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Abstract

High-capacity non-volatile memory is the new main memory. NVM provides up to 8x the
memory capacity of DRAM, but can reduce bandwidth by up to 7x and increase latency by
up to 2x. In case of using NVM alone, it provides a large capacity but has the disadvantage
of low performance, so a system that is used with DRAM is used. However, if the two mem-
ories are not managed properly, the performance will be as bad as if NVM is used alone. A
lot of optimization work is being done in the most studied tiered memory system to use the
two memories. We found that before Intel Optane DC Persistent Memory �DCPMM�was com-
mercialized, memory systems using both DRAM and NVM memory did not take DCPMMʇs
performance into consideration.

We present High Probability Write Patterns �HPWP�� an optimization policy for tiered mem-
ory systems, in consideration of the commercialized DCPMM performance. HPWP prevents
DCPMM from generating write operations as much as possible through the fact that write per-
formance of DCPMM is three times worse than read performance. In a tiered memory system
equipped with DCPMM, HPWP provides up to 19% performance improvement in key-value
store compared to previous studies.
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I Introduction

Recently, Intel launched Optane DCPMM, a commercial persistent memory >1@� DCPMM is a
persistent medium and can be used as a storage device. Also, since it has the same interface
as DRAM, it can be used as a main memory. In particular, DCPMM has a higher density
than DRAM, which enables large capacity development per module, and many academics and
industries are trying to use DCPMM as a main memory that can accommodate applications such
as machine learning that require large memory >2–4@� However, since DCPMM has relatively
lower latency and bandwidth than DRAM, system performance may be very slow when DCPMM
alone is used as a main memory. Therefore, many research groups are not using DCPMM alone,
but are actively conducting research on a Tiered Memory System that consists of DRAM and
hybrid and drives the main memory >5–7@�

Since the Tiered Memory System uses heterogeneous memory with different characteristics,
it is necessary to efficiently manage data accessed to each memory. DCPMM has the advantage
of providing high capacity, but has lower performance than DRAM, so if frequently accessed
data is stored in the DCPMM, system performance may be very degraded. Therefore, in order to
improve the performance of the tiered memory system, many studies have proposed techniques
to accurately classify the hot/cold characteristics of data loaded from application programs,
and to efficiently arrange and migrate the separated data to heterogeneous media >5–12@�

AutoTiering >6@� a representative related technology, makes it possible to manage the ac-
cess history for each page where data is loaded in the Tiered Memory System using Persistent
Memory and DRAM, and distinguish the access frequency for each page. In this way, pages
exceeding a certain frequency are considered hot data and can be placed in DRAM. However,
since these traditional studies developed policies without considering the architectural charac-
teristics of the commercialized DCPMM, it is difficult to say that they accurately considered
the characteristics of the actual PM.

We propose the High Probability Write Pattern Aware Migration Policy �HWPAP� technol-
ogy, which classifies the hot/cold characteristics of data, efficiently deploys and migrates the
classified data, considering the architectʇs characteristics of DCPMM, a commercial persistent
memory. HWPAP technology uses the characteristics of latency and bandwidth that are dif-
ferent from those of conventional DRAM in read/write operations of DCPMM, which is an
actual PM module, to more precisely classify the hot/cold characteristics of data in a Tiered
Memory System. In particular, considering that the write bandwidth of DCPMM is extremely
poor compared to other patterns, it additionally classifies data that is likely to be accessed by
write from hot/cold data. By placing the data in DRAM, we want to avoid the write operation
of DCPMM as much as possible.

We evaluate through microbenchmark and application benchmark by adding the HPWP
policy, which is a policy that considers performance changes according to access patterns. We
configure parameters to apply to HPWP through GUPS, a microbenchmark, and measure
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performance results through application benchmarks graph500 and FlexKVS. It shows up to
19% better performance compared to the existing policy of HeMem.

This thesis proceeds in the following order. Section II describes the background. Section
III summarizes related studies. Section IV summarizes the policies presented in this paper,
and Section V summarizes the implementation method of HPWP. Section VI evaluates and
analyzes the proposed technology. Section VII summarizes the limitations of HPWP and future
work. Finally, Section VIII presents the conclusions about this study.
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II Background

2.1 Application Memory Demands

Recently, an application that requires a large amount of memory has emerged. For example,
data centers are generating large amounts of data with the spread of the Internet, and in order
to smoothly access large in-memory datasets, its are searched using a database and graph
processing system in memory. In addition, the machine learning systems train on huge in-
memory datasets to increase accuracy in the process of analyzing data and self-learning >13@� If
the capacity of the memory is increased, it is possible to satisfy the application that requires
the use of a large amount of memory. The number of DIMM slots per server can be increased
to expand memory capacity, but increasing DRAM density is currently limited.

2.2 Intel Optane DC PMM

Intelʇs Optane DCPMM is used as main memory using the same DIMM interface as DRAM.
DCPMM offers high capacity up to 512GB per module, supporting larger capacities than DRAM
modules. Unlike DRAM, DCPMM also provides persistence, allowing data to be retained
even when power is turned off, protecting the system from data loss. DCPMM has a larger
capacity than DRAM, but overall DRAM is better than DCPMM in terms of performance. This
makes DCPMM attractive for expanding DRAM in tiered memory configurations. Applications
running on a server with DCPMM installed can utilize a larger main memory pool. However,
to simply use DRAM and DCPMM together, the behavior of the two memories is different.
DCPMM has asymmetric read and write bandwidth, larger cache lines than DRAM, and wears
out faster than DRAM. These factors show that DCPMM is much more sensitive to memory
access patterns than DRAM. Therefore, it is necessary to accurately understand the operation
of DCPMM for memory access, which is one of the important elements in the Tiered Memory
System.

We compare the performance of DRAM and DCPMM in detail. Table 1 compares the
latency and bandwidth of DRAM and DCPMM. Overall, Overall, DRAM performs better than
DCPMM. Looking in detail, DRAMʇs read latency is about 2.1 times faster than DCPMM,
and DRAMʇs write latency is 1.1 times faster than DCPMM. Also, DRAM has about 3.3 times
better read bandwidth than DCPMM, and DRAM has about 7.2 times better write bandwidth

Memory Latency �ns� Bandwidth �GB/s� Capacity �GB�

Read Write Read Write
DRAM 82 107 80 Up to 128

PM 175 94 32 11 Up to 512

Table 1: Comparison between DRAM and PM
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Figure 1: Tiered Memory System overview

than DCPMM.

2.3 Tiered Memory System

The goal of the Tiered Memory System, which uses two memories with different characteristics,
is to place as much data that requires a lot of access in fast memory as possible. Figure 1
shows the structure of a tiered memory system with a single CPU socket. Basically, if �hod�
data that is heavily accessed exists in the PM, it is migrated to DRAM, and if �cold� data that
is less accessed exists in the DRAM, it is migrated to the PM. Data classified as hot represents
data to be accessed in the future and is probabilistic. Therefore, studies aimed at increasing
the accuracy by identifying the pattern of the data being accessed have been conducted >5�14@�
However, before DCPMM was commercialized, accessibility was checked in Tiered Memory
System without accurately considering the characteristics of DCPMM. Therefore, the accuracy
of the policy to determine the data accessed to the Tiered Memory System created before
DCPMM is commercialized can be questioned. Therefore, it is essential to study the policy to
classify hot cold data considering the characteristics of DCPMM.

Previous studies on tiered memory systems have evaluated through emulated non-volatile
memory �NVM� and do not accurately take into account the characteristics of commercialized
DCPMMs. Looking at Table 1, it can be seen that DRAM shows higher performance than
DCPMM for both read and write operations, but DCPMMʇs write bandwidth is extremely
poor compared to other operations. Therefore, in order to make a tiered memory system using
DCPMM and DRAM, DCPMM should accurately identify the difference from DRAM and
consider the page migration policy.
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III Related Work

There are several studies for Tiered Memory System. The first is to decide ”which page” should
be placed in ”what memory”. By predicting the pages to be accessed in the future and placing
them in the fast memory, the performance of the fast memory can be exhibited. Since it is
impossible to accurately predict which pages will be accessed in the future, information on
whether or not recently accessed pages have been accessed is stored for each page, and the most
accessed pages are placed in a fast memory. The second is to reduce the overhead that occurs
when page migration. *When a page migration occurs, a memory copy is made to move from
memory to memory. For this reason, inappropriate page migration causes unnecessary overhead,
resulting in overall performance degradation. Third, the memory layer must be distinguished.
Since it is a single memory system in which only DRAM exists in the past, memory in a multi-
node is only distinguished from local and remote. However, with the release of DCPMM, it is
necessary to divide the layers by separating DRAM and DCPMM as well as local and remote.
Below, each representative tiered memory system-related research is summarized in more detail.

3.1 AutoTiering

AutoTiering >6@ reconfigures the memory tier on NUMA systems. Because the existing NUMA
system uses only a single memory, local access is given priority. However, in a NUMA system
using heterogeneous memory, it is difficult to say that local access always optimizes performance.
AutoTiering suggests a new memory tier based on remote DRAM showing higher performance
than local DCPMM. In addition, we suggest a policy to optimize page migration. When page
migration from slow memory to fast memory occurs, if all the fast memory space is being
used, the least frequently accessed page should be migrated to slow memory first. In order to
migrate from slow memory to fast memory, there is a disadvantage that a prior work is required.
AutoTiering optimizes page migration operations by hiding page demote latency by reserving
some space in fast memory so that it doesnʇt use all of the space in fast memory.

3.2 Thermostat

Thermostat >15@ is a policy study to efficiently judge the hotness of Transparent Huge Page
�THP� in a system using THP. Conventionally, in order to determine the hotness of THP, all
512 4KB pages are scanned. This method accurately identifies the hotness of THP, but can be
a huge overhead. To solve this, Thermostat samples some of the 512 4KB pages that make up
THP to check the page access. Accuracy decreases because only a portion is checked, but it has
the advantage of providing a small scanning overhead to determine the hotness of THP.
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3.3 Nimble Page Management

Nimble Page Management >7@ improves inefficient page migration of 2MB THP. Previous studies
have divided THP into 512 4KB pages when migrating each of them. Therefore, the overhead
of separating and merging THP occurs, and at the same time, a bottleneck of sequentially
migrating the divided data occurs. Nimble Page Management solves this problem by adding
a policy to migrate by THP without separating THP. In addition, this study improves the
problem that data in both memories must be copied in one direction in order to migrate.
In order to perform a one-way copy operation, independent page allocation and deallocation
must be performed, which leads to overhead. Nimble Page Management solves this problem by
eliminating allocation and deallocation tasks by adding a policy that only exchanges data with
pages that already exist.

3.4 HyMM

HyMM >14@ studies a new hot & cold classification method of data accessing memory in a tiered
memory system. In the previous study of HyMM, the page access_bit of the page table entry
�PTE�was checked to distinguish between hot and cold pages. However, this method incurs the
overhead of scanning numerous PTEs to access pages in applications that use large amounts of
memory. To solve this problem, HyMM distinguishes between hot & cold by monitoring the
number of TLB misses instead of access bits. A small number of TLB misses will occur in the
case of a cold page that is rarely accessed, and a large number of TLB misses in a hot page
that receives a lot of access. However, since ”very hot” pages can be kept in the TLB, there
can be fewer TLB misses than cold pages, which makes accurate predictions impossible. Since
the distribution of ”very hot” pages has a very small proportion, by additionally examining
the access bits of the corresponding page, pages that can be incorrectly classified as cold pages
can be classified with relatively little overhead. In addition, HyMM distinguishes page access
patterns in addition to hot cold classification of pages. HyMM predicts whether a page will be
accessed as a read or a write in the future by examining the dirty bit of the PTE. The study
predicts the read/write of a page with up to 96% accuracy.

3.5 HeMem

HeMem >5@ improves the overhead that occurs in the page access process for page migration. The
method of tracking PTE to distinguish between hot and cold pages has high CPU overhead for
page table search and TLB shootdown. To solve this problem, HeMem analyzes access patterns
by sampling memory locations accessed through CPU events. Through this method, frequent
page table scans and TLB shootdowns are not required, which greatly reduces overhead. To
further reduce CPU overhead, DMA is used to replace the memory copy operation performed
by the CPU operation during migration. Also, when a page is accessed through the page table,
page table scan and page migration are performed in the same thread. Therefore, page migration
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and page table scan are not processed at the same time. Because HeMem manages page access
through CPU events, it separates page access work and page migration so that other threads
can perform it, preventing delays caused by the two tasks.
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IV Design

Figure 2: Tiered main memory management system designs with HPWP

In this section, we describe the design of the tiered memory system that is the basis of the
current study and explain the newly added High Probability Write Pattern �HPWP� policy.

Page migration is essential for performance improvement in tiered memory systems >5–7�15@�
The goal of page migration is to hide the performance of DCPMM as much as possible, bring out
the performance of DRAM, and provide users with large memory. Basically, pages with many
accesses are placed in fast memory, and pages with few accesses are placed in slow memory.
However, since it is impossible to predict which pages will be accessed in the future, it chooses
the suboptimal method of increasing accuracy.

The design of the tiered memory system to which the HPWP policy is applied is shown in
Figure 2. By using the RWAP policy, data that has been previously divided only into hot cold is
classified more precisely, and performance improvement is guaranteed when an application using
a large memory is operated. In the HPWP policy, information is stored in the page considering
not only whether the page is accessed, but also the pattern when accessing the page. Data is
classified in detail and each memory has 5 FIFO queues to manage both Hot Cold as well as
Read Write separately. The following explains the roles of the elements shown in Figure 2.

Event Manager

Event Manager monitors memory access data via CPU events. Many CPU events occur, but
only two events �all load instruction and all store instruction� are considered for HPWP . Page
stores information when an event occurs and determines whether it is accessed by read or write.
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Fault Handler

Fault Handler is called to perform page migration when a page accessed due to a CPU event has
a fault. Because the system is configured at the user-level, the virtual address of the memory
map is registered in userfaultfd to handle page faults. So, if a page fault occurs within the range
registered in userfaultfd, it is transferred to a dedicated thread that handles only the page fault
to handle the page fault.

Page Sacnner

Page Scanner continuously scans pages where events occur. Page checks the total number
of times the page was accessed for migration and how recently it was accessed. In addition,
access patterns can be distinguished through the Event Manager, so it is possible to determine
whether it is read or write. Page Scanner requests that the updated information be moved to
the appropriate list when certain conditions are met.

Page Migrator

Page Migrator migrates the page faulted by the Fault Handler. When the system decides to
migrate a page, it uses userfaultfd to mark the page as write-protected. While migration is in
progress, reads are possible, but writes are prohibited. Migration does not occur if page access
does not meet certain conditions.

4.1 Data Classification

For efficient data placement in DRAM and DCPMM, HPWP requires analysis of access patterns
as well as the number of times data is accessed in memory. In order to distinguish between
hot and cold, HPWP uses a mechanism that can observe whether memory is accessed and how
often it is accessed as the most used method >@� As described in 3.1, the existing kernel uses
the page table scan method for page access, which incurs a huge overhead when large memory
is used. To solve this, HPWP uses Processor Event Based Sampling �PEBS�� a method used in
HeMem, to minimize its overhead. In PEBS, a process writes an event to be tracked in advance
among events occurring in the CPU to an allocated memory buffer. Through this method, it is
possible to distinguish whether the page accessed through the event is accessed by reading or
writing.

4.2 Data Placement

Each memory organizes data types into Read Write lists as well as Hot Cold, and classifies
data into four criteria. When a CPU event is accessed to a part of the memory area managed
by mmap, the system increases the number of page accesses. If the access frequency of a
page exceeds a certain threshold, the page is judged as Hot. In addition, by classifying access
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Figure 3: HPWP policy behavior

patterns, it is determined whether access is accessed by read or write access. Through this
information, it records how many writes were accessed recently for each page. If the number of
write accesses satisfies a specific condition, the next access is predicted as write.

4.3 Page Migration

Pages are divided into Hot / Cold Read / Write, and each memory has a total of 5 FIFO
queues: HIGH PROBABILITY WRITE HOT LIST, HOT LIST, HIGH PROBABILITY
WRITE COLD LIST, COLD LIST, and FREE LIST. Figure 3 shows in detail how page
migration works for each memory. First, the green lines indicate all paths where page migra-
tion occurs. The page migration with the highest priority is HIGH PROBABILITY WRITE
HOT LIST. If a page exists in the HIGH PROBABILITY WRITE HOT LIST of DCPMM,
it requests migration to the HIGH PROBABILITY WRITE HOT LIST of DRAM. If all the
space in DRAM is used and there are no pages in FREE LIST, migrate the pages in COLD
LIST of DRAM to DCPMM first. If there is no page to migrate from COLD LIST of DRAM
to DCPMM, the page of HIGH PROBABILITY WRITE COLD LIST of DRAM is migrated to
DCPMM. Similarly, if the DRAM HIGH PROBABILITY WRITE COLD LIST page does not
exist, the DRAM HOT LIST page is moved to DCPMM. The second priority page migration is
HOT LIST. Migration proceeds in the same order as HIGH PROBABILITY WRITE HOT, but
pages in the HIGH PROBABILITY WRITE HOT LIST of DRAM have the highest priority
and therefore cannot be migrated to DCPMM. The page migration with the lowest priority is
HIGH PROBABILITY WRITE COLD LIST. Unlike the existing system, COLD data migrates
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to DRAM. It proceeds in the same way as the page migration described above. If there are
no pages in the DRAM FREE LIST, only the DRAM COLD LIST pages can be migrated to
DCPMM to create space.

The red line represents moving in the same memory if a page is judged to be hot when
accessed. The blue line represents the regular cooling of the page being tracked. If there is no
cooling operation, even if the page marked as Hot is no longer accessed, it continues to remain
in the HIGH PROBABILITY WRITE HOT LIST or HOT LIST, so cooling is required on
a regular basis. After a cooling operation, if the number of accesses of a page is below the
threshold to be considered hot, it is marked cold and placed in the cold list depending on the
memory type and HIGH PROBABILITY WRITE COLD or COLD. Finally, the orange line
distinguishes pages that are likely to be accessed by write and pages that are not, through
access patterns. When a page is traced due to a CPU event, it can be determined whether it is
accessed as read or write.
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V Implementation

This section describes the overall implementation method of the system to which the newly
added HPWP policy is applied.

5.1 Memory Management

DCPMM is used in App-Direct Mode and exposed to user space through DAX file. DRAM is
managed as a DAX file like DCPMM using the memmap command in the kernel.

5.2 Access Count Management

Perf of the kernel is used to manage the event, which is the access information of the page.
Among the functions of Perf, the system can receive necessary event information through
perf_event_open. To distinguish between read and write, we only record specific events. Read
is recognized through MEM_INST_RETIRED.ALL_LOADS that can recognize all load in-
formation, and write is recognized through MEM_INST_RETIRED.ALL_STORES that can
recognize all store information. In accordance with the existing policy, we classify hot cold
according to the total number of accesses, regardless of access patterns. In addition, cooling is
performed regularly to maintain the freshness of hot data. Cooling is performed using a clock so
that the FIFO queues of all tracked memories do not have to be checked each time the threshold
that separates hot cold is reached. When any page meets the cooling threshold, the clock is
incremented. The next time the page is accessed, if the last time the page cooled down does
not match the current clock, the page is halved before the number of accesses increases. We
show a study in which parameters were adjusted in 6.2.

5.3 Memory Migration

In HPWP, memory migration runs in the background every 10ms. When the migration starts,
mark the page as write-protected using userfaultfd. When migration is complete, the page
returns to the writable state. When memory migration occurs, copy occurs for data movement,
and the corresponding operation is carried out on the CPU, which puts a burden on the CPU.
So, if the I/OAT DMA engine can be used in the system, the memory migration is freed from
the CPU by utilizing DMA.
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VI Evaluation

We conduct various evaluations based on the micro-benchmark GUPS to analyze the perfor-
mance of the system to which the HPWP policy is applied. After that, using a graph processing
system such as graph500 and a key-value store, evaluate how the HPWP policy affects the
actual application. The HPWP policy is compared to the HeMem, a system that has been
recently studied and is the basis of the policy.

6.1 Experimental Setup

We run the evaluation on a single socket server equipped with an Intel�R� Xeon�R� Gold 6242
processor. The socket is equipped with 192GB DRAM �32GB×6� and 512GB Intel Optane DC
PMM �256GB× 2�� In real experiments, we force only 48GB DRAM and 256GB DCPMM to
be used for workloads up to 200GB. We use Linux kernel 5.1 and Ubuntu 20.04 server. The
NUMA effect of tiered memory is not covered in this paper. Therefore, each experiment is
conducted on a single NUMA node. The benchmark uses GUPS >16@� a micro-benchmark, for
basic testing, and FlexKVS >17@� an in-memory key-value store. The size of the page used in
the experiment is THP, which is a 2MB page.

6.2 Microbenchmarks

We use the microbenchmark GUPS >16@ to evaluate the basic operation of Tiered Memory
System. GUPS executes read-modify-write operations in a random pattern with uniform or
skewed objects of fixed size and measures Giga Update Per Second �GUPS�� We run each
benchmark 5 times and report the average GUPS. We run GUPS with 16 threads, and perform
1 billion updates on objects of 8 bytes per thread.

Figure 4: Hot memory threshold sensitivity
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Figure 5: Data classified as hot and actual hot data

Hot Memory Threshold

We set the criteria for judging the hotness of a page through GUPS. To experiment, randomly
create a hot set among the data. Hot set means data that is accessed uniformly by 90% of each
threadʇs work. The remaining 10% is uniformly accessed to objects that are not classified as
hot sets. A tiered memory system to which HPWP is applied measures how many hot sets are
held in DRAM by setting hot sets. We set the total working set size to 128 GB and the hot set
size to 8 GB.

Figure 4 shows the result of changing the hot memory threshold. A low threshold �1-2� will
overestimate the hot set and degrade performance. Thresholds greater than 3 can differentiate
between hot and cold pages, but the hot sets are underestimated, which reduces performance.

Figure 5 details the reasons for the results shown in Figure 4. A low threshold value �1-2�
judges more data than a hot set as hot and does not accurately distinguish hotness. Therefore,
a hot set may exist in DCPMM, and performance degradation occurs. If the threshold value is
2, the data determined to be hot is 64.7 GB. Based on this, if the DRAM size is sufficient, it can
cover all hot sets and show better performance. However, it cannot be judged as good because
it cannot accurately distinguish between hot / cold. If the threshold value is greater than 3,
hotness is accurately classified because most of the data determined to be hot is included in
the hot set. However, as the threshold increases, only a small amount of data among the hot
sets is judged as hot, so actual hot data may exist in the DCPMM, resulting in performance
degradation. Based on this, we set the hot threshold to 3.

High Probability Write Threshold

Before evaluating the HPWP, the criterion of the number of recent writes is established to make
a judgment to predict that the page will be accessed by write next time it is accessed. As in

14



Figure 6: High probability write threshold sensitivity

Figure 7: Page classification according to the change of high probability write threshold

the previous experiment, set the working set size to 128 GB and the hot set size to 8 GB. Also,
the hot threshold is fixed at 3.

Figure 6 shows the results by changing the high probability write threshold. A low threshold
�2-3� causes pages to be considered writes overestimated and degrades performance. A threshold
value greater than 4 clearly distinguishes the pages to be accessed as writes, but the pages to
be judged as writes are underestimated, resulting in poor performance.

Figure 7 details the reasons for the results shown in Figure 6. In all cases, since the hot
threshold is fixed, the data classified as hot is constant. However, if the threshold for determining
which pages are judged to be accessed by write is low, it is judged that many pages will be
accessed by write. However, since the accuracy of the page judged as such is down to 95%, it
cannot be said that it has been accurately judged. In addition, as the threshold increases, pages
that are expected to be accessed by write are classified with a maximum accuracy of 99.5%.
But it doesnʇt classify many pages, so it doesnʇt bring any performance benefit. If the size of
the DRAM can cover all the pages to be accessed by writes, it will give the best performance,
but the system cannot guarantee that this is always the case. Thatʇs why we set the threshold

15



by balancing it.

Hot set

Figure 8: GUPS with different hot set sizes

Figure 1 shows the performance difference between HeMem and HPWP according to the change
in the size of the hot set. If the hot set is smaller than the size of the DRAM, the system tries
to keep all the hot set in the DRAM as much as possible. HPWP hides the write performance
of DCPMM as much as possible by additionally keeping data that can be accessed by write as
well as hot set in DRAM. If the hot set is larger than the DRAM, data that can be accessed
by write from the hot set is maintained in the DRAM. HPWP occurs twice as many page
migrations as HeMem, but performs up to 13% better.

6.3 Application Benchmarks

We now evaluate how applications using big data run using a tiered memory system with
HPWP applied. First, using the in-memory key-value store, FlexKVS, evaluates the opera-
tional throughput and latency according to the ratio of read and write. Second, the runtime is
evaluated with graph500, a graph processing system.

Key-Value Store

We evaluate FlexKVS >17@� a key-value store, using tiered memory. FlexKVS is compatible with
MemCache, but uses logs to reduce synchronization overhead and uses blockchain hash tables
to minimize cache coherence overhead. We evaluate the throughput of FlexKVS using a server
running 8 threads and 1 client machine running 16 threads. Also, a key-value pair with a size
of 4KB is used. The total working set size is 200 GB and the hot set size is 40 GB. The hot
set accounts for 90% of the total throughput.
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Figure 9: FlexKVS throughput �Mops�

Figure 9 shows the result of comparing throughput according to the ratio of GET and
SET requests. HPWP provides up to 19% higher throughput than HeMem. As the ratio
of set requests increases, the number of write operations increases and the overall performance
decreases. However, it has a greater performance advantage by preventing more write operations
from running in DCPMM.
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VII Limitation and Future Works

7.1 Limitation

HPWP is a policy implemented considering only the write bandwidth of Intelʇs DCPMM. In
Table 1, when the latency of DRAM and DCPMM is compared, write operates similarly, but
DCPMM is delayed by twice that of DRAM in read. HPWP has a performance advantage when
there are a lot of requests, but performance can suffer when dealing with a small number of
relatively large data. We need to address the policy contradictions to deal with this.

7.2 Future works

We summarize the following to supplement the limitations described above.

• Pages are placed in memory by analyzing more detailed information through additional
CPU events.

• It is implemented so that the priority of the operation can be changed according to the
size of the data.
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VIII Conclusion

By using the PM with DRAM, it provides a large amount of memory. However, due to the
performance difference between the two memories, if memory management is not carefully
managed, the performance may be adversely affected. This leads to studies on policies that use
DRAM and PM efficiently. In previous studies, such a memory environment was referred to
as a tiered memory system, and recent studies aimed to place only data that is accessed a lot
in DRAM, and did not accurately consider the performance of commercialized PMs. In this
paper, HPWP is presented and a new data classification method of tiered memory system is
considered in consideration of the performance of DCPMM, a commercialized PM. As a result
of testing the performance of the tiered memory system by applying the newly implemented
HPWP policy, a result of up to 19% improvement was obtained compared to the policy of the
existing system.
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