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Abstract 

Although photoacoustic endoscopy (PAE) is a great technique with a huge potential in vascular imaging, 

it yet has some limitation for the clinical translation. Currently, one of the shortcomings of this system 

is electromagnetic interference (EMI) noise, which decreases signal-to-noise ratio (SNR) and slows 

down the technology development. The problem can not be simply overcome by increasing the optical 

pulse energy, unlike in ultrasound endoscopy, due to laser safety requirements. In addition, because 

PAE requires a wide separation between ultrasound sensor and amplifier, it is a hard task to make PAE 

system without EMI noise. To accelerate the progress of PAE field development, we accessed the 

feasibility of deep-learning-based methods for EMI noise removal. We chose four convolutional neural 

networks (CNN) architectures: U-Net, Segnet, FCN-16s, FCN-8s, and concluded that modified and 

tuned U-Net architecture suits the best for our application. We also compared deep-learning-based 

approach to a classical methods of noise removal to prove CNN supremacy. Applying trained and fine-

tuned U-Net allowed us to see a tiny capillary mesh-like structures in a successfully denoised 3D 

vasculature map image, which can be used in future for the angiogenesis studies. For the future work, 

as we effectively removed noise from PAE images, we also expect that if we increase training dataset, 

our method can be applied more broadly to many areas of photoacoustic tomography to overcome EMI 

noise and poor SNR. 
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I. Introduction 

 

Electromagnetic (EM) interference (EMI) noise is one of the important types of noise that disturbs 

the normal operation of an electrical circuit, and the related issues have been an important subject in 

many areas of electronics over the past century [1–7]. This noise is normally caused by external sources 

through mechanisms such as electromagnetic induction, electrostatic coupling, and conduction. 

Although the basic hardware platform for most modern electronic devices has evolved for digital-based 

operations, achieving a sufficiently stable circuit that is unaffected by EMI noise is still seen as a 

significant issue in many areas of electronics—in particular, in telecommunication technology, which 

deals with such important devices as radio, television, and cellular phones in the radio frequency (RF) 

or even higher frequency bands [6]. This is because the transmitted or received signal itself is based on 

analogue at the lowest level. Although, EMI noise is known to originate from any current or voltage 

source working in a switching or alternating mode near the circuit of interest, it is quite difficult to avoid 

such noise because the level and pattern of the disturbance are greatly affected by the geometric factors 

of the conducting path, by the spatial configuration of the associated elements, or by the electric 

impedance mismatch. Therefore, a circuit can still be affected by EMI noise even though there is no 

direct electrical connection to any other adjacent object. 

EMI noise has also been an ongoing issue in photoacoustic (PA) tomography (PAT) [8–17] 

because PAT relies on analogue ultrasound (US) signals typically ranging in the RF band 1–100 MHz. 

PAT is a novel tomographic imaging modality based on the photoacoustic effect, which has been 

drawing increased attention as a range of biomedical applications have shown promising results over 

the past decade. Typically, a PAT system consists of optical illumination and acoustic detection units 

as well as additional modules to acquire images by scanning, whether electronically or mechanically. 

Consequently, in the case of a PAT system, a switching-based circuit module, such as a switching mode 

power supply, a stepping motor and its driver, or a pulser circuit, could all be potential sources of EMI 

noise. Of course, the commercial devices listed are manufactured with a regulated EM radiation limit. 

However, EMI noise can still occur if they are not properly engaged with the entire circuit that is being 

constructed, and if such issues as grounding and impedance matching between them are not carefully 

considered. If EMI noise is involved in a PAT image that was acquired on the basis of mechanical 

scanning, the noise pixels will usually appear in random positions, as rain-like striking patterns in a B-

mode image presentation format, because a range of data points in an A-line was serially affected. Due 

to this feature, it is not difficult to recognize noise-affected pixels based on a visual judgment. However, 

it is almost impossible to remove them by applying a simple filtering method, such as a band-pass filter, 
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because the spectral width of the delta function-like electric disturbance is very wide, and thus there is 

a spectral overlap with the detection band of the US transducer employed. 

In the case of photoacoustic endoscopy (PAE) or intravascular photoacoustic (IVPA) imaging 

applications [18–29], related issues appear more frequently and seriously because it is a common 

hardware situation that the US transducer for signal detection and the associated preamplifier for the 

amplification of the detected signal are placed separately, with one at the distal end of the flexible probe 

section and the other with the proximal driving unit, at a distance of more than ~1.5 m, as the space 

allowed for installing a preamplifier circuit at the distal scanning tip is very limited. Moreover, due to 

the same limited space problem, it is not easy to apply proper shielding material to the connection path 

(i.e., the flexible probe section), which is located between the two parts mentioned [7]. Consequently, 

it has been recognized that it is very difficult to implement a perfect hardware setup in PAE or IVPA 

that is not affected by interference noise at all, especially where the system is embodied at a laboratory 

level, and the problem related to the involvement of noise has been mentioned frequently in many 

reports [19–21,23,25,29]. 

In this study, we propose a deep-learning-based EMI noise removal algorithm for use on PA 

images acquired by a newly constructed PAE system [29]. Although multiple studies have applied 

artificial intelligence (AI) techniques to PAT, all of them were related to other topics, such as PA image 

classification [30,31], reverberation removal [32], missing data restoration [33,34], artifact removal 

[35–37], reconstruction assistance [38,39], image segmentation [40–42], and resolution enhancement 

[43,44]; more details on the previous works in this area are provided in Table 1. To the best of our 

knowledge, no previous studies have addressed the problem of EMI noise removal as our work does. 

This is true and also natural in some respects because all the previous studies targeted its use when 

linked to a PAT system with a large footprint, in which EMI noise is not usually involved in an acquired 

PAT image because necessary action to avoid EMI noise is already taken at a hardware level by 

applying sufficient shielding. That is, although in principle, it is not impossible to build a nearly perfect 

endoscopic hardware system that produces only a negligible amount of EMI noise, it would be 

extremely costly and very labor-intensive, which would not be realistic in most laboratory 

environments. 

Therefore, recognizing the general hardware limitations of a lab-made PAT miniature probe, we 

considered it is important to develop a software-based EMI noise removal system to prevent researchers 

from missing any important anatomical structures that might exist in an acquired image but not be 

recognized due to the noise. Of course, it might be also thought that, due to the aforementioned 

commonly intervening characteristic of EMI noise in many circuits, there must be already many studies 

that developed a similar EMI noise removal algorithm. Interestingly, however, we could not find any 

articles that dealt with such an EMI noise removal issue in the “rain-like” striking pattern like in our 
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case [45–54]. Among the various types of noise, the salt-and-pepper noise that has been studied in 

general digital image processing areas in a planar photographic image format appears to be similar to 

the EMI noise seen in our case in terms of the randomness in a noise-involved position [45–48]. 

However, the salt-and-pepper noise presents no structural information, and its noise pixel values take 

either the maximum or minimum value of the signal dynamic range [45–48], meaning that it is 

fundamentally different from the EMI noise seen in our case. Consequently, there was no identified 

report that addressed a similar EMI noise removal issue when it comes to the medical image processing 

area in which tomographic images are usually dealt with. Thus, we attribute the rain-like appearance of 

EMI noise in an image to the unique character of the PAT and US imaging technology that records 

related signals by consecutively digitizing arriving acoustic waves over a set time interval (i.e., gated 

time) and presents the recorded image data in a B-mode format. In the case of conventional PAT 

research, it would be somewhat natural to understand why there were no related studies. We think it 

was because EMI noise can be sufficiently prevented by a hardware-based treatment, unlike the typical 

hardware situation faced in PAE or IVPA imaging applications, which emerged relatively later. Thus, 

although the presented deep-learning-based EMI noise removal strategy would benefit PAE or IVPA 

research only at this moment, it was our basic idea that related approaches would become increasingly 

important in the future because the development of low-cost PAT systems or PA sensors is emerging 

as a new important subject in related areas [13,55]. Moreover, in terms of the morphological features 

of EMI noise appearing in an image, the topic of this study may have a close linkage to the rain removal 

problem that occurs in surveillance cameras in relation to security or safety [56–58]. 

To remove EMI noise from a PAE image, simple methods, such as cross-correlation [23] or a 

transverse signal gradient-based noise detection algorithm [29], have been applied as self-rescue 

methods in previous studies. We guess that the first method might have worked satisfactorily because 

the related endoscopic probe was operated in an acoustic-resolution (AR) PAE mode, in which it is 

typical that PA signals from capillaries are hardly captured and resolved. However, when we applied 

the latter method to our endoscopic images, the result was not satisfactory, especially when processing 

signals relating to a fine structure, such as a capillary network, because the non-AI-based, classical 

deterministic algorithm could not accurately distinguish EMI noise-affected pixels from normal delicate 

capillary signals resolved by the optical-resolution (OR) PAE. Consequently, the denoising work 

required a great deal of time and labor for manual-based image segmentation in order to remove the 

EMI noise that occurred only in the non-intestine area while avoiding the alteration or loss of important 

capillary signals. Thus, it is our point that, if the operation mode of the PAE or IVPA probe approaches 

such an optical microscopy level of high resolution, related EMI noise removal becomes tricky, 

regardless of the type of the applied methods [23,29], because the noise pattern itself becomes similar 

to that of the capillary signal resolved by the OR PAE; note that, among previous PAE or IVPA studies, 
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in which developing a narrow diameter imaging probe was the key, only three reports demonstrated an 

OR imaging mode [21,24,29]. 

Recent studies in the biomedical imaging community have shown the applicability of deep-

learning techniques to solve such tedious and complex image-to-image regression problems in super-

resolution [59,60], segmentation [40–42,61,62], and denoising [63,64] from a variety of imaging 

modalities. The type of deep neural network commonly used for handling image-to-image regression is 

a convolutional neural network (CNN) with convolutional layers end-to-end. Among CNNs, fully 

convolutional neural networks (FCNs) have many benefits in terms of dealing with variable input sizes, 

conserving the dimensions of the image data and efficient learning from shared weights. Moreover, it 

can also be trained to extract numerous important features for a given purpose without human 

supervision [52]. In particular, FCNs are used for semantic segmentation where each image pixel is 

assigned to one-pixel class. In other words, since FCNs have the ability of pixel-wise classification and 

modification, FCNs should not only be able to capture the random locations of the EMI noise but also 

to remove the amount of noise at those pixels. This should also become manifest in comparison with 

classical computational methods.  

In this article, to deal with EMI noise-affected PAE images more effectively, we consider CNN-

based noise removal algorithms built upon four representatives of the fully CNN architectures, in 

combination with an image-to-image regression technique. Based on the comparison, we propose a 

CNN-based noise removal algorithm that best achieves our goal and applies it to in vivo data to confirm 

the suitability of the method for EMI noise removal. Thus, the main contribution of this work is to 

develop and apply CNN-based algorithms for the first time to remove EMI noise from images acquired 

from a PAE system. In particular, we consider U-Net, Segnet, FCN-16s, and FCN-8s architectures. Not 

only do we compare these CNN-based algorithms that are modified to work for the EMI noise removal, 

but we also consider classical computational algorithms to confirm the superiority of CNN-based ones. 

At last, we will conclude that the U-Net architecture is the most efficient and accurate among the 

candidates. Not to mention, the U-Net can generate a denoised 3D vasculature map showing a clear 

image of the mesh-like capillary networks distributed in the wall of a rat colorectum. 
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II. Materials and Methods 

2.1. Data source 

The dataset utilized for this study was acquired from the colorectums of Sprague Dawley rats (~400 g) 

and the urinary tract of a New Zealand white rabbit (~1.5 kg) over three independent experiments 

(colorectum imaging for two rats and transurethral imaging for one rabbit) by using the integrated OR-

PAE and endoscopic US imaging system that we recently reported [29]. Figure 1a depicts the 

approximate experimental setup. The system allows for the acquisition of OR-PAE B-scan images at a 

frame rate of 20 Hz, based on the 532 nm optical excitation (pulse width: ~2 ns) and subsequent US 

signal detection, achieved by symmetrically placed dual US transducers (center frequency: 40 MHz, 

fractional bandwidth: ~60%, physical dimension: 0.6 mm × 0.5 mm × 0.2 mm). The system could also 

acquire co-registered US images, simultaneously, and the US images were also affected by EMI noise. 

In this study, however, we did not consider EMI noise removal because it is relatively easy to deal with 

in comparison with PAE images since the spatial resolution of the US imaging mode falls within the 

AR level rather than OR. 

 

Figure 1. Overview of training data preparation and CNN architectures considered in this study: (a) 

The imaging system we set up, (b) data preparation procedure. The EMI noise pattern looks very similar 

to the blood vessels in the Hilbert-transformed image. (c) CNN architectures: U-Net, Segnet, and FCN-

16s. Further details of the networks are provided in Figure 2. 
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Considering the 40 MHz center frequency of the employed dual transducers, we recorded OR-PAE B-

scan images at a sampling rate of 200 MHz and set the data length of each A-line to be 400 points and 

the total number of scanning steps for one full 360° B-scan to be 800—this was determined considering 

the transverse resolution of the OR-PAE imaging mode. Thus, each B-scan image consisted of 

400×800-pixel values. Due to the aforementioned geometry-dependent nature of EMI noise, while we 

used the same experimental setup, B-scan images were acquired with different noise levels in terms of 

the noise amplitude over a number of experimental dates. Thus, among the numerous in vivo datasets 

we collected, we selected 1000 OR-PAE B-scan images that were least affected by EMI noise. 

2.2. Data Preparation 

For each B-scan image, we performed the Hilbert transform along the radial (or depth) direction for 

envelope detection and extracted only from the upper region a size of 304 × 800 that contained the most 

information. Figure 1b shows a typical Hilbert-transformed image. We created the ground truth or target 

dataset from the acquired 1000 B-scan images using the following semi-manual denoising procedure: 

First, the intestine region was manually segmented. In other words, this was performed by hand based 

on our expertise, not by any existing segmentation algorithms, because we wanted to avoid any possible 

bias when we prepare the training data. Second, while the intestine region remained intact, we removed 

the noise outside of the region by thresholding. That is, if a pixel value was higher than a threshold 

value, we assigned the minimum of the adjacent pixel values to the pixel. Indeed, this threshold value 

is selected as twice as large as the thermal noise level. The whole preprocessing procedure is the same 

as in reference [29], where all the details can be found. 

After the ground-truth dataset was prepared, we added random EMI noise (i.e., noise streaks) to some 

B-scan images in the ground-truth dataset to prepare a noisy input dataset. 

We randomly divided the 1000 ground-truth images into two groups: one group of 700 images for 

training and the other group of 300 images for validation. To prevent overfitting, we applied random 

translations in both horizontal and vertical directions during the training. For a test dataset, we prepared 

200 images from rat colonoscopy data and added to these images between 100 to 400 noise streaks at 

random, using the process described above. 

 

*Reproduced in part from Gulenko, O.; Yang, H.; Kim, K.; Youm, J.Y.; Kim, M.; Kim, Y.; Jung, W.; Yang, J.-M. Deep-

Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image 

Processing. Sensors 2022, 22, 3961. Published by MDPI. 

2.3. Classical Methods 

To compare our method to approaches that are usually used for noise removal. One of them is median 

filter. This filter is used to eradicate salt-and-pepper noise in images. The sliding window of 3x3 pixels 
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slides through the picture, and median of this neighborhood is calculated. The value of the given pixel 

is substituted by the neighborhood median if different [65].   

Another method that we used was Wiener filter. Unlike median filter, it is edge-adaptive low-pass filter 

which focuses on removal of Gaussian noise. The filter calculates the mean and variance of the given 

pixel sliding window neighborhood 3x3 and recalculates the value of the given pixel [66]. 

𝜇 =
1

𝑁𝑀
∑ 𝑎(𝑛1 , 𝑛2)

𝑛1 ,𝑛2𝜖𝜌

 (1) 

𝜎2 =
1

𝑁𝑀
∑ 𝑎2(𝑛1, 𝑛2) − 𝜇2

𝑛1,𝑛2𝜖𝜌

 (2) 

𝑏(𝑛1, 𝑛2) = 𝜇 +
𝜎2 − 𝜗2

𝜎2
(𝑎(𝑛1, 𝑛2) − 𝜇) (3) 

where 𝜇- mean, 𝜎2- variance, N,M - neighborhood dimensions,  𝜌 - given neighborhood, 𝑎(𝑛1 , 𝑛2) 

– given pixel, 𝑏(𝑛1, 𝑛2) – recalculated given pixel value, 𝜗2 - noise variance (average local variance). 

Also, we used the gradient method that was described earlier in the section above; however, without 

boundary detection for the fair comparison. 

In addition, we implemented adaptive median filter that should prevent to remove the signal values. It 

substitutes the given pixel by the neighborhood medium only if it has the maximum value in this 

neighborhood. The sliding window size is increased every step unless median of neighborhood equals 

maximum value [67].  

The filter that is based on the similar idea, but also includes edge-conservation function is median-type 

detail-preservation filter [67]. This filter detects only pixels that are changed by adaptive median filter 

as noise and then recalculates their value as follows: 

𝐹𝑦|𝑁(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(𝑆1 + 𝑆1)]

(𝑖,𝑗)∈𝑁

 (4) 

𝑆1 = ∑ 2 ∗ 𝜑(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛)

(𝑚,𝑛)∈𝜗𝑖,𝑗∩𝑁𝑐

 
(5) 

𝑆2 = ∑ 𝜑(𝑢𝑖,𝑗 − 𝑢𝑚,𝑛)

(𝑚,𝑛)∈𝜗𝑖,𝑗∩𝑁𝑐

 (6) 

𝜑 = |𝑡|𝛼 (7) 

where 𝑢𝑖,𝑗  – updated pixel value, 𝑦𝑖,𝑗  – original pixel values, 𝑖, 𝑗  – given pixel location, 𝑚, 𝑛  – 

neighborhood pixel values, 𝜗𝑖,𝑗  – neighborhood of pixel 𝑦𝑖,𝑗 , 𝑁𝑐 – noise pixels, 𝛽 = 5, 𝛼 = 2. 𝑢𝑖,𝑗  

should be found by minimizing 𝐹𝑦|𝑁(𝑢) [67]. 
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Also, we used morphological filter, which consisted of consecutive grayscale opening with further 

grayscale closing. The opening, in turn, consists of dilation followed by erosion, and the closing consists 

of erosion followed by dilation. Dilation operation is assigning the value of the maximum pixel value 

in the neighborhood (in our case 3x3 squared area). Likewise, the erosion operation is assigning the 

value of the minimum pixel value in the neighborhood [68]. 

Last but not least method we utilized is contraharmonic mean filter, which is often used to remove either 

salt or pepper noise [69]. The value of denoised pixel is calculated as the contraharmonic mean of the 

nearby pixels: 

 

𝐶 =
∑ 𝑔(𝑖, 𝑗)𝑅

(𝑖,𝑗)∈𝑤

∑ 𝑔(𝑖, 𝑗)𝑅−1
(𝑖,𝑗)∈𝑤

 (8) 

 

where C – updated pixel value, 𝑤 – 3x3 window area, 𝑔(𝑖, 𝑗) – pixel value in given area, 𝑅 = -1. 

 

 

2.4. CNN Architectures 

For signal detection in the noisy images, four types of neural network architecture were implemented: 

U-Net, Segnet, FCN-16s and FCN-8s, as shown in Figure 1c. These architectures are traditionally used 

for semantic segmentation. They were considered suitable for our application because EMI noise has 

structural characteristics that are distinctive from the usual structures in PAE images. We believed that 

denoising methods based on the idea of semantic segmentation should be able to separate locally 

connected vertical patterns from the rest of the images and also minimize the influence of the denoising 

process on noise-free pixels. For this purpose, an output regression layer was used to substitute for the 

output pixel classification layer, and the softmax layer was removed. 
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Figure 2. Neural network architecture details: U-Net, Segnet, FCN-16s, FCN-8s. Each color is assigned 

to a particular type of layer in the networks. 

U-Net is a CNN model, based on the fully convolutional network (FCN), which has proven itself able 

to achieve high accuracy in biomedical image segmentation [70]. It has encoder-decoder architecture, 

in which an image is first contracted to extract feature maps and then expanded back to its original size 

[70]. In detail, an image of size 304×800×1 undergoes a convolution process with 64 3 × 3 convolutional 

filters twice to create a feature map of size 304 × 800 × 64. After each convolution, ReLU is applied 

[71] to set the negative values to 0. Next, the max-pooling layer [72] of 2 × 2 is applied to decrease the 

image size from 304 × 800 to 152 × 400, with the feature channel doubled (i.e., the feature map of size 

304 × 800 × 64 becomes size 152×400×128). This process continues until the image dimension is 

reduced to 19 × 50 × 1024. After the image size shrinkage, further dropout layers are applied to decrease 

the third dimension for the feature channel, and thus decrease the complexity of the neural network [73]. 

To bring the feature maps back to the original size, the up-sampling process is used. The shrunk input 

undergoes a series of depth concatenations with features maps from the encoder of the convolution and 

ReLU activation layers. The increase in the image size is performed by transposed convolution [74]. 

Similar to U-Net, Segnet is also an encoder-decoder, which is a small easy-to-train network invented 

for scene understanding [75]. However, unlike U-Net, it does not use depth concatenation, but uses 

max-pooling indices for the max-unpooling image restoration process. Moreover, Segnet applies a batch 

normalization layer [76] after convolution to normalize the input. 
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FCN-16s and FCN-8s are fully convolutional networks (FCN) that provide finer segmentation and 

regression of images. Indeed, FCN combines features from the deep rough layers and the shallow 

detailed layers to make the output results finer [77]. Unlike Segnet and U-Net, FCN-16s apply 

upsampling from the last two max-pooling layers and fusion, while FCN-8s apply upsampling from the 

last three layers with further fusion [77]. Before the fusion, transposed convolution is performed. More 

detailed structures of the applied four networks are provided in Figure 2. 

2.5. CNN Training and Hyperparameter Tuning 

We employed L2 regression loss based on the half mean squared error for the training of the CNNs. 

Each of the CNN weights, 𝜃, was updated during the training process based on the following loss 

function: 

𝐿(𝜃) =
1

𝐾
∑ (

1

2
∑ ∑(𝑦𝑝(𝑖, 𝑗) − 𝑥(𝜃)𝑝(𝑖, 𝑗))

2
𝑊

𝑗=1

𝐻

𝑖=1

)

𝐾

𝑝=1

+ 𝜆‖𝜃‖2 (9) 

where 𝑥(𝜃)𝑝 is a denoised network output image, 𝑦𝑝 is a ground-truth target image, H and W are the 

image dimensions, K is the total number of images in the mini-batch, and 𝜆  is a regularization 

parameter. Please note that 𝑦𝑝(𝑖, 𝑗) is the value of the image 𝑦𝑝 at the pixel (𝑖, 𝑗). To confirm training 

progress, we used the root-mean-squared error (RMSE) as shown below: 

𝑅𝑀𝑆𝐸(𝑦𝑝, 𝑥(𝜃)𝑝) =  √
1

𝐻 ∗ 𝑊
∑ ∑(𝑦𝑝(𝑖, 𝑗) − 𝑥(𝜃)𝑝(𝑖, 𝑗))

2
𝑊

𝑗=1

𝐻

𝑖=1

 (10) 

RMSE computes pixel-wise error after the noise removal process from a trained CNN on each occasion. 

For the network parameter update, we employed the Adam optimizer [78]. The learning rate drop factor 

and period were 0.3 and 10, respectively, and the mini-batch size was 1. Validation RMSE and loss 

were checked every 50 iterations of the network parameter update. Hyper-parameters, that is, CNN’s 

initial learning rate, number of epochs, and parameters for L2 regularization were tuned, based on the 

Bayesian hyper-parameter optimization method, which uses the Bayes theorem and the Gaussian 

process to estimate the best model hyperparameters [79] and to save time and memory from exhaustive 

parameter space sweeping. For each network architecture, the best hyperparameters were chosen with 

the lowest RMSE from the validation set after 10 iterations. All the implementation and training 

experiments were performed using the experiment Manager Toolbox in Matlab 2021a (Matlab) on the 

PC with Intel(R) Core (TM) i7-10700 CPU @ 2.90GHz, RAM 64.0 GB, and Nvidia RTX 3090 24 GB 

GPU. Specific hyper-parameters used in the experiments are shown in Table 1. 
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Table 1. Summary of other parameters for the networks. 

 

  

 
Initial Learning 

Rate 
Epoch Number L2 Regularization Training RMSE 

U-Net 0.0002 70 0.0465 33.2993 

Segnet 0.0010 93 0.0497 1028.6909 

FCN-16s 0.0003 84 0.0166 291.4638 

FCN-8s 0.0002 78 0.0205 344.4395 



23 

 

III. Results 

3.1. Performance Comparison of Trained CNN Architectures 

In Figure 3, the RMSE during training is shown for each architecture with the training and validation 

sets.  

 

Figure 3. RMSE during training. 

We observed that the terminal value and the speed of convergence of RMSE from the validation set 

varied among the CNN architectures. In the case of Segnet, the initial and terminal RMSE was not much 

changed, which means there was no progress in training. By comparison, the FCN-16s, FCN-8s, and 

U-Net architectures all show rapid decreases in RMSE during the first few steps of training; however, 

the FCN architectures resulted in no significant further improvements. The architecture that converged 

to the lowest RMSE from the training record is U-Net. We also implemented the structural similarity 

index measure (SSIM) [80] to verify quantitatively that the observation target signal remained as 

intended: 

0 ≤ 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
≤ 1 (11) 

where x and y are noise-removed and ground-truth images; 𝜇𝑥  and 𝜇𝑦  are the means of x and y, 

respectively; 𝜎𝑥  and 𝜎𝑦  are the standard deviations of x and y, respectively; 𝜎𝑥𝑦  is the cross-

correlation of x and y; and 𝑐1 and 𝑐2 are the variables used to stabilize the division with a small 

denominator. Similar to RMSE, there is another well-known measure called the mean absolute error 

(MAE): 

𝑀𝐴𝐸(𝑦𝑝, 𝑥(𝜃)𝑝) =
1

𝐻 ∗ 𝑊
∑ ∑|𝑦𝑝(𝑖, 𝑗) − 𝑥(𝜃)𝑝(𝑖, 𝑗)|

𝑊

𝑗=1

𝐻

𝑖=1

 (12) 

 

that we computed for fair comparison. 

In Figure 4, a summary of noise removal performance by the trained CNN architectures is shown. The 

results distinctively indicate that the U-Net structure outperformed the other architectures in terms of 
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RMSE, SSIM, and MAE. Although all four architectures belong to fully convolutional neural networks, 

the slight differences in detail between the architectures resulted in clear distinctions in the different 

performance scores generated. The key difference among the network structures is the information that 

is used in the restoration process. To explain this in detail: Segnet uses indices from max-pooling for 

max unpooling between the same depths for restoration, whereas FCN-16s and FCN-8s utilize encoded 

information at the last two (or three) max-pooling layers, which are inadequate to restore the observation 

target signals. In contrast, U-Net utilizes concatenation through the skip connections between the same 

depth levels, which compensates for the information lost at the max-pooling layers in the restoration of 

signals at the decoding part. The consequences of these architectural differences are well represented 

in Figure 4. Regardless of the noise level, all the trained CNNs were able to remove noise from the 

background region. However, the quality of the various signal restorations turned out to be significantly 

different. In fact, Segnet failed to recover most of the observation target signals, whereas the FCN 

structures restored blurry signals. In contrast, U-Net restored the observation target signals with little 

damage. 

 

Figure 4. Performance metric comparison between trained CNNs’ log-scaled RMSE (top) and SSIM 

(middle) and MAE (bottom) for each noise level (streaks per image) using the test set. The smaller the 

RMSE and MAE and the larger the SSIM, the better reconstruction we have. Further comparison with 

classical approaches can be found in Figure 5. 

 

*Reproduced in part from Gulenko, O.; Yang, H.; Kim, K.; Youm, J.Y.; Kim, M.; Kim, Y.; Jung, W.; Yang, J.-M. Deep-

Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image 

Processing. Sensors 2022, 22, 3961. Published by MDPI. 
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Figure 5. RMSE, SSIM, and MAE values of various denoising methods. This is to compare the four 

CNN-based algorithms developed in the current study and the three classical denoising methods, the 

median filter, Wiener filter, the transverse signal gradient-based method utilized in [29], adaptive 

median filter, median type edge-preserving filter, morphological filter, and contraharmonic filter, which 

were chose for comparison. The U-Net clearly presents the best noise removal results. The SSIM values 

for the signal gradient-based method are not shown because they were approximately 10-16, almost 0, 

which is the worst possible value. 
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Figure 6. Visualized noise removal example for a single B-scan image with different noise levels. The 

noise removal performance of each architecture is shown as a pixelwise error map, which calculates the 

difference between the ground truth and averaged network outputs from all tested noise levels. Further 

comparison with classical approaches can be found in Figure 7. 

 

*Reproduced in part from Gulenko, O.; Yang, H.; Kim, K.; Youm, J.Y.; Kim, M.; Kim, Y.; Jung, W.; Yang, J.-M. Deep-

Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image 

Processing. Sensors 2022, 22, 3961. Published by MDPI. 
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Figure 7. Comparison of the noise removal effect between classical denoising methods. This is an 

extension of Figure. Classical denoising algorithms, the median filter, the Wiener filter, the transverse 

signal gradient-based method, adaptive median filter, median type edge-preserving filter, 

morphological filter, and contraharmonic filter are presented for comparison. Here, the gradient-based 

method refers to the method that we developed in Ref. 29. Although this method could remove EMI 

noise-affected pixels very cleanly, as presented in the figure, with an involved threshold value that was 

set high, its main weakness was that it also removed normal capillary signals because there was quite a 

large overlap between the capillary signals and EMI noise in terms of pixel values and morphological 

features. Being aware of the issue, we initiated the current deep-learning-based study. 

 

 

3.2. Performance Test for New In Vivo Data 

As presented in the previous section, the U-Net architecture exhibited the best performance for image-

to-image regression tasks in terms of the RMSE, SSIM and MAE. Moreover, it did not exhibit any 

notable performance degradation, even when the added noise density was increased. Thus, to 

demonstrate the noise removal capability of the established AI algorithms, we chose the U-Net-based 

algorithm and assigned it to a task to remove EMI noise from two new rat colorectum OR-PAE in vivo 

datasets at different levels in terms of amplitude and density. 
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Figure 8. Performance test results for two in vivo rat colorectum test datasets with different EMI noise 

levels: (a) whole PA-RMAP images (left) and magnified images for the dashed box regions (right). 

MD, mid-dorsal; MV, mid-ventral; L, left; R, right. Scale bars, 5 mm (horizontal only). (b) B-scan (or 

cross-sectional) images for the marked positions in (a). 

Due to the non-availability of the related method for quantitatively defining the noise levels, we cannot 

present the related values at present. However, as shown in Figure 8a, which presents radial-maximum 

amplitude projection (RMAP) images, the U-Net algorithm removed EMI noise from the two in vivo 

datasets to a fairly satisfactory level, and thus, the finest, mesh-like capillary networks, which typically 
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have a hole size of ~50 μm, were able to appear more clearly in the magnified denoised images. The 

RMAP images presented were produced using their corresponding C-scan datasets, which consisted of 

3000 B-scan image slices, and the AI algorithm performed the noise removal task in a B-scan image 

state for all the image slices involved. To show the related process, in Figure 8b, we present two sets of 

before and after B-scan images, which were taken from the lines marked with dashes and included in 

the RMAP images presented in Figure 8a. 

To show the effect of the EMI noise removal from the two in vivo datasets more clearly, we plotted 

volume-rendered images for the four RMAP images presented in Figure 8a and present the results in 

Figure 9. As shown, the vascular structures that we were looking for through the colorectum imaging 

experiments are more clearly visible in the denoised (after) images, whereas those are hardly visible in 

the raw images (before) because they were superimposed with EMI noise that appeared like countless 

thorns around the vasculatures. For reference, several dark regions in the denoised RMAP images in 

Figure 8a appeared dark because corresponding colorectal wall portions were imaged outside the 

working distance of the endoscopic probe rather than because related data values were lost during the 

denoising process. 

 

Figure 9. Three-dimensional rendering of the two in vivo rat colorectum test datasets presented in 

Figure 8. Left and right images correspond to before and after denoising, respectively. Each image 

corresponds to a range of over ~5 cm with an image diameter of ~8 mm. 
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IX. Discussion 

In this study, we investigated CNN-based EMI noise removal algorithms, U-Net, Segnet, FCN-

16s, and FCN-8, which have been widely used in biomedical image processing for image-to-image 

regression. We evaluated their performance and effect in terms of reconstruction quality assessments 

such as RMSE, SSIM and MAE. Although these CNNs have already been applied to previous PA image 

segmentation and regression-related research [40–44], our work is the first to apply the architectures to 

remove EMI noise from PAE images, and more specifically from OR-PAE images. Although CNN-

based algorithms have shown outstanding performance in white Gaussian noise removal [81] or in 

impulse noise removal [82], it was not known whether they have the ability to remove other types of 

noise, especially a type of noise as peculiar as EMI noise. As we have observed, the denoising 

performance by U-Net was satisfactory, with most of the EMI noise present in the new test image 

dataset (i.e., Figure 5) being automatically removed, requiring neither additional laborious manual pre-

processing nor image segmentation, thereby achieving computational efficiency. Moreover, it seemed 

that the intrinsic nature of the U-Net architecture kept the EMI noise-free regions as little affected by 

the denoising process as possible, minimizing data loss in important signal areas, such as the intestine 

wall, as the healed RMAP images enable us to see the tiny blood vessel mesh structure more clearly, 

with little EMI noise. 

Looking back at the history of science, there are many instances where early work in a discipline 

was conducted or achieved by imperfect, even primitive, recently constructed or invented systems or 

instruments. PAE is no exception, and it has been following a similar process. Although the first 

conceptual proposal was reported about 20 years ago [18], and there was an expectation that it could 

make an important clinical contribution [9], its progress has been very slow, as is evident from the fact 

that in vivo imaging of the gastrointestinal system of animals is not routinely performed in related 

research. Apart from its detailed discussion of the underlying technical challenges, the main 

contribution of this study is to shed light on the possibility of AI-based algorithms for EMI noise 

removal and the provision of promising computationally efficient EMI-noise removal approaches in 

newly built PAE systems, both which were presented clearly in the context of this paper. 

Speaking about our own research from this perspective, before developing this kind of noise 

removal algorithm, we spent about a year on the construction of our first PAE system, but we acquired 

unsatisfactory image data that had a noticeable amount of the EMI noise. This made it difficult for us 

to accurately identify what kinds of morphological features were included in the acquired vascular 

images, although we could be sure of the presence of blood vessel-like structures in the PA-RMAP 

images acquired from a rat colorectum. Due to the poor performance, we undertook rebuilding of the 

related endoscopic probe and amplifier circuit. However, no matter how many times we repeated the 
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imaging procedure, we ended up with similar unsatisfactory results without realizing the key factors. 

Consequently, we considered a change in our original plan of creating an OR-PAE system to creating 

an AR-PAE system as a way to take a step backward. This change was never made, which was very 

fortunate, because we found interesting vascular structures, such as honeycomb-like capillary networks 

and hierarchically varying larger vascular networks, in the raw PA-RMAP images after spending a 

month removing EMI noise-affected pixels from several thousands of B-scan images one-by-one, 

manually. This experience motivated us to go forward with the development of an efficient EMI noise 

removal algorithm. Although the current algorithm investigated in this study is not 100% perfect, we 

hope that the EMI noise is no longer a hindrance when working on PAE in the newly applied areas. 

As an alternative to an AI-based denoising approach, one may consider the use of already-existing 

well-developed classical denoising methods for the removal of EMI noise. However, as we previously 

mentioned in the introduction section, we came to the conclusion in our literature search that no prior 

report has addressed the problem of the removal of EMI noise that appeared as the rain-like striking 

pattern, as in our case. Thus, in our previous study [29], we developed a dedicated algorithm that could 

detect EMI noise-affected pixels based on the calculation and comparison of a signal gradient to its 

adjacent pixels along the transverse direction, which eventually turned out to be not as satisfactory as 

the current AI-based one. Again, the classical methods were unable to correctly distinguish an EMI 

noise-affected pixel from a normal capillary signal because the two patterns become similar, as the 

transverse resolution of the developed PAE probe was at the OR level. Thus, we had to apply the 

algorithm only to the area where there was no intestinal signal after first performing a manual image 

segmentation process on the B-scan images that were affected.  

That is, our point is that although it would not be difficult to remove the EMI noise in AR-PAE 

images by applying a non-AI-based approach, it is not so simple if the problem is related to OR-PAE 

images. Of course, in the case of OR-PAM [10,14], although it shares the same technical basis as OR-

PAE, the EMI noise removal issue has not been a major concern because it is relatively easy to build a 

perfect hardware system that is not affected by EMI noise. On the other hand, we expect that an AI-

based noise removal issue, such as that addressed in this study, could also be important in OR-PAM 

research because constructing a laser diode or an LED-based PAM system is emerging as a new 

important subject of PAT these days, while the SNR of related systems is known not to be high enough 

due to the relatively lower power of the light sources [13,83–85]. 

Although the feasibility of a deep-learning-based EMI noise removal strategy has been 

successfully demonstrated in this study, there are several limitations. First, we trained the AI algorithms 

using only OR-PAE images acquired from the urethra and colon, and while such an endoscopic device 

could also be utilized for other organs, such as the blood vessels, esophagus, and bile ducts, limitations 

may have been introduced by training the AI algorithms to correctly recognize only the EMI noise 
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features, and not to be affected by the morphological difference between the colorectum and the urethra. 

Therefore, in future studies, more varied datasets should be acquired and included in the training 

process. Second, while our endoscopic system acquired not only the PA images but also the US images, 

we did not consider the removal of the EMI noise from the US images. Although this issue seems 

relatively easy, we would like to consider this research for completion. Lastly, image segmentation and 

regression of the ground-truth creation algorithms were dependent on a manual boundary detection, 

requiring expertise in PAE imaging, and taking an excessive amount of time. This time-consuming and 

laborious work to achieve clean PAE images should be taken into account within the deep-learning-

based algorithm suggested. Furthermore, the optimized noise removal CNN model could be embedded 

into the PAE system for real-time denoising visualization. We think that these tasks require a more 

comprehensive investigation of different types of observation objects and more training datasets for the 

greater generalization of the CNN models, for which we have laid a foundation in this study. 
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V. Conclusions 

In this study, we investigated the feasibility of deep-learning-based EMI noise removal in relation 

to an OR-PAE image processing using four CNN architectures (U-Net, Segnet, FCN-16s and FCN-8s). 

We obtained satisfactory results from the U-Net-based architecture, removing the EMI noise from 2D 

images and visualizing a clearer 3D structure of mesh-like capillary networks with a hole size of ~50 

μm included in a test of in vivo data. That is, our work has made EMI noise removal a tractable problem 

via deep learning. As the developed algorithms were trained using the OR-PAE image data acquired 

from rat colorectums and a rabbit urethra by using 40 MHz US transducers, we expect that the 

algorithms achieved can be used to remove the EMI noise included in other OR-PAE images based on 

similar device specifications. To make the machine learning architecture a better fit for the EMI noise 

removal, we think that classical non-AI approaches should also be taken into consideration in future 

research for the characterization of the noise features from both the engineering and mathematical points 

of view. We believe that such information in the AI framework will definitely enhance the final 

denoising outcomes and have a wider range of applications in PAE imaging. 

 

*Reproduced in part from Gulenko, O.; Yang, H.; Kim, K.; Youm, J.Y.; Kim, M.; Kim, Y.; Jung, W.; Yang, J.-M. Deep-

Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image 

Processing. Sensors 2022, 22, 3961. Published by MDPI. 
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