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Abstract The present commentary discusses the papers

of the special issue on ‘cognitive neuroscience and math-

ematics learning’ with respect to methodological and the-

oretical constraints of using neuroscientific methods to

study educationally relevant processes associated with

mathematics learning. A special focus is laid on the rele-

vance of subject populations, methodological limitations of

current neuroimaging methods and theoretical questions

concerning the relationship between the well-studied neu-

ral correlates of numerical magnitude processing and the

less-investigated neural processes underlying higher level

mathematical skills, such as algebraic reasoning.

1 Introduction

Following the invention of novel methods to non-inva-

sively measure human brain structure and function, the last

20 years have seen an unprecedented surge in the study of

how the human brain enables complex cognitive functions

such as language, reasoning, reading and mathematics. In

view of these advances, the burgeoning field of cognitive

neuroscience has recently started making transdisciplinary

links with other fields, such as economics and education.

As part of this effort to connect cognitive neuroscience

with other fields of inquiry and application, growing

attention has been paid to building bridges between, on the

one hand, the cognitive neuroscience of numeracy and

mathematics and the empirical study of mathematics

learning and education, on the other (De Smedt et al.

2010).

The study of the brain mechanisms involved in numer-

ical and mathematical processing has provided significant

insights into the neural processes that underlie the ability to

represent and process numerical magnitude (the total

number of items in a set). Convergent evidence from

neuropsychology, single-cell neurophysiology and func-

tional neuroimaging has identified the intraparietal sulcus

(IPS) of the brain as a critical substrate for the represen-

tation of numerical magnitude (Nieder and Dehaene 2009).

While impressive progress has been made in under-

standing the brain mechanisms underlying basic numerical

processes, comparatively little is known about the neural

basis of higher level mathematical skills that are funda-

mental to mathematics learning in the context of formal

schooling (see also the review article by Menon 2010). It

was this apparent knowledge gap that provided the moti-

vation for this special issue of ZDM, which presents both

empirical and theoretical contributions that seek to enhance

our understanding of the cerebral mechanisms that enable

higher level mathematical learning.

A distinctive feature of the contributions presented in

this special issue is that all of them study the neural pro-

cesses associated with mathematical processing with a high

degree of ecological validity. That is, experimental para-

digms were applied that most closely resemble how a

particular task would be presented in the mathematics

classroom and that elicit the cognitive processes thought to

occur when learning in school takes place. This approach is

innovative as, in contrast to educational researchers who

have a long tradition of conducting ecologically valid
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research, experimental psychologists and cognitive neuro-

scientists have placed relatively more emphasis on the

control of potentially confounding variables, often at the

expense of sacrificing ecological validity.

While the pursuit of high ecological validity in cognitive

neuroscience investigations is important, especially given

the efforts to connect cognitive neuroscience with educa-

tion, it also poses considerable challenges to the research-

ers. The contributions in this special issue illustrate several

of these challenges, and how to overcome them, and high-

light the strengths and limitations of different experimental

designs used to gain insights into the cognitive neuroscience

of mathematics learning.

In what follows we provide an overview of, what are in

our view, the key challenges that face investigators seeking

to understand the brain mechanisms underlying mathe-

matics learning. We refer to pathways through which some

of these challenges may be overcome and outline a few of

the many open questions and future challenges. Further-

more, we discuss how an interdisciplinary, collaborative

research, exemplified in the studies of the present special

issue, provides promising first steps toward a cognitive

neuroscience of mathematics learning.

2 Are we testing the right populations of participants?

The first challenge in cognitive neuroscience studies on

mathematical cognition lies in the selection of a study

population with a high ecological validity. The straight-

forward approach of investigating school-related mathe-

matics learning in students of the age or grade in which the

learning processes of interest take place can often not be

pursued due to restrictions of the applied neuroimaging

method. This is particularly true for the widely used

functional magnetic resonance imaging (fMRI). In most of

the fMRI studies on mathematical cognition, as is the case

for the studies presented in the present special issue, adults

rather than school children are tested, even if this entails a

lower ecological validity of the obtained results. There are

two main reasons for this compromise. First, since fMRI

data acquisition is severely prone to motion artifacts, it is

essential that the participants keep their heads still over a

time period of several minutes. Children often have great

difficulty exerting control over their head motion. Second,

although the ethical considerations are largely the same for

adults and children, many cognitive neuroscientists have

experienced that ethics review committees are sometimes

more concerned about fMRI studies of the latter popula-

tion, thus further complicating cognitive neuroscience

investigations with younger populations.

For some research questions related to mathematics

learning, the investigation of adult populations appears

legitimate. For example, in comparing the neural correlates

of schematic and symbolic strategies for solving algebraic

word problems, Lee et al. (2010) deliberately selected

young adults who were equally proficient in applying both

strategies. In this vein, they avoided the potential problem

that adolescents may exhibit different proficiency levels.

Such differences in task performance may have arisen if

younger participants had been tested, as the symbolic

strategy was introduced in school more recently than the

schematic strategy. Likewise, starting from behavioral

experiments in adolescents and adults showing similar

performance patterns, Stavy and Babai (2010) studied the

brain correlates of intuitive interference in geometry only

in adults. However, in any case, the generalizability of

neuroimaging findings from adult samples to children’s or

adolescents’ school learning needs to be scrutinized against

the background of developmental changes in the functional

(and structural) architecture of the brain (Giedd et al.

1999). There is a growing body of evidence for dynamic

age- and competence-related changes in brain activation

patterns during numerical and mathematical thinking (e.g.,

Ansari et al. 2005; Rivera et al. 2005). For example, Rivera

et al. (2005) investigated brain activity in a sample of

8–19-year olds and provided compelling evidence of an

increasing functional specialization of parietal brain areas

for arithmetic problem solving. This result presumably

reflects the developmental transition from effortful proce-

dural strategies (such as counting) to the automatic retrie-

val of facts in mental arithmetic (see also Grabner, Ansari,

et al. 2009). Given these dramatic changes in the neural

correlates of higher level cognitive functions over the

course of development, observations made by studying the

fully developed brain of adults cannot be used to charac-

terize the neural correlates of these functions in children.

Furthermore, when adults are studied, there are often

problems related to the representativeness of the sample.

Most frequently, adult samples consist of undergraduate

students from middle-class socio-economic (SES) back-

grounds and are thus hardly representative of the general

adult population, especially given the recent research

revealing that brain mechanisms underlying cognitive

processes are modulated by factors such as SES (Raizada

and Kishiyama 2010).

Administering neuroimaging methods other than fMRI

is another way to overcome age-related restrictions. This

special issue also comprises investigations using transcra-

nial near-infrared spectroscopy (NIRS) and pupillometry

(Bornemann et al. 2010; Landgraf et al. 2010; Obersteiner

et al. 2010), which are both easily applicable in younger

age groups. NIRS, on the one hand, measures cortical

activity by detecting activation-related changes in the

absorption and reflection of near-infrared light that is

emitted into the scalp. This neuroimaging technique is
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considered to be a very promising candidate for future

educational neuroscience research, as it is comparably

insensitive to motion artifacts, ethically quite unobjec-

tionable and, since it is non-stationary, can even be applied

in the school or classroom. These advantages, however, are

complemented by a poor spatial resolution (in the range of

cm) and the fact that only surface areas of the cortex can be

measured, thus not providing insights into the subcortical

correlates of mathematical learning. Moreover, NIRS

measurements are restricted to the investigation of regions

of interest, since there are currently no devices that cover

the entire scalp, thus not allowing for the recording of the

responses from multiple and spatially distal brain regions

within the same session. In their paper published as part of

the present special issue, Obersteiner et al. (2010) applied

NIRS in a sample of fourth and eighth graders and, against

the background of their results, provided an elaborate

discussion on the potential and limitations of this method.

This discussion provides an important roadmap of the

challenges that this research methodology poses for

investigators interested in pursuing NIRS as a way of

gaining greater insights into the neural mechanisms

underlying mathematics learning.

Pupillometry, on the other hand, does not measure brain

activity, but instead provides a measure of pupil dilation,

which may have the potential to index neuronal activity

related to cognitive resource allocation in mathematical

cognition. The contributions by Bornemann et al. (2010) as

well as Landgraf et al. (2010) provide first evidence of its

sensitivity to mathematical processes and the link to

regional cortical activity. This inexpensive methodology

may also help to provide some biological constraints on

existing cognitive accounts of mathematics learning.

However, for researchers who are interested in under-

standing the brain networks involved in particular aspects

of mathematics learning, this method, on its own, may not

be appropriate.

In general, the relative advantages and disadvantages of

the methods used in the papers of this special issue high-

light the importance of considering methodological

approaches that include the application of multiple meth-

ods to, for example, harness the spatial resolution of fMRI,

while at the same time benefitting from the temporal res-

olution of EEG.

3 What experimental design can be applied?

Another critical challenge in investigating the brain cor-

relates of higher order mathematics learning concerns the

design of the experimental task. First, the signals measured

using functional neuroimaging methods contain a large

error of measurement. Consequently, several trials

(problems) of each task condition need to be averaged to

reduce this measurement error and to obtain reliable data.

This further necessitates that the duration of each trial is

comparably short so that many trials can be presented in

one test session. Most of the current neuroimaging studies

include at least about 20–30 trials per task conditions; if a

high error rate is expected, even more (see, e.g., Stavy and

Babai 2010). The constraint that each problem needs to be

solved within a few seconds has a strong impact on the task

complexity. Computing single-digit and double-digit

arithmetic problems fall within the desired complexity

range, but when algebraic word problems should be solved,

different representations of mathematical functions be

compared, or features of geometric objects be evaluated,

the task demands need to be reduced. The contributions by

Lee et al. (2010), Stavy and Babai (2010) and Thomas et al.

(2010) provide good examples for feasible levels of task

complexity.

Second, the ways of responding to the task are limited,

either due to the requirement of holding still or due to

technical constraints such as loud fMRI scanner noise,

making the recording of verbal responses difficult. There-

fore, in most mathematical neuroimaging studies, partici-

pants respond by button press, verifying a given answer

(e.g., Bornemann, et al. 2010; Preusse et al. 2010) or

choosing between different answer options (e.g., Landgraf,

et al. 2010; Lee, et al. 2010; Obersteiner, et al. 2010). An

objection that is frequently raised concerning the use of

verification tasks is that they may engage different cogni-

tive processes compared to tasks in which the answer has to

be actively produced and thereby use a response modality

that is not ecologically valid. This point is elaborated and

illustrated in the contribution by Menon (2010). But,

independently of whether one or more response options are

presented, good distractor items (incorrect solutions) need

to be created that avoid the use of shortcut strategies such

as focusing on the unit position in verifying multiplication

equations.

Third, mathematical tasks with higher ecological

validity typically involve multiple cognitive processes that

occur at various points within the processing stream, but

cannot easily be dissociated from one another using cur-

rently available neuroimaging methods. In other words, the

brain imaging method captures brain activation related to

all aspects of processing a particular problem, such as

cognitive and emotional processing of the stimuli, the

preparation and execution of a motor response, etc. The

more processes are involved, the more difficult does it

become to disentangle and associate them with specific

brain areas. Very frequently, researchers will reveal a

large-scale network of activation associated with their task

that could be attributable to a multitude of cognitive pro-

cesses (see, e.g., Thomas, et al. 2010). In fMRI, a well-
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established way to overcome this problem is the use of a

subtraction design. This means that control conditions are

added that differ from the experimental conditions only in

one cognitive process. The subtraction of the activation

pattern during the control condition from that during the

experimental condition yields the activation that is related

to the cognitive process of interest. For instance, Zago et al.

(2010) has successfully applied this subtraction procedure

to studying the brain mechanisms of counting small and

large numerosities. However, the subtraction logic relies on

the assumption that processes within a task are additive and

that variables of interest can be isolated by subtracting out

activation related to other task-related processes (also

referred to as the ‘pure insertion’ assumption). This

assumption has been heavily criticized, and parametric

variations or adaptation designs have been put forward as

solutions. In the first, different levels of complexity of a

process of interest are employed to reveal brain regions, the

activity of which is correlated with this complexity and

hence is likely to be critical for this process. In the latter, a

particular stimulus variable is repeated while other attri-

butes vary, and areas in which activity decreases as a

function of repetition are measured with the assumption

that repetition-related suppression of activation is related to

the representation of the stimulus variable that is being

repeated.

4 How is basic number processing related to higher

order mathematical skills?

The papers in this special issue illustrate the multiple

levels of description at which research into the cognitive

neuroscience of mathematics learning is currently being

undertaken. The issues tackled by researchers in the

current issue range from the study of the neural corre-

lates of large numerosity counting (Zago, et al. 2010) to

the role of graphical and algebraic representations in

student’s understanding of functions (Thomas, et al.

2010). One of the key issues that researchers face on

the cognitive neuroscience of mathematics learning is

finding ways to bridge these different levels of descrip-

tion and to understand how basic numerical and mathe-

matical abilities constrain the acquisition of higher level

skills.

The review paper by Butterworth and Laurillard (2010)

strongly argues for a link between the processing of

numerosity (sets of items) and the development of arith-

metic skills and posits that developmental dyscalculia is

caused by a low-level impairment in numerosity process-

ing, which impedes the acquisition of arithmetic skills and

thus leads to mathematical difficulties in the classroom.

While there is behavioral evidence to support this link

between basic numerosity processing and arithmetic,

understanding of the neural mechanisms and dynamic

changes within them that allow for the utilization of early

developing numerosity representations in the learning of

arithmetic is currently lacking.

In this context, it is important to point out that finding

activation in brain areas during the processing of higher

level mathematical tasks that have previously been asso-

ciated with basic number processing does not imply that

the higher level mathematical task engages the same neu-

rocognitive processes that were found to be correlated with

the basic processes. To put this more concretely, activation

of the IPS during both algebraic processing and dot

counting does not imply equivalence of processing. It is

possible that separate populations of neurons within the

same regions of the IPS, subserving completely different

processes, lead to the activation of the same regions.

Generally, it is problematic to infer functions from brain

activations by referring to previous findings (an interpre-

tation approach referred to as ‘reverse inference’; for a

discussion, see Poldrack 2006).

One avenue for pursuing a better understanding of how

different levels of numerical and mathematical learning are

linked to one another in the brain is to study the overlap of

their neuronal correlates within the same subjects (for

example, see Simon et al. 2002). While potentially fruitful,

the demonstration of overlap (or lack thereof) of different

levels of numerical and mathematical processing and

learning does not provide constraints on the mechanisms

that bridge different levels of numerical and mathematical

learning. Only through studies that directly assess learning,

such as those that investigate how brain mechanisms

underlying calculation changes as a function of learning

(Delazer et al. 2003; Grabner, Ischebeck, et al. 2009;

Ischebeck et al. 2006), such insights can be obtained.

Training studies in adults as well as longitudinal studies

with children that track, for example, the transition from

mathematics instruction focused on whole numbers to the

teaching of fractions are required.

5 Conclusions and future directions

The contributions of this special issue do not only exem-

plify current neuroscientific approaches to elucidate brain

mechanisms supporting mathematics learning, but also

illustrate the tension between educational relevance and

methodological constraints imposed by current cognitive

neuroimaging methods. Neuroimaging methods open up a

new level of analysis, and their application has the poten-

tial to provide insights into cognitive processes that cannot

be obtained by behavioral studies alone. However, similar

to every other research method, the full potential of
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neuroimaging techniques can only be tapped if their

requirements and constraints are carefully considered.

Striving for a high ecological validity, sometimes meth-

odological compromises are made that result in unreliable

or ambiguous data.

The resolution of this tension requires the collabora-

tion between, on the one hand, educators and educational

researchers and, on the other, cognitive neuroscientists

(Ansari and Coch 2006; De Smedt et al. 2010). Such

interdisciplinary collaborations will enable educational

researchers to alert cognitive neuroscientists to educa-

tionally relevant research questions and paradigms that

tap into cognitive processes most closely resembling

those that students engage in mathematics learning in

school. Furthermore, educational researchers possess

invaluable knowledge of the extraneous variables that

influence mathematics learning, such as SES, emotional

processes and the role of different ways of instruction and

problem presentation. These contributions will enrich

cognitive neuroscience research on mathematics learning

through the formulation of novel questions, which

address problem domains that have previously not been

part of neuroscientific investigations. Furthermore, edu-

cational researchers often have far more experience about

the sequence of learning and the interrelationships

between more ‘basic’ and more ‘higher level’ mathe-

matical skills. This can facilitate studies on how different

mathematical competences are related to each other over

the course of learning and, eventually, lead to more

answers concerning the relationship between basic and

higher level skills.

On the other hand, cognitive neuroscientists have

extensive experience in designing experiments to isolate

variables of interest through the use of neuroimaging

methodologies and can thus assist educational researchers

in the design of tightly controlled experimental paradigms

to address their questions of interest. Beyond bringing

methodological expertise to the table, cognitive neurosci-

entists are aware of the constraints placed on the inter-

pretation of neuroimaging data and can also help to

adequately interpret the results of neuroimaging findings,

preventing mis- or over-interpretation.

It is important to emphasize that cognitive neuroscience

methods must not be placed above traditional educational

research methodologies in terms of explanatory value or

power. Rather, results from neuroimaging studies should

always be considered in the context of traditional behav-

ioral studies conducted by educational researchers and

cognitive psychologists. We contend that only through the

mutually constraining explanatory power of experiments

conducted using both behavioral and brain imaging meth-

ods, greater insights into mathematics learning will be

gained.

In future, interdisciplinary training will play an

increasingly important role. Students trained in both edu-

cational research and cognitive neuroscience will be aware

of the chances and limitations of both research approaches

and thus be best equipped to walk the tightrope between

educational relevance and methodological feasibility.
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