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Abstract

We study two geometric optimization problems: Line segments pattern matching and multi-robot

path planning. We give approximation algorithms for matching two sets of line segments in

constant dimension. We consider several versions of the problem: Hausdorff distance, bottleneck

distance and largest common subset. We study these similarity measures under several sets of

transformations: translations in arbitrary dimension, rotations about a fixed point and rigid

motions in two dimensions. As opposed to previous theoretical work on this problem, we match

segments individually, in other words we regard our two input sets as sets of segments rather

than unions of segments.

Then we consider a multi-robot path planning problem. A collection of square robots need to

move on the integer grid, from their given starting points to their target points, and without

collision between robots, or between robots and a set of input obstacles. We designed and

implemented three algorithms for this problem. First, we computed a feasible solution by placing

middle-points outside of the minimum bounding box of the starting positions, the target positions

and the obstacles, and moving each robot from its starting point to its target point through a

middle-point. Second, we applied a simple local search approach where we repeatedly delete and

insert again a random robot through an optimal path. It improves the quality of the solution, as

the robots no longer need to go through the middle-points. Finally, we used simulated annealing

to further improve this feasible solution.
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Figure 1: Matching two sets of segments under translation.

I Introduction

Computational geometry is a field of computer science that deals with geometric objects such

as points, lines, polygons, polytopes . . . . In this thesis, we study two computational geometry

problems, and more precisely, geometric optimization problems. Geometric optimization consists

in minimizing or maximizing a cost function defined for a set of such geometric objects.

Ideally, we would want to find an algorithm that (1) returns an optimal solution, (2) is fast,

and (3) solves any instance of the problem. In complexity theory, it is often desirable to find

such a solution in polynomial time. If we cannot find such an algorithm, we may relax some of

the conditions (1), (2) and/or (3). For instance, if we relax Condition (1) and we only return

a solution whose cost is a constant factor from optimal, still in polynomial time, then we have

obtained an approximation algorithm. If the solution is not known to be within a constant factor

from optimal, we have a heuristic, which may give a good solution for most instances, but without

any guarantee.

Geometric pattern matching relates to measuring the similarity between geometric objects

such as polygons or sets of points. These problems are motivated by applications to computer

vision, for instance. When we want to find an optimal matching, it becomes a geometric

optimization problem. Path planning relates to computing a path for a robot, or a set of robots,

between a starting configuration and a target configuration. If we want to find a path that is

optimal according to some criterion, it also becomes a geometric optimization problem.

In this thesis, we studied pattern matching problems where the input geometric objects are

line segments. An image can be represented in different ways. For instance, it can be represented

by a bitmap, which is a matrix of pixels. A different approach is to give a geometric representation

of the image as a set of line segments. The line segments could represent, for instance, the edges

of a building or a corridor. Such a representation may save space as an edge is represented by

only its two endpoints, and it also gives more structured information than a raw bitmap.

Path planning for a single robot has been studied a lot. Nowadays, multi-robot path planning

is used in many industrial applications. For instance, unmanned vehicles are used in warehouses

to move objects quickly without collision. These robots work in 2D Euclidean space, and move

continuously. There are warehouses arranged as grids like Autostore and Ocado. Each bin on

the grid is shifted by robots moving on the top of the grid and is sent to a portal where human

1
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Figure 2: On the left, the union of the solid segments
⋃
S1 is similar to the union of the dashed

segments
⋃
S′
1 in the sense any point on a dashed segment is close to a point on a solid segment.

However, taken individually, no segment in s ∈ S1 is similar to any segment s′ ∈ S′
1 as they are

orthogonal. Our approach ensures that S1 and S′
1 will be considered dissimilar, whereas S2 and

S′
2 (right) are similar as the endpoints match closely.

workers wait for the products to be delivered in the bins. What if each bin can move on the grid?

Then this problem is similar with the problem we study in this thesis. However, there are still

some differences. For example, we considered the 2D grid case, and we have unbounded space

for the robots to move.

1.1 Matching sets of line segments

In Section II, we study line segments pattern matching. Line segments pattern matching consists

in measuring the similarity between two sets of line segments, or finding a transformation that

makes them as similar as possible. (See Figure 1.) Several worst-case efficient algorithms have

been designed for this type of problems. However, these algorithms consider unions of segments⋃
S and

⋃
S′ instead of sets of segments S and S′: the goal is to find a matching such that each

point on any segment of the first set S is close to a segment in the other set S′. (See the survey

by Alt and Guibas [1].) The union of segments
⋃

S is
⋃
S = {p | ∃s ∈ S : p ∈ s}, and the set of

segments S is S = {s | s ∈ S}. Figure 2 shows an example where these two notions of similarity

differ substantially. These algorithms give a high similarity between two sets of orthogonal line

segments such as the left one in Figure 2, even though their endpoints are far from each other

and the angle between two segments from different sets is 90 degree. Based on this observation,

we will rather compute the distance between the endpoints of the line segments. As described

in the survey [1], the algorithms computing an optimal solution under a set of transformations

have a large running time. So we will propose an approximation scheme for matching sets of line

segments.

Our goal in this paper is to match sets of line segments, in the sense that two segments

are matched if their endpoints are close, and then the sets S1 and S′
1 from Figure 2 would be

considered dissimilar, while S2 and S′
2 would be a good match. Our main contribution is to show

that, under a certain model, this problem can be solved using approximation algorithms, which

are about as efficient as the currently known algorithms for point-set pattern matching (within a

2
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Figure 4: 15-puzzle problem: We want to place the tiles in numerical order by sliding tiles.

linear factor if we only look at the dependency on the input size).

1.2 Multi-robot path planning

In Section III, we study a multi-robot path planning problem where a set of square robots need

to move simultaneously from their given starting positions to their target positions. (See problem

description in Section III.) The robots move along a grid, one square at a time. They are not

allowed to collide during their movement. Figure 3 shows an example of path planning for three

robots. We also allow static obstacles to be placed.

This problem is related to the well-known 15-puzzle (see Figure 4) where tiles numbered

1 to 15 on a 4× 4 frame where only one tile is missing, must be moved one by one until they

are properly ordered from 1 to 15 when going from left to right and from top to bottom. Our

3



problem is similar, but more general in the sense that we can move several squares simultaneously

on the unbounded grid.

We study two versions of the problem: The min-MAX version where we want to minimize

the time at which the last robot reaches its target position, and the min-SUM version where we

want to minimize the total number of moves of all the robots. The min-MAX version is relevant

when we want to complete the motion as soon as possible, and the min-SUM version is relevant

if we want to minimize the energy spent.

1.3 Outline

In Section II, our approximate algorithms for matching sets of line segments are described.

We address the Hausdorff distance 2.4, bottleneck distance 2.5, and largest common subset 2.6

problems. The static, translation, rotation, and rigid motion cases are also addressed for each

problem. The lower bound for matching with respect to the Hausdorff distance is proved in Section

2.8. In Section III, optimization algorithms for multi-robot path planning and experimental

results are explained. The comparison between the two heuristic methods is in Section 3.5.2.

4
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Figure 5: Two segments at distance d(s, s′) ⩽ δℓ(s).

II Matching sets of line segments

In this section, we present our results on segment pattern matching. Two preliminary versions of

this section appeared in the proceedings of the 13th International Conference and Workshops on

Algorithms and Computation [2] and in the Theoretical Compute Science [3].

2.1 Problem statements

We are given two sets of line segments S = {s1, . . . , sm} and S′ = {s′1, . . . , s′n} in Rd such that

m ⩽ n. Each of these segment si or s′j is directed, and is given by its two endpoints pi, qi and

p′i, q
′
i respectively. We denote by ℓi the length of the segment si. The restriction to directed

segments is only for ease of presentation; we can handle undirected segments without affecting

our time bounds, as explained in Section 2.7.

Our goal is to find a matching between S and S′ under a set of transformations F . For

instance, when F is the set T of translations in Rd, we may want to determine whether there

exists a translation τ ∈ T such that τ(S) ⊂ S′. In practice, however, inaccuracies in the data

mean that we cannot hope for an exact match, so we will try to find a translation such that

each translated segment of S is close to a segment of S′. (See Figure 1.) We therefore need to

introduce a similarity measure for line segments.

2.1.1 Matching Criterion

For any two points p, q ∈ Rd, we identify the segment pq from p to q with the pair of points

(p, q) ∈ R2d. The distance d(s, s′) between two segments s = (p, q) and s′ = (p′, q′) is the

Euclidean distance between these two segments regarded as points in R2d, and thus d(s, s′) =√
∥p′ − p∥2 + ∥q′ − q∥2. We say that two segments s and s′ match if d(s, s′) ⩽ δℓ(s), where ℓ(s)

is the length of the segment s, and δ > 0 is a parameter called tolerance.

We use this matching criterion for three main reasons. First, for small values of δ, two

matching segments s = pq and s′ = p′q′ are similar in the sense that the distance between their

endpoints is small, the angle between them is small, and their lengths are approximately the

same. (See Figure 5.) More precisely, we have ∥p − p′∥ ⩽ δℓ(s), ∥q − q′∥ ⩽ δℓ(s), the angle

between s and s′ is O(δ), and (1− δ
√
2)ℓ(s) ⩽ ℓ(s′) ⩽ (1+ δ

√
2)ℓ(s). (Proposition 1.) Conversely,

5



(a) (b) (c)

Figure 6: Degenerate cases of line segments.

Hausdorff Bottleneck LCS

Static O((m/ε2d + n) log n) O((n1.5/ε2d) log n) O((n1.5/ε2d) log n)

Translation O((mn/ε3d) log n) O((n2.5/ε3d) log n) O((mn2.5/ε3d) log n)

2D rotation O((mn/ε5) log n) O((n2.5/ε5) log n) O((mn2.5/ε5) log n)

2D rigid motion O((mn2/ε7) log n) O((n3.5/ε7) log n) O((m2n3.5/ε7) log n)

Table 1: Time bounds of our (1 + ε)-approximation algorithms.

if the endpoints are close in the sense that d(p, p′) ⩽ δℓ(s)/
√
2 and d(q, q′) ⩽ δℓ(s)/

√
2, then

d(s, s′) ⩽ δℓ(s), and thus the segments match according to our criterion.

The second reason for using this criterion is that it allows us to use approximate near neighbor

(ANN) data structures to efficiently compute an approximate nearest segment to a query segment.

Otherwise, we need more storage to save the point-set of line segments in
⋃
S′. For instance,

using the data structure by Arya et al. [4], the query time is O((1/ε2d) log n) for a segment in

Rd identified with a point in R2d. This will help us design efficient approximation algorithms.

The third reason is that it allows an arbitrary set of line segments. Because we only consider

the endpoints of the line segments, the following degenerate cases can be solved: (a) intersecting

between line segments, (b) overlapping, and (c) having the same endpoint. (See Figure 6.)

2.1.2 Set of Transformation

We consider different sets F of transformations. In the static case, we do not apply any

transformation to our point sets, in other words, we only use the identity transformation. The

set T is the set of translations of Rd, so each translation can be represented by a point τ ∈ Rd

and it maps any x ∈ Rd to τ(x) = τ + x. We will also consider rotations about a fixed center O

in R2. Finally, we will consider the set R of rigid motions in R2, or more precisely, the set of

translations and rotations about arbitrary points. We will not consider reflections, as it suffices

to run our algorithm on an arbitrary reflected copy of S to cover all possible glide reflections.

2.1.3 Hausdorff distance

We define the directed Hausdorff distance dH(S, S′) between S and S′ as the minimum value of

δ such that, for all s ∈ S, there exists s′ ∈ S′ satisfying our matching criterion d(s, s′) ⩽ δℓ(s).

6



So it can be expressed as follows: dH(S, S′) = max
s∈S

min
s′∈S′

d(s, s′)

ℓ(s)
. In this paper, we do not

consider the undirected Hausdorff distance, so we will simply say Hausdorff distance. The

Hausdorff distance under the set of transformations F is the minimum of dH(f(S), S′) over all

f ∈ F . Our approximation algorithms compute a (1 + ε)-approximation of this quantity, for

some 0 < ε < 1. More precisely, we find a transformation f ε ∈ F such that dH(f ε(S), S′) ⩽

(1 + ε)min
f∈F

dH(f(S), S′).

2.1.4 Bottleneck distance

The bottleneck distance db(S, S
′) between S and S′ is analogous to the Hausdorff distance, except

that we require the pairs (s, s′) to be matched in a one-to-one manner. So db(S, S
′) ⩽ δ if there

is a one-to-one mapping σ : S → S′ such that d(s, σ(s)) ⩽ δℓ(s) for all s ∈ S.

2.1.5 Largest common subset

The goal is to find the largest subset C ⊂ S such that there exists a transformation f ∈ F that

matches C to a subset of S′. So there should be a one-to-one matching between C and a subset

of S′, such that d(s, s′) ⩽ δℓ(s) for each matching pair (s, s′). We will relax the problem slightly,

and return a matching such that d(s, s′) ⩽ (1 + ε)δℓ(s) for all matching pair (s, s′), and that has

cardinality at least the optimal cardinality for the original problem.

2.1.6 Our results and approach

We obtained (1 + ε)-approximation algorithms for all these distance measures under our sets of

transformations, when 0 < ε < 1. Our algorithms for Hausdorff distance, bottleneck distance

and LCS are presented in Section 2.4, 2.5 and 2.6, respectively. In Section 2.7, we briefly explain

how to handle undirected line segments. Our results are summarized in Table 1.

Our algorithms first compute a discretization of the set of transformations, and then solve the

problem approximately for each transformation in this set using known algorithms: The ANN

data structure by Arya et al. [4] in the case of Hausdorff distance, and a geometric matching

algorithm by Efrat et al. [5] for the bottleneck distance and the LCS problem.

To be more precise, we first compute a constant-factor approximation of the solution using

a coarse discretization. For translations we use the set of vectors p′j − p1 where s1 = (p1, q1)

is assumed to be the shortest segment in S. For rotations about a fixed center O, we choose

the angles that align pa with each point p′j , where sa is the segment with largest aspect ratio

αa = max(∥pa∥, ∥qa∥)/ℓa.
Then we compute a (1+ ε)-approximation by refining these discretizations. In the translation

case, we use a uniform grid of O(1/εd) points within a ball of radius proportional to ℓ1 centered

at p′j − p1. For rotations, we use a set of (1/ε) equally spaced angles about the angles we

chose for obtaining a constant factor approximation, where the spacing is proportional to 1/αa.
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Figure 7: (a) Discretization of the space of translations. (b) The angle θj used for a constant

factor approximation. (c) Discretization of the set of angles around θj for obtaining a (1 + ε)-

approximation.

(See Figure 7.) For rigid motions, we discretize the space of rigid motion by combining our

discretizations for translations and rotations about a fixed center. The main part of our proof is

a careful analysis showing that it yields a (1 + ε)-approximation of the optimum.

2.2 Related Work

As we mentioned earlier, several algorithms are known for matching line segments, but they

consider unions of segments instead of sets of segments. The survey by Alt and Guibas [1]

mentions several such algorithms that consider unions of objects, instead of sets of objects [6–8].

These algorithms are therefore adapted for matching polygons, seen as unions of segments and

their interior. The algorithm by Alt et al in [6] can compute an asymptotically optimal matching

in O(n log n). Both algorithms by [7,8] use the rectangles 2ε with semidisks of radius ε attached

at two endpoints so called "racetracks" [8]. Even though these algorithms apply to arbitrary

sets of non-intersecting line segments (so they can handle the intersecting case (c) in Figure6),

they still identify the line segments with the sets of points lying on their line segments. These

algorithms would not be suitable for the example in Figure 2 and for the set having intersecting

line segments. For two sets of axis-parallel line segments with the same cardinality, a matching

algorithm with a new criterion called coverage measure was designed by Efrat et al [9].

Recent related work presents efficient algorithms for matching polygons or unions of disks,

under translations or rigid motions, using the area of overlap as a similarity measure [10–13]. Point-

set pattern matching under translation and rigid motion has also been studied extensively. See

again the survey by Alt and Guibas [1]. For instance Alt et al. [14] gave exact and approximation

algorithms for matching point sets under translations and rigid motions. The translation case

was improved by Efrat et al. [5]. Heffernan and Schirra [15] considered decision versions of point

set matching under translations and rigid motions. Recently, Yon et al. gave approximation

schemes for the largest common subset problem under the same set of transformations [16].

Our approach is based on discretizing the space of translations using grids, and discretizing

the angles of rotation uniformly within appropriate intervals. These techniques have been used to

8



obtain some of the results that we already mentioned [10,11,16]. Our technical contribution is to

adapt these methods to the problem of matching sets of line segments, which requires the careful

analysis presented in Section 2.4. One difference with the case of point-set pattern matching

is that our tolerance δ is weighted by the length ℓ(s) of the segment s to be matched, hence

the segment s1 with smallest length, and the segment sa of smallest aspect ratio play a special

role in our algorithms and their analysis. Because under the translations, the shortest segment

varies more than other segments; under the rotations, the segment with the largest aspect ratio

varies more than others. Another issue is that our segments are identified with points in R2d, so

exact nearest-neighbor data structures become rather slow, and we need to rely on approximate

versions even for dimension d = 2.

In terms of running time, we cannot directly compare with previous work because, as far as

we know, our problem of matching sets of line segments has not been studied before, and the

algorithms for related problems sometimes present extra parameters in the running time [15],

or consider different types of objects [11], or are restricted to sets of same cardinality [5,9, 15].

So we will only compare the dependency on the input size n, ignoring other parameters. Our

algorithms for Hausdorff distance and bottleneck distance under translation run in time O(n2)

and O(n2.5), respectively.

The algorithm by Efrat et al. [5] for point sets runs in time O(n1.5 log n), but requires that

the sets have same cardinality, which makes the problem easier as it allows to take advantage of

corner points. The algorithm by Heffernan et al. [15] for point sets runs in O(n1.5 log n) and has

the same restriction. For LCS of point sets under translation, Yon et al. [16] give an O(n3.5 log n)

algorithm, as does ours. Our algorithm for bottleneck distance under rigid motion takes time

O(n3.5 log n) while Heffernan and Schirra’s algorithm achieves O(n2.5 log n) (still for point sets).

So overall, our algorithms have a running time that is similar to previous work on point set

pattern matching, at most within an O(n) factor, and our algorithms apply to line segments

instead of points.

2.3 Preliminary

In this section, we prove two facts mentioned in the introduction. Remember that for any two

points p, q ∈ Rd, we identify the segment from p to q with the pair of points (p, q) ∈ R2d, and

the distance d(s, s′) between two segments is the Euclidean distance between these two segments

regarded as points in R2d.

Proposition 1. Suppose that two segments s = pq and s′ = p′q′ are matching, which means that

d(s, s′) ⩽ δℓ(s). Then we have:

(a) (1− δ
√
2)ℓ(s) ⩽ ℓ(s′) ⩽ (1 + δ

√
2)ℓ(s).

(b) If δ < 1/
√
2, then the angle between s and s′ is at most arcsin(

√
2δ), hence it is O(δ).

9
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Figure 8: Proof of Proposition 1b.

Proof. Suppose that p, q, ∥p− p′∥ = α and ∥q− q′∥ = β are fixed. Then the distance ∥p′ − q′∥ is

maximized when the segment pq is contained in p′q′. So in this case, we have ℓ(s′) = ℓ(s)+α+β.

By our assumptions, α2 + β2 ⩽ (δℓ(s))2, so α + β is maximized when α = β = δℓ(s)
√
2/2. It

implies that ℓ(s′) = (1 + δ
√
2)ℓ(s). This completes the proof of (a). We now prove (b).

We first argue that in the worst case, that is, when the angle θ between s and s′ is maximum,

then the midpoints c and c′ of s and s′ coincide. So we start from a configuration where these

midpoints coincide, and thus p− p′ = q′ − q. Now suppose we apply a translation τ ̸= 0 to s.

Then we have

∥τ + p− p′∥2 + ∥τ + q − q′∥2

= ∥p− p′ + τ∥2 + ∥p− p′ − τ∥2

= 2∥p− p′∥2 + 2τ2,

where the second equation follows from Apollonius’s theorem.

Therefore, we have ∥τ + p − p′∥2 + ∥τ + q − q′∥2 > ∥p − p′∥2 + ∥q − q′∥2. It means that

d(τ + s, s′) > d(s, s′), while the angle between τ + s and s′ is the same as the angle between

s and s′. So for a fixed angle θ, the shortest distance d(s, s′) is achieved when the midpoints

coincide. It implies that, for a given distance d(s, s′), the largest angle θ is achieved when their

midpoints coincide, because otherwise, we could translate s so that the midpoints coincide, and

rotate it slightly, thereby increasing the angle.

So when the angle θ is maximized, we have c = c′ and thus d(p, p′) = d(q, q′) = δℓ(s)/
√
2.

Then the segment cp′ must be tangent to the circle centered at p with radius δℓ(s)/
√
2, hence

θ = arcsin(
√
2δ). (See Figure 8.)

2.4 Approximating the Hausdorff distance

In this section, we give algorithms for approximating the Hausdorff distance between two sets of

segments S and S′ in Rd. We defined this distance dH(S, S′) as the minimum value of δ such

that, for all s ∈ S, there exists s′ ∈ S′ satisfying d(s, s′) ⩽ δℓ(s).
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2.4.1 Static case

We first give an algorithm for the static case, where S is not subjected to any transformation. Our

algorithm begins with recording the segments of S′, regarded as points in R2d, in the approximate

near neighbor data structure (ANN) by Arya et al. [4]. It is constructed in O(n log n) time, and

allows to report in time O((1/ε2d) log n) a (1 + ε)-approximate nearest segment in S′. In other

words, it returns a segment N ε(s) ∈ S′ that satisfies d(s,N ε(s)) ⩽ (1 + ε)mins′∈S′ d(s, s′).

Then we compute N ε(s) for each segment s ∈ S, and we return δε = maxs∈S d(s,N ε(s))/ℓ(s).

By the definition of approximate near neighbors, δε is a (1 + ε)-approximation of dH(S, S′). It

follows that:

Theorem 2. If S and S′ are sets of respectively m and n segments in Rd, we can find a tolerance

δε such that dH(S, S′) ⩽ δε ⩽ (1 + ε)dH(S, S′) in time O((m/ε2d + n) log n).

If the the ANN data structure for S′ was precomputed, the time bound becomes O((m/ε2d) log n).

The second part of this theorem will be used in our algorithms for Hausdorff distance under

translation and rotations: We will compute the ANN data structure for S′ only once and reuse it

each time we call the algorithm above on a translated or rotated copy of S.

2.4.2 Hausdorff distance under translation

Now we allow translations of S, and we want to minimize its Hausdorff distance to S′. We identify

each translation with a point τ ∈ Rd. So we denote by τ + s the copy of s translated by vector

τ , and τ + S denotes the set {τ + s1, . . . , τ + sm}. We denote by τ∗ an optimal translation, in

the sense that dH(τ∗ + S, S′) = minτ∈Rd dH(τ + S, S′). The Hausdorff distance under translation

dH(τ∗+S, S′) is denoted by δ∗ in this section, and we want to find a translation τ ε that provides

a (1 + ε)-approximation of δ∗.

When we apply a translation τ to a segment, then the corresponding point in R2d is translated

by the vector (τ, τ) that has norm
√
2∥τ∥. It implies the following.

Proposition 3. For any two segments s, s′ and translation τ , we have d(τ + s, s′) ⩽ d(s, s′) +
√
2∥τ∥.

Without loss of generality, we assume that s1 is a shortest segment in S, that is, ℓ1 = mini ℓi.

The lemma below bounds the variation of the Hausdorff distance after translating a set of

segments.

Lemma 4. For any translation τ , we have dH(τ + S, S′) ⩽ dH(S, S′) +
√
2∥τ∥/ℓ1.

Proof. Proposition 3 implies that d(τ + si, s
′
j) ⩽ d(si, s

′
j) +

√
2∥τ∥ for all i, j. As s1 is a

shortest segment in S, it follows that d(τ + si, s
′
j)/ℓi ⩽ d(si, s

′
j)/ℓi +

√
2∥τ∥/ℓ1 for all i, j. In

particular, for any si ∈ S, minj d(τ + si, s
′
j)/ℓi ⩽ minj d(si, s

′
j)/ℓi +

√
2∥τ∥/ℓ1. By definition

of dH(S, S′), there is a segment s′ ∈ S′ at distance at most dH(S, S′)ℓi from any si, therefore
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Figure 9: Worst-case example for Lemma 5.

minj d(si, s
′
j) ⩽ dH(S, S′)ℓi and thus minj d(τ + si, s

′
j)/ℓi ⩽ dH(S, S′) +

√
2∥τ∥/ℓ1. It means

that any segment τ + si has a segment of S′ at distance at most ℓi(dH(S, S′) +
√
2∥τ∥/ℓ1), in

other words dH(τ + S, S′) ⩽ dH(S, S′) +
√
2∥τ∥/ℓ1.

The bound in Lemma 4 is tight, in the sense that there exists sets of line segments S, S′ and a

translation τ such that dH(τ + S, S′) = dH(S, S′) +
√
2∥τ∥/ℓ1. It suffices to take S = S′ = {s1},

and to apply an arbitrary translation τ . Then dH(S, S′) = 0 and dH(τ + S, S′) =
√
2||τ ||/ℓ1.

We now present a 3-approximation algorithm. For all j, let τj be the translation that maps

p1 to p′j , in other words τj = p′j − p1. The lemma below shows that one of these translations

yields a (1 +
√
2)-approximation of δ∗.

Lemma 5. Let ȷ̂ = argminj=1,...,ndH(τj + S, S′). Then dH(τȷ̂ + S, S′) ⩽ (1 +
√
2)δ∗.

Proof. The optimal translation τ∗ matches s1 with a segment s′k ∈ S′ such that d(τ∗ + s1, s
′
k) ⩽

δ∗ℓ1. It implies that ∥p′k − p1 − τ∗∥ ⩽ δ∗ℓ1, in other words ∥τk − τ∗∥ ⩽ δ∗ℓ1. If follows from

Lemma 4 that

dH(τk + S, S′) ⩽ dH(τ∗ + S, S′) +
√
2∥τk − τ∗∥/ℓ1

⩽ dH(τ∗ + S, S′) +
√
2δ∗

= (1 +
√
2)δ∗.

The bound in Lemma 5 is also tight. To see this, consider the example in Figure 9. The length

of each segment is
√
2. The optimal matching is shown on top: We have d(s1, s

′
1) = d(s2, s

′
2) = 2

and thus δ∗ = 2/
√
2 =

√
2. After applying the horizontal translation τ1 (bottom), we have

d(τ1 + s1, s
′
1) = 2 and d(τ1 + s2, s

′
2) =

√
2(2 +

√
2) so dH(τ1 + S, S′) = 2 +

√
2 = (1 +

√
2)δ∗.

We obtain a 6/5-approximation of dH(τȷ̂ + S, S′) by running the algorithm of Theorem 2

for each τj , with ε = 1/5, and returning the best result. As (1 +
√
2) · 6/5 < 3, it gives us a

3-approximation.

Lemma 6. Given S and S′, we can compute in time O(mn log n) a translation τ and a tolerance

δ3 such that dH(τ + S, S′) ⩽ δ3 ⩽ 3δ∗.
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Figure 10: Sampling grid points on a unit ball.

We now provide a (1+ε)-approximation algorithm. We will discretize the space of translations

based on the following discretization of the ball centered at the origin with radius (1+ ε). We use

a uniform grid, so we let Bε denote the set of points in this ball whose coordinates are multiples

of ε/
√
d. More generally, for any λ > 0, we denote λBε = {λx | x ∈ Bε}. (Figure 10.) This set

contains O(1/εd) points and can be constructed in constant time per point:

Proposition 7. We can construct in time O(1/εd) a set Bε of O(1/εd) points such that for any

point p at distance at most 1 from the origin, there is a point p′ ∈ Bε such that ∥p− p′∥ ⩽ ε.

Our (1 + ε)-approximation algorithm first computes the 3-approximation δ3 of δ∗ using

Lemma 6, in other words we have δ∗ ⩽ δ3 ⩽ 3δ∗. For each segment s′j , it then constructs the set

of translations T ε
j = p′j − p1 + δ3ℓ1B

ε/9, and then T ε =
⋃

j T ε
j . (See Figure 7a.) We now prove

that one translation τ̂ ∈ T ε gives a (1 + ε/2)-approximation of the Hausdorff distance under

translation.

Lemma 8. There is a translation τ̂ ∈ T ε such that dH(τ̂ + S, S′) ⩽ (1 + ε/2)δ∗.

Proof. The optimal translation τ∗ matches s1 with a segment s′k such that d(τ∗ + s1, s
′
k) ⩽ δ∗ℓ1.

So τ∗ + p1 is at distance at most δ∗ℓ1 from p′k, in other words ∥τ∗ + p1 − p′k∥ ⩽ δ∗ℓ1 ⩽ δ3ℓ1. So

there is a point bε ∈ δ3ℓ1B
ε/9 such that ∥τ∗ + p1 − p′k − bε∥ ⩽ δ3ℓ1ε/9. We let τ̂ = p′k − p1 + bε,

then τ̂ ∈ T ε
k ⊂ T ε, and ∥τ̂ − τ∗∥ ⩽ δ3ℓ1ε/9. By Lemma 4, it implies that

dH(τ̂ + S, S′) ⩽ dH(τ∗ + S, S′) +
√
2δ3ℓ1ε/(9ℓ1)

= δ∗ +
√
2εδ3/9

⩽ δ∗ + 3
√
2εδ∗/9 < (1 + ε/2)δ∗.

In summary, we first compute the sample set of translations T ε. It consists of O(n/εd)

translations and can be constructed in O(n/εd) time. For each translation τ ∈ T ε, we compute

in O((m/ε2d) log n) time a (1 + ε/3)-approximation δε(τ) of dH(τ + S, S′) using Theorem 2. Let

τ ε be the translation that minimizes δε(τ ε). Then we have dH(τ ε + S, S′) ⩽ δε(τ ε) ⩽ δε(τ̂) ⩽

(1+ ε/3)dH(τ̂ +S, S′). By Lemma 8, it implies dH(τ ε +S, S′) ⩽ (1+ ε/2)(1+ ε/3)δ∗ ⩽ (1+ ε)δ∗.

It completes the proof of the theorem below.
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Figure 11: Proof of Lemma 10.

Theorem 9. Let δ∗ = dH(τ∗+S, S′) be the Hausdorff distance between S and S′ under translation.

We can find a translation τ ε and a tolerance δε such that dH(τ ε + S, S′) ⩽ δε ⩽ (1 + ε)δ∗ in

O((mn/ε3d) log n) time.

2.4.3 Hausdorff distance under rotation about a fixed center in R2

In this section, we consider rotations about a fixed center in R2. Without loss of generality, we

assume it to be the origin O. The rotation about O through an angle θ is denoted by ρθ. The

optimal rotation ρ∗ satisfies dH(ρ∗(S), S′) = min
θ∈[0,2π]

dH(ρθ(S), S
′), and we denote by θ∗ its angle.

The Hausdorff distance under rotation dH(ρ∗(S), S′) is denoted by δ∗ in this section, and we

want to find a rotation ρε that provides a (1 + ε)-approximation of δ∗.

The distance from O to a point p ∈ R2 is denoted by ∥p∥. We will need the following lemma.

Lemma 10. Let p, p′ ∈ R2 be two points making an angle θ = ∠pOp′ with the origin. If

θ ∈ [−π, π], then ∥p− p′∥ ⩾ ∥p∥ · |θ|/π.

Proof. If |θ| ⩽ π/2, then by concavity of sin(·) over [0, π/2], we have sin(|θ|) ⩾ 2|θ|/π. The

distance between p and p′ is at least the distance between p and its projection onto the line

through O and p′. (See Figure 11a.) It follows that ∥p − p′∥ ⩾ ∥p∥ sin(|θ|) ⩾ 2∥p∥ · |θ|/π. On

the other hand, if π/2 ⩽ |θ| ⩽ π, then ∥p − p′∥ ⩾ ∥p∥, and thus ∥p − p′∥ ⩾ ∥p∥ · |θ|/π. (See

Figure 11b.)

The aspect ratio of a segment s = (p, q) is α(s) = max(∥p∥, ∥q∥)/ℓ(s). When we apply

the rotation ρθ to s, then p and q move by a distance 2 sin(|θ/2|)∥p∥ and 2 sin(|θ/2|)∥q∥,
respectively. (See Figure 12.) Therefore, each endpoint p or q moves by a distance at most

2 sin(|θ/2|)max(∥p∥, ∥q∥) = 2 sin(|θ/2|)ℓ(s)α(s) ⩽ |θ|ℓ(s)α(s). So regarded as a point in R2d, the

segment s is translated by a vector of norm at most
√
2|θ|ℓ(s)α(s), and thus:

Proposition 11. For any two segments s and s′, and for any angle θ, we have d(ρθ(s), s
′) ⩽

d(s, s′) +
√
2|θ|ℓ(s)α(s).

Let sa = (pa, qa) be the segment in S with largest aspect ratio. So we have α(sa) =

maxs∈S α(s) and ℓa = ℓ(sa), and we denote by αa = α(sa) its aspect ratio. Without loss of

generality, we assume that ∥pa∥ ⩾ ∥qa∥, and thus αa = ∥pa∥/ℓa.
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Lemma 12. dH(ρθ(S), S
′) ⩽ dH(ρθ′(S), S

′) +
√
2αa|θ − θ′| for any two angles θ and θ′.

Proof. By Proposition 11, we have for any two segments s ∈ S and s′ ∈ S′

d(ρθ−θ′(ρθ′(s)), s
′)

ℓ(s)
⩽
d(ρθ′(s), s

′)

ℓ(s)

+
√
2|θ − θ′|α(ρθ′(s)).

As ρθ−θ′(ρθ′(s)) = ρθ(s), α(ρθ′(s)) = α(s) and α(s) ⩽ αa, it implies

d(ρθ(s), s
′)

ℓ(s)
⩽

d(ρθ′(s), s
′)

ℓ(s)
+
√
2|θ − θ′|α(s)

⩽
d(ρθ′(s), s

′)

ℓ(s)
+
√
2|θ − θ′|αa.

The result follows directly from our definition of the Hausdorff distance between sets of segments.

We now present a 6-approximation algorithm for δ∗. For all j, let θj denote the rotation

angle such that pa lies on the ray from O to p′j . (See Figure 7b.) If p′j = O, then we can choose

θ = 0. The lemma below shows that one of these angles gives a (
√
2π + 1)-approximation.

Lemma 13. Let ȷ̂ = argminj=1,...,ndH(ρθj (S), S
′). Then dH(ρθȷ̂(S), S

′) ⩽ (
√
2π + 1)δ∗.

Proof. The optimal rotation ρ∗ matches sa with a segment s′j ∈ S′ such that d(ρ∗(sa), s′j) ⩽ δ∗ℓa.

It implies that ∥ρ∗(pa)− p′j∥ ⩽ δ∗ℓa. Let θ = θj − θ∗. In other words, we have θ = ∠ρ∗(pa)Op′j .

By Lemma 10, we have ∥ρ∗(pa)− p′j)∥ ⩾ ∥ρ∗(pa)∥ · |θ|/π, and thus δ∗ℓa ⩾ ∥ρ∗(pa)∥ · |θ|/π. As

∥ρ∗(pa)∥ = ∥pa∥, it means that πδ∗ ⩾ |θ|αa. Then Lemma 12 yields

dH(ρθj (S), S
′) ⩽ dH(ρθ∗(S), S

′) +
√
2|θ|αa

⩽ dH(ρθ∗(S), S
′) +
√
2πδ∗

= (
√
2π + 1)δ∗.

We obtain our 6-approximation of δ∗ by applying the algorithm of Theorem 2 with ε =

(6/(
√
2π + 1))− 1 to the pair of sets ρθj (S), S

′ for j = 1, . . . , n, and returning the best result.
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Lemma 14. Given S, S′, we can compute in time O(mn log n) an angle θ and a tolerance δ6

such that dH(ρθ(S), S
′) ⩽ δ6 ⩽ 6δ∗.

We now present our (1 + ε)-approximation algorithm. We begin with computing the 6-

approximation δ6 from Lemma 14, and then we discretize the set of rotation angles. To this end,

we observe that the optimal angle θ∗ must be close to an angle θj .

Lemma 15. There exists j ∈ {1, . . . , n} such that |θ∗ − θj | ⩽ πδ6/αa.

Proof. The optimal rotation ρ∗ must bring ρ∗(pa) to a distance at most δ∗ℓa of a point p′j , and thus

∥ρ∗(pa)− p′j∥ ⩽ ℓaδ
∗. As ∠ρ∗(pa)Op′j = |θj − θ∗|, Lemma 10 implies that ∥ρ∗(pa)∥ · |θ∗− θj |/π ⩽

∥ρ∗(pa)− p′j∥. As ∥ρ∗(pa)∥ = ∥pa∥, it yields ∥pa∥ · |θ∗ − θj |/π ⩽ δ∗ℓa. The result follows from

the facts that αa = ∥pa∥/ℓa and δ∗ ⩽ δ6.

For each j ∈ {1, . . . , n}, we denote by Θε
j a set of O(1/ε) angles sampled uniformly in the

interval [θj − πδ6/αa, θj + πδ6/αa]. More precisely,

Θε
j = {θj + kC1εδ6/αa | k ∈ Z and |kC1ε| < π},

where C1 is a constant to be determined. Let Θε =
⋃

j Θ
ε
j be the union of these n sets. By

Lemma 15, there is an angle θ̂ ∈ Θε such that |θ̂ − θ∗| ⩽ C1εδ6/αa. It follows from Lemma 12

that

dH(ρθ̂(S), S
′) ⩽ dH(ρθ∗(S), S

′) +
√
2αa|θ̂ − θ∗|

⩽ dH(ρθ∗(S), S
′) +
√
2C1εδ6

⩽ dH(ρθ∗(S), S
′) + 6

√
2C1εδ

∗

= (1 + 6
√
2C1ε)δ

∗.

Choosing C1 =
√
2/24, we obtain the following discretization.

Lemma 16. Given δ6, we can compute in time O(n/ε) a set Θε of O(n/ε) angles such that one

of these angles θ̂ satisfies dH(ρθ̂(S), S
′) ⩽ (1 + ε/2)δ∗.

For each angle in this set, we run the static algorithm of Theorem 2 using an approximation

factor (1 + ε/3), and keep the best tolerance δε. As ε < 1, we have (1 + ε/3)(1 + ε/2) < 1 + ε,

hence we obtain a (1 + ε)-approximation.

Theorem 17. Given S and S′, we can compute in time O((mn/ε5) log n) an angle θ̂ and a

tolerance δε such that dH(ρθ̂(S), S
′) ⩽ δε ⩽ (1 + ε)δ∗.

2.4.4 Hausdorff distance under rigid motion in R2

In this section, our goal is to approximate the Hausdorff distance under rigid motions between S

and S′, so we allow to rotate and translate S. We will not consider glided reflections: they can
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be handled by considering separately S and one reflected copy of S as inputs to our algorithm

for compositions of rotations and translations. Our approach is to combine the approximation

algorithms of the two previous sections for the translation case and for rotations about a fixed

center.

We denote by R our set of rigid motions in R2, which means translations and rotations about

an arbitrary center. Equivalently, a rigid motion is the composition of a rotation about a fixed

center with a translation. The optimal rigid motion µ∗ satisfies

dH(µ∗(S), S′) = min
µ∈R

dH(µ(S), S′).

The Hausdorff distance under rigid motion dH(µ∗(S), S′) is denoted by δ∗ in this section, and

we want to find a rigid motion µε that provides a (1 + ε)-approximation of δ∗.

We denote by ρp,θ the rotation about a point p through an angle θ. We denote by µτ,θ the

rigid motion consisting of the rotation about p1 through an angle θ, followed by the translation

τ . Hence we have

µτ,θ = τ ◦ ρp1,θ = ρτ+p1,θ ◦ τ. (1)

Let Sθ = ρp1,θ(S) be the set S rotated through an angle θ about p1. Then it follows from

Equation (1) that

δ∗ = min
θ∈[0,2π]

(
min
τ∈R2

dH(τ + Sθ, S
′)

)
(2)

and if we denote by τ∗ and θ∗ the parameters of the optimal translation µ∗ (hence µ∗ = µτ∗,θ∗)

we have

δ∗ = dH(τ∗ + Sθ∗ , S
′) = min

τ∈R2
dH(τ + Sθ∗ , S

′). (3)

For any fixed angle θ, Lemma 5 shows that a translation τj = p′j − p1 gives a (1 +
√
2)-

approximation of the optimal translation. So Equation (2) implies that there exists j ∈ {1, . . . , n}
such that minθ∈[0,2π] dH(τj + Sθ, S

′) ⩽ (1 +
√
2)δ∗. By Equation (1), it means that there exists

j ∈ {1, . . . , n} such that

min
θ∈[0,2π]

dH(µτj ,θ(S), S
′) ⩽ (1 +

√
2)δ∗. (4)

In other words, there is a (1 +
√
2)-approximate solution µτ,θ whose translation part is τ = τj

for some j. Therefore, we can find a constant approximation by trying all translations τj , and

then minimizing over θ for each of them. We perform this minimization using our approximation

algorithm for rotation about a fixed center (Theorem 17), with ε = 1/5 and the center being

p′j = τj + p1, thus obtaining a 3-approximation.

Lemma 18. We can compute in time O(mn2 log n) a tolerance δ′3 such that δ∗ ⩽ δ′3 ⩽ 3δ∗.

Similarly as what we did for translations and rotations about a fixed center, we make use of

this constant-factor approximation to obtain a (1 + ε)-approximation. So we first compute the

same set of candidate translations T ε as in Section 2.4.2, except that we replace δ3 with δ′3: we
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now have T ε
j = p′j − p1 + δ′3ℓ1B

ε/9 and T ε =
⋃

j T ε
j , where Bε/9 is our discretization of the unit

ball using grid points.

As δ′3 is a 3-approximation of the Hausdorff distance under translation between Sθ∗ and S′,

Lemma 8 shows that there is a translation τ̂ ∈ T ε such that d(τ̂ + Sθ∗ , S
′) ⩽ (1 + ε/2)δ∗. So

our approximation algorithm for rotations about a fixed center (Theorem 17) applied to the sets

τ̂ + S, S′, using approximation factor (1 + ε/3) and center τ̂ + p1, yields a (1 + ε)-approximation

of δ∗. As we don’t know τ̂ in advance, we apply this algorithm to all the translations in T ε and

keep the best solution. As we are applying Theorem 17 to the O(n/ε2) translations in T ε, it

takes time O((mn2/ε7) log n).

Theorem 19. Given S and S′, we can compute in time O((mn2/ε7) log n) a rigid motion µε

and a tolerance δε such that dH(µε(S), S′) ⩽ δε ⩽ (1 + ε)δ∗.

2.5 Approximating the bottleneck distance

In this section, we present modified versions of the algorithms from the previous sections that

match segments of S and S′ according to the bottleneck distance, instead of the Hausdorff

distance. This distance differs from the Hausdorff distance in that it requires the matching

between segments of S and S′ to be one-to-one. More precisely, we define the bottleneck distance

db(S, S
′) between two sets of segments as follows: db(S, S

′) is the smallest tolerance δ such that

there exists a one-to-one mapping σ : S → S′ with d(s, σ(s)) ⩽ δℓ(s) for all s ∈ S.

So instead of handling each segment of S by making an ANN query, as we did in the previous

sections on Hausdorff distance, we need to find a matching of cardinality |S| = m in the bipartite

graph over S ∪ S′, where two segments s, s′ are connected by an edge if d(s, s′) ⩽ δℓ(s), for some

tolerance δ. Efrat et al. [5] showed how to compute such matchings efficiently for point sets in

Rd. We obtain below similar results for sets of line segments by combining their techniques with

the discretization schemes that we presented in Section 2.4.

2.5.1 Static case

We first consider the static case, so we want to approximate db(S, S
′) without any transformation

of S. We now show how to adapt the result by Efrat et al. to our new setting. Let us give its

statement [5, Theorem 7.3], specialized to the case d = O(1), 0 < ε < 1 and for the L2 norm:

Theorem 20 (Efrat et al.). Let A and B be sets of n points in Rd. Let r∗ be the bottleneck

distance between A and B. We can find in time O((n1.5/εd) log n) a matching between A and B

whose longest edge has length at most (1 + ε)r∗.

Their approach is the following. They first design an approximating oracle which, given a

query radius r, returns a positive answer if (1 + ε)r ⩾ r∗, and otherwise r < r∗. This oracle

searches for a matching in a bipartite graph over A×B, where an edge is drawn between two

points if their distance is at most r, and no edge is drawn if their distance is more than (1 + ε)r.
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The edges of this graph are not all constructed, but they are constructed on the fly by making

ANN queries using Arya et al. [4] data structure: If the ANN is at distance at most r(1 + ε),

then a new edge is discovered. This explains why the running time dependency on n is only

O(n1.5), and the dependency on ε is O(1/εd). In our setting, the segments are regarded as points

in R2d so the dependency on ε becomes 1/ε2d, and the threshold for discovering a new edge (s, s′)

becomes ℓ(s)δ(1 + ε). So the algorithm is the same, and we just increase the dependency of ε

from 1/εd to 1/ε2d.

Efrat et al. then use this approximating oracle to approximate the optimal radius r∗ by binary

search. In order to reduce the search interval, they first compute a constant-factor approximation

by finding an approximate optimal matching under the L∞ metric. The point here is that an

optimal, or a (1 + ε)-approximate, bottleneck matching can be found using the sorted matrix

searching technique, as the optimal radius is the difference between two coordinates of two input

points. Using the technique by Frederickson and Johnson [17] for selection in sorted matrices

(that is, matrices whose rows and columns are sorted), it suffices to perform O(log n) steps in

the binary search, and the running time is dominated by the calls to the oracle.

In our case, as the distance d(s, s′) is weighted by ℓ(s), we do not have a sorted matrix in the

sense that rows and columns are sorted. However, for each segment si, the candidate tolerances δ

are of the form d(si, s
′
j)/ℓ(si). So the whole matrix of candidate tolerances consists of 2d sorted

rows. Therefore, after transposing the matrix, we can employ another technique by Frederickson

and Johnson [18, Theorem 1] for matrices with sorted columns, and the running time is still

dominated by O(log n) calls to the approximating oracle.

In summary, we obtain the following result:

Theorem 21. We can compute in time O((n1.5/ε2d) log n) a tolerance δε such that db(S, S′) ⩽

δε ⩽ (1 + ε)db(S, S
′), and a matching M ε between S and S′ that achieves this tolerance in the

sense that for any edge (s, s′) ∈M ε, we have d(s, s′) ⩽ δεℓ(s).

2.5.2 Bottleneck distance under translation

The result above can be used to approximate the bottleneck distance under translation. We

apply the same approach as in Section 2.4, except that we employ our algorithm for bottleneck

distance (Theorem 21) instead of the algorithm for Hausdorff distance (Theorem 2). We now

give a detailed proof for this case, that is, for bottleneck distance under translation. It closely

follows the proof for Hausdorff distance under translation.

Our goal is to approximate the optimal translation τ∗ such that db(τ∗+S, S′) = minτ∈Rd db(τ+

S, S′). So in this section, we denote by δ∗ = db(τ
∗ + S, S′) the bottleneck distance under

translation, and we denote by σ∗ a one-to-one mapping that achieves it, which means that

d(τ∗ + s, σ∗(s)) ⩽ ℓ(s)δ∗ for all s ∈ S. We first prove a lemma analogous to 4. Remember that

s1 is the shortest segment in S.

Lemma 22. For any translation τ , we have db(τ + S, S′) ⩽ db(S, S
′) +
√
2∥τ∥/ℓ1.
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Proof. By definition of the bottleneck distance, there is a one-to-one mapping σ such that

d(s, σ(s)) ⩽ db(S, S
′)ℓ(s) for each s ∈ S. Proposition 3 implies that d(τ + s, σ(s)) ⩽ d(s, σ(s)) +

√
2∥τ∥ for all s ∈ S. As s1 is a shortest segment in S, it follows that

d(τ + s, σ(s))

ℓ(s)
⩽

d(s, σ(s))

ℓ(s)
+
√
2
∥τ∥
ℓ1

for all s ∈ S. As d(s, σ(s)) ⩽ db(S, S
′)ℓ(s), it implies that db(τ+S, S′) ⩽ db(S, S

′)+
√
2∥τ∥/ℓ1.

We now present a 3-approximation algorithm similar with our algorithm for Hausdorff

distance. So for all j, we let τj = p′j − p1, and we show that one of these translations yields a

(1 +
√
2)-approximation of δ∗.

Lemma 23. Let ȷ̂ = argminj=1,...,ndb(τj + S, S′). Then db(τȷ̂ + S, S′) ⩽ (1 +
√
2)δ∗.

Proof. The optimal translation τ∗ matches s1 with a segment s′k = σ∗(s1) such that d(τ∗ +

s1, s
′
k) ⩽ δ∗ℓ1. It implies that ∥p′k − p1 − τ∗∥ ⩽ δ∗ℓ1, in other words ∥τk − τ∗∥ ⩽ δ∗ℓ1. If follows

from Lemma 22 that

db(τk + S, S′) ⩽ db(τ
∗ + S, S′) +

√
2∥τk − τ∗∥/ℓ1

⩽ db(τ
∗ + S, S′) +

√
2δ∗

= (1 +
√
2)δ∗.

We obtain a 6/5-approximation of db(τȷ̂ + S, S′) by running the algorithm of Theorem 21

for each τj , with ε = 1/5, and returning the best result. As (1 +
√
2) · 6/5 < 3, it gives us a

3-approximation of δ∗.

Lemma 24. Given S and S′, we can compute in time O(n2.5 log n) a translation τ and a

tolerance δ′′3 such that db(τ + S, S′) ⩽ δ′′3 ⩽ 3δ∗.

Our (1 + ε)-approximation algorithm first computes the 3-approximation δ′′3 of δ∗ using

Lemma 24, in other words we have δ∗ ⩽ δ′′3 ⩽ 3δ∗. For each segment s′j , it then constructs the

set of translations T ε
j = p′j − p1 + δ′′3ℓ1B

ε/9, and then T ε =
⋃

j T ε
j . (See Figure 7a.) We now

prove that one translation τ̂ ∈ T ε gives a (1 + ε/2)-approximation of the bottleneck distance

under translation.

Lemma 25. There is a translation τ̂ ∈ T ε such that db(τ̂ + S, S′) ⩽ (1 + ε/2)δ∗.

Proof. The optimal translation τ∗ maps s1 to a segment s′k = σ∗(s1) such that d(τ∗+s1, s
′
k) ⩽ δ∗ℓ1.

So τ∗ + p1 is at distance at most δ∗ℓ1 from p′k, in other words ∥τ∗ + p1 − p′k∥ ⩽ δ∗ℓ1 ⩽ δ′′3ℓ1. So

there is a point bε ∈ δ′′3ℓ1B
ε/9 such that ∥τ∗ + p1 − p′k − bε∥ ⩽ δ′′3ℓ1ε/9. We let τ̂ = p′k − p1 + bε,

then τ̂ ∈ T ε
k ⊂ T ε, and ∥τ̂ − τ∗∥ ⩽ δ′′3ℓ1ε/9. By Lemma 22, it implies that

db(τ̂ + S, S′) ⩽ db(τ
∗ + S, S′) +

√
2δ′′3ℓ1ε/(9ℓ1)

= δ∗ +
√
2εδ′′3/9

⩽ δ∗ + 3
√
2εδ∗/9 < (1 + ε/2)δ∗.
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In summary, as we did for the Hausdorff distance under translation, we first compute the

sample set of translations T ε. It consists of O(n/εd) translations and can be constructed in

O(n/εd) time. For each translation τ ∈ T ε, we compute in O((n1.5/ε2d) log n) time a (1 + ε/3)-

approximation δε(τ) of db(τ + S, S′) using Theorem 21. Let τ ε be the translation that minimizes

δε(τ ε). Then we have db(τ
ε + S, S′) ⩽ δε(τ ε) ⩽ δε(τ̂) ⩽ (1 + ε/3)db(τ̂ + S, S′). By Lemma 25, it

implies db(τ
ε + S, S′) ⩽ (1 + ε/2)(1 + ε/3)δ∗ ⩽ (1 + ε)δ∗. It completes the proof of the theorem

below.

Theorem 26. Let δ∗ = db(τ
∗+S, S′) be the bottleneck distance between S and S′ under translation.

We can find a translation τ ε and a tolerance δε such that db(τ
ε + S, S′) ⩽ δε ⩽ (1 + ε)δ∗ in

O((n2.5/ε3d) log n) time.

2.5.3 Bottleneck distance under rotation and rigid motion in R2

We can similarly combine Theorem 21 with our discretization of the set of rotations about a

fixed center, and the set of rigid motions, obtaining approximation schemes for the bottleneck

distance under these sets of transformations. For a fixed center, we consider O(n/ε) rotations,

and in the second case we consider O(n2/ε3) rigid motions. We do not give detailed proofs as we

did in the previous section; the same modifications of the algorithms for Hausdorff distance that

we applied for translations can be carried out as well for rotations and rigid motions.

Theorem 27. Given two sets of segments S and S′ in R2, we can compute in time O((n2.5/ε5) log n)

a (1+ε)-approximation of the bottleneck distance under rotation about a fixed center. For arbitrary

rigid motions, the time bound increases to O((n3.5/ε7) log n)

2.6 Approximating the largest common subset

Given two sets of segments S and S′ and a tolerance δ, the LCS problem is to find subsets C ⊂ S

and C ′ ⊂ S′ of largest cardinality |C| = |C ′| whose bottleneck distance db(C,C
′) is at most δ.

We denote by LCS(S, S′, δ) this optimal cardinality. In this section, we consider an approximate

version where we want to find subsets of size at least LCS(S, S′, δ) whose bottleneck distance is

at most δ(1 + ε) for some 0 < ε < 1. Our approach is very similar with our algorithms for the

bottleneck distance.

We can reformulate this problem more concisely as follows. Let G[δ] denote the bipartite

graph over S ∪S′ where s and s′ are connected whenever d(s, s′) ⩽ δℓ(s). The LCS problem is to

find a maximum matching in G[δ]. The approximate version is to find a matching in G[δ(1 + ε)]

of size at least LCS(S, S′, δ).
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2.6.1 Static case

The approximation algorithm by Efrat et al. [5, Theorem 7.3] finds a matching in G[δ(1 + ε)] of

size at least the size of a maximum matching in G[δ], so this is exactly what we need. Our time

bound increases by a factor (1/εd) because our segments are regarded as points in R2d, so the

dependency on ε of the ANN data structure is O(1/ε2d).

Theorem 28. We can compute a (1 + ε)-approximation of the LCS between two sets of segments

in time O((n1.5/ε2d) log n).

2.6.2 LCS under translation

For LCS under translation, we apply this algorithm to a discrete set of translated versions τ + S

of S. However, as opposed to what we did for Hausdorff distance and bottleneck distance, the

shortest segment s1 may not be part of an optimal matching: If C ⊂ S and C ′ ⊂ S′ are optimal

solutions to our problem, then we do not necessarily have s1 ∈ C.

So we take a larger set of candidate translations, where each segment si plays the role that s1
played in the Hausdorff case: Rε

i,j = p′j − pi + δℓiB
ε/3 and Rε =

⋃
i,j R

ε
i,j . Thus, the number of

candidate translations has increased by a factor m.

Let (C∗, C
′
∗) denote an optimal solution to our problem, so for an optimal translation τ∗ we

have db(τ
∗+C∗, C

′
∗) ⩽ δ and |C∗| = |C ′

∗| = LCS(τ∗+C∗, C
′
∗, δ). We denote by σ∗ a corresponding

matching, that is, σ∗ : C∗ → C ′
∗ is a one-to-one mapping such that d(s, σ∗(s)) ⩽ δℓ(s) for all

s ∈ C∗.

Lemma 29. There is a translation τ̂ ∈ Rε such that LCS(τ̂+S, S′, δ(1+ε/2)) ⩾ LCS(τ∗+S, S′, δ).

Proof. Let si be a shortest segment in C∗, and let s′j = σ∗(si) be the segment that it is matched

with in an optimal solution. In particular, we have d(τ∗+si, s
′
j) ⩽ δℓi and thus d(τ∗+pi, p

′
j) ⩽ δℓi.

Therefore, there is a point bε in δℓiB
ε/3 such that ∥τ∗ + pi − p′j − bε∥ ⩽ δℓiε/3.

We let τ̂ = p′j − pi + bε, then τ̂ ∈ Rε
i,j ⊂ Rε and ∥τ̂ − τ∗∥ ⩽ δℓiε/3. By Lemma 22, as ℓi is a

shortest segment in C∗, it implies:

db(τ̂ + C∗, C
′
∗) ⩽ db(τ

∗ + C∗, C
′
∗) +

√
2

ℓi
∥τ̂ − τ∗∥

⩽ δ +

√
2

ℓi

δℓiε

3
< δ

(
1 +

ε

2

)
.

In particular, it means that

LCS(τ̂ + S, S′, δ(1 + ε/2)) ⩾ |C∗|

= LCS(τ∗ + S, S′, δ).
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Thus our algorithm for LCS under translation is the following: we first compute the set Rε

of O((1/εd)mn) candidate translations, and for each translation τ ∈ Rε, we run the static LCS

algorithm with approximation factor (1 + ε/3) on τ + S and S′. We then return the best pair of

subsets of S and S′ that we obtained. It provide a (1 + ε/2)(1 + ε/3) ⩽ (1 + ε)-approximation.

Theorem 30. For segments under translation in Rd, we can compute a (1 + ε)-approximation

of the LCS in time O((mn2.5/ε3d) log n). More precisely, we find τε, Cε ⊂ S, and C ′
ε ⊂ S′ such

that |Cε| = |C ′
ε| ⩾ maxτ LCS(τ + S, S′, δ) and db(τε + Cε, C

′
ε) ⩽ δ(1 + ε).

2.6.3 Rotations and rigid motions

The same approach as we used for translations can be applied to the cases of rotations about a

fixed center and rigid motions in R2. We briefly sketch our algorithms and the results obtained.

In the case of rotations about a fixed center in R2, as the segments sa ∈ S with largest aspect

ratio does not necessarily appear in the optimum matching, we let all the segments in S play

the role that sa played in the Hausdorff case. So the size of our discretization of the angles

is O(mn/ε), instead of O(n/ε) for the Hausdorff case. (Lemma 16.) We then run the static

algorithm for LCS (Theorem 28) after rotating S by each of these angles.

For arbitrary rigid motions, the size of the discretization is m2 times larger than our dis-

cretization for the Hausdorff case, because we need to try m times as many translations and

for each translation, m times as many angles. So we call the static LCS algorithms O(m2n/ε3)

times, which yields the following.

Theorem 31. We can compute in time O((mn2.5/ε5) log n) a (1 + ε)-approximation of the LCS

under rotation about a fixed center in R2. For arbitrary rigid motions, the time bound becomes

O((m2n3.5/ε7) log n).

2.7 Undirected line segments

As mentioned in the introduction, our results also apply to undirected line segments. For the

Hausdorff case, it suffices to add all the reverse segments r′j = (q′j , p
′
j) to S′, and then the

algorithms are unchanged. For the bottleneck and LCS cases, we also add the reverse segments,

and we need a simple modification of Efrat et al. [5] algorithm for geometric matchings: after

inserting an edge (si, s
′
j) or (si, r

′
j) in the matching, we need to delete from the ANN data

structure the reverse segment r′j or s′j , respectively. It ensures that r′j and s′j do not both appear

in the matching.

2.8 Lower bound

We show that matching sets of line segments under translation with respect to the Hausdorff

distance, is in the class of 3sum-hard (see definition 2) problems, introduced by Gajentaan and

Overmars [19]. To explain our strategy, we introduce 3sum, which is a well-known problem for
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which no subquadratic algorithm is known, and another problem called segments containing

points (SegContPnt) which is very similar to our problem and 3sum-hard.

Definition 1. (definition in [20]) Given two problems PR1 and PR2 we say that PR1 is

f(n)-solvable using PR2 if every instance of PR1 of size n can be solved by using a constant

number of instances of PR2 (of size O(n)) and O(f(n)) additional time. We denote this as

PR1 ≪f(n) PR2 .

Problem 1. (problem in [20]) 3sum: Given a set S of n integer numbers, are there a, b, c ∈ S

with a+ b+ c = 0?

Definition 2. (definition in [20]) A problem PR is 3sum-hard if 3sum ≪f(n) PR, where

f(n) = o(n2).

The fastest known algorithm for the 3sum problem runs in Θ(n2) time.

Problem 2. (problem in [20]) SegContPnt( segments containing points): We are given

a set P of n real numbers and a set Q of m pairwise-disjoint intervals of real numbers. Let

P = {x1, x2, · · · , xn} and Q = {[a1, b1], [a2, b2], · · · , [an, bn]} in R. Is there a real number

(translation) u such that P + u ⊆ Q?

SegContPnt is proven to be 3sum-hard in [20]. In other words, by the definition 2, any

instance of 3sum can be solved by solving some instances of SegContPnt. (Remark: In [20],

we can have |P | < |Q|, but since the reduction is made with an instance such that |P | = |Q|, the

version above is also 3sum-hard.)

We will prove that the segment pattern matching problem below is also 3sum-hard. It is a

decision problem, hence the corresponding optimization problem is also 3sum-hard.

Problem 3. MSLS (matching sets of line segments under translation with respect

to the Hausdorff distance in 2D): Given two sets of line segments S and S′ in R2 such

that |S| = |S′| = n, and given a tolerance δ > 0, decide whether there exists a translation τ in R2

such that for all s ∈ S, there exists s′ ∈ S′ satisfying d(τ + s, s′) ⩽ δℓ(s).

In order to prove that MSLS is 3sum-hard, it suffices to prove that SegCongPnt ≪f(n)

MSLS, because the relation ≪f(n) is transitive. So given an instance (P,Q) of the SegContPnt

problem, we construct the following instance of MSLS. We construct the line segments in S

from the segments in Q and we construct the line segments in S′ from the points in Q. (See

Figure 13.) For all i and j, we set:

(i) si = (pi, qi) where ℓi = ℓ(si) =
1+(bi−ai)

2

2 , and pi = (ai+bi
2 , ℓi2 ), qi = (ai+bi

2 ,− ℓi
2 )

(ii) s′j = (p′j , q
′
j) where ℓ′j = 1, and p′j = (xj ,

1
2), q

′
j = (xj ,−1

2)

(iii) δ = 1√
2
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Figure 13: Reduction of SegContPnt to MSLS

Lemma 32. Suppose that τ = (u, v) satisfies d(τ + s, s′) ⩽ δℓ(s). Let τh = (u, 0). Then we have

d(τh + s, s′) ⩽ δℓ(s).

Proof. Let s ∈ S and s′ ∈ S′. We define the function f(y) = d2((u, y) + s, s′) − δ2ℓ2(s). This

function is a polynomial of degree 2 in y. As the segments s and s′ are symmetric about the

x-axis, f(y) is symmetric. Moreover, f(y) goes to infinity when y goes to infinity, as the segment

(u, y) + s goes upwards to infinity. It follows that the minimum of f(y) is achieved when y = 0.

So we have f(0) ⩽ f(v). Since d(τ + s, s′) ⩽ δℓ(s), we have f(v) ⩽ 0. It follows that f(0) ⩽ 0,

and thus d(τh + s, s′) ⩽ δℓ(s)

We now give a necessary and sufficient condition for two segments to match.

Lemma 33. We have d((u, 0) + si, s
′
j) ⩽ δℓi if and only if u+ xj ∈ [ai, bj ].

Proof. Let g(u) = d2((u, 0) + si, s
′
j) − ℓ2i . We need to prove that f(u) ⩽ 0 if and only if

u+ xj ∈ [ai, bi]. Let Ci denote the circle centered at pi with radius ℓi/2. The point (u, 0) + p′j

is inside Ci if and only if u + xj ∈ [ai, bi]. (See Figure 13.) This is true if and only if

d((u, 0) + p′j , pi) ⩽ ℓi/2. Symmetrically, it is equivalent to d((u, 0) + q′j , qi) ⩽ ℓi/2. It means that

d2((u, 0) + si, s
′
j) ⩽ ℓ2i /2, and thus d2((u, 0) + si, s

′
j) ⩽ δℓi.

Now we can prove the main result of this section.

Theorem 34. SegContPnt ≪f(n) MSLS, where f(n) = o(n2).

Proof. Suppose that our instance of SegContPnt is positive. In other words, there exists

u such that for all j, there exists i such that u + xj ∈ [ai, bi]. Then by Lemma 33, we have

d((u, 0) + si, s
′
j) ⩽ δℓi. In other words, our instance of MSLS is positive.

Conversely, suppose that our instance of MSLS is positive. Then there exists a translation

τ = (u, v) such that for all i, there exists j such that d(τ + si, s
′
j) ⩽ δℓi. By Lemma 32, it implies

that d((u, 0) + si, s
′
j) ⩽ δℓi. Hence, by Lemma 33, we have u+ xj ∈ [ai, bi]. It means that our

instance of SegContPnt is positive.
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Therefore our problem MSLS is 3sum-hard, and a subquadratic algorithm for solving it is

currently out of reach.

2.9 Future Work

Is there a characteristic in a set of line segments giving an advantage to match such as corner

points by Efrat et al. [5]? Are the two characteristics, in a set of unit length of line segments and

in a set of arbitrary length of line segments, same? These questions could be the future work.
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criteria

discrete continuous or geometric setting

centralized (coupled) decentralized (decoupled)

labeled colored unlabeled

Table 2: Criteria of our problem in bold.

III Multi-robot path planning

In this section, we present our results on path planning for multiple robots. Two preliminary

versions of this section appeared in the proceedings of the 37th International Symposium on

Computational Geometry [21] and in the Journal of Experimental Algorithmics [22].

3.1 Problem Statement

We first briefly describe this problem. A set of n robots, modeled as unit squares, need to move

on the integer grid Z2, from their starting positions s1, . . . , sn ∈ Z2 to their target positions

d1, . . . , dn ∈ Z2. A (possibly empty) set O ⊂ Z2 of stationary obstacles is also given. We denote

by pi(t) = (xi(t), yi(t)) ∈ Z2 the position of robot i at time t ∈ N. At each time t ∈ N, the robot

may either stay at the same position, or move to one of the four neighboring squares; hence we

have pi(t+ 1)− pi(t) ∈ {(0, 0), (−1, 0), (0,−1), (0, 1), (1, 0)}.
While moving, each robot must avoid collision with obstacles and other robots. In particular,

for any robot i and any time t ∈ N, we must have pi(t) /∈ O and pi(t) ̸= pj(t) for all j ̸= i.

In addition, a constraint is enforced in order to model coordinated movement: a robot i can

only move at time t to the position previously occupied at time t − 1 by another robot j if

they move in the same direction. More precisely, if pi(t + 1) = pj(t), then we must have

pi(t+ 1)− pi(t) = pj(t+ 1)− pj(t).

The length of the trajectory of robot i is the number of times robot i moves; in other words it

is |{t ∈ N | pi(t+ 1) ̸= pi(t)}|. Its completion time tC(i) is the time when robot i ceases to move;

in other words, it is the minimum time tC(i) such that for all t ⩾ tC(i), we have pi(t) = di. Even

if a robot reaches its target position, it does not disappear from the grid. The makespan is the

maximum completion time among all robots. The problem we will solve looks like Figure 3. We

assume that three robots numbered 1 to 3 will move from the red pixel (start position) to the

blue pixel (target position). They move at unit speed without collision. In this environment and

conditions, there are two objectives. First we may want to reduce the completion time. In other

words, the time when last robot reaches its target position is minimized. Or we may want to

minimize the total lengths of the robots paths. Therefore, we design optimization algorithms for

the different goals, i.e. cost functions. Table 2 presents the criteria for coordinating multi-robot

path planning.
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Figure 14: Multi-disk shaped objects parallel motion planning on a grid.

3.2 Related Work

Our path planning problem is a relaxed version of the 15-puzzle, but is more restricted than

pebble motion. (See Figure 4 and Figure 14.) The 15-puzzle problem allows one empty pixel

and our problem is on the unbounded grid. Ratner and Warmuth [23] proved that finding a

shortest solution of 15-puzzle is NP-hard. Efficient algorithms for deciding reachability of a

target configuration were given by Wilson [24] and Kornhauser, Miller, and Spirakis [25]. Pebble

motion, or swarm robots in [26] has a mild assumption of separation between robots, so it allows

some directed cycles. On the other hand, the problem studied in this section does not allow

directed cycles. In order to achieve the same configuration after one move in such a cycle, our

problem needs at least three extra steps.

This coordinated path planning problem was the third computational geometry challenge [26,

27]. As we mentioned, the solutions to this coordinated path planning problem were scored

according to two criteria: we should either minimize the makespan (MAX), or minimize the

sum of the lengths of the paths (SUM). Our team (UNIST) ranked second according to both

criteria, out of 17 teams participating in the contest. We obtained the highest score in 120 SUM

instances out of 203. Team Shadoks [28] ranked first according to MAX and third according to

SUM, while team Gitastrophe [29] ranked first according to SUM and third according to MAX.

The other two teams also start from computing the feasible solution (but in the different way)

and then optimize it. Shadoks had 202 best solutions out of 203 instances by using their conflict

optimizer which performs very well in the MAX version. Gitastrophe used the k-opt method

which chooses k robots and improve their paths while other robots’ paths are fixed. In a recent

paper [29], the Gitastrophe team applied the Shadoks’ confilct optimizer to their k-opt method.

More information on the contest can be found in the survey by Fekete et al. [27].

3.3 Methods

In this section, we present our three algorithms: the algorithm for computing an initial feasible

solution (F), our simple local search algorithm (LS) and our simulated annealing approach (SA).

We begin with the description of our data structure, which is common to these three algorithms.
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Figure 15: Our data structure G.

3.3.1 Data structure

Our data structure consists of two 3-dimensional arrays G and H. The array G is a 3D-array

of 8-bit integers, where G[x, y, t] = −1 if (x, y) is an obstacle, G[x, y, t] = 0 if the cell (x, y) is

empty at time t, and if (x, y) = pi(t) for some i, then G[x, y, t] records pi(t+ 1)− pi(t). In other

words, if robot i is located at (x, y) at time t, then G[x, y, t] records the direction taken by robot

i. We encode this direction as an integer in {1, . . . , 5}, where 5 means that robot i does not

move. (In particular, G and H do not record robot numbers.) The array H is a 3D-array of

16-bit integers, which is only needed in the SUM version.

The size of the array is chosen as follows. In the x and y directions, the array corresponds

to the minimum bounding box of the middle points as shown in Figure 17. (See explanation in

Section 3.3.2.) In the time direction, we expand the array as needed by our algorithm when it

constructs the solution.

For the sake of analyzing our algorithms, we use w to denote the size of G in either dimension.

The reason is that, for the problem instances given in the contest, the makespan of the solutions

we constructed was not much larger than the length and width of the array we used—less than a

factor 10. So we may assume that G is a w × w × w-array. Our data structure allows us to do

the following.

Deletion. We can delete the trajectory of robot i from G in O(w) time. It suffices to follow

the direction given by G[x, y, t] from the starting point si.

Insertion. Assuming robot i is not yet recorded in G, and there is a feasible path from si to di,

we can insert in O(w3) time a feasible trajectory of robot i that either minimizes the completion

time tC(i), or minimizes its length. It can be done by a simple sweep of G by increasing values

of t, and storing in G[x, y, t] the direction of a move (if any) leading to (x, y, t) as an integer in

{11, . . . , 15} (in order to be able to reconstruct a feasible path backwards). In the SUM version,

we also record in H[x, y, t] the length of the shortest feasible trajectory to (x, y, t), which allows
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Figure 16: (a)-(b) is the insertion operation in O(w3) and (b)-(c) is the deletion operation in

O(w).

us to return a feasible path with minimum length. At the end of the sweep, we reconstruct the

path backwards, and we remove all the values larger than 10 from G.

A detailed pseudocode for this insertion operation in the MAX version is given as Algorithm 1.

The corresponding C++ code is the function UNISTCG21_LS::MoveOneRobot in the file ls.cpp

at: https://github.com/antoinevigneron/CGSHOP21/tree/main/LocalSearch

The first phase, where we sweep the array from t = 0 to t = w − 1 and encode the reachable

configurations with integers in {11, . . . , 15}, appears between lines 3 and 25. During this phase,

a configuration (x2, y2, t+ 1) may be reached from several directions. In this case, we record in

G[x2, y2, t+1] only one direction leading to (x2, y2, t+1) and we give priority to direction 5, which

means that the robot does not move between time t and t+ 1 (Lines 4– 7). It guarantees that,

when we reconstruct the path backwards, we obtain the feasible path with minimum completion

time.

Note that this temporary encoding of directions for robot i with integers in {11, . . . , 15} is

different from the encoding of the other robots j ̸= i that are recorded in G: For such a robot j,

the direction is encoded by an integer in {1, . . . , 5}, and G[x, y, t] encodes the direction robot j

takes from (x, y, t) instead of the direction to (x, y, t).

Our algorithm needs to take into account the constraint on coordinated movement stated in

Section I: if pi(t+ 1) = pj(t), then we must have pi(t+ 1) − pi(t) = pj(t+ 1) − pj(t). This is

handled by two conditions named swarm condition 1 and 2 in the pseudocode (Lines 17–24).
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Algorithm 1 Inserting a robot into our data structure.
1: procedure Insert(robot i)

2: G[x(si), y(si), 0]← 15 ▷ assume that robots do not move between time t = −1 and t = 0

3: for t← 0, w − 2 do ▷ compute reachable configurations by sweeping the whole array

4: for (x, y) ∈ {0, . . . , w − 1}2 do ▷ robot i does not move between time t and t+ 1

5: g ← G[x, y, t], g2 ← G[x, y, t+ 1]

6: if g ⩾ 11 and g2 = 0 then ▷ robot i can reach (x, y, t+ 1) coming from (x, y, t)

7: G[x, y, t+ 1]← 15

8: for (x, y) ∈ {0, . . . , w − 1}2 do ▷ robot i does move between time t and t+ 1

9: g ← G[x, y, t]

10: if g ⩽ 5 then

11: continue ▷ robot i cannot reach (x, y, t)

12: for d ∈ {1, 2, 3, 4} do

13: (x2, y2)← Move(x, y, d) ▷ position obtained by moving in direction d from

(x, y)

14: g2 ← G[x2, y2, t+ 1]

15: if g2 ̸= 0 then

16: continue ▷ target position is not free

17: g3 ← G[x2, y2, t]

18: if g3 ∈ {1, 2, 3, 4, 5}and g3 ̸= d then ▷ swarm condition 1

19: continue

20: g4 ← G[x, y, t+ 1]

21: if g4 ∈ {1, 2, 3, 4, 5} then ▷ swarm condition 2

22: (x3, y3)← Move(x, y,−d) ▷ moving from (x, y) in direction opposite from d

23: if G[x3, y3, t] ̸= d then

24: continue

25: G[x2, y2, t+ 1]← d+ 10

26: (x, y)← di

27: for t← w − 1, 0 do ▷ reconstruct the trajectory of robot i backwards from di

28: d← G[x, y, t]− 10

29: if t = w − 1 then

30: G[x, y, t]← 5 ▷ assume that robots do not move between time t = w−1 and t = w

31: else

32: G[x, y, t]← d′ ▷ robot ri comes from direction opposite from d′

33: (x, y)← Move(x, y,−d)
34: d′ ← d

35: remove from G[] all values ⩾ 11
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Figure 17: (a) Robot i goes from si to di through mi. (b) The geodesic distance from o.

3.3.2 Computing a feasible solution

In order to compute a feasible solution, we construct a middle-point mi for each robot i, such

that there is a feasible path from si to di through mi. (See Figure 17a.) Let B be the minimum

bounding box of the starting points, target points and obstacles. The middle-points are chosen

from the set of grid points outside B, not adjacent to B, and whose x and y-coordinates are even.

In a first stage, we move all the robots to their middle-points, and in a second stage we move

them from their middle-points to their target points. In order to do this, we insert the robots

one by one in our 3D array G, by applying the insertion procedure from Section 3.3.1. For the

MAX version of the problem, we apply the version of the insertion algorithm that minimizes the

makespan of the inserted robot, and for the SUM version we use the version that minimizes the

length.

One difficulty here is that a robot can be blocked by other robots that are still at their

starting position, so we need to move the robots in an appropriate order. To this end, we compute

the geodesic distances from an arbitrary point o outside B to all the starting positions. (The

geodesic distance between two cells of the grid is the length of the shortest obstacle-avoiding

path between them, see Figure 17b.) We sort the robots by increasing geodesic distance, and

insert them in this order. This ensures that there is always a feasible path from si to mi for

each i. In the second stage, we proceed in the same way, except that we proceed by decreasing

geodesic distance from o to the target points. This approach finds a feasible solution to all the

input instances of the contest, as all the robots are in the unbounded face of Z2 \ O.

For each robot i, we have several choices for the middle-point mi. We tried a few possibilities.

The one that most often gives the best results was to choose the available middle-point that

minimizes the sum of the Manhattan distances to si and di.

For each robot, we run the insertion procedure twice: once from the starting point, and once
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from the middle-point. Each insertion takes O(w3) as we sweep the whole grid. So we obtain a

feasible solution in O(nw3) time.

3.3.3 Simple local search

In order to improve the feasible solution from Section 3.3.2, we can simply pick a robot i, delete

it from G and insert it again using the procedures from Section 3.3.1. It may give a large

improvement for this robot, as it no longer has to go through its middle-point mi. We call this

operation a tightening move. (See Figure 18.)

Our first optimization algorithm repeatedly tightens the path of a robot chosen at random.

(See Algorithm 2.) We first compute a random permutation of the robots. Then we go through

this random list, and perform a tightening operation on the current robot. If at least one of the

trajectories was shortened, then we repeat this process with a new random permutation. (In the

MAX version, we consider that the trajectory was shortened if its completion time is smaller,

and in the SUM version we consider that it was shortened if its length is smaller.) Otherwise,

as no progress was made, we restart from the input feasible solution (ignoring all intermediate

improvements).

Algorithm 2 Our first local search algorithm. At Line 9, the new path of ri is of minimum

length for the SUM version, and minimum completion time for the MAX version.
1: procedure SimpleLocalSearch

2: while true do

3: improved ← true

4: while improved = true do

5: improved ← false

6: compute a random permutation (r1, . . . , rn) of the robots.

7: for i← 1, n do

8: delete the trajectory of ri from the 3D grid

9: insert ri in the 3D grid along an optimal path

10: if the trajectory of ri was shortened then

11: improved ← true

12: restart from the input feasible solution

3.3.4 Simulated annealing

One drawback of the local search approach described in Section 3.3.3 is that the only type of

moves that is allowed consists in shortening the whole trajectory of one robot, and thus it can

easily be trapped in a local minimum. To remedy this, we use a simulated annealing approach [30]

that makes two types of moves: tightening moves as described in Section 3.3.3, and stretching

moves, which can make a trajectory longer.
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We now describe stretching moves. (See Figure 18.) As mentioned above, we assume that G

is a w × w × w array. Let i be a robot, and let t1, t2 be integers such that 0 ⩽ t1 ⩽ t2 < w. We

will see later how we generate t1 and t2 at random. We first delete the trajectory of i between

pi(t1) and pi(t2). Let tm be chosen uniformly at random between t1 and t2. We compute all

of the cells (x, y, tm) of G that are reachable from pi(t1), and that are reachable backwards

from pi(t2). We pick one of these points uniformly at random, which we denote by q. Then we

connect q to pi(t1) and pi(t2) through shortest paths, computed in the same way as we did in

the insertion operation from Section 3.3.1.

We now explain how we generate t1 and t2. We first set δ = min(w − 1, ⌊α
√
1/x⌋), where α

is a constant larger than 2, and x is a random floating point number in (0, 1]. Then we generate

t1 as a random number chosen uniformly between 0 and w − 1− δ, and we set t2 = t1 + δ. This

approach ensures that our stretching operation takes O(w) expected time. (See Theorem 35.)

In the SUM version, the score we attempt to minimize is the sum of the lengths of the paths

divided by the number of robots. In the MAX version, the score is MAX+(nmax − 1)/n, where

MAX is the makespan, and nmax is the number of robots whose completion time is equal to

MAX. The reason for introducing the second term is that otherwise, the algorithm may worsen

the solution by increasing the completion time of some robots to match the makespan, without

it being reflected in the score. In our experiments, we observed that this second term improves

the results.

A move that improves the score is always accepted by the algorithm, but a move that increases

it is accepted with probability exp(−∆/T ), where T is the current temperature and ∆ is the

score increase. We used a cooling schedule consisting of ncycles cycles of niter iterations each, such

that the temperature decreases exponentially within each cycle, and the maximum temperature

decreases linearly. (See Figure 19.)

3.4 Algorithm Engineering

In this section, we analyze our algorithm, and discuss issues related to the tuning of our simulated

annealing approach.
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3.4.1 Running time analysis

As mentioned above, our algorithm for computing an initial solution (F) runs in O(nw3) time,

and our simple local search algorithm (LS) runs in O(w3) time per iteration. We now analyze

our simulated annealing algorithm.

Theorem 35. Our simulated annealing algorithm (SA) runs in expected time O(w3) per tightening

move and O(w) per stretching move.

Proof. As the tightening operation consists in deleting and inserting a path in our 3D grid, it

takes O(w3) time. We now consider a stretching move on robot ri. We only update cells G[x, y, t]

of the grid such that t1 ⩽ t ⩽ t2.

Remember that δ = t2− t1. We denote by (x1, y1) the coordinates of ri at time t1. The x and

y-coordinate increase or decrease by at most 1 when t increases by 1, hence we only traverse cells

(x, y, t) of the grid such that x1− δ ⩽ x ⩽ x1 + δ and y1− δ ⩽ y ⩽ y1 + δ. So during a tightening

move, we only update a sub-array of size at most (2δ + 1)× (2δ + 1)× (δ + 1), and thus we can

sweep this sub-array in O(δ3) time. In addition, we need to compute pi(t1), which takes O(w)

time by reconstructing the path of ri. Thus a stretching operation takes time O(w + δ3). We

now bound the expected value E[δ3] of δ3.

We have δ = min(w − 1, ⌊α
√
1/x⌋) where x is a random number in (0, 1] and 2 ⩽ α = O(1).

So for 2 ⩽ k ⩽ w − 1, we have

Pr[δ = k] = Pr
[
k ⩽ α

√
1/x < k + 1

]
= Pr

[
k2 ⩽ α2/x < (k + 1)2

]
= Pr

[
α2/(k + 1)2 < x ⩽ α2/k2

]
= α2

(
1

k2
− 1

(k + 1)2

)
= α2 2k + 1

k2(k + 1)2
⩽

2α2

k3
,

which implies that

E[δ3] =

(
w−2∑
k=2

Pr[δ = k]k3

)
+ Pr[δ = w − 1](w − 1)3

⩽ 2α2(w − 1) + Pr[x ⩽ α2/w2](w − 1)3

= 2α2(w − 1) +
α2

w2
(w − 1)3 ⩽ 3α2w = O(w)

and the result follows.

3.4.2 Space usage

For our three algorithms (F, LS and SA), the size of the data structure (Section 3.3.1) is dominated

by the arrays G and H, which consist of w3 8-bit and 16-bit integers, respectively. So in the

MAX version, the size is roughly w3 bytes and in the SUM version, it is 3w3 bytes. We chose

this data structure in order to minimize memory usage, as we feared that large instances would
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not fit in RAM otherwise. (Our server has 4 Intel Xeon E5-2697 V4, 2.3 GHz, 72 cores in total

under Linux. The size of the RAM is 251 Gigabytes.)

It turns out that we only use a small percentage of our RAM even for the largest instances

(less than 7%), so we could have afforded a larger data structure. On the other hand, it is unclear

how it could have been useful with our approach. For instance, we could have recorded the

trajectory of each robot separately. When we run a stretching operation, it allows us to find in

constant time the first point pi(t1) along which we stretch, and bring down the running time of a

stretching operation from Θ(w + δ3) to Θ(δ3).

We made an experiment to check whether this could be helpful. So at each execution of a

stretch operation, we locate the point pi(t1) twice, instead of once, using our current procedure

that takes Θ(w) time. For a small instance (small_004), it makes the algorithm 6% slower, and

for a large instance (london_night_00009), it makes it 0.6% slower. So the improvement we

could obtain by recording explicitly all the trajectories would be modest.

3.4.3 Parameters of our simulated annealing approach

One advantage of our simulated annealing approach is its flexibility: We can change the objective

function (SUM or MAX), and we can adjust parameters such as the maximum and minimum

temperatures, the frequency of the different types of moves, and we can modify the cooling cycle.

A good choice of parameters yields markedly improved results. On the other hand, as we shall

see below, it comes with the drawback that it is not easy to find such a good set of parameters.

The main parameters are the following: The number ncycles of cooling cycles, the number

niter of iterations per cooling cycle, the maximum temperatures Tmax, and the frequencies fs

and ft of the stretching and tightening moves. More precisely, the probability of attempting a

stretching move or a tightening move are fs/(fs + ft) and ft/(fs + ft), respectively.

Our SA program takes as input an optional parameter file that allows the user to modify

these parameters. A few other parameters are included, that seem to have less impact on the

result, in the sense that we found values for these parameters that appear to work well for all

instances. Two of these parameters specify how much margin we allow in the grid around the

minimum bounding box of the input solution. The parameter α, described in Section 3.3.4

determines the length of a stretching move. The minimum temperature is Tmin. We observed,

for instance, that α = 5 gives good results, as well as Tmin = 10−4.

We determined the values of ncycles, niter, Tmax, fs, ft by trying on several instances of

various sizes, varying the parameters and comparing the results obtained. Since fs and ft are

not independent—more precisely we can replace them with 1 and ft/fs without changing the

behavior of our algorithm—there are 4 degrees of freedom in our search. In addition, in order to

get non-trivial results for large instances, each experiment takes hours or days. So we may not

have found the best set of parameters. Table 4 shows the parameters we used for the experiments

presented in Section 3.5.

To be more specific, we now show on a small example how we tuned these parameters. We
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A1 A2 A3 A4 A5 B1 B2 B3 B4=A3 B5

Tmax 0.1 10−4 10−3 10−2 0.1 1

niter 105 105

ncycles 102 102

fs 1 1 10 102 103 10

ft 10 1 1 1 1 1

time (s) 5876 2316 615 622 297 621 666 594 620 873

MAX 75 61 57 147 162 56 55 52 57 54

Table 3: Tuning the parameters of our simulated annealing algorithm. In all cases, we use

Tmin = 10−4 and α = 5. We start from a solution to instance small_017 with makespan 162.

ran calculations on the instance small_017, which has 322 robots. They lasted about 10 minutes

(see Table 3) on a workstation (AMD Ryzen 3500x). We optimized the makespan, i.e. we used

the MAX version. We started from a feasible solution with makespan 162.

We first tried to determine the relative frequencies of stretching and tightening moves. These

experiments are labeled A1–A5 and B1–B5 in Table 3. So we varied fs and ft, keeping the other

parameters fixed. For instance, in column A1, fs = 1 and ft = 10 so tightening moves are 10

times more frequent than stretching moves. As tightening moves take more time than stretching

moves, the times taken for these experiments vary substantially: A1 takes about 100 minutes

and A5 takes only 5 minutes. The best results are obtained in experiment A3, with a makespan

of 57. A5 completes about twice as fast, but gives a much worse result (makespan 162).

Then we started from the parameters of experiment A3, and varied the maximum temperature

Tmax. So we have a new set of experiments B1–B5, were B4=A3. The times taken still differ, but

by a smaller amount than it was in experiments A1–A5. The reason is that the time taken for

each move is proportional to the makespan of the current solution, so a set of parameters that

leads to finding better solutions earlier will lead to a shorter running time. The best solution in

experiments B1–B5 is given by experiment B3, with a maximum temperature Tmax = 10−2. We

obtain worse solutions for lower and higher temperatures.

We just showed two steps in the process of tuning the parameters of our algorithm. In

order to obtain the full set of parameters, we iterated this process several times, using different

parameters. For instance, after experiments B1–B5, we could try to find a better trade-off

between the number of iterations and the number of cycles. So we could use niter = 104 and

ncycles = 103, or niter = 106 and ncycles = 10. We may need several more iterations to converge

to a suitable set of parameters.

3.4.4 Failed attempts

During the competition, we tried other sets of moves than the ones described above. In particular,

we tried to do tightening moves in a time window [t1, t2], as we do for stretching moves, instead
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MAX SUM

small medium large small medium large

Tmax 0.1 0.1 0.1 10−4 10−4 10−4

niter 107 105 106 108 108 104

ncycles 103 103 10 103 103 103

fs 10 1 1 5.103 103 1

ft 1 1 103 1 1 1

Table 4: Simulated annealing parameters for our experiment. In all cases, we use Tmin = 10−4

and α = 5.

of [0, w]. We also tried to use tightening moves or stretching moves that also minimize the sum

of the lengths in the MAX version. These approaches made the results worse.

We also tried to use a smoothed objective function, using a linear combination of the makespan

and the sum of the lengths. The idea was that the makespan does not change smoothly, and

especially for large instances, it may not make any progress for long periods of time. This

approach also made the results worse.

3.5 Results

We implemented the algorithms above in C++. The source code can be found at:

github.com/antoinevigneron/CGSHOP21.

We denote by F, LS and SA the algorithm that generates the initial feasible solution (Section 3.3.2),

the simple local search algorithm (Section 3.3.3) and the simulated annealing algorithm (Sec-

tion 3.3.4), respectively.

During the contest, we first had F available, then LS, and finally SA. We are able to find a

feasible solution for any particular instance of the contest in less than 2 hours. In particular,

we ran SA on the solutions produced by LS, but we did not keep track of all the running times.

In order to show a fairer comparison, we present new experiments in this paper. We choose

24 instances of various sizes, and compute an initial feasible solution for each instance using F,

which has two versions: one for SUM and one for MAX. Then we run LS and SA on each of

these feasible solutions. Figure 20 shows the results on these 24 instances grouped into small,

medium and large size, after running either LS for 2 days or SA for 2 days. Table 5 and Table 6

record the related data.

3.5.1 Parameters

The parameters we use are shown in Table 4. There are different sets of parameters for each

group of 8 solutions, and for each version MAX or SUM. We determined these parameters by
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hand, as explained in Section 3.5. The corresponding parameter files are provided with our

source code, in the subdirectory 210905Parameters.

For the MAX version, we adjusted the number of cycles ncycles and the number of iterations

per cycle niter so that the computation runs over 2 days, and completes a reasonable number

of cycles. This could not be perfectly adjusted as the sizes vary. We use a larger number of

stretching moves for small instances.

In the SUM version, we ended up setting the temperature to 10−4, and remaining constant

during the whole course of the algorithm. At this temperature, all the moves that increase the

objective function are rejected, so we are effectively doing local search, but with a different set of

moves from what we used in Algorithm 2, the simple local search approach. More precisely, we

are now allowing stretching moves on a robot that do not increase the length of its path. This

can happen for two reasons: First there could be a local change that keeps the number of moves

the same, or a move by another robot might have given more free space for the current robot,

allowing to decrease the length of the trajectory.

A tightening move takes O(w3) time, while a stretching move takes O(w) expected time. (See

Section 3.4.1.) So we were expecting it to be advantageous to make a larger number of stretching

moves. However, our experiments show that it does not always help. In particular, for large

instances in the SUM version, the stretching and tightening moves have the same frequency, and

in the MAX version tightening moves are 103 times more frequent. (See Table 4.) Our efficient

implementation of the stretching operation is still helpful for small instances, where we make

stretching moves 10 and 5000 times more frequent than tightening moves in the MAX and SUM

version, respectively.

3.5.2 Discussion

Figure 20 shows that in the MAX version, SA is substantially better than LS for small instances,

and LS outperforms SA for medium and large-sized instances by a small margin. However, for

medium-size instances, Table 5 shows that it is only due to the largest instance in this category,

for which the result of LS is almost twice as good as the result of SA. The reason is that the

set of parameters we use for medium-size instances is not adapted for this particular instance.

Our set of parameters for large instances works better in this case. It illustrates the difficulty of

choosing a good set of parameters for some instances.

In the SUM version, our simulated annealing approach (SA) operates as local search with

stretching and tightening moves (see Section 3.5.1). It outperforms LS on small and medium

instances, and LS does slightly better on large instances.

The main advantage of our simple local search algorithm (LS), which only uses tightening

moves, is that it runs without any parameter, and gives reasonably good solutions in most cases.

It was especially helpful during the competition as we could start running it earlier than SA

without having to spend time tuning it.

Figure 21 and Figure 22 show the score over time when we run LS and SA on two instances,
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Figure 20: Performance of our algorithms on 8 small, 8 medium and 8 large-size instances.

Results are normalized according to the score for F, the initial feasible solution. Our simple local

search algorithm (LS) and simulated annealing (SA) were run for 48 hours each.

clouds_00003 (1000 robots) and medium_018 (1993 robots). We can see that LS improves the

score faster in the beginning, and then SA catches up. Our interpretation is that LS tries to

improve the score more aggressively using tightening moves, which leads more quickly to a local

minimum. On the other hand, SA does tightening moves on short portions of the trajectories

which provide smaller improvements in the beginning, but allow the algorithm to explore a larger

portion of the search space.

3.6 Future Work

Our algorithm for computing an initial feasible solution (F) can be improved: In particular, the

approaches by teams Gitastrophe and Shadoks appear to be much better [28, 29]. One question

is whether starting from better initial solutions would lead to better solutions after simulated

annealing (SA), or whether SA would close the gap after a reasonable time? Or perhaps it would

help to use an algorithm that produces a large variety of initial solutions, and then to apply

SA on them? It might be especially important for large instances where SA may not be able to

explore a large enough portion of the feasible space.

Another issue is the choice of parameters for simulated annealing. The parameters we use in

this paper give better results than what we used during the contest, but there could be room

for improvement. The difficulty is that for large instances, we may not see any substantial

improvement in the scores within a whole day of computation, so the process of improving the

parameter set takes time and computing resources, whether we do it by hand or using another

optimization algorithm. In addition, our experiments seem to show that some instances of similar

sizes may require different parameter sets, so it is unclear how to predict which parameters would

be suitable for which solution. A better approach might thus be to allow the algorithm to change

the parameters during the computation. For instance, after detecting that the score is increasing

too much, the algorithm could decrease the temperature or the frequency of stretching moves.
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instance nb. of normalized makespan makespan

name robots SA LS F F

small instances

buffalo_free_000_125 125 0.38 0.39 1 88

galaxy_cluster2_00002_251 251 0.26 0.37 1 161

algae_00001_278 278 0.27 0.40 1 142

small_free_017_320 320 0.28 0.40 1 152

medium_free_003_320 320 0.44 0.45 1 143

small_018_324 324 0.27 0.39 1 179

medium_005_407 407 0.38 0.43 1 245

sun_00001_571 571 0.43 0.47 1 256

sum 2.71 3.30 8

medium instances

clouds_00003_1000 1000 0.33 0.37 1 258

algae_00004_1113 1113 0.36 0.39 1 314

medium_017_1202 1202 0.58 0.64 1 481

buffalo_004_1404 1404 0.32 0.34 1 355

large_001_1563 1563 0.36 0.37 1 375

sun_00004_1707 1707 0.38 0.41 1 418

medium_018_1993 1993 0.45 0.51 1 506

microbes_00006_2500 2500 0.71 0.38 1 470

sum 3.49 3.41 8

large instances

universe_bgradiation_00006_3000 3000 0.41 0.40 1 503

algae_00007_4000 4000 0.39 0.38 1 548

redblue_00009_4500 4500 0.39 0.38 1 600

galaxy_cluster_00008_5000 5000 0.38 0.36 1 726

london_night_00009_6000 6000 0.36 0.38 1 812

clouds_00009_7229 7229 0.94 0.86 1 937

universe_bgradiation_00009_8000 8000 0.96 0.94 1 968

large_free_009_9000 9000 0.99 0.98 1 1134

sum 4.82 4.68 8

Table 5: A few instances with the scores obtained after running our algorithms for 48 hours.
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instance nb. of normalized sum of length sum len.

name robots SA LS F F

small instances

buffalo_free_000_125 125 0.49 0.49 1 3817

galaxy_cluster2_00002_251 251 0.41 0.49 1 9984

algae_00001_278 278 0.38 0.46 1 11771

small_free_017_320 320 0.38 0.46 1 14143

medium_free_003_320 320 0.51 0.52 1 15301

small_018_324 324 0.45 0.53 1 15025

medium_005_407 407 0.57 0.61 1 23608

sun_00001_571 571 0.58 0.60 1 45756

sum 3.77 4.16 8

medium instances

clouds_00003_1000 1000 0.39 0.41 1 81966

algae_00004_1113 1113 0.41 0.43 1 99549

medium_017_1202 1202 0.44 0.45 1 124757

buffalo_004_1404 1404 0.40 0.41 1 141613

large_001_1563 1563 0.48 0.49 1 163441

sun_00004_1707 1707 0.41 0.44 1 177165

medium_018_1993 1993 0.41 0.43 1 229762

microbes_00006_2500 2500 0.51 0.51 1 332072

sum 3.45 3.57 8

large instances

universe_bgradiation_00006_3000 3000 0.48 0.48 1 452468

algae_00007_4000 4000 0.42 0.42 1 642477

redblue_00009_4500 4500 0.41 0.41 1 776572

galaxy_cluster_00008_5000 5000 0.39 0.39 1 907767

london_night_00009_6000 6000 0.39 0.39 1 1197178

clouds_00009_7229 7229 0.43 0.42 1 1501372

universe_bgradiation_00009_8000 8000 0.44 0.43 1 1737632

large_free_009_9000 9000 0.45 0.44 1 2054727

sum 3.41 3.38 8

Table 6: A few instances with the scores obtained after running our algorithms for 48 hours.
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Figure 21: Best makespan until time t for two instances, using LS and SA.
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Figure 22: Best SUM until time t for two instances, using LS and SA.
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