/B0, at Ωet ∼ 5000 in the PIC simulation of

the M3.0 model shock of KRH19. The black arrow draw the direction of background magnetic field,

while the blue arrow points the wavevector corresponding to the peak of power spectrum, PBy(k).

demonstrates a fair consistency between the simulations and the linear analysis. The bottom panels show

that ln(δB2
y(k)/B2

0) is substantial in the portion of the k∥-k⊥ plane where the growth rate is substantial.

In the Su0.22 and Su0.26 models, the peak of δB2
y(k)/B2

0 agrees reasonably well with the location of

the X mark. In the Su0.3 and and Su0.3β50 models, on the other hand, the peak shifts a little to the

lower left direction of the X mark, possibly a consequence of the nonlinear evolution of the instability

(see below).

Although the Su0.3m400 model is not presented in Figure 26, we find that the distribution of

ln(δB2
y(k)/B2

0) in the k∥-k⊥ plane coincides well with that of the Su0.3 model. This confirms that

the development of the EBFI is not sensitive to mp/me in the nonlinear regime as well as in the linear

regime.

As described in the introduction, previous studies of the ETAFI have shown that as the instability

develops, the magnetic field fluctuations inversely cascade toward longer wavelengths and smaller θ ,

and that the scattering of electrons by excited waves reduces the temperature anisotropy and the ETAFI-

induced waves decay [154,155]. We expect a similar inverse cascade for the EBFI-driven magnetic field

fluctuations as well. In addition, excited waves will disperse the electron beam, resulting in the decrease

of the relative drift speed and eventually leading to the damping of the magnetic field fluctuations with

time.

To describe the evolution of the EBFI, we examine the magnetic power spectra, PBy(k) and PBy(θ),
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defined with the following relations,

δB2
y

B2
0

=
∫

PBy(k)d lnk =
∫

PBy(θ)dθ . (46)

Note that PBy(k) = (δB2
y(k)/B2

0)k
2. Figure 27 shows the time evolution of PBy(k) and PBy(θ) for three

Su models. We first see that at the early time of Ωet = 5, the peaks of PBy(k) and PBy(θ) occur at the

values close to those predicted in the linear analysis, km and θm (see the discussion above). The figure

also demonstrates that the magnetic power transfers to smaller k and smaller θ ; such inverse cascade

continues to kc/ωpe ∼ 0.2 (corresponding wavelength is λ ∼ 30c/ωpe) and θ ∼ 60◦ at Ωet ∼ 300.

Eventually, the magnetic power decays away in the timescale of Ωet ∼ 500, indicating that the modes of

long wavelengths with λ ≫ λm are not produced by the EBFI.

A similar evolutionary behavior of the magnetic field fluctuations, that is, the inverse cascade fol-

lowed by the decay, was observed in the simulations of weak Q⊥-shocks in the high-β ICM plasmas

presented by KRH19. In the shocks, however, the beam of SDA-reflected electrons is, although fluctuat-

ing, continuously supplied from the shock ramp, persistently inducing the instability. As a consequence,

the magnetic field fluctuations exhibit an oscillatory behavior, showing the rise of the instability, fol-

lowed by the inverse cascade of the magnetic power, and then the decay of turbulence (see Figure 9

of KRH19). The period of such oscillations is Ωet ∼ 500− 1000, close to the decay time scale of the

EBFI. Even in the shocks with a continuous stream of reflected electrons, the modes of long wavelengths

(λ ≫ λm) do not develop, as shown in KRH19.

The linear analysis of the EBFI indicates that fast-growing oblique modes, although they are propa-

gating with ωr ̸= 0, have mostly ωr < γ . So these modes are “effectively" phase-standing, similar to the

oblique nonpropgating modes excited by the ETAFI. Figure 28 shows the spatial distribution of δBy/B0

at three different times covering almost one linear growth time in the PIC simulation for the Su0.3 model.

The figure demonstrates that the oblique modes induced by the EBFI are indeed almost nonpropgating.

It also illustrates visually that the peak of PBy(k) shifts gradually toward longer wavelength and smaller

θ , while the magnetic field fluctuations decay.

Figure 29 shows the spatial distribution of δBy/B0 in the foot of a shock, which is taken from the PIC

simulation for the M3.0 model shock (Ms = 3.0, θBn = 63◦) reported by KRH19. The strong waves in the

shock ramp at the left-hand side of the figure are whistlers excited by reflected ions; obviously they are

absent in our periodic-box simulations for the EBFI. The oblique waves in the region, z/[c/ωpe] > 30,

on the other hand, are well compared with those in Figure 28. In particular, the wavelength and θ of

the peak of PBy are comparable to those in Figure 28(c). By considering the origin of the instability

and also the similarity between Figures 28 and 29, we conduce that it should be the EBFI due to the

beam of SDA-reflected electrons that operates in the foot of Q⊥-shocks in the ICM. We also argue that

the upstream waves excited by the EBFI, although they have non-zero ωr, can be regarded as almost

phase-standing.

In this work, we explore EFI in weak Q⊥ ICM shocks using linear analysis and corresponding PIC

simulations. However, the nature of the foot of a shock may break the assumption of linear analysis.

A few points are noted. First of all, we assumed the isotropic maxwellian ions in linear analysis. In
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the shock front, however, the ion temperature anisotrpy can be triggered due to the SDA-reflected ions.

Indeed, the ion anisotropy in the shock ramp region at the left-hand side of figure 8 is Tp∥/Tp⊥ ∼ 0.7−1.

Such ion temperature anisotropy is induced as consequence of the dynamics of shock-reflected ions. In

the region, z/[c/ωpe] > 30, on the other hand, the ion temperature anisotropy is weak, Tp∥/Tp⊥ ∼ 1,

because the shock reflected ions in the Q⊥-shocks are advected back to the shock downstream. This

results are in agreement with the hybrid simulation results proposed in [26]. Because ion reflection at

shock surface becomes inefficient in Q⊥-shock, the generation of ion-scale waves in the shock upstream

is suppressed in Q⊥-shock. Hence, to investigate EFI found in the shock front, the isotropic maxwellian

ions can be applicable. In the following Section VI, we present the plasma instability induced by ion

temperature anisotropy, Tp∥/Tp⊥ ≲ in the shock ramp and downstream. Secondly, the current may exist

in the shock foot. The average current, j in the region, z/[c/ωpe]< 100 is j/[B0ωpe/4π]∼ 10−2. Then,

the magnetic field due to the current, Bcurn can be written as Bcurn ∼ 4π j/ckm ∼ 0.03B0. Since Bcurn

is much smaller than the magnetic field strength, |By| ∼ 0.3B0 in the region, z/[c/ωpe] > 30 shown in

figure 29, we interpret that the current in the shock foot make only a minor contribution to magnetic

field generation.

5.3 Summary and Discussion

To describe the nature of the upstream waves excited in the shock foot, we here studied the EFI in two

different forms: (1) the ETAFI induced by the electrons of a bi-Maxwellian VDF with the temperature

anisotropy, A = Te∥/Te⊥ > 1, and (2) the EBFI induced by the electrons of a drifting beam with an

isotropic Maxwellian VDF and the relative drift speed, urel. We carried out the kinetic linear analysis

of both types of the EFI and the 2D PIC simulations of the EBFI. In particular, the PIC simulations

of the EBFI show that the time evolution of the magnetic field fluctuations induced by this instability

is consistent with the prediction of the linear analysis and also with the results for the ETAFI reported

by [154] and [155]. The oblique, almost nonpropagating modes inverse-cascade in time to the modes

with smaller wavenumbers, k, and smaller propagation angles, θ . The scattering of electrons by these

waves reduces the beam strength, which in turn leads to the damping of the waves. As a result, the

modes of long wavelengths with λ ≫ λm ∼ 15−20c/ωpe are not produced by the EBFI.

Before closing this Section, we provide comments about two ingredients: (1) buneman and modified

two-stream instabilities driven by the electron beam and (2) plasma instabilities driven by ion tempera-

ture anisotropy.

In this Section, we particularly focus on the electromagnetic EFI-induced waves. However, depend-

ing on the plasma parameters such as plasma β , the presence of electron beam could enhance more

instabilities. For instance, buneman instability could be induced in the shock upstream by the interac-

tion between incoming ions and shock-reflected electrons [91]. The waves induced by buneman waves

are electrostatic waves and electrons can be trapped into the shock upstream and continuously energized

through the motional electric field in the shock upstream (e.g., [146]). In addition, it has been argued

through PIC simulations (see also Section III) that a substantial fraction of ions can be reflected at Q⊥-
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shock and thus the modified two-stream instability (MTSI) can be induced in the shock upstream by the

relative modtion between electrons and ions. Through MTSI, oblique whistler waves are generated and

those waves efficiently confine and enhance electron preacceleration (e.g., [139]). As we pointed in the

main text of this Section, shock reflected beam is backstreaming along the upstream magnetic field, so it

is likely to consider the generation of bunemann instability and MTSI as well. However, both bunemann

instability and MTSI are induced only at the low β plasma. In the low β plasma, the drift velocity of

beam is much larger than the background thermal velocity. In the high β plasma, on the other hand, the

thermal effects become substantial, so the drift motion of shock-reflected beam is easily stabilized. For

this reason, it is unlikely to observe buneman instability and MTSI in the ICM shocks.

Furthermore, while we focus on the instability driven by the dynamics of shock-reflected electrons,

additional plasma waves can be generated due to ion temperature anisotropy near the shock surface.

Particularly in the shock transition zone, Alfvén-Ion Cyclotron and/or ion mirror instabilities could be

induced due to the Tp∥/Tp⊥ < 1. The waves driven by such instabilities have the wavelength longer than

EFI waves, and thus play significant role in wave-particle interaction for particle acceleration. In the

shock upstream, on the other hand, it is unlikely to generate effective temperature anisotropy because of

absense of shock-reflected ion beam, so the longer wavelength waves beyond EFI waves would not be

induced. In this regards, in the following Sections VI and VII, we present the recent linear analysis and

PIC simulation results regarding the various instabilities in the shock transition zone.
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VI Electron Preacceleration at Weak Quasi-perpendicular Shocks in In-
tracluster Medium: 2. Plasma Instabilities in the Shock Downstream

In Section V, the properties of plasma instability induced at the shock upstream due to the shock reflected

electrons are described including linear stability analysis and corresponding PIC simulation results.

The electron preacceleration has been a key outstanding problem in understanding the production of

CR electrons in weak ICM shocks. Previous studies have shown that, in low-Ms, high-β , Q⊥-shocks,

thermal electrons could be preaccelerated primarily through the Fermi-like acceleration in the shock

foot [23, 24, 140, 147] and the stochastic shock drift acceleration (SSDA) in the shock transition region

[141, 151, 161–163]. While we focused on the kinetic plasma process in the shock upstream to support

the Fermi-like acceleration, it is expected that the various microinstabilities driven by the dynamics of

ions and electrons in the shock transition region and shock downstream are also important to explain

the SSDA at ICM Q⊥-shocks (e.g., [141, 162, 163]). Hence, in this Section, we perform linear stability

analysis and PIC simulations to investigate such microinstabilities (Kim, S., Ha, J.-H., Ryu, D., & Kang,

H. 2021, The Astrophysical Journal, 913, 35; [164]).

The two preacceleration mechanisms mentioned above rely on the various microinstabilities trig-

gered by the ion and electron temperature anisotropies in the shock structure [152]. If Te∥ > Te⊥, for

example, the electron firehose instability (EFI) can grow with the following two branches: the nonreso-

nant, parallel-propagating mode with left-hand circular polarization, and the resonant, nonpropagating,

oblique mode [153]. Hereafter, the subscripts ∥ and ⊥ denote the parallel and perpendicular directions

to the background magnetic field, B0, respectively. Under the condition of Te⊥ > Te∥, by contrast, the

whistler instability and the electron-mirror (e-mirror) instability can be triggered [165–167]. The most

unstable whistler mode propagates in the direction parallel to B0 with right-hand circular polarization,

while the e-mirror mode is nonpropagating and has the maximum growth rate at the wavevector direction

oblique with respect to B0. In the case of Ti⊥ > Ti∥, the Alfvén ion cyclotron instability (AIC, or the pro-

ton cyclotron instability) and the ion-mirror (i-mirror) instability may become unstable [152, 168–170].

The fastest-growing mode of the AIC instability propagates in the direction parallel to B0 with left-hand

circular polarization, while the i-mirror mode is non-propagating and has the maximum growth rate at

the wavevector direction oblique with respect to B0. Table 6 summarizes these linear properties of the

instabilities driven by perpendicular temperature anisotropies, which are relevant for the present study.

In this Section, adopting the numerical estimates for the temperature anisotropies in the transition

region of the simulated shocks shown in the following Section VII, we first perform a linear stability

analysis for the microinstabilities for wide ranges of parameters such as Ms = 2− 3, β = 1− 100, and

the ion-to-electron mass ratio, mi/me = 50−1836. In addition, adopting the same setup as in the linear

analysis but only for the models with β = 50 and mi/me = 50, we carry out 2D PIC simulations with

periodic boundary conditions (periodic-box simulations, hereafter) to study the nonlinear evolution of

the plasma waves excited by such microinstabilities.
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Table 6: Linear Properties of the Instabilities driven by Perpendicular Temperature Anisotropies

instability AIC whistler ion-mirror electron-mirror

free energy source Ti⊥ > Ti∥ Te⊥ > Te∥ Ti⊥ > Ti∥ Te⊥ > Te∥

propagation angle with γm
a parallel parallel oblique oblique

wavenumber ck/ωpi ≤ 1 ck/ωpe ≤ 1 ck/ωpi ≤ 1 ck/ωpe ≤ 1

wave frequency 0 < ωr < Ωci Ωci < ωr < Ωce ωr = 0 ωr = 0

wave polarization LHCPb RHCPb Non-propagating Non-propagating
a: γm is the maximum growth rate.

b: LHCP (RHCP) stands for left-hand (right-hand) circular polarization.

Figure 30: (a) In this study, the background magnetic field, B0 = B0ẑ, and the wavevector, k = kxx̂+kzẑ,

lie in the x-z plane. The angle θ , is defined as the angle between B0 and k. (b) Schematic figure showing

the velocity anisotropy (or temperature anisotropy) of a bi-Maxwellian VDF with Aa, where a denotes

either ‘ion’ or ‘electron’.
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6.1 Linear Analysis

We study the linear properties of the microinstabilities induced by the ion and electron temperature

anisotropies through linear stability analysis. The basic equations for solving the linear dispersion re-

lation of electromagnetic modes and the particle velocity distribution functions are the same as the

equations used in Section V. The schematic diagram for the coordinates of this work is displayed

in Figure 30(a). Here, the background magnetic field is along the +z direction (B0 = B0ẑ) and the

wavevector, k = kxx̂+ kzẑ lies in the x-z plane. The values such as n0, B0, Ta∥, and Ta⊥ measured at

the shock transition region of the model shown in Section VII are employed and the upstream condi-

tions for those shock simulations are specified with the typical parameters of ICM, nICM = 10−4cm−3,

kBTICM = (kBTi + kBTe)/2 = 8.6 KeV, and βICM = βi +βe = 20−100.

Plasma waves are characterized with the growth rate, γ , and the real frequency, ωr, which are cal-

culated by solving the dispersion relation for wavevector k. If the propagation angle of the wave with

the maximum growth rate, γm, is θm ≈ 0◦, the wave mode is called ‘parallel-propagating’. If θm ≫ 0◦,

it is ‘oblique-propagating’. If the wave frequency, ωr ≈ 0, the mode is ‘non-propagating’. The wave

polarization, P, can be estimated also using the solution of the dispersion relation as follows:

P ≡ sign(ωr)
|δE+|− |δE−|
|δE+|+ |δE−|

, (47)

where δE± ≡ δEx
k,ω ∓ iδEy

k,ω [171]. The left-hand circular polarization (LHCP) corresponds to P =−1,

whereas the right-hand circular polarization (RHCP) corresponds to P = +1. Waves are in general

elliptically polarized with P ̸=±1. In the case of non-propagating mode (ωr = 0), P = 0 (see Table 6).

Linear Properties of AIC, Whistler and Mirror Instabilities

In this section, we report the results of the linear stability analysis for the microinstabilities triggered by

the ion and electron temperature anisotropies in the transition region of high-β , Q⊥-shocks. Parameters

for the linear stability analysis are given in Table 7. For the models of β ≈ 20− 100 and the mass

ration mi/me = 50, they are obtained with n0, B0, Ta∥, and Ta⊥ estimated by averaging the numerical

values over the transition region in the simulated shocks with Ms = 2−3 and β up = 20−100 of Section

VII. Considering the uncertainties in averaging over nonlinear structures with overshoot/undershoot

oscillations, they are given only up to two significant figures.

For the models with higher mass ratios, LM3.0β50-m100 with mi/me = 100 and LM3.0β50-m1836

with mi/me = 1836, the parameters for the LM3.0β50 model (βe = 19, βi = 31, Ae = 1.2, and Ai =

2.0) are used only for the linear analysis. Also we carried out two additional shock simulations for

M3.0β1 with β = 1 and M3.0β5 with β = 5, which were not considered in HKRK2021, in order to

obtain the parameters to be used for LM3.0β1 and LM3.0β5. Our fiducial models have mi/me = 50,

which is adopted in order to ease the requirements of computational resources for the periodic-box PIC

simulations that will be described in the following Section.

The linear predictions for the AIC, whistler, i-mirror, and e-mirror instabilities are given in the 8−11

columns of Table 7. The three numbers inside each parenthesis present the linear properties of the fastest
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Figure 31: (a)-(c): Linear growth rate, γ , at the propagation angle of the fastest growing mode, θm, for the

AIC, whistler, and mirror modes, respectively, as a function of the wavenumber k for the LM3.0β50-

m1836 model. To examine separately the electron mode (blue) and the ion mode (red), the cases of

Ae = 1.2 and Ai = 1.0 (blue) and Ae = 1.0 and Ai = 2.0 (red) are shown. The black dashed lines

show the mixed mode case, in which Ae = 1.2 and Ai = 2.0. In panel (c) both γ and k are plotted in

logarithmic scales. (d)-(f): Real frequency, ωr, for the same case as the black dashed lines in the upper

panels. Note that γ and ωr are normalized with Ωci and k is normalized with ωpi/c, uniformly for both

the ion and electron modes.
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Figure 32: Dependence of the linear growth rate, γ , on mi/me (top) and β (bottom); γ at the propagation

angle of the fastest growing mode, θm, is given as a function of the wavenumber k. The model parameters

are listed in Table 7. Note that for the mirror modes, θm depends on β , but not on mi/me.

growing mode: (γm/Ωci,ckm/ωpi,θm) for the AIC and i-mirror instabilities, and (γm/Ωce,ckm/ωpe,θm) for

the whistler and e-mirror instabilities. Here, km is the wavenumber that has the maximum growth rate

γm at θm, and θm is given in units of degree. For a clear distinction between the ion and electron mirror

modes, in the 10− 11 columns, γm of each mirror mode, obtained with either isotropic electrons (i.e.,

Ae = 1, Ai > 1) or isotropic ions (i.e., Ai = 1, Ae > 1), is shown. Note that ‘stable’ means that waves

cannot grow because γm < 0, and ‘quasi-stable’ corresponds to γm/Ωci < 10−2.

Figure 31 shows the linear analysis results for the LM3.0β50-m1836 model. For the adopted pa-

rameters, ωpe/Ωce = 26. Panels (a)-(c) display the growth (or damping) rate at θm of the AIC, whistler,

and mirror instabilities, respectively, as a function of the wavenumber. To make a uniform comparison,

γ and k are normalized with Ωci and ωpi/c, respectively, for both the ion-driven and electron-driven

instabilities. Note that in panel (c) both γ and k are given in logarithmic scales, in order to show both

the i-mirror and e-mirror modes in the same panel. To examine the effects of Ai and Ae separately and

also their combination, we present the black dashed lines for the case with both the ion and electron

anisotropies, the red solid lines with the ion anisotropy only, and the blue solid lines with the electron

anisotropy only.

The AIC instability induces quasi-parallel modes with θm = 0◦. Although Ai > 1 is the main free

energy source which drives the AIC instability, we find that Ae > 1 reduces the growth rate (see the red

and black lines in panel (a) and also [172]). By contrast, the whistler instability is unstable for Ae > 1,

and the growth rate is independent of Ai. The whistler mode is also quasi-parallel propagating with

θm = 0◦. The mirror modes, on the other hand, are highly oblique with θm = 64◦ for LM3.0β50-m1836.

The e-mirror mode (blue) at high-k (ck/ωpi > 0.3) grows much faster than the i-mirror mode (red) at
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low-k (ck/ωpi < 0.3). With both Ai > 1 and Ae > 1, a mixture of the two mirror modes appears in the

intermediate-k regime (ck/ωpi ∼ 0.3).

In the LM3.0β50-m1836 model, the maximum growth rates are given in the following order:

γWI ≫ γE−M ≫ γAIC > γI−M, (48)

where γWI, γE−M, γAIC and γI−M are the maximum growth rates of the whistler, e-mirror, AIC and i-

mirror instabilities, respectively. Note that in general γWI > γE−M [173], and γAIC > γI−M under space

plasma conditions with low-β and large temperature anisotropies [152, 166].

The real frequency, ωr/Ωci, at θm for the mixed case (Ae = 1.2 and Ai = 2.0) are shown in panels

(d)-(f) of Figure 31. The AIC-driven mode has ωr/Ωci ∼ 0.25− 0.5 for ck/ωpi ∼ 0.1− 0.4, while the

whistler mode has ωr/Ωci ∼ 80− 350 for ck/ωpi ∼ 5− 20. The mirror modes are nonpropagating or

purely growing with ωr = 0. Moreover, the polarization, calculated using the solutions of the dispersion

relation, is P =−1, +1, and 0 for the AIC, whistler, and mirror instabilities, respectively, as expected.

Parameter Dependence of Linear Properties

As listed in Table 7, we consider a number of models to explore the dependence on mi/me and β . The

upper panels of Figure 32 show the linear predictions for the models with Ms = 3, β = 50, and mi/me =

50− 1836, while the lower panels are for the models with Ms = 3, mi/me = 50, and β = 1− 100. For

a higher mass ratio, electrons go through more gyro-motions per the ion gyro-time, Ω
−1
ci . Nevertheless,

γAIC and γE−M are almost independent of mi/me. In the case of the whistler and i-mirror instabilities,

on the other hand, overall, the growth rates are slightly lower for smaller mi/me. Also the damping

rate for the whistler instability is slightly higher for smaller mi/me in the small wavenumber regime

(ck/ωpe ∼ 0.1). As a result, the growth of the whistler and i-mirror instabilities may be somewhat

suppressed in the shock simulations with reduced mass ratios. However, even in the case of mi/me = 50,

this effect is expected to be only minor, because the inequality in Equation (48) is still valid and the

changes of km and θm are negligible (see the table 7).

The plasma beta is another important parameter that affects the stability of the system. Note that the

anisotropy parameters, Ae and Ai, are almost independent of β for β ≈ 20−100, the range relevant for

ICM shocks (see Table 7), although they tend to increase slightly with increasing β in the second digit

to the right of the decimal point. In the low-β case (LM3.0β1), Ai = 1.2 is significantly smaller than

those of other high-β models due to the strong magnetization of ions. This is because Ai in the shock

transition is closely related to the fraction of reflected ions. On the other hand, Ae in the shock transition

is not substantially affected by β , because it is mainly determined by the magnetic field compression

rather than the fraction of reflected electrons. Given the same temperature anisotropies, the growth of

the instabilities tends to be suppressed by strong magnetic fields at low-β plasmas. As can be seen in

the lower panels of Figure 32, the peak values of either γm/Ωci for the ion-driven modes or γm/Ωce for

the electron-driven modes increase with increasing β . For the AIC, whistler, and i-mirror instabilities,

γm/Ωci or γm/Ωce occurs at smaller ck/ωpi or ck/ωpe, for higher β . But such a trend is not obvious in

the case of the e-mirror mode.
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Figure 33: Dependence of the linear growth rate, γ , on Ms and β ; γ at the propagation angle of the fastest

growing mode, θm, is given as a function of the wavenumber k. In each panel, the black, red, and blue

lines show the results for Ms = 2.0, 2.3, and 3.0, respectively. The plasma beta varies as β = 20 (top), 50

(middle), and 100 (bottom). The model parameters are listed in Table 7. Note that for the mirror modes,

θm depends on β .
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Figure 34: Magnetic field fluctuations, δBy (top) and δBz (bottom), in the periodic-box simulation for

the LM3.0β50 model, plotted in the x-z plane. At early times, t ∼ 1−3τWI, shown in panels (a)-(b) and

(d)-(e), electron-scale waves are excited by the whistler and e-mirror instabilities, while ion-scale waves

are generated by the AIC and i-mirror instabilities at t ∼ τAIC shown in panels (c) and (f). Note that

the 2D domain with [84.8× 84.8](c/ωpe)
2 is shown in panels (a)-(b) and (d)-(e), while the 2D domain

with [84.8× 84.8](c/ωpi)
2 is shown in panels (c) and (f). The black arrows indicate the direction of

the background magnetic field, B0, while the blue arrow in panel (f) shows the direction of the wave

propagation, k, for the i-mirror mode with the maximum growth rate.
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In the high-β cases (β ≈ 20−100) with Ms = 3, all the AIC, whistler, i-mirror and e-mirror waves

can be triggered, as shown in the lower panels of Figure 32, leading to the generation of multi-scale

waves from electron to ion scales. On the other hand, in the LM3.0β5 model (red solid lines), the e-

mirror mode is stable, but other modes are unstable. In the LM3.0β1 model (gray solid lines), all the

instabilities are stable with negative growth rates.

The sonic Mach number, Ms, is the key parameter that determines the temperature anisotropies in

the transition of high-β ICM shocks (β ≈ 20−100), since the ion reflection fraction and the magnetic

field compression are closely related to Ms. Figure 33 shows the growth rates of the instabilities for

Ms = 2.0 (black), 2.3 (red), and 3.0 (blue), in the cases of β = 20 (top), 50 (middle) and 100 (bottom).

As Ms increases, both Ae and Ai increase, so all the modes grow faster and km shifts towards larger k,

regardless of β .

Note that the AIC and whistler modes have γm at θm = 0 independent of Ms, whereas θm de-

creases with increasing Ms for the i-mirror and e-mirror modes (see also Table 7). In LM2.0β50 and

LM2.0β100, the AIC instability is stable or quasi-stable, while the whistler and mirror modes can grow.

In the case of LM2.0β20, all the instabilities are stable (see black lines in top panels). In the models

with Ms = 2.3−3 (red and blue lines), on the other hand, the four instabilities are unstable, and hence

multi-scale plasma waves can be generated.

6.2 Nonlinear Evolution of Induced Waves in Periodic-Box Simulations

Numerical Setup

To investigate the development and nonlinear evolution of the instabilities, we performed 2D PIC sim-

ulations with periodic boundary conditions for the three fiducial models, LM2.0β50, LM2.3β50 and

LM3.0β50, with the same setup of the linear analysis. The electrons and ions are prescribed with bi-

Maxwellian VDFs with βe, βi, Ae, Ai given in Table 7. As noted before, here mi/me = 50 is employed

due to the computational limitations, but at least the early, linear-stage development of the plasma insta-

bilities under consideration is expected to depend rather weakly on the mass ratio.

The simulations were carried out using a parallelized EM PIC code, TRISTAN-MP [91, 92]. The

simulation domain is a square of box size Lx = Lz = 84.8c/ωpi = 600c/ωpe in the x-z plane, which

consists of the grid cells of ∆x = ∆z = 0.1c/ωpe. In each cell, 32 particles (16 for ions and 16 for

electrons) are placed. The time step of the simulations is ∆t = 0.045ω−1
pe , and the simulations were run

up to tend = 130Ω
−1
ci .

Results of Periodic-Box Simulations

With the inequality in Equation (48), we expect that the whistler mode grows much faster than the other

modes, resulting in the relaxation of Ae during the early stage. As the whistler and e-mirror modes grow

and then decay on the time scale of τWI ≡ 1/γWI, the AIC and i-mirror modes become dominant later on

the time scale of τAIC ≡ 1/γAIC.
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Figure 35: Power spectra of the magnetic field fluctuations, δB2
y(k), in the period-box simulations for

LM3.0β50 (top), LM2.3β50 (middle), and LM2.0β50 (bottom), plotted in the k∥-k⊥ (that is, kz − kx)

plane. The results are shown at t ∼ τWI (left), t ∼ 3τWI (middle), and t ∼ τAIC (right). See the text for the

remarks on τAIC for LM2.0β50. The gray star symbol marks the location of the maximum linear growth

rate, γm, estimated from the linear analysis. In the models with Ms ≥ 2.3, AIC, whistler and i-mirror

waves appear, while those waves do not grow substantially in the model with Ms = 2.
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Figure 34 shows the magnetic field fluctuations, δBy (upper panels) and δBz (lower panels), in the

x-z plane (simulation plane) at three different times in the LM3.0β50 model. Here, the growth time

scales, τWI and τAIC, are estimated by γm of each mode in Table 7. At t ∼ τWI, the transverse component,

δBy, appears on electron scales and the waves containing it propagate parallel to B0 in panel (a), but the

longitudinal component, δBz, does not grow significantly in panel (d). In this early stage, the dominant

mode is the whistler mode, while the e-mirror mode is much weak to be clearly manifested. As Ae

decreases in time due to the electron scattering off the excited waves, the whistler waves decay as

shown in panel (b). On the time scale of τAIC, both the AIC and i-mirror instabilities grow and become

dominant. It is clear that the AIC-driven waves, shown in panel (c), are parallel-propagating, while the

i-mirror-driven waves, shown in panel (f), are oblique-propagating; the blue arrow in the bottom-left

corner of panel (f) denotes the wavevector of the i-mirror-driven mode with the maximum growth rate.

Figure 35 shows the time evolution of the power spectrum for the magnetic field fluctuations,

δB2
y(k), for LM2.0β50, LM2.3β50, and LM3.0β50 at t ∼ τWI, t ∼ 3τWI, and t ∼ τAIC . Again, the

growth time scale of each mode is estimated with γm listed in Table 7, except for the LM2.0β50 model,

in which the AIC instability is stable, and so the output time of panel (i) is chosen at the evolutionary

stage similar to that of LM2.3β50. In the cases of Ms = 2.3 and 3, whistler waves are excited dominantly

at quasi-parallel propagating angles at t ∼ τWI. After the initial linear stage, the energy of the whistler

waves is transferred to smaller wavenumbers and the waves gradually decay, as shown in panels (b) and

(e). On the time scale of ∼ τAIC, AIC waves and i-mirror waves appear dominantly at quasi-parallel and

highly oblique angles, respectively, as shown in panels (c) and (f). This is consistent with the evolution-

ary behavior which we have described with Figure 34. For the AIC and whistler instabilities, the linear

predictions for km with the maximum growth rate (gray star symbols) agree reasonably well with the

peak locations of the magnetic power spectrum realized in the PIC simulations. But the linear estimates

for the i-mirror mode are slightly off, because γm is obtained without the electron anisotropy, as stated

through the linear analysis results in the previous section. In summary, the results of the periodic-box

simulations are quite consistent with the linear predictions described earlier. Also we note that the results

of our PIC simulations are in good agreement with those of [172], in which PIC simulations were carried

out to explore the evolution of the instabilities due to the temperature anisotropies in space plasmas with

β ∼ 1. The bottom panels of Figure 35 confirm that waves do not grow noticeably in the LM2.0β50

model.

In these periodic-box simulations, the electron-scale waves develop first and then decay as Ae is

relaxed in the early stage, followed by the growth of the ion-scale waves due to Ai. In the shock transition

region, by contrast, temperature anisotropies are to be supplied continuously by newly reflected-gyrating

ions and magnetic field compression, hence multi-scale plasma waves from electron to ion scales are

expected to be simultaneously present.
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6.3 Implications for Shock Simulations

Shock Criticality

As mentioned in the introduction, the Fermi-like acceleration, which relies on the upstream waves

excited by the EFI, is effective only for supercritical shocks with Ms ≥ M∗
EFI ≈ 2.3 in β ≈ 20− 100

plasma [24, 140]. The SSDA, which depends on the multi-scale waves excited mainly by the AIC and

whistler instabilities, is thought to occur in supercritical shocks with Ms ≥ M∗
AIC ≈ 3.5 in β ≈ 1 plas-

mas [151] and Ms ≥ M∗
AIC ≈ 2.3 in β ≈ 20− 100 plasmas (HKRK2021). We suggest that both M∗

EFI

and M∗
AIC are related to the sonic critical Mach number, M∗

s , for ion reflection, since the structure of

collisionless shocks is governed primarily by the dynamics of shock-reflected ions.

Table 8 summarizes the shock criticality of the simulated shock models and the stability of the

linear analysis models. The first column lists the name of the simulated shock models considered in

HKRK2021, and the two additional models for low-β shocks performed for this study. The shock crit-

icality of each model is given in the second column. The name of the corresponding linear analysis

models is given in the third column, while the last four columns show the stability for the four insta-

bilities (see also Table 7). We note that the name of the shock models includes β up in the preshock,

upstream plasmas, while that of the linear analysis models includes β in the shock transition zone given

in Table 7.

According to the results obtained by linear analysis and corresponding PIC simulations, in β ≈
20−100 plasmas, the AIC instability operates for Ms ≳ 2.3, while whistler waves are induced regardless

of Ms. In the M3.0β5 model, the e-mirror mode is stable, while the other three modes are unstable. This

is in good agreement with the 2D simulation of a Ms = 5 and β = 5 shock reported earlier by [141].

In the M3.0β1 model, by contrast, Ai is smaller than that of high-β models, and all the four instability

modes are suppressed by strong magnetization. This is consistent with the results of M∗
AIC ≈ 3.5 for

shocks with β ≈ 1 presented by [151].

Shock Surface Rippling

Another important feature of the supercritical shocks above M∗
AIC is the shock surface rippling. Ac-

cording to previous shock simulations [141,151,174,175], the rippling has the characters of AIC waves

with the fastest growing mode at θm ∼ 0, the propagation speed close to the local Alfvén speed, and the

wavelengths of ∼ λAIC (≈ 30c/ωpi).

The parallel-propagating AIC and whistler waves in homogeneous plasmas are purely electromag-

netic and incompressible with both the electric and magnetic wave vectors pointing normal to B0. The

fluctuating magnetic fields of oblique mirror modes, on the other hand, have a substantial longitudinal

component, that is, δB has a significant component parallel to B0 [152]. Since the density fluctuations

are proportional to the parallel electric and magnetic field fluctuations [176], we expect to see only weak

ion density fluctuations due to the i-mirror mode in our 2D periodic-box simulations.

Panel (b) of Figure 36 displays the variations of the ion density, [⟨ni − n0⟩x,avg/n0] ≈ ±0.01, aver-
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aged over the x-direction in the periodic-box simulation for the LM3.0β50 model. Panel (a) shows the

fluctuations of the transverse component of B0, [⟨By−B0⟩x,avg/B0]≈±0.4, which have a relatively large

amplitude due to the AIC-driven waves. It shows that even after the AIC-driven waves have fully grown,

they have little effects on the ion density fluctuations.

However, the ion density fluctuations of the rippling waves propagating along the shock surface be-

hind the shock ramp are rather significant in the shock simulation for the M3.0β50 model in HKRK2021.

Panel (c) shows that both the variations of [⟨ni−n0⟩x,avg/n0]≈±0.1 and [⟨By−B0⟩x,avg/B0]≈±0.1 have

similar amplitudes; the fluctuations of ni are much larger than those of the linear prediction expected for

the parallel-propagating AIC mode. Note that here the quantities are averaged along the x-direction over

the shock transition zone including the first and second overshoot oscillations behind the ramp. Hence,

the basic assumptions of the linear theory, such as the homogeneous background, charge neutrality, and

zero net-current, are likely to be violated in this region.

We point that such large-amplitude fluctuations of ni, comparable to the fluctuations of By, were

previously recognized in the 2D hybrid simulations of supercritical, perpendicular shocks presented

in [168]. The authors suggested that large compressive waves might result from nonlinear effects in

addition to oblique i-mirror modes. The effects due to nonlinear couplings between various wave modes

could be significant as well [177–179]. Therefore, the pure AIC-driven waves in the shock transition

could have been modified by such possible nonlinearities, leading to the enhancement of ion density

fluctuations.

6.4 Summary

In this work, adopting the numerical estimates for the ion and electron temperature anisotropies found in

the 2D PIC simulations of Q⊥-shocks with Ms = 2−3 (see Table 7), we have carried out the kinetic linear

analysis of the microinstabilities for wide ranges of parameters, β = 1− 100 and mi/me = 50− 1836.

The linear predictions for the fastest growing mode, γm, km, θm, of each instability are given in Table 7.

In addition, in order to investigate the development and nonlinear evolution of the waves induced by the

microinstabilities, we have performed the 2D PIC simulations with periodic boundary conditions for the

three fiducial models, LM2.0β50, LM2.3β50, and LM3.0β50. Finally, the results were also compared

with the 2D PIC simulations for ICM shocks reported in the following Section VII.

According to the linear analysis results, the generation of microinstabilities depends on Ms, because

Ae and Ai increase as Ms increases. Especially, AIC can be induced only at the shocks with Ms ≳ 2.3

(see also Section VII). In addition, the maximum growth rates of the four instabilities have the following

order: γWI ≫ γE−M ≫ γAIC > γI−M (Figure 31). Hence, the parallel-propagating AIC and whistler waves

are expected to be more dominant than the oblique-propagating mirror waves. Based on the parameter

dependence presented in this work, the generation of multi-scale plasma waves and relevant physics for

that could be applicable in the realistic ICM environments with mi/me = 1836.

The 2D periodic-box simulations confirm the linear predictions. In the early stage of ∼ τWI, electron-
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Figure 36: (a)-(b): Variations in the transverse component of magnetic field, ⟨By −B0⟩x,avg/B0, and

the ion-density, ⟨ni − n0⟩x,avg/n0, averaged over the x-domain in the 2D periodic-box simulation for

the LM3.0β50 model, plotted along B0 (z-direction) at three different times. (c): Variations in the

longitudinal component of magnetic field, ⟨By −B0⟩x,avg/B0 (red), and the ion-density, ⟨ni −n0⟩x,avg/n0

(black), averaged along the x-direction over the shock transition zone in the 2D shock simulation for the

M3.0β50 model in HKRK2021, plotted along the y-direction. Note that the preshock magnetic field,

Bup
0 , lies in the x-y plane, and the obliquity angle between Bup

0 and the y-axis is θBn = 63◦ in the shock

simulation.
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scale waves develop and then decay as Ae is relaxed, followed by the growth of ion-scale waves on the

time scale of ∼ τAIC (Figures 34 and 35). In addition, The rippling waves propagating along the shock

surface have the characteristics of the AIC waves. Although the AIC waves are parallel-propagating,

electromagnetic, incompressible in the linear regime, the amplitudes of the longitudinal magnetic field

and ion-density fluctuations associated with the overshoots in the shock transition are similar and of the

order of 10% according to the shock simulation for the M3.0β50 model (Figure 36). It is expected that

the inhomogeneity in the shock transition and the nonlinear effects could lead to the generation of such

large-amplitude fluctuations of the ion-density along the shock surface.

In conclusion, our results well support the suggestion for the generation of multi-scale plasma waves

via various microinstabilities in the transition region of high-β , supercritical, Q⊥-shocks [141,151,161,

181]. A detailed description of the shock structure and the electron preacceleration in such ICM shocks,

realized in 2D PIC simulations, is reported in the following Section VII.
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VII Electron Preacceleration at Weak Quasi-perpendicular Shocks in In-
tracluster Medium: 3. Preacceleration Mechanisms

As noted in the previous sections, the acceleration of nonthermal particles at collisionless shocks in

tenuous astrophysical plasmas involves a very broad spectrum of complex kinetic plasma processes

[22, 32, 150] and so the microinstabilities covered in Section V and VI could play an important role

in electron acceleration at the ICM shocks. The acceleration process depends on various parameters

including the sonic Mach number, Ms, the plasma beta, β = Pgas/PB (the ratio of thermal to magnetic

pressures), and the obliquity angle, θBn, between the upstream background magnetic field direction and

the shock normal. In this Section, we study the detailed electron acceleration mechanism at the ICM

shocks by performing PIC simulations with the relevant parameters (Ms, β , & T ) for ICM (Ha, J.-H.,

Kim, S., Ryu, D., & Kang, H. 2021, The Astrophysical Journal, 915, 18; [163]).

7.1 Basic Physics of Q⊥-Shocks

The physics of kinetic plasma processes in collisionless, Q⊥-shocks is complex. For comprehensive

reviews, readers are referred to [150] and [182]. A brief overview of some key problems that are relevant

for this study can be found in [140] (KRH2019, hereafter).

The structures and ensuing excitation of microinstabilities are primarily governed by the dynam-

ics of shock-reflected ions and electrons. Figure 37 illustrates the typical structures of a supercritical

Q⊥-shock: (1) the shock foot emerges due to the upstream gyration of reflected ions, and (2) over-

shoot/undershoot oscillations develop due to the downstream gyration of those reflected ions in the

shock transition zone. The figure also depicts that the EFI is excited in the preshock region by the

SDA-reflected electrons backstreaming along the background magnetic field [24], whereas the AIC and

whistler instabilities are excited along the first and second overshoots, leading to the shock surface rip-

pling [141, 151].

Electron Reflection and Shock Drift Acceleration

We here describe the basic physics regarding electron reflection and Shock Drift Acceleration (SDA)

at the shock surface. Note that while we particularly focus on the acceleration physics at shocks in the

ICM, the physics described here can be applied in general astrophysical shocks.

The electron reflection at the shock surface is governed by the magnetic mirror reflection. Because

magnetic field is compressed at the shock, a substantial fraction of electrons can be reflected if the up-

stream electrons meet the condition for reflection. If the electrons are satisfied the reflection condition,

they gain energy simultaneously through the motional electric field which is generated by the upstream

bulk magnetized flow and move back to the shock upstream. Such acceleration cycle is the so-called

SDA. In Section III, we describe the reflection of upstream protons (or ions) and preacceleration me-

diated by SDA at Q∥-shocks. Regarding protons, the shock reflection is mainly governed by the shock

potential, while magnetic mirror reflection makes only minor contribution for that. However, the shock
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Figure 37: (a) Ion number density, ⟨ni⟩y,avg/n0, averaged over the y-direction, normalized to the upstream

ion number density, n0, for a supercritical Q⊥-shock (M3.0 model). (b) Ion number density, ni(x,y)/n0,

in the x− y plane for the same model. 2D PIC simulation results are shown in the region of −2.5 ≤
(x− xsh)/rL,i ≤ 1.5 at Ωcit ∼ 32, where xsh is the shock position. The gyromotion of reflected ions

(green circular arrows) generates the overshoot/undershoot structure in the shock transition, while the

backstreaming of SDA-reflected electrons (magenta cone) induces the temperature anisotropy and the

EFI in the the preshock region. The colored arrows indicate the regions where DSA (cyan), SSDA

(dark green), and Fermi-like acceleration (light green) operate. The labels for the three instabilities,

AIC, whistler, and EFI, are placed in the regions where the respective instabilities are excited. During a

SDA cycle, electrons drift in the negative z-direction (into the paper here) anti-parallel to the convection

electric field E⃗conv =−(1/c)U⃗1 × B⃗0.
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potential suppresses the electron reflection because it drags the upstream electrons to the shock down-

stream. Hence, to treat electron reflection at the shock, the effects of both magnetic mirror and shock

potential should be rigorously considered.

A theory of SDA considering a shock surface as a magnetic mirror has been used in previous works

regarding electron acceleration (e.g., [23,24,140]). That theory mainly describes the criteria for electron

reflection at the magnetic mirror (i.e., the conditions that electrons are not in the loss-cone). To build

a magnetic mirror model for a shock, it is necessary to chosse proper frame for that. There are three

frames which are typically adopted in the shock simulation: (1) downstream rest frame: downstream has

zero velocity so both shock surface and upstream flow have velocity (i.e., the simulation frame adopted

in the thesis). (2) upstream rest frame: upstream has zero velocity, so shock surface and downstream

have the same velocity to move, (3) shock rest frame: downstream and upstream flows have speed and

the upstream flow speed is faster than the downstream flow speed as a factor of shock compression

ratio. In such frames, acceleration via motional electric fields in shock upstream/downstream should be

considered simultaneously while considering the mirror reflection condition. Because the strength of

motional electric field is just determined by the shock Mach number, Ms, so it would be better if we

can treat the reflection and energy gain via motional electric field, seperately. In this context, previous

works (e.g., [23, 24, 140]) typically employ de Hoffmann-Teller (HT, hereafter) frame. HT frame has

zero motional electric field in both shock upstream and downstream because the background magnetic

field is parallel to the flow velocity [183]. In the HT frame, the flow speed measured in the upstream is

ut,HT = ush/cosθBn where ush stands for the shock speed measured in the upstream rest frame.

[23] proposed a relativistic SDA theory. Using the reflection conditions in the HT frame given in

the Equations (13) & (14) of [23], KRH2019 rewrites the conditions in the upstream rest frame, which

are given as follows,

v∥ < ut,HT (49)

(the same as the Equation (19) of [23]), and

v⊥ ≳ γt,HTtanα0[(v∥−ut,HT)
2 +2c2cos2

α0∆φ

(
1−

v∥ut,HT

c2

)2
(

1−
(v∥−ut,HT)

2

(1− v∥ut,HT/c2)2c2cos2α0

)1/2

+(c2cos2
α0

(
1−

v∥ut,HT

c2

)2
− (v∥−ut,HT)

2)∆φ
2]1/2. (50)

Here, v∥ and v⊥ denotes the parallel and perpendicular velocities with respect to the background mag-

netic field, γt,HT is the Lorentz factor of ut,HT, ∆φ/mec2 is the electrostatic shock potential and α0 ≡
sin−1(1/

√
r) is the pith angle of mirror reflection with the shock compression ratio, r. Note that

the equation for v⊥ is obtained by assuming very small shock potential in the ICM with T ∼ 108 K,

∆φ/mec2 ≪ 1.

Based on the criteria described above, [24] and KRH2019 calculated the electron reflection fraction

with various parameters relevant for ICM shocks, T = 108K, β = 100, Ms ≈ 2−3 and θBn = 13◦−63◦.

The main findings are summarized as follows. (1) The reflection fraction increases with Ms because

the magnetic compression ratio at the shock also increases with Ms. Note that the shock with larger
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Ms has larger the shock potential, ∆φ , so such effect could suppress the electron reflection. In this

sense, the reflection fraction could decrease as Ms increases. However, the contribution of the shock

potential is negligible in the ICM enviroments, ∆φ/mec2 ≪ 1, therefore, more electrons are reflected at

larger Ms shock. (2) The reflection fraction at Q⊥-shock is larger than that of Q∥-shock because such

the magnetic field strength at the shock is larger with larger θBn. (3) Because the motional electric

field is larger at larger Ms, the average energy gain through SDA increases as Ms. (4) The reflection

fraction becomes dropped if the shock speed in the HT frame is larger than the speed of thermal electron,

vth,e =
√

2kBTe/me (i.e., ut,HT = ush/cosθBn > vth,e or θBn ≲ cos−1(Ms
√

me/mi)). This is because, a

substantial fraction of electrons moves slower than vth,e in the HT frame. For the shock with mi/me = 50

and Ms = 3, for example, the minimum value for efficient electron reflection is θlimit ≈ 65◦ and θlimit

is larger at the shocks with smaller Ms. (5) If the shock speed in the HT frame is larger than the speed

of light (i.e., ut,HT = ush/cosθBn > c), the electron reflection at the shock becomes impossible, because

electrons cannot move faster than the speed of light. For nonrelativistic shocks with ush ≪ c, shock with

large θBn becomes superluminal shock. In case of the shock with mi/me = 50 and Ms = 3, for instance,

the minimum obliquity angle for superluminal shock is θsl ≈ 84◦ and θsl increases as Ms decreases.

Shock Criticality

As described above, the reflection of upstream electrons is mainly governed by the magnetic mirror effect

due to the magnetic compression at the shock, whereas the shock potential is mainly responsible for the

reflection of upstream ions. While only fast first critical Mach number, M∗
f is introduced in Section

III [89], there are a few varieties of critical Mach numbers, including the second and third whistler

critical Mach numbers, which are related to the emission of dispersive whistler waves and quasi-periodic

shock-reformation [184,185]. Obviously, these processes depend on the shock obliquity angle, θBn, and

the plasma β , because ion reflection is affected by anomalous resistivity and microinstabilities in the

shock transition.

In [83] and KRH2019, examining the shock structure, energy spectra of ions and electrons, and self-

excited waves in shock models with Ms ≈ 2−3, it was suggested that, in high-β (∼ 100) ICM plasmas,

the first critical Mach number for ion reflection is M∗
s ∼ 2.3 for both Q∥ and Q⊥ shocks, while the EFI

critical Mach number for the excitation of the EFI is also M∗
ef ∼ 2.3 for Q⊥-shocks. These two critical

Mach numbers are closely related, since the oscillations in the shock transition due to ion reflection

enhance the magnetic mirror and electron reflection. The critical mach number M∗
s is higher than the

fast first critical Mach number, M∗
f ∼ 1, estimated for β ∼ 4 by [89] using the fluid description, in which

kinetic processes such as wave excitations and wave-particle interactions were not accounted for.

Note that MA ≫ Ms ≈ Mf in β ≫ 1 plasmas. In KRH2019, we argued that the critical Mach number

for weak ICM shocks should be characterized with Ms, instead of MA, since primarily the sonic Mach

number controls both the shock electrostatic potential drop relevant for ion reflection and the magnetic

field compression relevant for electron reflection.

In this work, we explore the shock criticality in terms of the shock surface rippling triggered by the
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AIC instability, using 2D PIC simulations with a transverse dimension large enough to include ion-scale

fluctuations.

Fermi-like Preacceleration in Shock Foot

[23, 24] and KRH2019 demonstrated that thermal electrons could be preaccelerated via a Fermi-like

acceleration in the foot of Ms = 3 shocks in β = 20 ICM plasmas. The key processes involved in

this preacceleration include the following: (1) a fraction (∼ 20%) of incoming thermal electrons are

reflected and energized through the standard SDA at the shock ramp, (2) the SDA-reflected electrons

backstreaming along the background magnetic field generate oblique waves via the EFI due to the elec-

tron temperature anisotropy (Te∥/Te⊥ > 1), and (3) some electrons are scattered back and forth between

the shock ramp and the EFI-driven upstream waves, gaining energy further through multiple cycles of

SDA. Although the EFI-driven waves can be generated broadly in the upstream region, depending on

Te∥/Te⊥, the Fermi-like acceleration occurs primarily within the shock foot. In the course of this Fermi-

like acceleration, electrons stay in the upstream region of the shock, hence they are energized mainly

through the gradient-drift along the motional electric field at the shock ramp. The authors showed that

this acceleration is effective for β ≳ 20 shocks, whereas the EFI is suppressed at low-β plasmas due

to strong magnetization of electrons. Moreover, the EFI is known to be almost independent of the

mass ratio, mi/me. (4) KRH2019 found that nonpropagating oblique waves in the shock upstream with

λ ∼ 15−20c/ωpe are dominantly excited, and that the scattering of electrons by those waves reduces the

temperature anisotropy and stabilize the EFI. Thus, we suggested that the preacceleration of electrons

by the Fermi-like acceleration involving multiple cycles of SDA may not proceed all the way to DSA in

weak ICM shocks. This calls for additional mechanisms that could energize electrons beyond the point

where the Fermi-like acceleration ceases to operate.

Stochastic Shock Drift Acceleration in Shock Transition

[161] proposed that the electron preacceleration via SDA could be extended by stochastic pitch-angle

scattering off these multi-scale waves, because electrons are trapped much longer in the shock transition

zone. They coined the term “stochastic shock drift acceleration (SSDA)” for such acceleration. Then,

[141, 162] performed a 2D PIC simulation for Ms = 3 shock with β = 5, θBn = 75◦ and mi/me =

100. They observed the emergence of shock surface rippling, accompanied by the plasma waves driven

by the various microinstabilities (AIC and whistler) in the shock transition, as well as the EFI-driven

obliques waves in the preshock region. They also saw the development of suprathermal tails in both the

upstream and downstream energy spectra of electrons that extend slightly beyond pinj by the end of their

simulations.

Furthermore, [151] performed 2D and 3D hybrid simulations with test-particle electrons for Q⊥-

shocks with Ms = 2.9−6.6, β ≈ 1, and θBn = 80◦−87◦. In typical hybrid simulations, ions are treated

kinetically, while electrons are treated as a charge-neutralizing fluid. So this type of simulations cannot

properly capture electron-driven instabilities. With that caveat, they observed that shock surface fluctu-
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Table 9: Model Parameters for PIC Simulations

Ms MA θBn β Te0 = Ti0[K(keV)] mi/me Lx[c/ωpe] Ly[c/ωpe] ∆x[c/ωpe]

M2.0 2.0 12.9 63◦ 50 108(8.6) 50 3200 310 0.1

M2.15 2.15 13.9 63◦ 50 108(8.6) 50 3200 310 0.1

M2.3 2.3 14.8 63◦ 50 108(8.6) 50 3200 310 0.1

M2.5 2.5 16.1 63◦ 50 108(8.6) 50 3200 310 0.1

M2.8 2.8 18.1 63◦ 50 108(8.6) 50 3200 310 0.1

M3.0 3.0 19.4 63◦ 50 108(8.6) 50 3200 310 0.1

M2.0-m100 2.0 12.9 63◦ 50 108(8.6) 100 2000 440 0.1

M2.3-m100 2.3 14.8 63◦ 50 108(8.6) 100 2000 440 0.1

M3.0-m100 3.0 19.4 63◦ 50 108(8.6) 100 2000 440 0.1

M2.0-β20 2.0 8.2 63◦ 20 108(8.6) 50 3200 200 0.1

M2.3-β20 2.3 9.4 63◦ 20 108(8.6) 50 3200 200 0.1

M3.0-β20 3.0 12.3 63◦ 20 108(8.6) 50 3200 200 0.1

M2.0-β100 2.0 18.2 63◦ 100 108(8.6) 50 2000 440 0.1

M2.3-β100 2.3 21.0 63◦ 100 108(8.6) 50 2000 440 0.1

M3.0-β100 3.0 27.4 63◦ 100 108(8.6) 50 2000 440 0.1

M2.0-θ53 2.0 12.9 53◦ 50 108(8.6) 50 3200 310 0.1

M2.0-θ73 2.0 12.9 73◦ 50 108(8.6) 50 3200 310 0.1

M2.3-θ53 2.3 14.8 53◦ 50 108(8.6) 50 3200 310 0.1

M2.3-θ73 2.3 14.8 73◦ 50 108(8.6) 50 3200 310 0.1

M3.0-θ53 3.0 19.4 53◦ 50 108(8.6) 50 3200 310 0.1

M3.0-θ73 3.0 19.4 73◦ 50 108(8.6) 50 4000 310 0.1

ations develop on ion scales, and that test-particles electrons could be preaccelerated well beyond pinj at

supercritical shocks with the Alfvénic Mach number greater than the critical Mach number, MA,crit ≈ 3.5.

Note that they considered β ≈ 1 shocks, so Ms,crit ≈ MA,crit.

7.2 Numerics

2D PIC simulations were performed to generate collisionless shocks by adopting the same numerical

setup described in Section III, except that here the transverse box size in unit of rL,i is much larger than

that used in Section III. For all simulation models considered here, the transverse box size is larger than

∼ 3.4rL,i to resolve the plasma waves induced as consequence of the ion dynamics at the shock. The

model parameters are given in Table 9. Models with different Ms are named with the combination of the

letter “M” and sonic Mach numbers (e.g., the M3.0 model has Ms = 3.0). Six models, M2.0-M3.0, in

the top group represent our ‘fiducial’ models with β = 50, θBn = 63◦, and mi/me = 50. Models with

the parameters different from the fiducial values have the names that are appended by a character for
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the specific parameter and its value. For example, the M3.0-m100 model has mi/me = 100, while the

M3.0-θ53 model has θBn = 53◦.

7.3 Results

Shock Criticality and Surface Rippling

To understand the shock structures, we first look at the 2D spatial distributions of the ion number density

and magnetic field strength for the M2.0 (subcritical) and M3.0 (supercritical) models in Figure 38(a)-

(d). In the M3.0 model, overshoot/undershoot oscillations develop and ripples appear in the shock

transition zone along the shock surface, while the overall shock structure is relatively smooth in the M2.0

model. Panels (e) and (f) of Figure 38 show that the ion temperature anisotropy, Ai > 1, is generated in

the shock transition due to the shock-reflected ions in the M3.0 model, while Ai ≈ 1 due to inefficient

ion reflection in the M2.0 model.

Based on the findings of KHRK2021 and previous studies [141, 151, 174, 175], we interpret that the

ripples along the shock surface are induced by the AIC instability. In the fiducial M3.0 model, the char-

acteristic length of the ripples is λripple ∼ 14c/ωpi ∼ 1.1rL,i ∼ 0.8λAIC, where λAIC ∼ 18c/ωpi ∼ 1.4rL,i

is the wavelength of the AIC-driven waves with the maximum growth rate. The simulation domain is

periodic in the y-direction and the transverse dimension of all the Ms = 3.0 models in Table 1 is Ly ≈
3.4rL,i ∼ 2.4−2.6λAIC. Hence, on average about 2-3 waves are expected to develop along the y-direction

(see also Figure 44(g)-(i)), resulting in λripple ∼ 0.8−1.3λAIC. In addition, the rippling waves propagate

along the shock surface with the Alfvén speed in the shock overshoot, vA,os = Bos/
√

4πnosmi ∼ 0.009c,

where Bos and nos are the magnetic field strength and the ion number density of the shock overshoot,

respectively. Hence, we regard that the rippling waves have the characteristics of the waves driven by

the AIC instability [174].

Using both linear theory and hybrid simulations, [169] presented the instability condition for the

AIC instability:

IAIC =
Ti⊥
Ti∥

−1−
Sp

β
αp
i∥

> 0, (51)

where βi∥ = 8πnikBTi∥/B2
0 is the ion β parallel to the magnetic field. The fitting parameters are αp ≈ 0.72

and Sp ≈ 1.6 for βi∥ ≈ 5−50 (see their Figure 8). This condition signifies that the AIC instability tends

to be stabilized at lower βi∥ due to the stronger magnetization of ions. For a given value of βi∥, the AIC

growth rate increases with increasing Ai, which in turn depends on the fraction of reflected ions. Sine

the ion temperature anisotropy is higher at stronger shocks, the transition zone is expected to be more

unstable against the AIC instability in shocks with higher Ms.

Here, using the simulation results for the anisotropy Ai, we calculate the instability parameter, IAIC,

which is shown in Figure 39(a). For Ms = 2, IAIC ≲ 0, so the AIC instability is stable, which is consistent

with the smooth shock structure shown in Figure 38. The instability parameter increases steeply around

Ms ∼ 2.2− 2.4. Considering also the simulation results described in the next section, we suggest that

the critical Mach number to trigger the AIC instability is M∗
AIC ≈ 2.3 in these high-β shocks. We note
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Figure 38: Shock structure in the M2.0 and M3.0 models in the region of −255 ≤ (x− xsh)ωpe/c ≤ 55

at Ωcit ∼ 32. Panels (a)-(b) show the ion number density, ni/n0. Panels (c)-(d) show the magnetic field

strength, B/B0. Panels (e)-(f) show the ion temperature, ⟨Ti∥⟩y,avg/Ti0 (red), and ⟨Ti⊥⟩y,avg/Ti0 (blue),

averaged over the y-direction. Here rL,i ≈ 91(c/ωpe) · (Ms/3).
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Figure 39: (a) Instability parameter, IAIC, in Equation (51), estimated using the mean temperature and

plasma beta, ⟨Ti⊥⟩, ⟨Ti∥⟩ and ⟨βi∥⟩, in the region of (x− xsh)ωpe/c = [−50,0] and yωpe/c = [0,310].

The results for the fiducial models with β = 50 are shown by the black circles connected with the

black line, while the models with β = 100 and 20 are presented by the blue triangles and red squares,

respectively. (b) Ion number density, ⟨ni⟩y,avg(x), averaged for yωpe/c = [0,310] in the fiducial models,

M2.0(blue), M2.3 (red), M2.5 (green), and M3.0 (black). (c) Ion number density, ⟨ni⟩x,avg(y), averaged

for (x− xsh)ωpe/c = [−50,0] in the same fiducial models as in panel (b). For all the quantities, the

simulation results at Ωcit ∼ 32 are used.
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that this is similar to the critical Mach number for ion reflection, M∗
s , reported in KRH2019, because the

AIC instability is triggered by the shock-reflected ions.

As can be inferred from Equation (51), Figure 39(a) shows that with similar anisotropy Ai’s, IAIC

decreases as β decreases from 100 (blue triangles) to 20 (red squares) owing to stronger magnetization

at lower β . Thus, we expect that the AIC critical Mach number would be somewhat higher at lower-β

shocks. For example, [180] estimated M∗
AIC ∼ 4 for β ≈ 1, using hybrid simulations. [151] obtained a

similar value, M∗
AIC ∼ 3.5 also for β ≈ 1, as mentioned before.

Figure 39(b) shows the y-averaged ion number density profile, ⟨ni⟩y,avg(x), for the models with

Ms = 2− 3. It demonstrates that the shock becomes supercritical for Ms ≳ 2.3, developing substantial

overshoot/undershoot oscillations in the shock transition. Figure 39(c), on the other hand, shows the ion

number density profile, ⟨ni⟩x,avg(y), averaged over the shock transition zone in the x-direction, along the y

axis (parallel to the shock surface) for the same four models. The mean wavelengths of the shock surface

ripples are λ ∼ 100c/ωpe ∼ rL,i for the M3.0 model (black), while λ ∼ 75c/ωpe ∼ rL,i for for the M2.5

model (green). Note that here the Larmor radius of incoming ions, rL,i ∝ u0 ∝ Ms, scales approximately

with the shock Mach number. The variation of ⟨ni⟩x,avg along the shock surface is insignificant for

Ms ≲ 2.3.

Plasma Waves in Shock Transition

As discussed above, in the shock transition region of supercritical shocks, the ion temperature anisotropy

(Ai) can trigger the AIC and ion-mirror instabilities, while the electron temperature anisotropy (Ae) can

induce the whistler and electron-mirror instabilities. Due to the large mass ratio, typically electron-

driven waves grow much faster on much smaller scales, compared to ion-driven waves (see also, [164]).

Panels (a)-(c) of Figure 40 show Bz/B0 for three shock models. In the M3.0 model, we observe multi-

scale waves with the wavelengths ranging from electron to ion scales in the shock transition region, (x−
xsh)/rL,i ≈ [−1,0]. Based on the linear analysis results shown in Section VI, in this supercritical shock

we interpret that ion-scale fluctuations are induced dominantly by the AIC instability, while electron-

scale waves are induced mainly by the whistler instability. In Figure 40(c) we can identify such AIC-

driven waves propagating mainly in the direction parallel to B0. For comparison, the M3.0β50 model

(β = 50, mi/me = 100) of KRH2019 is shown in panel (g), which shows pronounced features on smaller

scales. In the M2.3 model, on the other hand, the AIC mode is not observed, whereas oblique waves

driven by the ion-mirror instability appear in the far downstream region (x−xsh <−2.0rL,i). In the M2.0

model shown in Figure 40(a), primarily electron-scale waves with small amplitudes are observed in the

shock transition, while weak oblique waves probably due to the ion-mirror instability appear in the far

downstream region.

The black lines in Figure 40(d)-(f) show the magnetic power spectra, PBz , in the shock transition

region shown in the upper panels (a)-(c). In the M3.0 model, PBz indicates the presence of multi-

scale waves in the wide range of wavenumbers, ky/2π ∼ [0.009− 0.9]ωpe/c, corresponding to λ ∼
[11.1− 111]c/ωpe. In particular, the wavelength of the ion-scale waves driven by the AIC instability,
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Figure 40: Panels (a)-(c): Magnetic field fluctuations, Bz/B0, in the region of (x − xsh)ωpe/c =

[−255,+55] at Ωcit ∼ 32 for the fiducial models with Ms = 2, 2.3, and 3. The black arrows indicate

the directions of the preshock and postshock magnetic field vectors, B0 and B2, respectively. Panels (d)-

(f): Magnetic power spectrum, PBz(ky) ∝ (ky/2π)(δBz(ky)
2/B2

0), is calculated for the shock transition

region of (x− xsh)/rL,i ≈ [−1.0,0.0] (black), the far downstream region of (x− xsh)/rL,i ≈ [−2.8,−1.8]

(red), and the upstream region of (x − xsh)/rL,i ≈ [0.2,1.2] (blue) at Ωcit ∼ 32. The blue, bright

green, magenta, and dark green vertical lines denote the wavenumbers with the maximum growth

rates for the AIC, whistler, i-mirror, and e-mirror instabilities, respectively. Panels (g)-(h): Magnetic

field fluctuations and power spectrum of the M3.0 model in KRH2019. For the models in the figure,

rL,i ≈ 91(c/ωpe) · (Ms/3)
√

β/50
√

(mi/me)/50.
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Figure 41: Left panels: Trajectory of a selected electron that undergoes the SSDA during Ωcit ∼ 25−
29.5. Middle panels: Trajectory of a selected electron that undergoes the Fermi-like acceleration during

Ωcit ∼ 28− 32. Right Panels: Trajectory of a selected electron that undergoes a single SDA during

Ωcit ∼ 28.5− 30.1. Note that the trajectories in the shock rest frame are shown. They are taken from

the M3.0 model simulation. In panels (g)-(i), the trajectories along the p⊥-direction show the energy

gain due to the gradient-B drift along the motional electric field, while trajectories along the arcs in

the p∥− p⊥ space represent pitch-angle scattering. In panels (j)-(l), the blue lines show the evolution

of the Lorentz factor, γsim, in the simulation frame, while the red lines show the energy gain, γdrift =

−(e/mec2)
∫

Ezdz, estimated using the motional electric field in the shock transition zone.
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λ ∼ 111c/ωpe ∼ 1.2rL,i, is similar to the size of shock surface surface ripples, λripple, as shown in

Figure 38. PBz shows substantial powers also on the electron-scale waves with ky/2π ∼ 0.09ωpe/c

(λ ∼ 11.1c/ωpe) driven by the whistler instability. Again, for comparison, PBz for the M3.0β50 model

of KRH2019 is shown in Figure 40(h). Due to the smaller transverse domain, the powers on small

wavenumbers, ky/2π ≲ 10−2ωpe/c, are not present. In the M2.3 model in panel (e), the electron-scale

waves are relatively more dominant than the ion-scale waves, while the ion-scale waves are driven

mainly by the ion-mirror instability as indicated in panel (b). In the M2.0 model in panel (d), the ion-

scale waves are almost absent. These results are consistent with the fact that multi-scale plasma waves

can be triggered by the AIC instability only in supercritical shocks with Ms ≳ 2.3.

The plasma waves induced in the shock transition undergo nonlinear evolution, while being advected

further downstream. In order to investigate such nonlinear evolution, in Figure 40(d)-(f), we also show

PBz (red lines) in the far downstream region of (x−xsh)/rL,i ≈ [−2.8,−1.8]. A few points are noted: (1)

The whistler waves are excited in the transition region immediately behind the ramp, and then undergo

rapid damping via electron scattering, leading to the reduction of Ae in the far downstream region. So

the magnetic power of electron-scale waves is significantly reduced there as well. (2) In Figure 40(f),

PBz on ion-scale waves remains relatively substantial in the far downstream, even after experiencing

nonlinear evolution. (3) In Figure 40(d)-(e), PBz on small k’s is mainly due to the oblique waves excited

by the ion-mirror instability in the far downstream region, which can be seen in Figure 40(a)-(b).

We point that the presence of shock surface ripples could enhance or supress the electron reflection

at the shock surface. In the case of the shock with Ms = 3, T = 5×108 K, mi/me = 100 and θBn = 73◦

[141], the electron reflection is initially ineffective, since the shock speed measured in the HT frame is

larger than the electron thermal velocity, i.e., utmHT ∼ 1.5vth,e. After t ≳ τAIC, the shock surface rippling

produces the locally smaller θBn portions and the electron reflection is enhanced (see their Figure 2)

because the shock speeds in the HT frame in such local parts become smaller than the electron thermal

velocity. In case of the our fiducial model with Ms = 3 and θBn = 63◦, on the other hand, ut,HT ∼ vth,e

and the fraction of reflection electrons is substantial (∼ 23%) regardless of the presence of shock surface

ripples (see Fig. 1 of KRH2019). In fact, the enhancement of the electron reflection fraction and the

ensuing EFI-driven waves in the upstream region due to the shock ripples is only a few % (also compare

the blue lines in panels (f) and (h) of Figure 40). Although the fraction of suprathermal electrons is

increased slightly by the addition of the SSDA in the new simulations (see Figure 42), the impacts on

the self-excited upstream waves seem only marginal possibly due to the limited integration time.

Electron Preacceleration via SSDA

To understand the preacceleration mechanism in our simulations, we examine how electrons gain energy

in the M3.0 model shock. Figure 41 shows the trajectories of three selected electrons that gain energy

via the SSDA (left panels), the Fermi-like acceleration (middle panels), and a single SDA (right panels).

Note that the trajectories in the shock rest frame are shown, so that the region of (x−xsh)ωpe/c ≈ [−5,5]

corresponds to the shock ramp, while the downstream region of (x−xsh)ωpe/c ≈ [−50,0] contains both
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Figure 42: Upstream electron energy spectra (red solid lines) at Ωcit ∼ 32 in the fiducial models with

Ms = 2− 3. The spectra are taken from the region of (x − xsh)/rL,i = [0,+1] and the black dashed

lines show the Maxwellian distributions in the upstream. The blue solid (β = 50) and green dot-dashed

(β = 100) lines show the upstream electron energy spectra at Ωcit ∼ 30 for the models in KRH2019, in

which the transverse domain, Ly/rL,i, is about 8 times smaller than that of the simulations in this study.

102



the first and second overshoots in the transition zone (see Figure 2(b)). The trajectories in panels (a) and

(d) show that this electron is confined within the transition zone during Ωcit ∼ 26− 28, and undergoes

the first (green) and second (orange) stages of the gradient-B drift along the −z-direction, illustrating

the SSDA. Panels (b) and (e) show that the electron experiences the Fermi-like acceleration by going

through the first (blue) and second (orange) stages of the SDA, while being reflected at the ramp and

scattered by upstream waves. Panels (c) and (f) show that the electron undergoes only a single cycle

of the standard SDA. In panels (g)-(i), the trajectories roughly parallel to the p⊥-direction show the

energy gain due to the drift along the motional electric field, while the trajectories following the arcs in

the p∥− p⊥ space represent pitch-angle scattering. In panels (g) and (h), the electrons experience two

episodes of acceleration, as indicated by the ellipses and arrows.

The bottom panels, (j)-(l), compare the variation of the Lorentz factor in the simulation (blue line)

with the energy gain of γdrift = −(e/mec2)
∫

Ezdz (red line), which is expected to accumulate from the

drift along the motional electric field in the shock transition zone. We confirm that the preacceleration

realized in the simulated shock is consistent with the SSDA mechanism proposed by previous studies

[141,161]. Although electrons can be energized by both the Fermi-like acceleration and SSDA, the most

energetic electrons are produced mainly by the SSDA.

Figure 42 compares the upstream electron energy spectra in the fiducial models of the current study

(red lines) with the corresponding spectra for the models with β = 50 (blue lines) and β = 100 (green

lines) reported in KRH2019. Note that mi/me = 100 in KRH2019, but the simulations were insensitive

to the mass ratio [24]. As mentioned before, in KRH2019, the 2D simulation domain was too small in

the transverse direction to include the emergence of the shock surface rippling via the AIC instability. As

a result, the SDA-reflected electrons gain energy only through the Fermi-like acceleration in that study.

The figure clearly demonstrates that in the case of supercritical shocks, through the SSDA, electrons can

be accelerated further to higher energies in the new simulations than in the simulations of KRH2019. In

subcritical shocks, on the other hand, the AIC instability is not triggered and the ensuing SSDA does not

occur even in the new simulations with a larger simulation domain.

The PIC simulation of a β ≈ 5 shock by [141] and the hybrid simulations of β ≈ 1 shocks by [151]

showed that electrons could be preaccelerated well above the injection momentum through the SSDA in

supercritical shocks. In [141], for instance, the highest electron energy of γmax ≈ 60 was achieved by

several phases of the SSDA for the simulation duration of Ωcitmax ≈ 79, while γinj ≈ 25 for their shock

parameters. By contrast, Figure 41 shows only two phases of the SSDA for the M3.0 model, resulting

in γmax ∼ 2.5. So the electron energy spectra even in the new simulations (red) are extended to the

energy below the injection momentum (γinj ∼ 7), as shown in Figure 42(d). This is because the required

computational resources for the PIC simulations of such high-β shocks are quite demanding. In fact,

simulating electron energization all the way to injection to DSA in β ≈ 100 shocks would require much

larger simulation domains and much longer simulation times. However, we expect that the SSDA would

continue to reach p > pinj, as long as the electrons are confined within the shock transition region by

scattering due to multi-scale waves.
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Dependence on the Model Parameters

In this section, we examine how our findings depend on the simulation parameters such as β , mi/me and

θBn.

In Figure 43 we compare the ion density distributions in the six M3.0 models with different pa-

rameters. Here the length scales are normalized with rL,i ∝
√

β
√

(mi/me). Panels (g)-(i) show the ion

number density, ⟨ni⟩x,avg, averaged for (x− xsh)/rL,i = [−0.6,0] at Ωcit ∼ 8−20. According to the lin-

ear predictions given in Table 2, λAIC/rL,i ∝ (λAICωpi/c)/
√

β , is independent of mi/me, but it decreases

only slightly with β , i.e., λAIC/rL,i ∼ 1.5, 1.4, and 1.3 for β = 20, 50, and 100, respectively. We expect

that, due to the periodic boundary condition, about 2-3 ripples would appear along the y-direction in all

the six panels with y/rL,i = [0,3.4] in Figure 43. In the M3.0-m100 model (magenta lines), for example,

the two dominant modes with λ ∼ Ly/2 and Ly/3 can be identified. We note that Ωcit ∼ 8−20 is much

longer than the growth time scale of the AIC, ΩciτAIC = 2.6, 2.3, and 2.1 for β = 20, 50, and 100,

respectively. Hence, panels (g)-(i) illustrates the time-varying density configuration in fully developed,

nonlinear stages of the AIC. We find that the amplitude of the dominant modes do not exactly match the

linear predictions possible due to nonlinear effects described above. For instance, the M3.0 model with

β = 50 (black) shows the greater amplitude, compared to the two models with β = 20 (red) and 100

(blue), although γAIC/Ωci increases with increasing β .

Several points are noted: (1) For all the models, the length scale of induced ripples ranges λripple ∼
1.0− 1.2rL,i (∼ 14− 21c/ωpi), which agrees reasonably well with λAIC ∼ 1.3− 1.5rL,i from the linear

analysis. (2) Comparing the three models with different β in the upper panels, we see some traces of

ion-scale ripples linger further downstream in the β = 20 case, whereas they are mostly erased by the

thermal motions in the β = 100 case. (3) Comparing the three models with different θBn, we find that

the shock ripples exhibit more fluctuations in the models with higher θBn. This is mainly because the

motional electric field is stronger for higher θBn, and so the SDA-reflected ions are more energetic. (4)

The AIC instability is insensitive to mi/me, so the two models with mi/me = 50 and 100 produce similar

results. In panels (a) and (d), about three ripples are visible along the y-direction, although the second

ripple is less pronounced than the first and third ripples in panel (d) for the M3.0-m100 model.

Figure 44 compares the magnetic field power spectra for the M3.0 and M2.0 models with different

values of β , mi/me and θBn. In all the models with Ms = 3 (upper panels), multi-scale waves in the

range of kyrL,i/2π ∼ [0.7−10] (λ ∼ [0.1−1.5]rL,i) are induced for the considered ranges of parameters.

In all the models with Ms = 2 (lower panels), by contrast, mainly electron-scale waves are excited, as

expected.

In Figure 45, we examine the upstream electron energy spectra for the same set of the models shown

in Figure 44. The figure shows that the preacceleration depends only weakly on β and mi/me, while

it is more efficient with larger θBn due to the stronger motional electric field. In the M3.0-θ73 model,

in which the simulation was carried out for a longer time, Ωcit ∼ 50 (magenta line in Figure 45(c)),

some of the most energetic electrons were accelerated to pinj ∼ 3pth,i (γinj ∼ 7). This implies that the

preacceleration via the SSDA could be a feasible mechanism for electron injection to the full DSA
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Figure 43: Panels (a)-(f): Ion number density, ni(x,y)/n0, in the region of (x− xsh)/rL,i = [−2.8,0.6]

and y/rL,i = [0,3.4] at Ωcit ∼ 20 in the six M3.0 models with different values of β , mi/me, and θBn. The

fiducial M3.0 model has Ms = 3, β = 50, mi/me = 50, and θBn = 63◦. See Table 1 for the parameters

of other models. Panels (g)-(i): Ion number density, ⟨ni⟩x,avg(y), averaged for (x− xsh)/rL,i = [−0.6,0]

at Ωcit ∼ 8−20 for the same set of the models. The line color for each model is given in the small box.

Each line is shifted vertically by +1 for the purpose of clarity. Note that the growth time scale for the

AIC is ΩciτAIC = 2.1− 2.6, so the density configurations shown here display fluctuations in nonlinear

stages.
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Figure 44: Magnetic power spectra, PBz(ky) ∝ (ky/2π)(δBz(ky)
2/B2

0), averaged over the time period of

Ωcit = [8,20], for the M3.0 models (upper panels) and the M2.0 models (lower panels) with different

parameters in the transition region of (x−xsh)/rL,i = [−1.0,0.0]. In the fiducial M2.0 and M3.0 models,

Ms = 3, β = 50, mi/me = 50, and θBn = 63◦. See Table 9 for the parameters of other models. Note

that here the wavenumber ky is normalized with the Larmor radius for incoming ions, rL,i ≈ 91(c/ωpe) ·
(Ms/3)

√
β/50

√
(mi/me)/50.

process in high-β supercritical shocks, as previously shown for lower β shocks in [141] and [151]. In

all the models with Ms = 2, however, the energy spectra seem consistent with the single SDA cycle [24],

and neither the Fermi-like acceleration nor the SSDA are effective.

Based on the results described in this section, we conclude that the preacceleration of electrons and

the shock criticality are almost independent of mi/me, but depend somewhat weakly on β (≈ 20−100)

for the ranges of values considered here. Furthermore, the preacceleration would be more effective at

larger θBn, as long as the shock parameters satisfy the subluminal condition, i.e., θBn ≤ arccos(ush/c)

(see KRH2019).

7.4 Summary

In this work, we examine the electron preacceleration process via SSDA and Fermi-like acceleration in

the ICM shocks through 2D PIC simulations. The main results can be summarized as follows:

1. Adopting the numerical values for Ti⊥, Ti∥, and βi∥ in the shock transition zone of the simulated mod-

els with Ms = 2−3, we estimated the instability parameter, IAIC, defined in Equation (51). Considering

both the behavior of IAIC and the PIC simulation results, we suggest that the critical Mach number above

which the AIC mode becomes unstable is M∗
AIC ≈ 2.3 for β ≈ 20− 100. Note that in this study the

critical Mach numbers are defined in terms of the sonic Mach number rather than the Alfvénic Mach

number, since both ion and electron reflections are controlled mainly by the shock compression.

2. The simulations confirmed that overshoot/under-shoot oscillations and shock surface rippling become
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Figure 45: Upstream electron energy spectra at Ωcit ∼ 20 for the M3.0 models (upper panels) and

the M2.0 models (lower panels) with different parameters. The spectra are taken from the region of

(x−xsh)/rL,i = [0,+1] and the black dashed lines show the Maxwellian distributions in the upstream. In

the fiducial M2.0 and M3.0 models, β = 50, mi/me = 50, and θBn = 63◦. See Table 9 for the parameters

of other models. In panel (c) the magenta line shows the energy spectrum at Ωcit ∼ 50 for the M3.0-θ73

model.

increasingly more evident for higher Ms in supercritical shocks with Ms ≳ M∗
AIC, while the shock struc-

tures seem relatively smooth for subcritical shocks.

3. In the transition zone of supercritical shocks, ion-scale waves can be generated by the AIC and ion-

mirror instabilities due to the ion temperature anisotropy (Ti⊥/Ti∥ > 1), while electron-scale waves can

be generated by the whistler and electron-mirror instabilities due to the electron temperature anisotropy

(Te⊥/Te∥ > 1). Both the linear analysis and periodic-box PIC simulations presented in KHRK2021

indicate that the AIC and whistler instabilities are dominant over the ion and electron mirror instabil-

ities, respectively, in high-β plasma under consideration. In the case of subcritical shocks with small

anisotropies, on the other hand, primarily electron-scale waves are induced by the whistler instability,

while ion-scale waves with small amplitudes could be excited by the ion-mirror instability.

4. In β ≈ 20−100 supercritical shocks, electrons are confined within the shock transition for an extended

period and gain energy by the SSDA, as suggested by previous studies for β ∼ 1−5 shocks [141, 151].

Although we could not see electron preacceleration all the way to injection to DSA in our PIC simula-

tions due to the limited simulation domain and time, we suggest that the combination of the Fermi-like

acceleration and the SSDA could energize thermal electrons to the full DSA regime in supercritical, Q⊥,

shocks in the ICM.

5. The shock criticality in terms of triggering the AIC instability (or shock surface rippling) depends

rather weakly on the simulation parameters such as mi/me and θBn for the ranges of values considered

here. However, the critical Mach number, M∗
AIC, tends to be somewhat higher at lower β (∼ 1) owing
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to the stronger magnetization of ions [151]. In addition, the preacceleration of electrons is relatively

insensitive to β (∼ 20− 100) and mi/me, while its efficiency increases with increasing θBn, as long as

the shock remains subluminal. Therefore, we infer that our findings about the shock criticality and the

preacceleration can be applied generally to Q⊥-shocks in the ICM.

Although this study focus on the electron acceleration mediated by various microinstabilities, it has

been shown that such various microinstabilities play an important role in particle heating at the post-

shock region [181, 186]. The previous works, [181, 186] investigated electron heating mechanism at

purely perpendicular shock with θBn = 90◦. However, the dynamics of particles and pre-acceleration

efficiency depend on the upstream magnetic field configurations and so the properties of various mi-

croinstabilities depend on θBn as well. In this context, more numerical studies with a wide θBn would be

required to understand the detailed heating process in the outskirts of galaxy clusters.
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VIII Electron Preacceleration at Weak Quasi-perpendicular Shocks in
Intracluster Medium: 4. Effects of Preexisting Nonthermal Elec-
trons

PIC simulations have been performed for Q⊥-shocks with Ms ≲ several in plasmas of β ≈ 20− 100

to study the electron preacceleration at ICM shocks [23, 24, 140, 141, 147, 162, 163, 175]. In particu-

lar, according to the results shown in Section VII, the electron preacceleration mechanisms mediated

by the multi-scale plasma waves near the shock surface are inefficient at the subcritical shocks with

Ms ≲ 2.3. As a possible solution for radio relics with low Ms shocks, the so-called “reacceleration

model” was suggested, where preexisting relativistic fossil electrons are injected to DSA and further ac-

celerated [187–191]. Those fossil electrons could enhance the acceleration efficiency, especially at weak

shocks with Ms ≲ 3 [129]. The presence of relativistic electron populations in the ICM is expected, pos-

sibly being supplied by radio jets of AGNs or produced through previous episodes of shock/turbulence

acceleration [50, 191]. As a matter of fact, some radio relics are observed to be associated with nearby

radio galaxies [192], and low-frequency observations indicate the possibility of preexisting nonthermal

electrons [193]. However, the reacceleration scenario at weak shocks would operate, only if preexisting

nonthermal electrons with p ≳ pinj could be scattered diffusively across the shock transition. It requires

either the triggering of microinstabilities and the self-generation of scattering waves or the presence of

preexisting kinetic waves in the turbulent ICM.

In this Section, we revisit our previous work of PIC simulations for weak Q⊥ ICM shocks, de-

scribed in Section VII, by including power-law nonthermal electrons in addition to Maxwellian thermal

electrons in the upstream plasma (Ha, J.-H., Ryu, D., Kang, H., & Kim, S. 2022, The Astrophysical

Journal, 925, 88; [194]). Due to the limitation of computational capacities, the power-law component

extends only up to the Lorenz factor of γ ≈ several, representing a suprathermal population, rather

than the bonafide nonthermal population that continues to γ ≫ 1. We study the effects of the preexist-

ing suprathermal electrons on kinetic plasma processes in high-β Q⊥-shocks. Especially, we examine

whether the suprathermal electrons could enhance the microinstabilities that generate multiscale waves,

leading to the preacceleration of electrons up to pinj, even in subcritical shocks with Ms ≲ 2.3.

8.1 Numerics

We performed a set of two-dimensional PIC simulations with the numerical setup used in Sections III and

VII. The main difference between this work and Section VII lies in the inclusion of preexisting power-

law electrons (PPEs, hereafter). In this work, we add a nonthermal electron population of “isotropic”

power-law distribution, f (p) ∝ p−α , to the background thermal plasma, reducing the amount of thermal

electrons accordingly. The power-law slope we consider covers the range of α = 4−4.5, and the number

fraction of PPEs ranges np/n0 = 0.01−0.1. For the fiducial model, α = 4.2 is adopted, assuming that the

preexisting nonthermal electrons are produced by relativistic shocks such as those in radio jets [195,196].

The minimum and maximum (or cutoff) Lorenz factors of the nonthermal component are γmin = 1.15
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Table 10: Model Parameters for Simulations

Ms MA u0/c θBn β mi/me α np/n0 γcut Lx[λse] Ly[λse] tend[Ω
−1
ci ]

M2.0 2.0 8.2 0.038 63◦ 20 50 4.2 0.01 5 2000 200 22

M2.3 2.3 9.4 0.046 63◦ 20 50 4.2 0.01 5 2000 200 22

M2.5 2.5 10.2 0.053 63◦ 20 50 4.2 0.01 5 2000 200 22

M3.0 3.0 12.3 0.068 63◦ 20 50 4.2 0.01 5 2000 200 22

M2.0-α4 2.0 8.2 0.038 63◦ 20 50 4 0.01 5 2000 200 22

M2.0-α4.5 2.0 8.2 0.038 63◦ 20 50 4.5 0.01 5 2000 200 22

M2.0-np0.1 2.0 8.2 0.038 63◦ 20 50 4.2 0.1 5 2000 200 22

M2.0-γcut10 2.0 8.2 0.038 63◦ 20 50 4.2 0.01 10 2000 200 22

M2.0-m25 2.0 8.2 0.053 63◦ 20 25 4.2 0.01 5 2000 140 22

M2.0-β50-m25 2.0 12.9 0.053 63◦ 50 25 4.2 0.01 5 2000 225 22

M3.0-α4 3.0 12.3 0.068 63◦ 20 50 4 0.01 5 2000 200 22

M3.0-α4.5 3.0 12.3 0.068 63◦ 20 50 4.5 0.01 5 2000 200 22

M3.0-np0.1 3.0 12.3 0.068 63◦ 20 50 4.2 0.1 5 2000 200 22

M3.0-γcut10 3.0 12.3 0.068 63◦ 20 50 4.2 0.01 10 2000 200 22

M3.0-m25 3.0 12.3 0.096 63◦ 20 25 4.2 0.01 5 2000 140 22

M3.0-β50-m25 3.0 19.4 0.096 63◦ 50 25 4.2 0.01 5 2000 225 22
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Figure 46: Energy spectra of electrons in the far upstream region 10 ≤ (x− xsh)/rL,i ≤ 11 (solid lines)

and in the initial incoming plasmas (dashed lines) for two models M3.0 and M3.0-np0.1 (see Table

10). Here, xsh is the shock position, and rL,i ≈ 57λse. The energy spectrum, dN/dγ , is related to the

momentum spectrum, f (p) ∝ p−α , as 4π f (p)p2d p/dE ∝ dN/dγ ∝ (γ −1)−s, where s = α −2.
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Figure 47: Energy spectra of electrons taken from the periodic box simulation Here, rL,i ≈ 57λse and the

number fraction of PPEs is the same as the shock model, M3.0−np0.1.

(corresponding to the velocity ∼ 0.5c) and γcut = 5−10, respectively. Figure 46 shows the energy spectra

of electrons measured in the far upstream region of 10 ≤ (x− xsh)/rL,i ≤ 11 at Ωcit ∼ 3, and compares

them with those of the initial incoming plasmas. Here, xsh denotes the position of the shock.

In PIC simulations, the limited number of particles induces numerical dissipations [197], and hence

a sufficiently large number of particles is required to maintain the power-law distribution of electrons for

a sufficiently long time. In this work, 120 particles per cell (60 ions + 60 electrons) are placed, which

are much larger than 32 particles per cell (16 per species) used in Sections III and VII. Even with this

number of particles, γcut = 5− 10 is the maximum value that we can accommodate. We point that this

value of γcut is set by the computational limitation, rather than the physical argument. With γcut = 5−10,

the PPE component should be regarded in effect as a suprathermal population.

The model parameters of our simulations are given in Table 10. Models with different Ms are named

with the combination of the letter ‘M’ and the sonic Mach number (for instance, the M3.0 model has

Ms = 3). The four models in the top group are the fiducial models, which have β = 20, mi/me = 50,

α = 4.2, np/n0 = 0.01, and γcut = 5. Models with parameters different from those of the fiducial models

have the names that are appended by a character for the specific parameter and its value; for example,

the M3.0-np0.1 model has np/n0 = 0.1, while the M3.0-α4 has the power-law slope α = 4. For the box

size, Lx and Ly, the end time of simulations, tend, and β , we adopt the values somewhat smaller than

those of Section VII to compensate the longer computational time due to the larger number of particles.

Yet, the adopted values of these parameters should be pertinent enough to capture the main results of

this work. In the next section, the fiducial models in the current work will be compared with the models

with β = 20 in Section VII (without PPEs).

111



In Figure 46, a smoothing in the upstream electron spectra at γ ∼ γmin is observed as consequence of

wave-particle interactions. This is because the PPEs generate resonant waves for scattering off electrons

with the energy, γ ∼ γmin. To examine such effects of PPEs, we separately performed a 2D PIC simula-

tions corresponding to the model, M3.0−np0.1 with the periodic boundary conditions for both particle

and electromagnetic fields. The box size is Lx = Ly = 100c/ωpe to resolve the waves with the long

enough wavelengths up to ∼ rL,i ≈ 57c/ωpe. In addition, to keep consistency with the corresponding

shock simulation model, 120 particles (60 ions + 60 electrons) are distributed per each grid zone and the

grid resolution is identical to the all shock simulations shown in this thesis. The temperature and plasma

beta are also relevant for the ICM parameters, T = 108 K and β = 20 ≫ 1.

The electron energy spectra in the entire periodic box is shown in Figure 47. As noted in the shock

simulation model, we recognize the electron energy spectrum undergoes smoothing process at γ ∼ γmin

due to the interactions mediated by the PPEs and the saturation timescale is roughly ∼ 1000Ω−1
ce =

20Ω
−1
ci . The timescale for saturation indicates the spectrum smoothing occurs simultaneously with elec-

tron preacceleration process near the shock surface because the preacceleration timescale is also roughly

O(10)Ω−1
ci . Although the smoothing of electron spectrum increases the number fraction of suprathermal

electrons with γ ∼ γmin, we interpret that such effects would not be substantial for the detailed electron

preacceleration process, because the number fraction of suprathermal electrons produced by electron is

larger than the suprathermal fraction of saturated spectrum (see Figure 52-(c) and the descriptions for

that Figure).

To understand the properties of plasma waves induced by the presence of PPEs, we examined the

self-excited magnetic field, Bz. Figure 48 shows the 2D structures of Bz for four different time epochs.

We first identify the waves are induced at Ωcet ∼ 163.8 and the wave energy decreases as time increases.

In particular, the wavelength, λ ∼ 20c/ωpe is corresponding to the gyroradius of electrons with γ ∼ γmin

and the waves are propagating along the background magnetic field. We interpret that the wave observed

here is the right-handed whistler wave. The growth rate of this wave is approximately ∼ 0.006Ωce.

According to the linear analysis results presented in Sections V and VI, the growth rates of oblique

firehose waves in the shock upstream and the whistler waves in the shock transition zone are ∼ 0.21Ωce

and ∼ 0.0156Ωce, respectively. This indicates that the wave generation due to the dynamics of electron

near the shock surface is much faster than the wave generation mediated by the PPEs in the shock

upstream. In this context, the wave-particle interaction mediated by whistler waves produced by the

PPEs would not be important in electron preacceleration. In addition, the waves undergo inverse cascade

and this is partly because the simulation is performed in 2D domain.

8.2 Results

Particle Reflection and Temperature Anisotropies

According to the relativistic SDA theory described in the Section VII, the reflection fraction is expected

to increase, if PPEs with higher velocities are added to the Maxwellian distribution. This is because

particle distribution existing in the wider velocity space contains more particles which are satisfying the
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Figure 49: Fraction of reflected electrons (panel (a)) and average energy gained by reflected electrons

in a single cycle of SDA (panel (b)), based on the relativistic SDA description [23, 140]. Electron

temperature anisotropy, Te∥/Te⊥, estimated in the immediate upstream region, 0 ≤ (x− xsh)/rL,i ≤ 1

(panel (c)), and Te⊥/Te∥ estimated in the immediate downstream region, −1 ≤ (x− xsh)/rL,i ≤ 0 (panel

(d)). Instability parameters for the EFI, IEFI (panel (e)), and for the WI, IWI (panel (f)). The red solid lines

draw the fiducial models with PPEs, while the black solid lines draw the corresponding models without

PPEs from Paper I, at Ωcit ∼ 22. The red dashed lines in panels (a) and (b) show the quantities estimated

only with PPEs, that is, the fraction of reflected PPEs and the average energy gained by reflected PPEs

in a single cycle of SDA.
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condition for mirror reflection. To examine such effects of PPEs on the SDA at the shock surface, we first

calculate the reflection fractions and the average energy gain through a cycle of SDA which are shown

in Figure 49-(a) & (b). As expected, the fraction of reflected PPEs (red dashed line) is larger than that

of reflected thermal electrons (black solid line), so the fraction of total reflected electrons in the models

with PPEs (red solid line) is larger than the fraction without PPEs (black solid line) as well. The average

energy gained by reflected PPEs in a single SDA cycle is also larger than that of thermal electrons,

because electrons with larger γ drift longer distances along the shock surface and the amount of energy

gain through the motional electric field becomes larger. Hence, with PPEs, the electron temperature

anisotropies, Te∥/Te⊥, estimated in the shock upstream, 0 ≤ (x− xsh)/rL,i ≤ 1, increase (Figure 49(c)),

and then based on the instability condition for the EFI, IEFI ≈ 1−(Te∥/Te⊥)
−1−1.27β

−0.95
e∥ > 0 [140], the

growth of the EFI is expected to be enhanced in the upstream region (Figure 49(e)). On the other hand,

the SDA-accelerated electrons and PPEs, which are advected downstream, would lead to a slight increase

of the electron temperature anisotropy, Te⊥/Te∥, in the shock transition zone, −1 ≤ (x− xsh)/rL,i ≤ 0

(Figure 49(d)). Then, according to the instability condition for the WI, IWI ≈Te⊥/Te∥−1−0.21β
−0.6
e∥ > 0

[181], the growth of the WI would be slightly enhanced in the transition zone (Figure 49(f)).

The instability condition for the AIC, IAIC ≈ (Ti⊥/Ti∥)− 1− 1.6β
−0.72
i∥ > 0 (Section VII), depends

on the temperature anisotropy of ions, which is induced by the gyrating reflected ions in the plane

perpendicular to the shock-compressed magnetic field [181]. Obviously, the presence of PPEs would

not affect the ion reflection, so we expect that it would not increase the ion temperature anisotropy, nor

enhance the growth of the AIC in the shock transition zone.

Generation of Waves by Microinstabilities

Figure 50 shows the distributions of the ion number density, ni (top panels), and the self-excited magnetic

field, Bz (bottom panels), around the shock for the M2.0 and M3.0 models with and without PPEs.

Oblique waves with λ ∼ 20−30λse are generated in the preshock region of the M2.0 model with PPEs

(Figure 50(e)), while such waves are absent in the M2.0 model without PPEs (Figure 50(f)). They are

expected to be induced by the EFI, and present also in the upstream region of the M3.0 models both with

and without PPEs (Figure 50(g, h)). [140] demonstrated that the fraction of reflected, backstreaming

electrons, the energy gain via SDA, and the temperature anisotropy, Te∥/Te⊥, are large enough to trigger

the EFI only in supercritical shocks with Ms ≳ 2.3. If PPEs are added to the incoming plasma, on the

other hand, the fraction of reflected electrons and Te∥/Te⊥ increase as shown in Figure 49(a,c), and thus

the EFI is excited even in the subcritical shock with Ms = 2 (Figure 50(e)). Moreover, the comparison

of the models with and without PPEs reveals that electron-scale waves along the overshoot, excited by

the WI, are somewhat enhanced by PPEs as well.

In Section VII, it was shown that in supercritical shocks, the AIC instability due to the ion temper-

ature anisotropy could excite ion-scale waves with λripple ∼ 70λse, leading to ripples propagating along

the shock surface (Figure 50 (c,d)). As a result, multiscale plasma waves, ranging from electron to ion

scales, appear in the supercritical M3.0 models (Figure 50 (g,h)). On the contrary, the emergence of
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Figure 50: Ion number density (top panels), ni, normalized to the upstream ion number density, n0, and

z-magnetic field (bottom panels), Bz, normalized to the upstream magnetic field, B0, in the region of

−60 ≤ (x− xsh)/λse ≤ 140 around the shock at Ωcit ∼ 22. Here, xsh is the shock position. The fiducial

M2.0 and M3.0 models with α = 4.2 and np/n0 = 0.01 (panels (a), (e), (c), (g)) are compared to the

corresponding models without PPEs from Section VII (panels (b), (f), (d), (h)).
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Figure 51: Magnetic field power spectra, PBz(ky) ∝ (ky/2π)(δBz(ky)
2/B2

0), in the immediate upstream

region, 0≤ (x−xsh)/rL,i ≤ 1 (top panels), and the immediate downstream region, −1≤ (x−xsh)/rL,i ≤ 0

(bottom panels), at Ωcit ∼ 22, for the models with PPEs (left panels) and without PPEs (right panels).

Here, xsh is the shock position, and rL,i ≈ 57λse · (Ms/3). The magenta and gray boxes denote the

ranges of the gyroradius of electrons with pinj and pspt ≡
√

me/mi pinj, respectively, in the upstream and

downstream regions.
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Figure 52: Upstream electron energy spectra (panels (a) and (b)), the suprathermal fraction, ζ (panel

(c)) and the injection fraction, ξ (panel (d)) are estimated in the region of 0 ≤ (x − xsh)/rL,i ≤ 1 at

Ωcit ∼ 22. Here, the four models (M2.0, M2.3, M2.5, M3.0) are employed in the panel (a), while the

four models without a power-law tail are used in the panel (b) for comparison. The injection energy, γinj

and the suprathermal energy, γspt = 1.25 are marked as gray and magenta solid lines, respectively. Here,

rL,i ≈ 57λse · (Ms/3).

such ripples and ion-scale waves are not observed in the subcritical M2.0 models, regardless of PPEs

(Figure 50 (a,b)).

The presence of plasma waves on relevant kinetic scales is essential for electron preacceleration

and subsequent injection to DSA. This is because for electron energization up to pinj, wave-particle

interactions mediated by waves with wavelengths as long as the gyroradius of electrons with pinj are

required. The injection momentum ranges pinj ≈ 3
√

2mikBT2 ≈ 5.6− 7.5mec (or γinj ≈ 5.6− 7.5) for

the fiducial models with Ms = 2− 3, T1 = 108 K, and mi/me = 50. Hence, the gyroradius of electrons

with γinj is rinj,1 ≡ γinjc/Ωce,1 ≈ 92− 123λse and rinj,2 ≡ γinjc/Ωce,2 ≈ 40− 41λse in the preshock and

postshock regions, respectively. Here, Ωce,1 and Ωce,2 are the gyrofrequencies of electrons. Figure 50

demonstrates that in subcritical shocks, such ion-scale waves with λ ∼ rinj,1 or rinj,2 are not excited by

the addition of PPEs (Figure 50(a,e)).

For the further characterization of waves, the power spectra of Bz, PBz , in the immediate upstream

(top panels) and downstream (bottom panels) regions of the shock are shown in Figure 51, for all the

fiducial models with PPEs in Table 10 (left panels) and the corresponding models without PPEs (right

panels). The ranges of rinj (magenta) and the gyroradius, rspt, for the suprathermal momentum, pspt ≡√
me/mi pinj, (gray) are plotted for reference. Note that pspt roughly marks the momentum above which

electrons change from thermal to suprathermal distributions [140]. The comparison of the subcritical

shocks (green and blue lines) with and without PPEs shows that PPEs enhance waves mainly with λ ∼
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20−30λse ≪ rinj,1,rinj,2, which cannot mediate the energization of electrons up to pinj. The downstream

waves with rspt,2 < λ < rinj,2 appear partly due to the WI at the shock transition and partly via the

advection of upstream waves.

On the other hand, waves with λ ≳ rinj,2 are produced only in the supercritical shocks (black and red

lines), regardless of the presence of PPEs. An interesting point is that in the marginally critical shock

of Ms = 2.3, waves with λ ≳ rinj,2 are enhanced slightly with PPEs, possibly owing to the modification

of magnetic field fluctuations by the EFI mode. Again, Figure 51 confirms that the multiscale plasma

waves that can resonate with electrons of pspt ≲ p ≲ pinj are produced only at supercritical shocks with

Ms ≳ 2.3.

Energy Spectrum and Injection Fraction

The consequences of wave-particle interactions should be manifested in the electron energy spectra.

Figure 52 shows the spectra measured in the shock upstream for all the models with PPEs (Figure 52

(a)) and without PPEs (Figure 52 (b)). The spectra in Figure 52(b) are basically the same as those in

Paper I. In the M2.0 model without PPEs (green line in Figure 52(b)), the EFI is not triggered, and so

only a single SDA cycle occurs. In the M3.0 model without PPEs (black line in Figure 52(b)), on the

other hand, thermal electrons are energized up to γ ∼ 2 via the Fermi-like acceleration and SSDA.

In the spectra for the models with PPEs in Figure 52(a), two points are noted. (1) The suprathermal

population grows in all the models, even in the M2.0 model. Especially, the population with γ ≲ 1.5 rep-

resents the incoming thermal electrons energized via the Fermi-like acceleration mediated by EFI-driven

waves. (2) In the supercritical models, the spectra stretch beyond γinj through the SSDA mediated by

multiscale waves. However, in the M2.0 model, the high-energy end of the spectrum does not change,

because PPEs do not aid the excitation of AIC-driven ion-scale waves. These results demonstrate that

the presence of PPEs alone does not modify the critical Mach number, Mcrit ≈ 2.3, for electron preac-

celeration and subsequent injection to DSA.

In PIC simulations, the maximum energy of electrons is limited by computational constraints; hence,

with a larger simulation box and a longer integration time, the spectra would extend to higher energies,

as noted in Paper I. Previously, [151] performed hybrid simulations, implemented with test-particle

electrons of initially kappa distributions. In their work, electron-scale waves, induced by the EFI and

whistler modes, are not present due to the lack of electron dynamics. Yet, they showed that in super-

critical shocks, electrons could be energized well above pinj through interactions with multiscale waves,

which are accompanied by the shock surface rippling triggered by the ion dynamics.

To estimate the electron acceleration efficiency quantitatively, we define the suprathermal fraction, ζ

for the electron preacceleration process mediated by the electron-scale waves (i.e., EFI-induced wave in

the shock upstream and whistler wave in the transition region) and the injection fraction ξ for counting

the electrons with γ ≳ γinj. Those quantities are defined as follows:

ζ ≡ 1
N2

∫
γinj

γspt

dN
dγ

dγ, (52)
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ξ ≡ 1
N2

∫
γmax

γinj

dN
dγ

dγ, (53)

where γspt is a free parameter for the minimum value for suprathermal electrons. For both ζ and ξ , the

upstream energy spectrum is used, because the electrons accelerated at the shock upstream and transition

region are well included in the shock upstream region. The panels (c) and (d) of figure 52 plots ζ and

ξ for the four different shock models. Since the preexisting power-law electrons enhance the electron-

scale waves, so ζ obtained from the model with PPEs is larger than that obtained from the model without

PPEs. The Ms dependence of ξ indicates that electrons could reach the injection energy only in the

supercritical shocks, as shown in the energy spectra (figure 52-(a)). Moreover, we interpret that at the

supercritical shocks with Ms ≳ 2.3, the suprathermal electrons with γ ≲ 1.5 are energized via SSDA

and eventually inject into DSA on substantially longer timescales. In this context, the enhancement of

suprathermal fraction, ζ may increase the injection fraction, ξ . However, at the subcritical shocks with

Ms ≲ 2.3, due to the lack of longer wavelength waves (i.e., λEFI ≪ rinj,1, λWI ≪ rinj.2), the suprathermal

electrons are not expected to gain the injection energy. So, the enhancement of suprathermal fraction, ζ

may not enough to explain electron injection, even on the longer timescales.

Note that the ξ defined in this Section is not directly corresponding to the injection fraction of DSA

in the realistic ICM shocks, because the simulation performed within the very short timescale and thus

the full physics of preacceleration and DSA is not fully exmained. In spite of such limitations, we point

that the injection into the DSA in the subcritical shocks still remains as an open question, regardless of

the contribution of PPEs for microphysics in the shock structure.

Dependence on Parameters

We next examine how our findings depend on the parameters that specify PPEs, such as np/n0, α , and

γmax, as well as the simulation parameters, such as mi/me and β . Figure 53 shows the magnetic field

power spectra, PBz , in the immediate downstream, for the M2.0 models in the second group (Figure

53(a)) and the M3.0 models in the third group (Figure 6(b)) of Table 10. The comparison of all the

lines in Figure 53(b) with the black line in Figure 51(c) indicates that the generation of waves does not

strongly depend on these parameters in the case of the supercritical shocks with Ms = 3. In all the M3.0

models, PBz for rspt,2 ≲ λ ≲ rinj,2 is substantial. By contrast, there are some differences in the case of the

subcritical M2.0 models. For instance, in the M2.0-np0.1 model (green line in Figure 53(a)), with np/n0

ten times larger than that of the fiducial model (green line in Figure 51(a)), the excitation of waves

is enhanced. In the M2.0-β50-m25 model (orange line in Figure 53(a)), with a weaker background

magnetic field, waves with longer wavelengths appear. As noted above, waves in the M2.0 models are

mostly electron-scale waves, induced by the EFI and whistler modes.

Finally, Figure 54 compares the electron energy spectra in the immediate upstream for the M2.0

models in the second group (upper panels) and the M3.0 models in the third group (lower panels) of

Table 10. The energy spectra extend up to γ − 1 ∼ 10 in all the M3.0 models, independent of the

parameters. This is because the ripples along the shock surface have λripple ∼ 70λse (see Figure 50(c,d)),

which marks the longest wavelength of AIC-driven waves. Hence, the maximum energy in the spectra is
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Figure 53: Magnetic field power spectra, PBz(ky) ∝ (ky/2π)(δBz(ky)
2/B2

0), in the immediate down-

stream region, −1 ≤ (x − xsh)/rL,i ≤ 0, at Ωcit ∼ 22, for the M2.0 (top) and M3.0 (bottom) mod-

els with different parameters (see Table 10). Here, xsh is the shock position, and rL,i ≈ 57λse ·
(Ms/3)

√
β/20

√
(mi/me)/50. The magenta and gray boxes denote the ranges of the gyroradius of

electrons with pinj and pspt, respectively, in the downstream region.
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Figure 54: Electron energy spectra in the immediate upstream region, 0≤ (x−xsh)/rL,i ≤ 1, at Ωcit ∼ 22,

for the M2.0 (upper panels) and M3.0 (lower panels) models with different parameters (see Table 10).

The dashed lines draw the electron energy spectra in the far upstream region, 10 ≤ (x−xsh)/rL,i ≤ 11, at

Ωcit ∼ 3, for comparison. Here, xsh is the shock position, and rL,i ≈ 57λse ·(Ms/3)
√

β/20
√

(mi/me)/50.

Some of the blue solid and dashed lines marked by (×0.1) are shifted vertically for clarity.

given as γmax ≈ λrippleΩce,2/c ≈ 11, in our simulations. Again, the main results described in the previous

subsection remain valid, independent of the model parameters.

Effects of Preexisting CR Ions

While the effects of preexisting relativistic electrons are mainly considered in this work, it is likely to

predict the presence of CR ions (mostly protons) in the ICM, although the evidence of CR ions still

need to be confirmed through the diffuse γ-ray obervations. Based on the current upper-limits from

currently available telescopes such as Fermi-LAT, the farction of CR ions is expected to be very small

and corresponding numerical studies suggested that the CR fraction averaged over a typical cluster

volume is roughly 10−4 − 10−3 [104, 105, 198]. In spite of such uncertainty, it has been shown that

proton acceleration mechanism can be operated at ICM shocks, like most the astrophysical shocks such

as shocks in front of supernova remnants (see Section III). In this regards, it is necessary to confirm the

effects of preexisting CR ions at the ICM shocks through the detailed PIC simulations.

By adopting the same setup used for the shock model, M3.0-np0.1, we additionally run a simulation

including both 10 % of CR electrons and CR ions. Note that the number of CR ions used here is much

larger than the fraction suggested by the Fermi-LAT upper limits, so the model considered here is very

optimistic case. With this model, the larger fraction of CR ions could generate more prominent features

mediated by CR ions near the shock surfaces.

We first compare the magnetic field structures for the model with power-law ions and without power-

law ions. Figure 55 shows 2D slices of magnetic fields along y and z directions. According to the struc-

ture of Bz, the multi-scale plasma waves for electron preacceleration are efficiently induced regardless
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include the power-law ions, whereas right panels are obtained by the model without the power-law ions

(i.e., the model, M3.0-np0.1 in table 10.
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region, −1≤ (x−xsh)/rL,i ≤ 0, at Ωcit ∼ 18, for the model with the power-law ions (black) and the model

without the power-law ions (red). The magenta and gray solid lines display the gyroradius of electrons

in the downstream region with pinj and pspt, respectively. Here, rL,i ≈ 57λse.
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of the presence of power-law ions. However, according to the structure of By at x− xsh = [−50,0]λse,

the generation of shock surface rippling is slightly suppressed by the power-law ions. To confirm the

suppression of generating ion-scale waves, we compute the magnetic power spectrum, PBz at the shock

transition region, x− xsh = [−50,0]λse. Around the scale, ky/2π ∼ r−1
inj,2, the amplitude of power spec-

trum without the power-law ions is indeed larger than that with the power-law ions. The effects of

power-law ions can be explained by the physics of ion reflection at the shock. Because the ions are

mainly reflected by the shock potential, so ions with smaller kinetic energy are more likely to be re-

flected compared to the high energy ions. In other words, the high energy power-law ions just pass

the shock surface and advect to downstream and thus, the presence of power-law ions reduces the ion

temperature anisotropy, Ti⊥/Ti∥ at the shock transition zone. As described in Section VI, the growth rate

of AIC (i.e., the instability responsible for the shock surface rippling) decreases as Ti⊥/Ti∥ decreases.

In this regards, the presence of power-law ions does not play an important role in wave generation for

electron preacceleration.

Upstream electron energy spectra for two different models (the model with and without the power-

law ions) are plotted in Figure 57. Because the power-law ions does not enhance the multi-scale waves

near the shock surface, the resulting energy spectra are insenstive to the presence of the power-law

ions.Thus, we conclude that the CR ions in the upstream plasma does not change the results of this

work.

8.3 Summary and Discussion

Merger-driven shocks in the ICM are collisionless and thought to produce CRs through DSA (e.g., [22]).

The CR electrons responsible for the synchrotron radiation from observed radio relics, for instance,

are expected to be accelerated at the Q⊥-part of merger shocks (e.g., [144]). DSA involves a broad

range of kinetic processes, including the generation of plasma waves and the interaction of waves and

particles (e.g., [150]). In particular, one of the key issues for the DSA of electrons is preacceleration and

subsequent injection to DSA, since thermal electrons have the momentum too small to cross the shock

transition. Previously, two processes for preacceleration of electrons have been identified, the SDA

mediated by upstream EFI-induced waves (e.g., [23, 24, 140]) and the SSDA mediated by multiscale

waves in the shock transition (e.g., Section VII, [141, 162]). It was shown that those processes operate

only in supercritical shocks. In the ICM, while supercritical shocks have Ms ≳ 2.3, some radio relics are

observed to be associated with merger shocks with Ms < 2.3 (e.g., [48, 199, 200]).

As an effort to explain the production of CR electrons via DSA in radio relics with subcritical shocks,

in this study, we have performed 2D PIC simulations for Q⊥-shocks of Ms = 2− 3 in high-β plasmas,

with power-law nonthermal electrons preexisting in the shock upstream, in addition to Maxwellian ther-

mal electrons. The nonthermal electrons intend to mimic relativistic electrons in the ICM. However, with

limited computational capacities, the nonthermal component actually extends only up to γcut = 5−10 in

our simulations, representing a suprathermal population.

The main findings are summarized as follows. (1) The presence of PPEs enhances the EFI owing
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to the increased fraction of the electrons reflected at the shock ramp. As a result, waves with λ ∼
20− 30λse, generated by the EFI, appear even in the upstream region of the subcritical shocks in our

M2.0 models. At the same time, the suprathermal population increases through the preacceleration via

the Fermi-like acceleration mediated by the EFI waves in the M2.0 models, as well as in other models

with supercritical shocks. (2) Ion-scale waves with λ ≳ rL,i ≈ 57λse · (Ms/3) are excited only in the

supercritical shocks of the M2.3 - M3.0 models, as the consequence of the AIC instability, regardless of

the presence of PPEs. In those models, the energy spectrum of electrons continues beyond pinj via the

SSDA mediated by multiscale waves ranging from electron to ion scales. On the other hand, ion-scale

waves are not produced in the subcritical M2.0 models, since PPEs do not facilitate the excitation of

ion-scale waves via the AIC instability. Hence, in the M2.0 models, the high-energy end of the electron

energy spectrum does not change even with PPEs.

We further comment on the potential effects of the three ingredients that are not fully accounted for

in our simulations: (1) realistic preexisting nonthermal electrons and (2) preexisting kinetic turbulence

in the ICM.

As noted above, while the preexisting power-law component of electrons extends only up to γ ≲

γinj in our simulations due to limited computational capacities, the nonthermal population in the ICM

is expected to stretch to higher energies of γ ∼ 102 − 103, considering the physical condition there

[193,201]. Hence, in reality, some of the electrons reflected at the shock ramp may have energies higher

than those reproduced in our simulations. On the other hand, the properties of the EFI induced by the

reflected electrons, such as the wavelength and growth rate of the fastest growing mode, are not very

sensitive to the characteristics of the electron beam that induces the instability [143]; as long as the bulk

of the beam energy resides in the low-energy part of the power-law distribution, most of the EFI-induced

waves would be still on electron scales. Although the details should be further investigated, we suspect

that the power-law nonthermal electrons that extend to higher energies would not resolve the issue of

the generation of ion-scale waves in subcritical shocks.

A more promising possibility would be the presence of broadband magnetic fluctuations, pos-

sibly produced by the turbulence in the ICM. Preexisting nonthermal electrons with energies up to

γ ∼ 102 − 103 could be directly injected into DSA via resonant scatterings off those preexisting tur-

bulent waves. As a matter of fact, previous studies using test-particle simulations for electrons showed

that electrons could be accelerated via SDA and DSA, regardless of the shock obliquity angle, by inter-

acting with preexisting large-amplitude magnetic fluctuations in interplanetary shocks [202,203]. While

such acceleration requires efficient wave-particle interactions in the ICM environment, the details of

involved processes should be investigated through further simulations.

Additionally, we point that cosmological hydrodynamic simulations showed that radio relics, formed

in the turbulent ICM, normally consist of shock surfaces with varying Ms and θBn [33, 48, 52, 121]. As

suggested by several previous papers including Paper I, it would be interesting to consider a scenario,

in which nonthermal electrons, accelerated in the locally supercritical portions of the shock surface,

are injected to DSA at subcritical portions. Furthermore, the variation of θBn in the shock surface could

contribute to the generation of the large-scale modulation in the surface. In the interplanetary shocks, for
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instance, the surface ripplings on scales larger than the AIC-induced waves have been detected [204],

which are thought to be generated due to the upstream magnetic field fluctuations produced by the

backstreaming ions at Q∥-portions.

Finally, we thus conjecture that there is still the possibility of electron DSA in radio relics with

subcritical shocks, when additional processes and/or ingredients other than those considered in this work

are included. The investigation of such elements is beyond the scope of this article, so we leave it for

future work. For now, we conclude that the presence of nonthermal electrons in the ICM “alone” would

not resolve the issue of electron preacceleration and injection into DSA, and hence could not explain the

production of CR electrons in radio relics with subcritical shocks.
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IX Conclusion

Inside galaxy clusters, shocks are induced due to the supersonic flow motions and among such shocks,

merger shocks induced by two clump mergers are the most energetically important. Indeed, the merger

shocks have been detected through X-ray and radio observations and the radio synchrotron emission

from such shocks have been recognized as a evidence of particle acceleration via DSA. Through the

detailed numerical simulations, we have studied properties of merger-driven shocks and particle accel-

eration mechanism by such shocks in the galaxy clusters as well. We believe that our results are helpful

to understand high energy phenomena due to the particle acceleration in the galaxy clusters (i.e., two

outstanding problems described in Introduction). Through a set of PIC simulations for ICM Q∥-shocks,

we first examine the proton acceleration physics including the relevant plasma instabilities [83] and

build a DSA model at ICM Q∥-shocks as well [104]. According to that DSA model, the expected γ-ray

emission from galaxy clusters are well below the upper limit suggested by Fermi-LAT. Future γ-ray

observations could confirm whether the DSA model using in this thesis is reliable or not. Moreover, we

partially resolve the issue about the origin of observed radio relics in the outskirts of galaxy clusters. In

particular, the acceleration mechanisms mediated by microinstabilities in the transition region of shock

could explain the electron acceleration at the ICM shocks with Ms ≳ 2.3. As pointed in the Sections

VII and VIII, the electron acceleration at the very weak shocks with Ms ≲ 2.3 should be investigated

to understand the radio observations of such weak shocks. We will conduct more theoretical/numerical

studies using PIC simulations as future works. For instance, it would be interesting if we can implement

the turbulent upstream medium in our PIC simulation to consider more realistic turbulent ICM.

While this thesis mainly describes the physics of particle acceleration and relevant high energy phe-

nomena inside galaxy clusters, it is likely to investigate particle acceleration around galaxy clusters. As

explained in Introduction, kinetic energy flux dissipated through shocks around galaxy clusters is much

smaller than that through shocks inside galaxy clusters, because external accretion shocks propagate in

very low density medium. In spite of that, external accretion shocks may accelerate particles efficiently

because of their large Mach number, Ms ∼ 10−100. In this regards, external accretion shocks have been

considered as CR accelerator (e.g., [205–211]). It is expected that Weibel instability plays an important

role in shock formation when upstream bulk kinetic energy is much larger than upstream mangetic en-

ergy, and thus external accertion shocks could be also Weibel-mediated shocks. The detailed particle

acceleration process in such shocks could be different from that in ICM shocks, so further numerical

studies should be required to examine the detailed acceleration mechanism.
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