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ABSTRACT 

Using High Strength Reinforcement (HSR) in concrete construction allows steel volumes 

to be reduced, and economies to be realized. CSA Standard A23.3:19 “Design of Concrete 

Structures” limits the maximum yield strength for design to 500 MPa. This thesis 

investigates the flexural behavior of concrete beams reinforced with HSR to assess whether 

current code provisions are appropriate. Curvature ductility ratios are calculated for cross 

sections with varying concrete compressive strengths, and reinforcement types and 

quantities. The effects of utilizing HSR on extreme fibre concrete compressive strains at 

Ultimate Limit State (ULS), moment redistribution at ULS, and deflections at 

Serviceability Limit States, are investigated. It was found that curvature ductility factors 

for sections reinforced with HSR are relatively less; A23.3:19 Clause 9.2.4, which specifies 

the maximum permissible moment redistribution at ULS, is appropriate for all beams 

investigated; and designs that meet the minimum height requirements of A23.3:19 Table 

9.2 satisfy the deflection limits in A23.3:19 Table 9.3 for all beams investigated. 
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SUMMARY FOR LAY AUDIENCE 

This thesis investigates the behavior of concrete beams reinforced with High Strength 

Reinforcement (HSR) that are not covered by the current Canadian Standards. Using HSR 

reduces the volume of steel, easing construction and potentially saving costs. Numerical 

simulations are conducted to quantify the behavior of beams reinforced with High Strength 

Reinforcement. Ductility is a desirable characteristic as it provides warning of imminent 

failure. Beams reinforced with HSR were found to be less ductile than those with 

conventional reinforcement, which should be considered in the design stage. Other flexural 

characteristics for members with HSR subjected to both in-service and failure loads are 

investigated, and the current design standards are adequate for these cases.  
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beam 

 Mechanical reinforcement ratio 
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Chapter 1  

1 Background And Literature Review 

1.1 INTRODUCTION 

Concrete is a core construction material because it is relatively inexpensive. It can 

effectively resist compression stresses but has a low tensile resistance. Hence the tensile 

zones of structural concrete components are conventionally reinforced with steel. The 

tensile resistance is the product of the reinforcement (steel) cross sectional area and the 

steel yield stress, which corresponds to the linear-elastic limit of the stress-strain 

relationship. An increase in the yield stress of steel facilitates a decrease in the steel area 

necessary to meet load requirements. This reduction lowers the material costs and 

construction time in addition to reducing congestion in concrete components (Mast et al, 

2008). At the present time, the maximum yield stress of steel used in calculations is limited 

to 500 MPa in Clause of 8.5.1 of CSA Standard A23.3:19 “Design of Concrete Structures” 

(CSA 2019). ACI 318:19 (ACI 2019) allows concrete beams to be reinforced with HSR in 

non-seismic applications but the yield stress is limited to 80 ksi (550 MPa). For a tension-

controlled failure, the steel strain has to be greater than y+0.003, where y is the strain at 

yield For a compression-controlled failure, the steel strain is less than y when the concrete 

strain reaches 0.003.  

Steel reinforcements with higher yield stresses have been proposed for reinforced concrete 

construction. The Canadian Standards Association CSA G30.18 “Carbon Steel Bars for 

Concrete Reinforcement” (CSA 2021) specifies Grade 400, 500 and 600 reinforcing bars 

with minimum yield strengths of 400, 500, and 600 MPa, respectively. In the United States 

of America, conventional steels conform to ASTM A615/615M Grade 60 (ASTM 2020), 

and A706/706M Grade 60 (ASTM 2016). The statistical bias and variability for G30.18 

Grade 400R (regular) and Grade 400W (weldable) bars are likely similar to those for 

A615/615M Grade 60 and A706/706M Grade 60, respectively. The ASTM A615/615M 

Grade 60 Standard (ASTM 2020a), first published in 1968, specifies a minimum yield 

strength of 60,000 psi (420 MPa). The A706/706M Grade 60 and Grade 80 Standard 
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(ASTM 2016), first published in 1974, specifies a minimum yield strength of 60,000 psi 

(420 MPa) and 80,000 psi (550 MPa), respectively and also specifies a maximum yield 

strength and minimum ductility requirements. Other common High Strength 

Reinforcement (HSR) steels conform to ASTM A615/615M Grade 100 (ASTM 2020b) 

and A1035/1035M Grade 100 (ASTM 2020c) Standards. ASTM A615/615M Grade 100, 

which was first published in 2015, specifies a minimum yield strength of 100,000 psi (690 

MPa). A1035/1035M Grade 100 Standard, first published in 2004, also specifies a 

minimum yield strength of 100,000 psi (690 MPa). 

Table 1.1, from Mander and Matamoros (2019), shows the mechanical properties for 

ASTM A615/615M Grade 60 & 100, ASTM A706/706M Grade 60 & 80, and 

A1035/1035M Grade 100, which will be investigated in this thesis because few data 

concerning CSA G30.18: 2021 Grade 600 material in particular are available. The column 

headings are as follows: fy̅ is the mean yield strength; sh and Esh are the strain and tangent 

moduli, respectively, at the onset of strain hardening; fu and u are the stress and strain, 

respectively, at ultimate; and f is the strain at fracture of the reinforcing bar.  

Table 1.1: Mechanical properties for various steel grades (Mander and Matamoros, 

2019) 

ASTM 

standard  

Grade in 

ksi (MPa) 

fy̅ 

(MPa)  

sh   Esh  

(MPa)  

u   fu  

(MPa)  

fu / f ̅
y 

 

f   

A 615  60 (413)  496  0.009  8300  0.10  725  1.462 0.13  

A 615 100 (690) 827 0.008 6900 0.06 980 1.185 0.08 

A 706  60 (413)  480  0.013  6900 0.13  655  1.365 0.16  

A 706  80 (551) 593  0.008  7200  0.12  785  1.324 0.14  

A 1035  100 (690)  724  = y  53 600  0.06  1120  1.547 0.08  
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Figure 1.1 shows the stress-strain relationships for the various grades shown in Table 1.1. 

All grades except ASTM A1035/A1035M exhibit a distinct yielding point while 

A1035/A1035M shows a roundhouse behavior. With an increase in steel grade, the yield 

strength is increased and the ductility, as represented by the strain at fracture, is reduced. 

ASTM A706/706M Grade 60 has a greater ductility than A615/615M Grade 60.  

 

Figure 1.1: Stress-strain relationships for various high-strength steel grades 

1.2 LITERATURE REVIEW 

Mast et al (2008) considered beams reinforced with A615/615M Grade 60 and 

A1035/1035M Grade 100 steels. They computed the ultimate steel stresses using three 

stress-strain relationships: the actual relationship for the steel, a linear-elastic perfectly 

plastic idealization, and a linear-elastic perfectly plastic idealization with the yield stress 

capped at the ACI limit of 550 MPa. The results showed that using ASTM A1035/1035M 

Grade 100 reinforcement increases the nominal moment capacity by 95% and 31% when 

using the actual steel relationship and the capped ACI limit model, respectively, compared 

to a beam reinforced with A615/615M Grade 60 steel. The curvature ductility in the beam 

reinforced with A615/615M Grade 60 steel at a steel strain of 0.005 was the same as the 
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curvature ductility in the beam reinforced with A1035/1035M Grade 100 steel at a strain 

of 0.0067, when the actual stress model was used, or 0.009 when a bilinear idealized stress 

model (not capped at 550 MPa) was used. The ductility sections reinforced with HSR is 

therefore smaller than that for sections reinforced with conventional steel at the same steel 

strain. These findings are applicable for HSR that do not show a distinct yielding point 

which excludes A615/615M Grade 100 steel. 

Shahrooz et al (2010) conducted a study involving A1035/1035M reinforcement to 

evaluate the steel strains corresponding to tension- and compression-controlled failure 

limits. Approximate linear-elastic-perfectly plastic steel stress-strain idealizations were 

assumed with yielding stresses defined using various approaches, including the 0.2% offset 

strain method. They proposed defining a flexural failure to be tension-controlled if the 

tensile steel strain at Ultimate Limit States exceeds 0.008. This finding is again only 

applicable for HSR which does not show a distinct yielding point. 

Yosefani (2018) investigated experimentally the curvature ductility in beams reinforced 

with A615/615M Grade 60, A615/615M Grade 100, and A1035/1035M Grade 100 steels. 

The results showed that the curvature ductility of the beam with A615/615M Grade 60 steel 

at a tensile strain of 0.005, which is the steel strain needed to achieve the tensile controlled 

failure in ACI 318-19 (ACI 2019), was comparable to that of the beam reinforced with 

A615/615M Grade 100 steel at a tensile strain of 0.008, and to that of the beam reinforced 

with A10355/1035M Grade 100 steel at a tensile strain of 0.01. It was also concluded that 

A1035/1035M Grade 100 HSR is less ductile than A615/615M Grade 100 HSR. The 

comparison of curvature ductilities with reinforcement ratios for beams reinforced with 

HSR and conventional steel grades was not reported.  

Both long term and immediate deflections were also investigated by Yosefani (2018), as it 

was predicted that using HSR would lead to a reduced steel area which will increase 

deflections. One simply supported beam, reinforced with A1035/1035M Grade 120 steel, 

was subjected to an applied load for a span of 1 year to check the validity of the provisions 

of ACI 318. It was concluded that ACI provisions overestimated the observed long-term 

deflections, because the ACI long-term deflection multiplier, , is independent of concrete 
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compressive strength. It was also concluded that it would be desirable to further investigate 

the effects of specific beam configurations, including the concrete compressive strengths 

and reinforcement ratios, on short- and long-term deflections. 

Yosefani (2018) also checked the cracking of HSR-reinforced beams at Serviceability 

Limit States as it was envisaged that the higher steel strains would lead to higher crack 

widths. The crack widths were acceptable according to ACI 318 code provisions for beams 

reinforced with HSR (Grade 100), although they were relatively greater than those for 

beams reinforced with conventional steel.  

Yosefani’s (2018) investigation considered only simply supported beams so moment 

redistribution, which is a property of indeterminate structures including continuous beams, 

was not considered. Designing a continuous beam and accounting for moment 

redistribution can potentially reduce steel area at critical moment sections and increase the 

ratio of SLS steel stresses to ULS steel stresses. Hence, crack widths should be checked in 

continuous beams as well, particularly those where the steel area has been reduced by 

accounting for moment redistribution at Ultimate Limit States.  

1.3 RESEARCH OBJECTIVES 

The objective of the research reported in this thesis is to investigate the flexural behavior 

of concrete beams reinforced with HSR to determine whether current provisions for 

conventional steel grades in CSA A23.3:19 “Design of Concrete Structures” (CSA 2019) 

are applicable to HSR. In particular, 

1. Determine whether the flexural ductility of a beam is adversely affected if it is 

reinforced with HSR.  

2. Assess whether the current provisions that limit the amount of permissible moment 

redistribution in the CSA 23.3:19 standard apply to beams reinforced with HSR. 

3. Determine whether the current provisions for deflections in the CSA A23.3 

Standard apply to beams reinforced with HSR.  
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1.3.1 Research Significance 

Ductility is essential to provide warning of an impending failure, and higher target 

reliability indices are usually required for elements with reduced ductility (CSA 2011). The 

ductility of a beam also defines the inelastic rotational capacity at a plastic hinge, which is 

necessary for moment redistribution in continuous beams. As noted previously, the use of 

HSR reduces the steel cross sectional area in beams, potentially reducing the cracked and 

effective moments of inertia and so increasing flexural deflections.  

1.4 THESIS OUTLINE 

Chapter 2 presents a parametric study that investigates the influence of steel quantity, type 

and grade, concrete strength, and other factors on the curvature ductility of reinforced 

concrete beams. A methodology for deriving moment-curvature relationships from first 

principles and creating idealized bilinear responses for cross sections that do not exhibit a 

marked yield moment are presented. The variation of flexural curvature ductilities and steel 

stresses at the nominal ultimate moment with reinforcement ratios are quantified using 

regression analyses. The application of the equation in A23.3:19 ensures that the tension-

initiated flexural failure is investigated for beams with high strength reinforcements.  

Chapter 3 presents a parametric study that investigates how moment redistribution is 

influenced by different reinforcing steel quantities, types and grades in two-span beams 

that are continuous over the interior support. The methodology to quantify moment 

redistribution is presented and used to compare the moment redistribution exhibited by 

beams reinforced with HSR and conventional reinforcing steel. It is shown that designs 

based on moment redistribution at Ultimate Limit States can have excessive crack widths 

at Serviceability Limit States. 

Chapter 4 investigates the short- and long- term deflections in simply supported beams, 

two-span beams with one end continuous, and three-span beams with both ends continuous. 

Gilbert’s method (Gilbert 2011) is applied to determine the short- and long-term 

deflections. The yield strength correction factor specified in a note to Table 9.2 of A23.3:19 
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to increase the minimum beam height, necessary if deflection calculations are to be 

avoided, is reviewed.  

Chapter 5 summarizes the thesis, lists the conclusions, and proposes some 

recommendations for future investigations.  

Three appendices supplement material presented in the main body of the thesis. Appendix 

2A shows the concrete stress-strain idealizations by Thorenfeldt et al (1987), and Wee et 

al (1996). Appendix 2B shows the steel reinforcement idealizations by Mast et al (2008) 

for MMFX A1035/1035M Grade 100 steel, and Yosefani (2018). Appendix 4A shows the 

variation in incremental deflections, and ratio of effective span length to incremental 

deflections with reinforcement ratios in simply supported beams, two-span beams with one 

continuous end, and three-span beams with both ends continuous, when concrete 

compressive strength is 50 MPa.  
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Chapter 2  

2 Flexural Ductility of Cross Sections with High Strength 

Reinforcement 

2.1 INTRODUCTION 

High strength reinforcement (HSR) allows the use of smaller diameter bars in concrete 

construction, lessening reinforcing congestion and reducing costs. Reinforcement bars with 

400 MPa yield strength are most commonly used in Canada: in this chapter, bars with 

greater yield strengths are considered to be “high strength”. The new edition of CSA 

G30.18 “Carbon Steel Bars for Concrete Reinforcement” (CSA 2021) specifies mechanical 

properties for reinforcing bars with minimum yield strength of 400, 500, and 600 MPa. In 

the United States, the American Society for Testing and Materials (ASTM) 

A1035/A1035M (ASTM, 2020a), A615/A615M (ASTM, 2020), and A706/A706M 

(ASTM, 2016) specifications allow bars with minimum yield strengths of 60, 80, and 100 

ksi (420, 560, and 690 MPa).  

Clause 4.1.3 of CSA A23.3: 19 “Design of Concrete Structures” (CSA 2019) only permits 

the use of deformed reinforcing bars complying with CSA G30.18. The 2005 edition of 

ACI 318 (ACI 2005) included provisions for ASTM A615/A615M and A706/A706M 

reinforcing bars, and the provisions for ASTM A1035/1035M Grade 100 bars were added 

in the 2008 edition (ACI 2008). As previously illustrated in Figure 1.1, ductility is reduced 

when yield stresses are increased for steel bars. 

Clause 8.5.1 of CSA A23.3:19 limits the yield strength of steel reinforcement, fy, used in 

design calculations to 500 MPa. The Technical Committee responsible for A23.3 has 

created a Task Group to develop design provisions for bars with higher yield strengths to 

allow this limitation to be relaxed where it is appropriate to do so. 
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2.1.1 Research Objectives 

The objectives of the research reported in this chapter are as follows: 

1. Quantify the flexural ductility of members reinforced with HSR and compare this 

with that of members reinforced with conventional reinforcement. This is a 

necessary first step towards determining whether the resistance factor currently 

specified for steel reinforcement, s, of 0.85 is applicable to HSR. CSA S408-11 

“Guidelines for the Development of Limit States Design Standards” (CSA 2011) 

typically requires more stringent target reliability indices for members that exhibit 

less ductile failures.  

2. As is clear from Figure 1.1, bars with the various steel grades specified in ASTM 

Standards exhibit significant strain hardening, and ASTM A1035/A1035M bars 

exhibit a “roundhouse” behavior with an undefined yield point. Therefore, a second 

objective of the research reported in this chapter is to develop means to allow 

designers to quantify the tensile steel stress in the reinforcement bars at the ultimate 

moment. 

3. Clause 10.1.3 of CSA A23.3:19 allows the concrete strain at the extreme 

compression fibre at ultimate to be 0.0035. A third objective of the research is to 

assess whether this extreme fibre strain value is appropriate for beams reinforced 

with HSR.  

4. Clause 10.5.2 of CSA A23.3:19 limits the area of tension reinforcement in beams, 

requiring that  

[2.1] 
c

d
< 0.8

700

(700+ fy)
 

where c is the distance from the extreme compression fibre to the neutral axis at 

ultimate, and d is the effective depth of the reinforcing steel. If this criterion is 

satisfied, it can be assumed that the tensile reinforcement has yielded (CSA 2019). 
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A fourth objective of the research is to determine if this limit is appropriate for 

beams reinforced with HSR.  

2.1.2 Chapter Outline 

The four research objectives in this chapter can be achieved if accurate moment-curvature 

relationships are derived for beams reinforced with conventional steel reinforcement or 

HSR. Section 2.3 therefore presents the methodology used to derive the moment-curvature 

relationship, including the assumptions, specific procedural steps, and the material 

idealizations adopted for steel and concrete. The moment-curvature relationships for 

sections with reinforcement that exhibit a roundhouse stress-strain behavior do not have a 

well-defined yield moment, so a method to idealize the response using an equivalent 

bilinear idealization is presented. The analysis method is validated by comparison with test 

data obtained by others.  

Section 2.4 quantifies the variation of the curvature ductility factor, as obtained from the 

moment-curvature analysis, with the mechanical reinforcement ratio, . The ductility 

factor is defined as the ratio of the ultimate to yielding curvature values, y and u, 

respectively. The relationship between uy and  is quantified for the reinforcing steel 

grades shown in Table 1.1, and concrete with specified compressive strengths, fc’, of 30, 

50, and 70 MPa.  

Section 2.5 presents a review of the impact of the use of HSR on other flexural quantities 

of interest to designers. In particular, relationships between the ultimate steel stress, fu, and 

 are developed to facilitate the design of flexural members with reinforcement that 

exhibits a roundhouse behaviour and an undefined yield point. Concrete strains at the 

extreme compression fibre corresponding to the maximum moment, as obtained from the 

moment-curvature analysis for the various reinforcement grades and concrete strengths 

investigated, are compared to the strain of 0.0035, as specified in A23.3:19 (CSA 2019). 

The applicability of current code provisions that define “balanced” flexural conditions, 

where the steel yielding simultaneously with the concrete crushing in compression, are 

assessed for beams reinforced with high-strength reinforcement.  
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Finally, in Section 2.6 the research presented in the chapter is briefly summarized and the 

conclusions are presented. 

2.2 LITERATURE REVIEW  

2.2.1 Moment-Curvature Relationship 

Figure 2.1 shows a trilinear approximation of the relationship between the curvature, , of 

a reinforced concrete flexural cross section, and the applied moment, M. Such an 

idealization was utilized by Park and Pauley (1975) and is defined by the states of cracking, 

yielding, and ultimate. The cracking moment, Mcr, is defined as the moment required to 

initiate concrete flexural cracks at the extreme tensile fibre and occurs when the tensile 

stress at extreme fibre reaches the modulus of rupture, fr. The yielding moment, My, is the 

moment required to initiate yielding of the steel reinforcement and corresponds to the 

tensile stress in the steel reinforcement reaching the yield stress. The ultimate moment, Mu, 

corresponds to the maximum moment that the cross section can resist. The corresponding 

curvatures are cr, y and u, at cracking, yielding and ultimate, respectively.  

 

Figure 2.1:Trilinear moment-curvature relationship 
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Assuming linear-elastic-cracked behaviour, the yield moment can be computed as (e.g., 

MacGregor & Bartlett, 2000) 

[2.2] My=
Icrfy

nd (1 - k)
 

where n is the ratio of Young’s modulus of steel, Es, to that of concrete, Ec. The depth of 

the compressive stress region, assumed triangular as shown in Figure 2.2 (b), is kd, where 

k is computed as 

[2.3] k = √n2 + 2n - n 

where  is the geometric reinforcement ratio, As/bd, As is the cross-sectional area of the 

steel reinforcement in tension, and b is the width of the beam cross section. The cracked 

moment of inertia, Icr, in Equation [2.2] is computed as 

[2.4] Icr = 
b(kd)3

3
 + nAs (d - kd)2 

From the strain diagram in Figure 2.2(b), the yield curvature is computed as 

[2.5] y = 
εy

d(1-k)
 

where y is the yield strain of the steel reinforcement.  
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Figure 2.2: (a)Typical rectangular beam cross section (b) Stress and strain diagrams 

at yield (c) Stress and strain diagrams at ultimate  

The ultimate moment can be calculated, assuming the concrete in compression is 

represented by an equivalent rectangular stress block, as 

[2.6] Mu =  Asfy (d - 
a

2
) 

where a is the depth of the concrete stress block as defined by A23.3:19, shown in Figure 

2.2(c). If no applied axial force is present, horizontal force equilibrium requires that 

[2.7] a = 
Asfy

1fc
'
b

  

Stress block parameters 
1
 and  have evolved from the idealization originally proposed 

by Whitney (1937). Parameter 1 is the ratio of the stress block depth to the neutral axis 

depth, a/c. In CSA A23.3:19 (CSA 2019),  and 1 are functions of fc’ 

[2.8a] 1 = 0.85-0.0015fc
'
 

[2.8b] 
1
 = 0.97-0.0025fc

'
 

From the strain diagram at ultimate, Figure 2.2 (c), the ultimate curvature is 

[2.9] u = 
cu

c
 

(a) (c) 
(b) 

Yield 

(b) 
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From Eq. 2.7, increasing f’c reduces the depths of the stress block, a, and the neutral axis, 

c, and so increases the ultimate curvature if cu is assumed constant. Similarly increasing 

Asfy increases ‘a’ and ‘c’ and so reduces the ultimate curvature. It is readily shown that the 

ultimate curvature is inversely proportional to the mechanical reinforcement ratio, , 

defined as 

[2.10]  = 
Asfy

bdfc
'
 

Substitution of Equations [2.10] and [2.7] into Equation [2.9] and resolving yields 

[2.11] 
u
 =  

εcu 1
1

d
  

1

ω
 

Thus, the ultimate curvature is inversely proportional to . 

From Equations [2.5] and [2.11], the curvature ductility ratio, u/y, can be expressed in 

terms of  as 

[2.12] 


u


y

 = 
εcu 1β

1
 (1 - k)

εyd
  

1

ω
 

As the variation of k with  is slight, the curvature ductility ratio is essentially inversely 

proportional to  

2.2.2 Steel Yield Point  

As shown in Figure 1.1, A1035/A1035M steel does not exhibit a distinct yield point. In 

such cases, ASTM A370 (ASTM, 2021) permits use of the 0.2% strain offset method to 

determine the yield stress. As shown in Figure 2.3, a line is drawn parallel to the linear-

elastic part of the stress-strain curve with horizontal intercept of 0.2%. The yield point is 

defined as the intersection of this line and the strain-strain curve. The linear-elastic limit 

can also be used as an alternative to the yield point. It is defined as the upper limit of the 

linear-elastic stress-strain behaviour, Point A on Figure 2.3.  
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Figure 2.3: Determination of 0.2% offset yield stress 

2.3 MOMENT-CURVATURE RELATIONSHIP 

As noted in Section 2.1, the moment-curvature relationship essentially captures the load-

deformation response for a cross section in flexure, and so is uniquely defined by the 

geometric properties of the section and reinforcement, and by the strengths and stress-strain 

relationships of the concrete and steel materials. These material idealizations and the 

computation procedure adopted are presented in this section. Some simplifications and 

assumptions used in derivation of the moment-curvature analysis are as follows: 

1. Concrete tensile strength is ignored. 

2. Steel and concrete have a perfect bond. 

3. Plane sections remain plane. 

2.3.1 Concrete Material Idealization 

Several empirical stress-strain relationships for concrete in compression have been 

considered, as shown in Appendix 2A. The Carreira and Chu (1985) relationship was 



16 

 

selected for its simplicity and because it gives similar results to other concrete idealizations, 

as shown in Figure 2.4. The ascending branches of the curves are similar but the graphs 

diverge after peak stress is achieved. The equations for the different concrete stress-strain 

idealizations are presented in Appendix 2A.  

[2.13] σc = fc
' (

B (
εc

εo
)

B-1+ (
εc

εo
)

B
) 

where c and c are the concrete stress and strain, respectively and o is the strain 

corresponding to the maximum compressive stress, fc
'
 calculated as 

[2.14] o = 0.00078 fc
'

1
4 

The parameter B is defined as 

[2.15] B = 
1

1-
fc
'

Eito

 

where Eit is the initial tangent modulus, calculated as 10200fc
'

1

3, and fc’ ranges between 20 

and 120 Mega pascals (MPa). The concrete equivalent stress block presented in A23.3:19 

cannot be used to derive the full moment-curvature response because it is valid for ultimate 

moments only. A note to Clause 10.1.6 of CSA A23.3:19 specifies that the peak stress 

adopted for analysis using stress-strain curves derived from cylinder test results should not 

exceed 0.9 f’c.  This reduction is somewhat arbitrary and was ignored in the present study. 
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Figure 2.4: Comparison between different concrete stress-strain idealizations 

2.3.2 Steel Material Idealization 

The different steel idealizations shown in Appendix 2B were investigated. The stress-strain 

relationship proposed by Mander and Matamoros (2019) was selected because it requires 

a single equation to model the linear-elastic and strain-hardening regions. The idealizations 

proposed by others require two equations to model these two distinct regions. The single 

idealization equation is 

[2.16] σs = 
Ess

{1+ |
s

y
|
20

}

0.05

+ |
s

f
|
20

+
fu-fy

1+ |
s

f
|
20

 × |1-
|u-s|p

{|u-sh|20p+|u-s|20p}0.05
| 

where the various symbols are defined in the discussion of Table 1.1. The parameter p is 

defined as 

[2.17] p = 
Esh(u - sh)

(fu-fy)
<10 
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Figure 2.5 shows the application of Equations [2.16] and [2.17] to idealize the stress-strain 

response of A615/615M Grade 100 and A1035/1035M Grade 100 steels which exhibit 

defined and undefined yield points, respectively. The stress-strain relationships proposed 

by Mast (2008) for A1035/1035M Grade 100 steel and by Yosefani (2018) for A615/615M 

Grade 100 steels are presented in Appendix 2B.  

 

Figure 2.5: Comparing stress-strain idealizations for steel grades exhibiting a 

defined and undefined yield point 

2.3.3 Procedure To Obtain Moment-Curvature Relationship 

Figure 2.2(a) shows the cross section geometry adopted for the moment-curvature analysis. 

Compressive steel reinforcement was ignored because adding compressive reinforcement 

increases the  ultimate curvature (Park & Pauley, 1975). Compressive strains, stresses and 

forces are assumed positive in the analysis. 
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Figure 2.6: Flowchart for determining moment-curvature response 

Figure 2.6 is a flowchart that outlines the essential steps for calculating the moment-

curvature relationship. The steps are as follows: 

1. Define the concrete strain at the extreme compression fibre c,max.  

2. Assume an initial neutral axis depth, c. Typically, the neutral axis depth reduces as 

the applied moment increases. 

3. Calculate the steel tensile strain, s. Assuming that plane sections remain plane, 

Figure 2.7b, and perfect bond between the steel and concrete 

[2.18] s = c,max 
c - d

c
 

4. Calculate the steel stress using Equation [2.16] and the steel force, Ts, as 

[2.19] Ts = σsAs 
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5. Calculate the concrete stress and force by dividing the compression region into 30 

layers of thickness c/30, as shown in Figure 2.7. Sensitivity analysis determined that 

the error in the compressive force calculation using 30 layers is less than 2%. The 

layers are labelled i = 1, 2,…30, where the first layer is at the bottom, immediately 

above the neutral axis, as shown.  

 

Figure 2.7: Layered division of concrete compressive zone with layer thickness 'c/30' 

For each layer, 

a. Determine the compressive strain, ci, at the top of each layer, assuming 

plane sections remain plane 

[2.20] εci= (
i

30
) εc,max 

b. Calculate concrete stress ci at the top of each layer using Equation [2.13] 

and substituting ci for c. 

c. Calculate the average concrete stress for each layer, ̅ci. 

[2.21] ̅ci={
ci

 + c(i-1)}/2   

d. Calculate the concrete force, Cci, in each layer. 
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[2.22] Cci = ̅ci(i) (
c

30
) b 

e. Add the contribution of the force in layer i to the total concrete force, ∑Ci. 

[2.23] ∑ Ci = ∑ C(i-1) +Cci 

6. Check whether horizontal force equilibrium is satisfied. Here equilibrium is 

considered satisfied if the sum of horizontal forces is less than 1 kN. If the absolute 

magnitude of total concrete force, |∑Ci| is smaller than that of the tensile steel force, 

|Ts| by more than 1 kN then increase the neutral axis depth and repeat Steps 2 

through 6. Similarly, if |Ts| is smaller than that of |∑Ci|, reduce the neutral axis depth 

and repeat Steps 2 though 6.  

7. When the neutral axis depth determined from Steps 2 through 5 satisfies 

horizontal force equilibrium, compute the corresponding moment. For each layer, 

a. Find the distance from the extreme compressive fibre to the top of each 

layer, y
i
. 

b. Determine the distance, y̅
ti
 from the top of each layer to the centroid of the 

trapezoidal stress region 

[2.24] y̅
ti
 = 

c

30

2c(i-1)+ci

3c(i-1)+ci

 

c. Add y
i
 and y̅

ti
 to get the total distance, y̅

i
, from the extreme compression 

fibre to the location of the compressive force resultant, Cci of each layer. 

d. Take the moment about the extreme compressive fibre due to the concrete 

force in layer i 

[2.25] Mi = Cci y̅i
 

e. Add this contribution to the total moment ∑ Mi 
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[2.26] ∑ Mi = ∑ M(i-1)+Mi 

8. Determine the total moment 

[2.27] M = ∑ Mi

30

i=1

+Tsd 

where Ts is negative while Cci are positive so M is negative.  

9. Calculate the curvature as c,max/c. 

10. Increment the extreme fibre strain and repeat Steps 2 through 9, stopping when 

either the maximum moment or a concrete extreme fibre strain of 0.0035 is 

reached.  

2.3.4 Yield Moment for Steel with Undefined Yield Point 

If the reinforcing steel stress-strain relationship features a distinct yield point, the yield 

moment is that corresponding to attainment of the yield strain y in the reinforcement. As 

shown in Figure 1.1, however, the stress-strain relationship for A1035/A1035M Gr 100 

steel does not have a distinct yield point. In this case an approximate bilinear moment-

curvature relationship can be derived following the procedure shown schematically in 

Figure 2.8. The dashed line represents the actual moment-curvature relationship, and the 

solid line represents the approximate bilinear idealization. The curvature and moment co-

ordinates of the approximate yield point, y,eq and My,eq respectively, are obtained by 

satisfying the following criteria 

1. The area under the actual moment-curvature relationship equals the area under the 

approximate bilinear idealization. This is equivalent to requiring that Areas 1 and 

2 as shown are equal. 

2. The slope of the actual and approximate bilinear moment-curvature relationships at 

the origin are equal. 
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Figure 2.8: Approximate bilinear idealization 

2.3.5 Validation 

The moment-curvature analysis was validated by comparing predicted load-deflection 

responses to those observed in tests by Yosefani (2018). Figure 2.9 shows the four-point 

loading applied to Yosefani’s Beams B1 (designated 5: A615/615M Grade 60), and B2 and 

B4 (designated 8: A615/615M Grade 100 and 13: A615/A615 M Grade 100, respectively). 

The beams were simply supported on a 2.44 m span with a 0.81 m long constant moment 

region at midspan. The cross section, 152 mm x 254 mm, was cast using concrete with the 

compressive strengths shown in Table 2.1. The grade and yield strength of the 

reinforcement of the beams are also shown in Table 2.1. 

Table 2.1: Yosefani (2018) test beams: material properties 

Property B1 B2 B4 

fc’ (MPa) 38.6 55.8 90 

Reinforcement 

Grade 

A615M Gr.60 A615M Gr.100 A615M Gr.100 

As (mm2) 387 213 213 

fy (MPa) 479 838 838 
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Figure 2.9: Idealization of beams tested by Yosefani (2018): four-point bending 

Figures 2.10, 2.11, and 2.12 show the experimentally observed and predicted load-

deflection responses of Beams B1, B2, and B4, respectively. The predicted responses 

shown are computed using the procedure presented in Section 2.3.3. The maximum 

experimental deflection at the midspan was 42, 43, and 46 mm for Beams B1, B2, and B3, 

respectively. The load-deflection responses were determined using moment-area theorem, 

ignoring tension stiffening. The deflections at the yield were computed assuming a linear 

increase of curvature from zero at the supports to the yield curvature at and between the 

applied point loads. The deflections at ultimate were computed assuming a similar 

curvature distribution except that the curvature between the applied point loads is the 

ultimate curvature. It was assumed that the extreme fibre concrete compressive strain could 

exceed a magnitude of 0.0035. In all cases, the agreement with the experimental result is 

good.  
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Figure 2.10: Load deflection response Beam B1 

 

Figure 2.11: Load deflection response Beam B2 
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Figure 2.12: Load deflection response Beam B4 

Table 2.2 compares the load-deflection results from Yosefani’s experiments, and the 

current analysis. In the experiments, the top cover spalled, which reduced the concrete 

compressive neutral axis depth, reducing the total moment capacity, causing the beam to 

fail at a much smaller extreme fibre strain. The concrete strain was not limited to 0.0035 

in the ‘current’ results so the ultimate deflections are greater.   

Table 2.2: Load-deflection results for Yosefani’s experimental analysis, and current 

analysis 

Quantity Py (kN) y (mm) Pu (kN) u (mm) 

Beam B1 B2 B4 B1 B2 B4 B1 B2 B4 B1 B2 B4 

Experimental 85.0 92.5 96.6 10.2 17.0 16.9 104 104.2 111 41.3 43.0 45.8 

Current 

analysis 

91.5 89.7 90.4 10.1 15.4 15.0 107 103.4 109 52.9 67.2 83.3 
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2.4 IMPACT OF HIGH STRENGTH REINFORCEMENT 

ON CURVATURE DUCTILITY 

Curvature ductilities were computed for beam cross sections reinforced with steel types 

ASTM A615/A615M Grade 60 & 100, A706/706M Grade 60 & 80, and A1035/1035M 

Grade 100 with  ranging between 0.05 and 0.36. Concrete compressive strengths of 30, 

50, and 70 MPa were investigated. Two sets of analyses were conducted: one with the 

extreme fibre concrete strain constrained to 0.0035 and a second with this limit removed. 

Figure 2.13 shows the effect of increasing the reinforcement ratio on the curvature ductility. 

A615/615M Grade 60 steel was used at reinforcement ratios of 0.3, 0.6, 0.9, 1.2, and 1.5% 

with fc’ of 30 MPa. With increasing reinforcement ratio, the neutral axis depth increases to 

satisfy horizontal force equilibrium and the ultimate curvature is decreased. A higher steel 

tensile force at higher  increases the moment capacity of the cross section. An increase in 

reinforcement ratio increases  according to Equation [2.10] and curvature ductility and 

 are approximately inversely proportional, Equation [2.12]. 

 

Figure 2.13: Moment-curvature relationship for A615/615M Grade 60 steel with 

increasing reinforcement ratios and fc
'=30 MPa 
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Figure 2.14 shows the variation of yielding and ultimate curvatures with the mechanical 

reinforcement ratio  when the reinforcement is A615/615M Grade 60. As  increases, 

the yielding curvatures increase very slightly while the ultimate curvatures, u, reduce 

markedly. This is because a higher  value increases c and reduces u. Yielding curvatures, 

Equation [2.5], increase with k, Equation [2.3], which is only slightly affected with 

increased , so y is almost unaffected. The variation of the curvature ductility ratio, u/y, 

with  should therefore look similar to that shown for u in Figure 2.14. 

 

Figure 2.14: Yielding and ultimate curvature versus mechanical reinforcement ratio 

for cross section reinforced with A615/A615M Gr.60 steel 

Figure 2.15 shows the variation of curvature ductility ratio with  for the case where the 

extreme fibre concrete compressive strain is limited to a maximum of 0.0035. It confirms 

that these quantities are approximately inversely proportional, and therefore that neutral 

axis depth c is proportional to . This relationship for cross sections reinforced with 

A1035/1035M Grade 100 and A615/615M Grade 100 steels suggest a more linear 

correlation. 
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Figure 2.15: Curvature ductility versus mechanical reinforcement ratio (strain limit 

of 0.0035) 

Regression analyses were performed to fit relationships to the data using indicator variables 

to distinguish between the various reinforcement grades. The form of the model was 

[2.28] 
u
/

y
= (

0
 + 

1
I
1
 + 

2
I2 + 

3
I
3
 + 

4
I
4
) (1

⁄ ) +   

where: 0 … 4 are parameters estimated by regression analysis, and  is the error term. 

Indicator variable I1 equals 1 if the steel is ASTM A706/706M Grade 60 or 0 otherwise, I2 

equals 1 if the steel is ASTM A706/706M Grade 80 or 0 otherwise, I3 equals 1 if the steel 

is ASTM A615/615M Grade 100 or 0 otherwise, and I4 equals 1 if the steel is ASTM 

A1035/1035M Grade 100 or 0 otherwise. The parameter estimates for all indicator 

variables were significantly different from zero (p ≤ 0.05), suggesting that the relationship 

between the curvature ductility factor and the mechanical reinforcement ratio is different 

for each steel grade. The fitted equation is 

 [2.29] 
u


y
= ( +   −   −  3 − 0.34 )(1

⁄ )  
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The coefficient of determination, R2, is 0.99 and the standard error is 0.62. Table 2.3 

presents the standard error and the ratio of estimate and error for each coefficient. Because 

this ratio is greater than 4.2 for all coefficients, all the parameter estimates are statistically 

significant. For a given  Equation [2.29] indicates that the curvature ductility factor for 

ASTM A706/706M Grade 60 reinforcement is greater than that for the other grades of 

reinforcement. This is probably because the strain at the onset of strain hardening for this 

material, 0.0013 (Table 1.1), is markedly greater than that of the others. Similarly, the 

curvature ductility factor for ASTM A615/A615M & A1035/1035M Grade 100 

reinforcement at a given  is markedly smaller than that for all the other reinforcement 

grades. Similarly, A1035/1035M Grade 100 has a smaller curvature ductility factor at any 

given  than all the steel grades except A615/615M Grade 100. This suggests that a more 

stringent target reliability index should be used to calibrate the resistance factor for ASTM 

A615/615M Grade 100 and ASTM A1035/1035M Grade 100 reinforcement. 

Table 2.3: Regression analysis results 

 0 1 2 3 4 

Estimate 

Estimate 

0.6 0.06 -0.05 -0.21 -0.34 

Standard Error 0.009 0.012 0.013 0.016 0.015 

Estimate/Error 63.6 5.4 4.2 12.7 23.1 

 

Figure 2.16 shows the variation of u/y with  for the case where the maximum extreme 

fibre concrete strain is not constrained. The maximum compressive strains exceed 0.7% 

for certain combinations of steel type,  and fc’ which may not be realistic because the 

concrete cover would likely spall when subjected to such high strains. The model 

represented by Equation [2.28] was applied again, and the parameter estimates, standard 

errors and ratio of parameter estimate to error are shown in Table 2.4. The parameter 

estimate for indicator variable I2 was not significantly different from zero, which means 

that the variation of u/y with   for ASTM A706/706M Grade 80, and ASTM 

A615/615M Grade 60 steels are similar. The fitted equation is 
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[2.30] 
u
/

y
= (0.7 + 0.12 I1- 0.22 I3 - 0.46 I4)(1

⁄ ) 

The coefficient of determination, R2, is 0.89 and the standard error is 2.5. The reinforcing 

steel A706/706M Grade 60 has the highest curvature ductility while A1035/1035M Grade 

100 and A615/615M Grade 100 have relatively lower curvature ductilities.  

Table 2.4: Regression analysis results for a data with no concrete strain constraint 

 0 1 3 4 

Estimate 0.7 0.12 -0.22 -0.46 

Standard Error 0.03 0.04 0.06 0.05 

Estimate/Error 22.7 3.1 3.8 8.6 

 

Figure 2.16 shows the variation in flexural curvature ductility for the range of  values 

investigated when the extreme fibre concrete strain is not limited. The relationships for 

A615/615M and A1035/1035M Grade 100 steels are essentially as shown in Figure 2.15: 

the extreme fibre concrete strain at ultimate for these steels is less than 0.0035. The ductility 

ratios for the other steel grades, particularly A706/706M Grade 60, are markedly higher 

than those shown on Figure 2.15, particularly for low . In these cases, the extreme fibre 

compression strain is markedly greater than 0.0035 and the ultimate curvature and ductility 

ratio are increased.  
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Figure 2.16: Curvature ductility versus mechanical reinforcement ratio (no strain 

limit) 

2.5 IMPACT OF HIGH STRENGTH REINFORCEMENT 

ON OTHER DESIGN PARAMETERS 

2.5.1 Ultimate Steel Stress 

Figure 2.17 shows the relationship between the steel stress at ultimate, fsu, and the 

mechanical reinforcement ratio,  The open markers correspond to instances where the 

ultimate moment is the maximum computed, while the filled markers correspond to 

instances where the ultimate moment corresponds to a 0.0035 extreme fibre strain. As 

 increases, the fsu decreases because the neutral axis depth increases to maintain 

horizontal force equilibrium and the steel strain is decreased according to Equation [2.18]. 

The nominal moment capacity, Mn, is defined in A23.3:19 using Equation [2.6]. It can be 

expressed in dimensionless form as 
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[2.31] 
Mn

bd
2
fc
'

 = 
Asfyd

bd
2fc

'
-

(A
s
fy)

2

21fc
' 2

b
2
d

2
 =  -

2

21
 

For small values of  the higher-order term has only a slight effect, so the dimensionless 

moment is approximately proportional to  and so inversely proportional to the curvature 

ductility ratio. 

 

Figure 2.17: Ultimate steel stress versus mechanical reinforcement ratio 

Linear regression was conducted to fit quadratic relationships to the data using a model 

with the following form 

[2.32] fsu= (
10

+
1
I
11

+
12

I
2
+

13
I
3
+

14
I
4
)2+(

5
+

6
I
1
+

7
I
2
+

8
I
3
+

9
I
4
)+ 

(
0
+

1
I
1
+

2
I
2
+

3
I
3
+

4
I
4
) +  

where: 0 … 4 are parameters estimated by regression analysis and  is the model error. 

Indicator variable I1 equals 1 if the steel is ASTM A615/615M Grade 60 or 0 otherwise, I2 

equals 1 if the steel is ASTM A706/706M Grade 80 or 0 otherwise, I3 equals 1 if the steel 
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is ASTM A615/615M Grade 100 or 0 otherwise, and I4 equals 1 if the steel is ASTM 

A1035/1035M Grade 100 or 0 otherwise. The parameter ‘6’ was removed because it was 

not statistically significant. Tables 2.5 and 2.6 show the significant estimates ‘Est.’ and 

Standards Errors ‘Err.’ for the investigated steel grades. The R2 value is 0.99 and the 

standard error is 14.8 MPa. Table 2.7 shows the fitted equations.  

Table 2.5: Parameter estimates from regression analysis, 0 to 7 

 7 5 4 3 2 1 0 

Est. 632 -2452 519 325 128 78 688 

Err. 213 121 15 17 15 6 8 

Est./Err. 2.9 20.3 35.3 19.6 8.8 12.1 82.8 

Table 2.6: Parameter estimates from regression analysis, 8 to 14 

 14
 13 12 11 10 9 8 

Est. -5946 -4836 -3632 -1844 7322 589 1070 

Err.  568 660 685 205 413 191 220 

Est./Err. 10.5 7.3 5.3 8.9 17.7 3.1 4.9 

Table 2.7: Fitted equations for the investigated steel grades 

Steel grade Fitted equation 

A706/706M Grade 60 fsu = 7322 2 - 2452  + 688 

A615/615M Grade 60 fsu = 5478  2 - 2452  + 766 

A706/706M Grade 80 fsu = 3690  2 - 1821  + 817 

A615/615M Grade 100 fsu = 2486  2 - 1382  + 1014 

A1035/1035M Grade 100 fsu = 1376  2 - 1863  + 1208 



35 

 

Figure 2.18: Extreme fibre concrete compressive strain at ultimate versus 

mechanical reinforcement ratio: (a) fc
’=30 MPa (b) fc

’=70 MPa 

For a given design moment, Equation [2.31] can be used to determine  This value can be 

refined, using the equations in Table 2.6 to obtain a more accurate value of the steel stress, 

fsu. The regression analysis results, Equations [2.29] and [2.30], can then be used to find 

the corresponding curvature ductility. This is particularly useful for A1035/A1035M steel 

which exhibits a roundhouse curve (as shown in Figure 1.1) and a yield point is not defined. 

2.5.2 Ultimate Extreme Fibre Concrete Compressive Strain 

Figure 2.18 shows the relationship between the extreme fibre concrete compressive strain 

at ultimate moment, cu, and  for the various steel grades and fc’ values. The horizontal 

line shows the value of 0.0035 as specified in A23.3:19. The computed values exceed this 

limit for virtually all steel grades investigated with  less than approximately 0.2. The 

ultimate concrete strain is affected primarily by fc’: lower f’c values correspond to stress-

strain relationships with more gradual descending branches, Figure 2.18a, and so exhibit 

higher ultimate extreme fibre strains. The steel grade has a relatively smaller effect. 

 

 

 

 

(b) (a)  b) 70 

MPa 
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2.5.3 Balanced Flexural Failure 

A ‘balanced’ flexural failure occurs when the steel yields in tension and the concrete 

crushes in compression, at a specified strain of 0.0035, simultaneously. Table 2.8 compares 

the critical c/d ratio obtained from the moment-curvature analysis with the limits specified 

in the 2014 and 2019 editions of A23.3 computed using the nominal stress yield strength. 

The limit defined using the moment-curvature relationship, was obtained by increasing the 

steel reinforcement ratio, , until the reinforcement yielded when the concrete strain was 

0.0035. The corresponding c/d value was recorded.  

The A23.3:14 (CSA 2014) limit is 

[2.33] 
c

d
 = 

700

700+fy

 

The A23.3:19 (CSA 2019) was previously given in Equation [2.1]. The two right columns 

in the table are the ratios of the c/d ratios from the moment-curvature analysis to the limits 

computed according to A23.3. Ratios greater than 1.0 indicate that the code-computed limit 

is conservative as it underestimates the actual critical c/d ratio. In other words, the code 

limits defined by Equations [2.1] and [2.33] are the specified maximum c/d values, and are 

conservative because the limiting values from the moment-curvature analysis are greater 

than these code-specified limits. On this basis, the provisions of A23.3:14 are 

unconservative for all steel grades investigated whereas those in A23.3:19 are conservative. 
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Table 2.8: Balanced condition based on nominal yield strength for steel 

reinforcement 

Steel type c/d 

 

Nominal fy 

ksi (MPa) 

A23.3:14 

limit 

 

 

A23.3:19 

limit 

 

 

(c/d)/ 

A23.3:14 

(c/d)/ 

A23.3:19 

A615 Gr.60 0.58

5 

60 (413) 0.629 0.503 0.93 1.16 

A615 Gr.100 0.46

1 

100 (690) 0.504 0.403 0.91 1.14 

A706 Gr.60 0.59

2 

60 (413) 0.629 0.503 0.94 1.18 

A706 Gr.80 0.54

2 

80 (550) 0.559 0.448 0.97 1.21 

A1035 Gr.100 0.49

4 

100 (690) 0.504 0.403 0.98 1.22 

 

Table 2.9 presents similar information except that the code-specified c/d limits are 

computed using the mean yield stress values from Table 1.1, instead of the specified 

minimum yield stress. The provisions of in A23.3:14 and A23.3:19 are conservative for all 

steel grades investigated. 

Table 2.9: Balanced condition based on mean yield strength for steel reinforcement 

Steel Type c/d  Mean fy 

ksi (MPa) 

A23.3:14 

Limit 

 

 

A23.3:19 

Limit 

 

 

(c/d)/ 

A23.3:14 

(c/d)/ 

A23.3:19 

A615 Gr.60 0.58

5 

72 (496) 0.585 0.468 1.0 1.250 

A615 Gr.100 0.46

1 

120 (827) 0.458 0.367 1.0 1.260 

A706 Gr.60 0.59

2 

70 (496) 0.592 0.474 1.0 1.250 

A706 Gr.80 0.54

2 

86 (593) 0.542 0.433 1.0 1.250 

A1035 Gr.100 0.49

4 

105 (723) 0.492 0.393 1.0 1.250 
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2.6 SUMMARY AND CONCLUSIONS 

CSA Standard A23.3:19 limits the maximum reinforcing steel yield strength that can be 

assumed in calculations to 500 MPa. An initiative is underway to relax this requirement to 

allow the full potential of steels with higher yield strengths to be realized. The primary 

objective of the research reported in this chapter is to compare the curvature ductility ratios, 

u/y, of cross sections reinforced with High Strength Reinforcement (HSR) with those of 

sections with conventional reinforcement. If the ductility is reduced, the target reliability 

index must be increased and the resistance factor for steel reinforcement, s, must be 

reduced. Moment-curvature relationships were therefore derived for cross sections 

reinforced with ASTM A706/706M Grade 60 (410 MPa) and Grade 80 (560 MPa) steels, 

ASTM A615/615M Grade 60 (410 MPa) and Grade 100 (690 MPa) steels, and ASTM 

A1035/1035M Grade 100 (690 MPa) steel. Steel and concrete stress-strain relationships by 

Mander & Matamoros (2019) and Carreira & Chu (1985) were used, respectively. 

An idealized bilinear moment-curvature relationship was defined using the yielding and 

ultimate points of the response. Yielding corresponds to the steel tensile strain exceeding 

the steel yielding strain. For sections reinforced with A1035/A2035M Grade 100 steel, 

which exhibits a roundhouse behaviour, an approximate bilinear moment-curvature 

relationship was derived. Ultimate moment corresponds to either the maximum moment or 

the concrete extreme fibre compressive strain reaching a value of 0.0035. A MATLAB 

code was programmed to determine the moment-curvature response, construct the bilinear 

idealizations and record the yielding and ultimate curvatures, moments, concrete strains, 

and steel stresses. These data were used to investigate curvature ductility ratios, steel 

stresses and extreme fibre concrete compressive strains at ultimate, and the applicability of 

A23.3:19 criteria to ensure balanced flexural failure for the difference steel grades. 

The following conclusions are drawn from the research reported in this chapter: 

1. The curvature ductility ratio, uy, is approximately inversely proportional to the 

mechanical reinforcement ratio,  defined as Asfy/bdfc’. Thus  increases, and 
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uy reduces, as the steel area, As, or yield strength, fy, increases or the concrete 

compressive strength, fc’, reduces. 

2. For a given value of , beams reinforced with A 706 Grade 60 steel have the highest 

curvature ductility ratios, with respect to other steel grades investigated. 

3. For a given value of , beams reinforced with ASTM A615 Grade 100 and 

A1035/1035M Grade 100 reinforcements have the lowest curvature ductility ratios. 

It may be necessary to calibrate a new, more stringent, resistance factors s for these 

steel grades.  

4. If extreme fibre concrete compressive strain, c,max, at ultimate is limited to 0.0035, 

then the difference in variation of uy with  is statistically significant for cross 

sections reinforced with all steel grades investigated. If c,max is not limited, then 

then the difference in variation of uy with  is not statistically significant only 

for cross sections reinforced with ASTM A615/615M Grade 60 and ASTM 

A706/706M Grade 80 reinforcement. 

5. Equations are derived for compiling the ultimate steel stress as a function of  for 

the steel grades investigated that are suitable for design-office use.  

6. The extreme fibre concrete compressive strain at ultimate is reduced significantly 

as f’c increases while the steel type has a relatively smaller impact. The A23.3:19 

limit of 0.0035 can be unconservative when  is greater than 0.20. 

7. The c/d limitation, where c is the depth of the compression region and d is the 

effective reinforcement depth, specified in A23.3:19 to ensure a balanced failure 

condition occurs are appropriate for cross sections reinforced with high strength 

reinforcement. The ‘0.8’ factor introduced in the 2019 edition of A23.3 ensures that 

the limitation is appropriate even if the limiting c/d limit is computed using the 

nominal reinforcement yield strength, fy, while the actual response is computed 

using the mean reinforcement yield strength, fy̅. 
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Chapter 3  

3 Moment Redistribution Limits for Beams with High 

Strength Reinforcement 

3.1 INTRODUCTION 

High Strength Reinforcement (HSR) reduces steel volumes in reinforced concrete 

construction, decreasing congestion and making the design more cost-efficient. CSA 

Standard A23.3:19 (CSA 2019) currently requires the maximum yield strength used in 

design calculations to be no greater than 500 MPa. A reduction in steel volume may result 

in serviceability issues, including larger crack widths. This problem may be exacerbated in 

continuous beams considering the effects of moment redistribution.  

Moment redistribution can occur only in indeterminate structures. As the failure load is 

reached, plastic hinges form and the distribution of moment due to changes in subsequent 

load increments. In continuous beams, maximum positive and negative moments develop 

at the span and support regions, respectively, for a particular load case. Plastic hinges form 

when the steel reinforcement yields at these critical moment sections. If the hinge region 

is sufficiently ductile, it will undergo inelastic rotation, without attracting additional 

moment. To satisfy equilibrium, the additional moment predicted using linear-elastic 

analysis is redistributed to other critical sections that have not formed plastic hinges. The 

collapse load is reached when a sufficient number of plastic hinges form to make the beam 

statistically unstable, and a plastic collapse mechanism forms. If the first plastic hinges to 

form are at sections with low curvature ductility ratios, u/y, they may have insufficient 

inelastic rotation capacity to allow subsequent plastic hinges to form. In this case, a 

complete plastic collapse mechanism does not form, and the failure load corresponds to the 

cross section with the initial plastic hinge reaching its ultimate moment capacity. Clause 

9.2.4 in A23.3:19 (CSA 2019) limits the maximum moment redistribution in continuous 

beams to a maximum of the lesser of 20% or (30-50c/d) % where c is the depth of the 

neutral axis at failure and d is the effective depth of reinforcement. Cross sections with 
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high c/d ratios have relatively small ultimate curvatures, u, and so smaller inelastic 

rotation capacities.  

As presented in Chapter 2, beams reinforced with HSR can have smaller curvature ductility 

than beams reinforced with conventional reinforcement. It is therefore necessary to 

investigate whether the provisions of A23.3:19 Clause 9.2.4 are applicable for beams with 

HSR. 

3.1.1 Moment Redistribution at Ultimate Limit State  

Figure 3.1a illustrates moment redistribution for a two-span beam that is continuous over 

its interior support and subjected to a uniformly distributed load w on both spans. The 

linear-elastic moment at the interior support and critical span cross sections are 
wL2

8
 and 

wL2

14
 respectively, where L is the span length. If the magnitudes of the bending moment 

capacities at the span and support sections are as shown in Figure 3.1c, the support section 

will reach its yield moment capacity, My
-, first. Figure 3.1b shows the linear-elastic 

moment diagram. The moment-curvature relationships, Figure 3.1c, are assumed bilinear. 

The curvature ductility ratio, u/y, at the support is smaller than that at the span. A plastic 

hinge first forms at the support section, Figure 3.1d, and additional load w is applied until 

the yield capacity of the span section, My
+, is reached, Figure 3.1e. These new plastic 

hinges at the span sections cause the beam to become unstable. It collapses as the complete 

mechanism shown in Figure 3.1f. The collapse mechanism is not developed when the yield 

capacity at the spans is not reached before the plastic hinge at the support fails. In this case, 

the inelastic rotational capacity at the support is insufficient to allow the span hinge to 

form.  
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(c) 

(a) 

Figure 3.1: Development of plastic collapse mechanism: (a) Beam 

and loading (b) Linear-elastic bending moment diagram (c) 

Moment-curvature relationship (d) Formation of first plastic hinge 

(e) Incremental moment due to w (f) Full collapse mechanism 

(b) 

(e) 

(f) (d) 
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3.1.2 Impact of Moment Redistribution at Serviceability Limit States 

Moment redistribution may cause excessive crack widths at Serviceability Limit State 

(SLS). Crack widths are proportional to the stress in the reinforcing steel stress, fs. Clause 

10.6.1 in A23.3:19 allows the designer to assume that fs equals 0.6 fy instead of computing 

it using equations based on elastic-cracked cross section behaviour. If the reinforcing steel 

area necessary to satisfy Ultimate Limit States at a particular cross section has been 

significantly reduced using moment redistribution, fs can markedly exceed 0.6fy. In this 

case, crack widths may be unacceptably large. This situation is made worse if live loads 

are relatively small with respect to the dead loads. It is therefore important that beams with 

HSR designed at ULS accounting for moment redistribution are checked at SLS because a 

lower steel area, As is required to provide a given ultimate moment capacity so the in-

service steel stresses, fs will increase further. This is not addressed in A23.3:19.  

3.1.3 Research Objectives 

1. The primary objective of the research presented in this chapter is to determine 

whether the current provisions in Clause 9.2.4 of A23.3 are appropriate for beams 

reinforced with high strength reinforcement. 

2. A secondary objective is to assess how the combinations of moment redistribution 

and HSR may lead to unacceptable crack widths. 

3.1.4 Chapter Outline 

The moment redistribution that occurs in beams reinforced with conventional and high 

strength steel reinforcement is compared in this chapter. A brief literature review is 

presented in Section 3.2. Section 3.3 outlines a procedure for designing the critical cross 

sections of a beam, determining the moment-curvature relationships for these critical 

sections, and using these relationships to determine the failure load of the beam using 

nonlinear analysis by SAP2000. 

Section 3.4 illustrates the moment redistribution phenomenon by considering two beams: 

one that forms a complete mechanism at collapse and the other that does not form a 
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complete collapse mechanism. The corresponding load-deflection responses in each case 

are illustrated.   

Section 3.5 presents a parametric study that investigates the effects of concrete compressive 

strength, fc’, of 30 and 70 MPa and steel grades ASTM A615/615M Grade 100 and ASTM 

A706/706M Grade 60 on the moment redistribution of beams with different reinforcement 

ratios. These two steel grades have been selected for study because, as shown in Chapter 

2, A706/706M Grade 60 has the highest curvature ductility while A615/615M Grade 100 

has a relatively low ductility for a given mechanical reinforcement ratio, . 

Section 3.6 compares the results of the parametric analysis to the provisions concerning 

moment redistribution in A23.3:19 (CSA 2019).  

Section 3.7 discusses Serviceability Limit States (SLS) in a beam designed at ULS using 

moment redistribution. A procedure to determine the maximum permissible moment 

redistribution that satisfies the critical width/reinforcement spacing criteria in ACI 318:19 

(ACI 2019) is derived and typical results are presented. 

Section 3.8 presents the summary and conclusions of the research reported in this chapter.  

3.2 LITERATURE REVIEW 

For a concrete beam with a rectangular cross section at the Ultimate Limit State, 

horizontal force equilibrium of the concrete compressive force and the steel tensile force 

requires 

[3.1] 
c
 1 β

1
 c fc' b = 

s
 As fy 

where c is the depth from extreme compression fibre to the neutral axis, fc
’ is the concrete 

compressive strength, As is the steel reinforcement area, fy is the steel yield stress, b is the 

width of the beam, and c and s are the concrete and steel resistance factors taken as 0.65 

and 0.85, respectively. The distance from extreme compression fibre to the neutral axis, 

c, can be isolated as 
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[3.2] c = 


s
 As fy


c
 1 β

1
fc' b

  

The stress block parameters, 1 and 1, are calculated from Equation [2.8a], and [2.8b], 

respectively. Equation [3.2] can be written in terms of mechanical reinforcement ratio, , 

where 

[3.3]  =
Asfy

bdfc
'
 

as 

[3.4a]  c = 


s
  d


c
 1 b1

 

or 

[3.4b] 
c

d
 = 


s
 


c
 1 β

1

 

Thus the requirement in Clause 9.2.4 of A23.3:19 can be expressed in terms of  as “the 

lessor of 20% or [30- 50(
1.3 ω

1 β1

)]%”. 

Lou et al (2014) tested a two-span continuous reinforced concrete beam loaded with equal 

point loads applied at the middle of the two mid spans. Two beam groups were investigated: 

Group 1 beams had less steel reinforcement at the interior support than at the midspan. The 

interior support section cracked and yielded first which reduced the flexural stiffness 

locally and caused additional moment to be redistributed to the span section. Group 2 

beams had less reinforcement at the span section than at the interior support, so the yielding 

occurred first at the span section. It was concluded that a full collapse mechanism is easier 

to develop in a high strength concrete beam compared to a normal strength concrete beam. 

The conclusion from Lou et all (2014) aligns with Equation [2.11], which shows the 

approximately inverse relationship between the ultimate curvature and , and Equation 
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[3.3], which shows that an increase in fc
’ decreases . Hence the flexural curvature ductility 

is increased for an increasing fc
’, which also increases the rotation capacity at the first 

plastic hinge and makes it more likely that a collapse mechanism will develop.  

3.3 COMPUTATIONAL METHODS TO QUANTIFY 

MOMENT REDISTRIBUTION 

The impact of higher reinforcing steel strength on the degree of moment redistribution that 

occurs at ULS was assessed numerically using the following three-step procedure: 

1. The span sections of a two-span continuous beam with a given fc
’ and reinforcing 

steel grade is designed to correspond to the given reinforcement ratio, , at the 

interior support section. 

2. The procedure described in Chapter 2 to determine bilinear moment-curvature 

relationships is used for these two critical cross sections. 

3.  The yielding and ultimate points for the two critical cross sections are used as input 

to the SAP2000 Finite Element Analysis program (Computers & Structures Inc., 

2020) to determine the collapse load using nonlinear analysis. 

An equal area method, described in Section 3.3.1, was applied to approximately calculate 

the rotational capacity, and location of the plastic hinge in the span section. This was used 

to verify the results obtained using SAP2000. 

3.3.1 Applying Equal Area Method to Calculate Collapse Load 

For the idealized continuous beam shown in Figure 3.2a, with the live load applied on both 

spans, the plastic collapse mechanism requires three plastic hinges to be present. The first 

plastic hinge forms at the interior support and the subsequent two plastic hinges form 

simultaneously at the critical span sections, Figure 3.2b. When the live load is applied on 

one span only, collapse occurs when two plastic hinges form: one in the loaded span and 

one at the interior support.  
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An approximate procedure for determination of the collapse load, used to verify the 

results of SAP2000 analysis, is presented here. The procedure is based on the following 

assumptions: 

1. The behavior outside the plastic hinge regions is linear-elastic-cracked; tension 

stiffening is ignored. 

2. The moment-curvature relationship is bilinear, defined by the points: (0,0), (y, 

My), (u, Mu) where the yielding and ultimate moments and curvatures are as 

defined in Section 2.2.1. 

The procedure is as follows: 

1. Compute the total collapse load of the beam using the Virtual Work Theorem.  

a) The External Virtual Work (EVW) done by the applied load is 

Figure 3.2: Collapse mechanism in a two-span beam: (a) Loading (b) Mechanism 

(c) Bending moment at collapse 
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[3.5] EVW = 2 L (
∆

2
) wcL = wcL2∆ 

where wc is the collapse load and L is the span length. The internal virtual 

work, IVW, is the sum of the product of the plastic moment capacities, Mu
+/-

, and the associated inelastic rotations, +/- at the plastic hinge locations. 

b) Internal Virtual Work (IVW) is 

[3.6] IVW = 2 Mu
+(θ

+
 + θ

-
) +  Mu

- (2θ
-
) 

From Figure 3.2b, the inelastic rotations can be related to the maximum 

deflection. The rotation at the exterior support is  

[3.7] θ+
=

∆

∝L
 

where ∝L is the distance from the plastic hinge at the critical span section 

to the external support. The rotation at each side of the interior support is 

[3.8] θ-
=

∆

(1 - ∝)L
 

c) Set the EVW, Equation [3.5], equal to the IVW, Equation [3.6] 

[3.9] L2 wc ∆ = 2 Mu
+(θ

+
 + θ

-) + 
M

Mu
+(θ

-) 

Substituting Equations [3.7] and [3.8] into [3.9] to eliminate +/- and 

simplifying yields 

[3.10] wc = 
2Mu

+

L2 {(
1 + 

M
∝

∝(1 - ∝)
)}

 

where M is the ratio of magnitudes of the ultimate negative and positive 

moments, Mu
-/Mu

+. 
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d) Determine the location of span plastic hinge. The derivative of Equation 

[3.10] with respect to ∝ is 

[3.11] 
dw

d∝
 = 

d [
2Mu

+

L2 (
1 + M∝
∝(1 - ∝)

)
]

d∝
 

and setting dw/d∝ = 0 yields 

[3.12a] M∝2 + 2∝ - 1=0 

and hence 

[3.12b] ∝ = 
√1 + M - 1

M
 

2. Determine the inelastic rotation necessary to allow formation of second plastic 

hinge. 

a) Determine the load, w1, needed to initiate formation of the first plastic 

hinge. This behaviour at this point is linear-elastic so 

[3.13] w
1
 = 

8My
-

L2
 

b) Determine the load increment, w2, needed to initiate formation of the 

second plastic hinge 

i. The shear force at the exterior support, V1, due to w1 computed 

assuming linear-elastic behavior, is 

[3.14] V1 = 
3

8
w1L 

ii. The maximum moment in the span due to w1, M1, occurs when the 

shear force is 0 

[3.15] M1 = -V1(∝L) + w1

(∝L)2

2
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iii. The incremental moment required to initiate yield at the span 

plastic hinge, M2, is 

   [3.16] M
2
 = My

+ - M
1
 

iv. The associated load increment, w2 is 

[3.17] w2 = 
2M2

∝L2 (1 - ∝)
 

c) Determine the deflections at midspan due to the combination of w1 and w2. 

The approximate linear-elastic deflection at midspan due to w1, 1, 

assuming pinned-fixed beam end connections due to symmetry is 

[3.18] ∆1 = 
w1∝L4

48Ec(0.85Icr
+  + 0.15Icr

- )
{1 - 3∝2 + 2∝3}  

where Ec is the Young’s modulus for concrete, and Icr
+ and Icr

- are the 

cracked moment of inertia for the span and support cross sections, 

respectively. The approximate additional simply supported beam deflection 

at midspan due to w2, 2, is 

[3.19] ∆2 = 
w2∝L4

24EcIcr
+ {1 - 3∝2 + 2∝3}   

  The total deflection, , is 

  [3.20] ∆ = ∆1 + ∆2 

d) The inelastic rotational demand, id, is 

[3.21] θid = 
d∆2

dL
 = 

w2∝L3

6EcIcr
+

{1 - 3∝2 + 2∝3}    

3. Determine the inelastic rotation capacity 

a) Compute the failure load, wf, approximately as  

[3.22] wf = w1 + w2 
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b) Compute the total shear force, Vif, at the internal support due to the total 

load 

[3.23] Vif = (
5

8
w1 + 

1

2
w2) L 

c) Determine the approximate half length of the plastic hinge at the support, x. 

As shown in Figure 3.3, this half length is the distance from the centre of 

the hinge, where the applied moment is Mu
-, to the point where the applied 

moment is My
-, as shown schematically by the shaded region of the figure. 

Moment equilibrium requires 

[3.24] (Mu
-  - My

- ) = -
wf

2
x2 + Vifx 

from which x can be determined.  

 

 

Figure 3.3: Free Body Diagram of the interior support hinge region 

d) Determine the inelastic rotation, ir, at the hinge 

[3.25] θir =
1

2
(

u
 - 

y
)x 

If θir<θid, the inelastic rotation capacity at the plastic hinge is insufficient to allow a 

collapse mechanism to develop. Instead, the interior support cross section fails before the 

span plastic hinge forms.  
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3.3.2 Reinforcing Steel Design at Critical Cross sections 

Figure 3.4 shows schematically the procedure for determining the span reinforcement ratio, 

+, corresponding to a given support reinforcement ratio, −. The procedure is as follows 

1. Initialize: 

a. Define concrete compressive strength, steel grades. 

b. Define geometric parameters: b, d, L. 

c. Compute stress block parameter, 1, using Equation [2.8a]. 

2. Assign a support reinforcement ratio which will increase with each iteration until 

the c/d limit in Clause 10.5.2 of A23.3:19 is reached. 

3. Determine the steel area at the interior support, As
-, and the corresponding nominal 

support moment, Mu
-. For As

- = -bd, the depth of rectangular stress block, a, is 

[3.26] a = 
fyAs

-

1fc
'
b
 

The nominal support moment is  

[3.27] Mu
-  = fyAs

- (d - 
a

2
) 

Determine the distributed load, w, corresponding to this nominal ultimate support 

moment 

[3.28] w = Mu
- 8

L2
 

4. Determine the span moment, Mu
+, and the associated reinforcement ratio, + from the 

applied load. The critical moment demands are computed assuming linear-elastic 

analysis. The negative moment at the interior is 
wL2

8
, corresponding to live load on 
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both spans. The positive moment, Mu
+, is derived for the critical load case of live load 

on one span only 

[3.29] Mu
+ = 0.07wdL2 + 0.096 wlL

2  

Assuming dead load, wd and live load, wl are equal, Equation [3.29] simplifies to 

[3.30] Mu
+=

wL2

12
 

From Equation [2-12] in the CAC Concrete Design Handbook (CAC 2016) 

[3.31] ρ+= [1 - √1 - 
2Mu

+

1fc
'
bd

2
]

1fc
'

fy

 

Hence, the span flexural reinforcement area, As
+, equals +bd. 

5. Increment - and repeat Steps 3 to 5. 

These steel areas, material grades, and geometric properties are used as input for the 

moment-curvature analysis.  
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Figure 3.4: Procedure to determine positive moment reinforcement area, As
+, at 

span, given negative moment steel area, As
-, at support 

3.3.3 Moment-Curvature Analysis 

The material properties, section dimensions and steel areas are next used to generate 

moment-curvature relationships for the critical span and interior support cross sections 

using the procedure in Chapter 2. If there is no clearly defined yield moment and curvature 

then the equal area method, as described in Section 2.3.4, is used to determine an equivalent 

bilinear relationship. This is necessary for the beams reinforced with ASTM A1035/1035M 

Grade 100 steel. Beams reinforced with A615/615M A706/706M steels typically show a 

well-defined yield moment and curvature. 

The moments and curvatures at yield and at ultimate are critical input for the subsequent 

non-linear SAP2000 analysis. The yield moment, where steel tensile stress reaches yield, 

defines the initiation of plastic hinge formation. The ultimate moment and corresponding 

ultimate curvature define whether the inelastic plastic hinge rotation capacity is sufficient, 
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given the inelastic rotation demand, to achieve a full plastic collapse mechanism. The 

Ultimate moment was defined as either: (1) the maximum moment value or (2) the moment 

corresponding to an extreme fibre concrete compressive strain of 0.0035.  

The stress-strain relationship for concrete is as proposed by Carreira and Chu (1985) and 

the stress-strain relationship and associated parameters for the high-strength steel 

reinforcement are as proposed by Mander and Matamoros (2019). Further details of the 

moment-curvature analysis are provided in Chapter 2.  

3.3.4 SAP2000 Analysis 

Figure 3.5 shows the procedure for using the non-linear analysis capabilities of SAP2000 

(Computers and Structures Inc., 2021) to quantify the moment redistribution. 

 

Figure 3.5: Procedure to determine failure load using SAP2000 nonlinear analysis 
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Figure 3.6a shows the beam model in SAP2000. Each of two spans has 50 plastic hinges 

distributed along the span length. The hinges also act as separators and discretize each span 

into smaller elements. The plastic hinges in SAP2000, as shown in Figure 3.6b, are 

‘deformation controlled (ductile)’ which require a moment-curvature relationship to be 

defined.  

 

(a) 

 

(b) 

Figure 3.6: SAP2000 beam idealization: (a) Beam model in SAP2000 (b) Plastic 

hinge locations 

 The procedure is as follows: 

1. Create a two-span concrete beam that is continuous over the interior support in 

SAP2000, as shown in Figure 3.6a.  

2. Define the yielding and ultimate moment and curvature values for the interior 

support and span cross sections as the values taken from moment-curvature analysis 

described in Section 3.3.3.  

3. Use the ‘Assign’ command to apply a uniformly distributed load on the two spans 

incrementally to allow the modelling of nonlinear behaviour in the beam. For each 

load increment 

a. SAP tabulates moments along length of beam. 

b. SAP compares the moment in each element with the specified yield and 

ultimate values. If the yield moment is exceeded, the stiffness at the hinge 
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is reduced to allow inelastic rotation to occur. If the ultimate moment at 

either critical section is reached, the beam is deemed to have failed. 

4. Compute the maximum moments, Mel, due to the failure load, wf, assuming a linear-

elastic response. If the first plastic hinge forms at the interior support, the 

corresponding moment is Mel
-= 

wfL2

8
. If the first plastic hinge forms at the span 

section, the corresponding moment is Mel
+= 

wfL2

12
. 

5. Compute the moment redistribution, r. If both spans are loaded with live loads 

simultaneously, the first plastic hinge forms at the interior support and the moment 

redistribution is calculated as 

[3.32] r = 
Mel

-  - My
-

Mel
-  

 where My
- is the yield moment at interior support as obtained from the moment-

curvature analysis. If only one span is loaded with live load, the first plastic hinge 

forms at the critical span cross section and the moment redistribution is computed 

as 

[3.33] r = 
Mel 

+ - My
+

Mel
+  

 where My
+ is the yield moment at critical span as obtained from the moment-

curvature analysis. 

6. Repeat Steps 2 through 6 for the range of reinforcement ratios investigated.  
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3.4 EXAMPLE CALCULATIONS 

To illustrate the methodology described in Section 3.3, two example calculations are 

presented. A case where a full collapse mechanism is considered first, followed by a case 

where the inelastic rotation capacity at the first plastic hinge is exhausted before a full 

collapse mechanism forms. 

3.4.1 Case Of Full Plastic Mechanism Forming 

A two-span one-way slab, continuous over the interior support, has a rectangular cross 

section with a width, b, of 1000 mm, a height, h, of 200 mm and an effective depth, d, of 

170 mm. The concrete compressive strength, fc’, is 70 MPa, and the reinforcement is 

ASTM A615/615M Grade 100 steel with a mean yield strength of 830 MPa. The 

reinforcement at the interior support, As
-, is 2380 mm2, corresponding to  of 0.165. The 

reinforcement at the span, As
+, is 1520 mm2, which corresponds to  of 0.106. Live load 

is applied simultaneously on both spans, which are each 5 m long. 

Figure 3.7 shows the idealized bilinear moment-curvature relationships for the critical span 

and interior support cross sections. The member exhibits linear-elastic behaviour until the 

first plastic hinge forms at the interior support, indicated by Point A on the figure. As the 

load is increased, the moment at the interior support increases slightly until the plastic hinge 

at the span forms, Point B. The application of additional load eventually causes the interior 

support cross section to reach its maximum moment, Mu
- of 310 kN-m and curvature, u 

of 8.6E-5 1/mm, Point C: this corresponds to the failure load of 106 kN/m. The moment at 

the interior support assuming linear-elastic behaviour, Mel
-, is 331.3 kN-m from Equation 

[3.28]. From Equation [3.32], the percentage of moment redistribution at the interior 

support cross section is 9.8%.  
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Figure 3.7: Bilinear moment-curvature relationships – Case of complete mechanism 

Figure 3.8 shows the associated load-deflection response, with Points A, B and C again 

corresponding to the formation of the plastic hinge at the support, the formation of the 

plastic hinge in the spans, and the support reaching its maximum capacity, respectively. 

The formation of the plastic hinges causes the stiffness of the member to decrease. 

 

 Figure 3.8: Load-deflection response 
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3.4.2 Case Of Incomplete Plastic Mechanism 

The geometry of the cross section, span lengths, and steel and concrete strengths of the 

previous case are again adopted. The reinforcement areas at the interior support and span 

sections are 3740 mm2 and 2300 mm2 which correspond to  of 0.26 and 0.16, respectively. 

Live load is again applied simultaneously on both spans.  

Figure 3.9 shows the bilinear moment-curvature responses the span and support cross 

sections. The first plastic hinge again forms at the interior support, Point A on the figure. 

When additional load is applied, the maximum moment and curvature is reached at the 

interior support, Point B, before hinges form at the critical span cross section. The curvature 

ductility factors, u/y, for the support and span cross sections are 1.2 and 2.5, respectively. 

The low curvature ductility at the support limits its inelastic rotation capacity, i, at each 

side of the support which can be quantified as 

[3.34] θi = ∫ 
i
dl

x

0

 

where x is the half the length of the support plastic hinge and i is the inelastic curvature 

within the hinge. Equation [3.34] is a simplified approximation as it ignores any tension 

stiffening that may be taking place within the plastic hinge.  
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Figure 3.9:  Idealized bilinear moment-curvature relationships – Case of incomplete 

mechanism 

Figure 3.10 shows the associated load-deflection response. The response is linear-elastic 

initially until the plastic hinge forms at the interior support, Point A. The member stiffness 

is again reduced at greater loads, but the additional deflection that occurs before the interior 

support section fails, Point B, is marginal.  

 

Figure 3.10: Load-deflection response – Case of incomplete mechanism 
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3.5 PARAMETRIC STUDY 

This section presents the results of a detailed parametric analysis. Two steel grades are 

considered: ASTM A615/615M Grade 100 (690 MPa) (ASTM 2020) and A706/706M 

Grade 60 (420 MPa) (ASTM 2016). These grades are selected because they have relatively 

low and high curvature ductilities, respectively, for a given  (discussed in Chapter 2). 

Two concrete compressive strengths are considered: fc’ of 30 and 70 MPa. 

Figures 3.11 and 3.12 show the variation of the percentage of moment redistribution with 

the mechanical reinforcement ratio, , for the two steel grades and fc’ of 30 and 70 MPa, 

respectively. When the live load is on one span only, any difference due to the two steel 

grades is negligible because a full plastic collapse mechanism develops in all cases 

irrespective of fc’. The first plastic hinge forms in the span section, which has less 

reinforcement and so is more ductile than the support section. The support section yields 

and reaches its ultimate capacity first. When the live load is on both spans, a full plastic 

mechanism forms if the mechanical reinforcement ratio of the support section, , is less 

than approximately 0.25 or 0.2 for fc
’ of 30 or 70 MPa, respectively, as seen in Figures 3.11 

and 3.12. The influence of the steel grade on the moment redistribution percentage is 

negligible if a full plastic collapse mechanism develops. For greater  values, the inelastic 

rotation capacity of the plastic hinge at the support is reached, a full plastic collapse 

mechanism does not form, and the moment redistribution percentage is reduced. The 

reduced moment redistribution percentage is particularly evident for the ASTM 

A615/615M Grade 100 steel whether fc’ is 30 MPa, Figure 3.11, or 70 MPa, Figure 3.12.  
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Figure 3.11: Moment redistribution for ASTM A615/615M Grade 100 and ASTM 

A706/706M Grade 60 (fc
’=30 MPa) 

 

Figure 3.12: Moment redistribution for ASTM A615/615M Grade 100 and ASTM 

A706/706M Grade 60 (fc
’=70 MPa) 
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Figure 3.13 shows the idealized bilinear moment-curvature relationships for both steel 

grades at the interior support and span cross sections for fc’ of 70 MPa. For both steel 

grades,  at the interior support is 0.25 so an incomplete mechanism is formed. The 

yielding and ultimate moments and ultimate curvatures for both grades are similar. The 

yielding curvature, y, for the section with A615/615M Grade 100 reinforcement is, 

however, markedly greater that that for the section with A706/706M Grade 60 

reinforcement. This reduces the curvature ductility, the inelastic rotation capacity, and the 

percentage of moment redistribution. The section reinforced with the higher steel grade has 

smaller steel area for a given  value, so the cracked moment of inertia and associated 

stiffness will be lower. 

 

Figure 3.13: Idealized moment-curvature relationships for  = 0.25, fc
’= 70 MPa 

Figure 3.14 shows the variation of moment redistribution percentage for beams reinforced 

with A615/615M Grade 100 steel when fc’ is 30 and 70 MPa. Figure 3.15 is the companion 

figure for the A706/706M Grade 60 steel grade. When one span is loaded, a complete 

mechanism forms for the entire range of  investigated. The corresponding redistribution 

percentages are consistent irrespective of the concrete strength or the steel grade. When 

live load is applied on both spans, a complete collapse mechanism forms for  less than 
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approximately 0.20 when the reinforcement is A706/706M Grade 60 and 0.25 when the 

reinforcement is ASTM A615/615M Grade 100. At greater values of , a complete 

mechanism does not form at failure because the plastic hinge at the interior support fails 

before the critical span section can yield. When live load is applied on both spans, 

increasing fc
’ stops the complete mechanism formation at a smaller  value. When live 

load is applied on one span, a complete collapse mechanism is developed irrespective of 

fc
’ value.  

The ultimate extreme fibre concrete strain was limited to 0.0035. The ultimate moment 

associated with concrete strains exceeding 0.0035 were not investigated. As discussed in 

Chapter 2, however, the flexural curvature ductility, u/y increases when this limit is 

ignored. A higher u/y will increase the inelastic rotation capacity at a plastic hinge and 

the beam will be more likely to develop a complete collapse mechanism.  

 

Figure 3.14: Moment redistribution for fc
’ of 30 MPa and 70 MPa (ASTM 

A615/615M Grade 100) 
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Figure 3.15: Moment redistribution for fc
’ of 30 MPa and 70 MPa (ASTM 

A706/706M Grade 60) 

Figure 3.16 shows the bilinear moment-curvature relationships for a beam cross section 

reinforced with ASTM A615/615M Grade 100 steel and fc’ of 30 and 70 MPa. The  values 

are 0.25 and 0.16 for the interior support and span cross sections, respectively. The 

curvature ductility of the support for an fc’ of 70 MPa is a bit smaller than that for fc
’ of 30 

MPa. This is due to a reduced flexural stiffness: a reduced As lowers Icr, Equation [2.4], 

and so reduces the cracked flexural stiffness EIcr. Equation [2.5] shows that the yield 

curvature is a function of the depth of the compression region, k, which reduces as As or  

are reduced. For a given , increasing fc
’ increases As which leads to a greater yielding 

curvature and a smaller curvature ductility. The smaller curvature ductility for a cross 

section reinforced with A615/615M Grade 100 steel corresponds to a smaller inelastic 

rotation capacity at the plastic hinge, so the maximum  corresponding to a full plastic 

collapse mechanism is reduced.  
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Figure 3.16: Moment-curvature relationships for ASTM A615/615M Grade 100 

steel - fc
’ of 30 and 70 MPa 

3.6 COMPARISON WITH A23.3:19 REQUIREMENTS 

In Figures 3.17 a. and b., the maximum permissible redistribution specified in A23.3:19, 

given by Equation [3.4b], is superimposed on the results from the parametric study for 

concrete strengths of 30 and 70 MPa, respectively. The A23.3:19 provisions provide a 

conservative lower bound on the actual moment redistribution percentages for these cases. 
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3.7 IMPACT OF MOMENT REDISTRIBUTION ON 

SERVICEABILITY LIMIT STATES 

At Serviceability Limit States (SLS), the behaviour of the critical moment section is elastic-

cracked. The steel stress at SLS is approximately 0.6 fy (Clause 10.6.2 in A23.3). If a cross 

section is designed at ULS accounting for moment redistribution, however, the steel area 

is reduced and the SLS steel stresses will be greater. The crack widths at SLS, which are 

proportional to the SLS steel stresses will increase. In particular, the steel stress at SLS 

may markedly exceed the value of 0.6 fy. In this section, a procedure is presented to 

determine the maximum permissible redistribution, rmax, to satisfy crack width criterion 

specified in ACI 318:19 (ACI 2019), which are more current than that in A23.3:19 (CSA 

2019). The procedure is as follows: 

1. Develop an expression that relates the resisting moment to the factored applied dead 

and live moments, accounting for redistribution. The required resistance, Mr, is 

[3.35] Mr = Mf
e(1 - r)  

where r is the reduction of factored moment due to moment redistribution, and Mf
e 

Figure 3.17: Comparison of A23.3:19 maximum redistribution percentage with 

observed redistribution: (a) fc’= 30 MPa (b) fc’= 70 MPa  

(a) (b) 
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is computed using linear-elastic analysis 

[3.36] Mf
e = 1.25Md + 1.5Ml 

here, Md and Ml are the moments due to specified dead and live loads, respectively 

and load factors 1.25 and 1.5 are from the National Building Code of Canada 

(NBCC 2015). For K = Ml/Md, this can be written as 

[3.37] Mf
e = Md(1.25 + 1.5K) 

Substituting Equations [3.37] into [3.35] to eliminate Mf
e 

[3.38] Mr = Md(1.25 + 1.5K)(1 - r) 

2. Compute the steel stress at SLS, fs. Assuming linear-elastic cracked behaviour 

[3.39] fs = 
{nMs(d - kd)}

Icr

 

where: n, the modular ratio, equals Es/Ec; Ms is the applied service moment; (kd) is 

the depth of compression zone; and, Icr is the cracked moment of inertia. The depth 

of the compression zone is computed using Equation [2.3]. Noting that Ms = Md + 

Ml = Md (1+K) 

[3.40] Md = 
Ms

1 + K
 

Substituting Eq. [3.40] into Eq. [3.38] to eliminate Md 

[3.41] Mr = 
{Ms(1.25 + 1.5K)(1 - r)}

(1 + K)
 

Rearranging Equation [3.41] to isolate Ms and substituting this into Equation 

[3.39] to eliminate Ms yields 

[3.42] fs = 
n(1 + K)Mr(d - kd)

(1.25 + 1.5K)(1 - r)Icr
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 The resisting moment is computed as 

[3.43a] Mr =  
s
A

s
fy (d - 


s
Asfy

2
c
1fc

'
b

) 

where s and c are the resistance factors for steel and concrete, respectively. This 

can be written as 

[3.43b] Mr = 
s
ρfy (1 - 


s
ρfy

2
c
1fc

'
) bd

2
 

From Equation [2.4], the cracked moment of inertia can be expressed as 

[3.44] Icr= [
k

3

3
 + nρ(1-k)2] bd

3
 

Substituting Equations [3.43b] and [3.44] into Equation [3.42] to eliminate Mr and 

Icr 

[3.45] fs =  
(1 + K)

(1.25 + 1.5K)

fy

(1 - r)


s
ρ (1 - 


s
ρfy

2
c
1fc

'
bd

) (1 - k)n

(k
3)

3
 + nρ(1 - k)2

 

3. Determine the maximum permissible steel stress, fs,max which satisfies the crack 

width criteria in ACI 318:19 (ACI 2019). Article 24.3.2 limits the maximum 

spacing, s, to the lesser of 

[3.46a] s < 380 (
280

fs

) -2.5ccl 

or 

[3.46b] s < 300 (
280

fs

) 

where fs is in MPa and the clear cover, ccl, is in mm. These equations can be written 
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in terms of maximum steel stress, fs,max, for a given spacing as 

[3.47a] fs,max=
380×280

s + 2.5ccl

 

or 

[3.47b] fs,max=
380×280

s
 

The variation of fs,max with spacing, s, is shown in Figure 3.18.  

 

Figure 3.18: Maximum steel stress for given reinforcement spacing (ACI 2019) 

4. Determine the maximum permissible redistribution, rmax for a given spacing, s, and 

clear cover, ccl.  

a. Substitute the givens, s and ccl, into Equations [3.47a] and [3.47b] and take 

fc,max to be the smaller of the two values. 

b. Substituting fc,max into Equation [3.44] and solve for rmax. This is computed 

as 
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[3.48] rmax= 
(1 + K)

(1.25 + 1.5K)

fy

fs,max


s
ρfy (1 - 


s
ρfy

2
c
1fc

' ) (1 - k)n

(k
3)

3
+nρ(1 - k)2

 

Figure 3.19 shows the variation of rmax with  for ASTM A706/706M Grade 60 and ASTM 

A615/615M Grade 100 reinforcement, bar spacings of 100 mm and 250 mm, fc
’ of 30 MPa, 

and a clear cover of 25 mm. The maximum redistribution for each steel grade is also shown. 

It is clear that the maximum redistribution is markedly less for the higher strength, 

A615/615M Grade 100 steel. It is also clear that the designs that satisfy the A23.3:19 limit 

will be satisfactory for some combinations of steel grade, concrete strength, reinforcement 

ratio, and spacing, such as the two relationships for bar spacings of 100 mm. Other design, 

however, will exhibit unsatisfactory crack widths at other combinations of these variables, 

such as the two relationships for bar spacings of 250 mm. Thus, it is required that Clause 

9.2.4 of A23.3:19 be revised to require that crack widths should be checked using the 

computed reinforcing steel stress at SLS, fs, at any cross section where the reinforcing steel 

area has been reduced using moment redistribution.  
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Figure 3.19: Variation of maximum permissible redistribution with reinforcing 

ratio,  

3.8 SUMMARY AND CONCLUSION 

The objective of the research presented in this chapter was to verify whether beams 

reinforced with High Strength Reinforcement, with a specified yield stress greater than 500 

MPa, complies with the current redistribution limits given in Clause 9.2.4 of CSA Standard 

A23.3:19 “Design of Concrete Structures”. A parametric study investigated the effect of 

using ASTM A615/615M Grade 100 or ASTM A706/706M Grade 60 reinforcement on 

the moment redistribution exhibited by a two-span beam that is continuous over the internal 

support. Concrete compressive strengths of 30 and 70 MPa were considered and loading 

cases with the live load on one span only or on both spans were investigated. The impact 

of Serviceability Limit State on the maximum permissible redistribution was also 

investigated.  

The parametric study for at Ultimate Limit State essentially required three steps. First, the 

flexural reinforcement area at critical span cross section was determined given the 

corresponding interior support reinforcement area. Second, an idealized bilinear moment-
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curvature relationship was determined for these cross sections using the programming code 

described in Section 2.3.3. Finally, nonlinear analysis was conducted in SAP2000 

(Computers & Structures Inc., 2020) using the computed curvatures and moments at yield 

and ultimate input and the moment redistribution was quantified. This procedure was 

repeated for different internal support reinforcement ratios. 

The impact of moment redistribution at Serviceability Limit State (SLS) was investigated 

by determining the maximum permissible redistribution, rmax, using the maximum steel 

stress, fs,max as given in ACI 318:19 to satisfy crack widths, given a reinforcement spacing, 

s, and a clear cover, ccl.  

The following conclusions are drawn: 

1. If a full plastic collapse mechanism forms at member failure, the moment 

redistribution percentage is independent of the grade and quantity of the steel 

reinforcement.  

2. If the first hinge to form has insufficient inelastic rotation capacity, it will fail 

locally before a full plastic collapse mechanism forms.  

3. The curvature ductility factor, u/y, and inelastic rotation capacity reduce as the 

mechanical reinforcement ratio,  increases. Thus, the maximum permitted 

redistribution must reduce for beams with increasing  values.  

4. A beam reinforced with High Strength Reinforcement will have a lower curvature 

ductility factor than a beam with the same  reinforced with conventional 

reinforcement. The maximum permissible moment redistribution is therefore less. 

The magnitudes of the ultimate curvature, u, are similar at a given  but the yield 

curvature, y, of the beam reinforced with HSR can be markedly greater because 

the steel area and cracked section modulus are less.  

5. For the cases investigated, the current provisions of Clause 9.2.4 in CSA A23.3:19 

are conservative with respect to the maximum redistribution permitted. 



75 

 

6. The maximum moment redistribution permissible can be limited to ensure that the 

crack widths at critical cross sections at SLS are acceptable. If the steel area is 

reduced by accounting for moment redistribution at Ultimate Limit State, it is 

recommended that crack widths be checked at these cross sections using the 

computed steel stress at SLS, instead of assuming a value of 0.6fy, as is currently 

permitted in A23.3:19.  
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Chapter 4  

4 Deflections In Concrete Beams Reinforced with High 

Strength Steel 

4.1 INTRODUCTION 

Figure 4.1 shows the instantaneous and long-term midspan deflection history of a simply 

supported beam over its 25-year lifetime. The beam has a width of 200 mm, a height of 

360 mm, and spans 5000 mm. It has a concrete compressive strength, fc
’, of 50 MPa, steel 

reinforcement yield stress, fy, of 500 MPa, a midspan reinforcement ratio, , of 0.6% and 

live-to-dead load ratio of 1. The moments due to the beam’s own weight, superimposed 

dead load, sustained live load and transient live load are 16.5, 1.8, 4.6 and 13.8 kNm, 

respectively. The ultimate shrinkage strain, shu, is taken as 780 microstrain (CAC 2016), 

the ultimate creep coefficient, Cu, is taken as 2.35 and the associated correction factor, Qcr, 

is taken as 1. The deflections include deflection due to shrinkage, ∆sh; instantaneous and 

long term (creep) deflections due to the beam’s own weight, ∆OW,i, and ∆OW,c, respectively; 

instantaneous and long term (creep) deflections due to superimposed dead load, ∆SDL,i and 

∆SDL,c, respectively; instantaneous and long term (creep) deflections due to sustained live 

load, ∆SLL,i and ∆SLL,c, respectively; and, instantaneous deflection due to transient live 

loads, ∆LL,i. The total deflection, t, is 29 mm, or Ln/172, after 25 years where Ln is the 

clear span length. Table 9.3 of A23.3:19 (CSA 2019) limits “that part of the total 

deflections occurring after the installation of non-structural elements” to Ln/480 or Ln/240 

for non structural elements that are likely or not likely to be damaged by large deflections, 

respectively. If the non-structural elements are assumed to contribute to the superimposed 

dead load, this incremental deflection, ∆inc, that occurs after the superimposed dead load is 

added, in this case 14 mm, is checked against the Ln/480 or Ln/240 limit. 
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Figure 4.1:Beam midspan deflections 

The incremental deflection that occurs after the SDL is applied can be computed as 

[4.1]  ∆inc =  (1 - τs) ∆sh+ (1 - τc) ∆OW,c+ ∆SDL,c+ ∆SLL,c + ∆SLL,i+ ∆LL,i  

where c is the fraction of the total creep deflection that occurs in the time interval, tdse, 

between the application of the own weight and superimposed dead loads. Similarly, s is 

the fraction of the total shrinkage deflection that occurs in the time interval ‘t’ between the 

end of moist curing and the time of application of the superimposed dead load. These 

fractions can be computed using the following equations (CAC 2016) 

[4.2] c = 
tdse

0.6

10 + tdse
0.6

 

and 

[4.3] s=
t

Cs+t
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According to the CAC Concrete Design Handbook (CAC 2016), Cs is taken as 35 for 

concrete subjected to 7 days of moist curing or 55 for concrete subjected to 1 to 3 days of 

steam curing.  

As shown in Figure 4.1, instantaneous deflections in reinforced concrete beams are due to 

the beam’s own weight, the superimposed dead load, and the live load. The long-term 

deflections are due to shrinkage, particularly for beams with different reinforcement areas 

in the tension and compression regions, and creep due to own weight, superimposed dead 

loads, and sustained live loads. 

CSA A23.3:19 Table 9.2 specifies a minimum height, hmin, for beams that are simply 

supported, or have one or both ends continuous. If the beam height is less than this limit, 

deflections must be computed and compared with the limits specified in Table 9.3. The 

values listed in Table 9.2 pertain to beams reinforced with steel that has a minimum 

specified yield strength fy of 400 MPa. For higher yield strengths, hmin is increased by the 

factor (0.4 + fy/670), where fy has units of MPa. 

4.1.1 Objectives 

The objectives of the research reported in this chapter are as follows: 

1. Determine whether beams with high strength reinforcement (HSR) that just satisfy 

the hmin limit in Table 9.2 have long-term incremental deflections less than Ln/240. 

This objective is necessary because: 

a. HSR reduces the steel area needed to achieve a given factored moment 

resistance Mr. 

b. A reduced steel area reduces the cracked moment of the inertia of beam 

cross section, Icr, and so reduces the cracked flexural rigidity EcIcr and 

effective cracked flexural rigidity EcIe. 

c. A smaller flexural rigidity causes increased deflections under specified 

loads. 
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2. Investigate whether the height correction factor, sf, can be relaxed while still 

satisfying the Ln/240 deflection limit in A23.3. This is important because reducing 

the beam height can reduce construction costs. 

4.1.2 Chapter Outline 

The objective of this chapter is to check if current deflection criteria are adequate for HSR, 

which requires computing deflections for beams with high yield stress reinforcements. 

Chapter 4.2 therefore calculates the instantaneous, creep, and shrinkage deflections using 

Gilbert’s method (Gilbert 2011). 

Section 4.3 shows the method for calculating the associated dead loads, consisting of a 

beam’s own weight and superimposed dead load, and the live loads, consisting of the 

applied sustained live load and other transient live loads.  

Section 4.4 carries out a preliminary investigation, showing the effects of changing several 

variables on the service load moments and flexural rigidity of the beam. A sensitivity 

analysis is then conducted to determine how the incremental deflections vary with concrete 

compressive strengths, reinforcing steel yield stresses, end support conditions, and ratios 

of applied live to dead loads. A minimum height correction factor is specified in A23.3:19 

to increase beam height as the reinforcing steel yield stresses are increased. The sensitivity 

analysis results are therefore presented for two cases: this factor is applied in the first set 

of results and subsequently ignored in the second set of results. The deflections are 

computed for simply supported beams, and two- and three-span beams that are continuous 

over the interior support(s).  

Section 4.5 refines the minimum height correction factor for beam configurations with a 

specified steel yield stress, ratio of service live-to-dead loads, and for varying concrete 

compressive strengths and reinforcement ratios. 

Section 4.6 summarizes the chapter and lists the conclusions.   
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4.2 METHOD FOR CALCULATING DEFLECTIONS 

Gilbert’s (2011) method was used to compute instantaneous, creep, and shrinkage 

deflections. Table 4.1 shows the loading and concrete strength development history 

assumed for the analyses. The concrete compressive strength is assumed not to increase 

after it reaches its specified 28-day strength, fc
’.  

Table 4.1: Loading and concrete strength development history 

Concrete age (Days) Load type at given age Strength as fraction of fc
’ 

(%) aGiven Age 
7 Own Weight 75 

90 Superimposed Dead Load 100 

180 Sustained Live Load 100 

180+ Instantaneous Live Load 100 

 

To compute the effective moment of inertia, Ie, A23.3:19 uses an equation involving a 

moment, Ma, defined as the “maximum moment in member at load stage at which 

deflection is computed or at any previous load stage”. It is assumed that the maximum 

moment occurs during construction and equals the moment due to the specified own 

weight, superimposed dead, and live loads.  

Figures 4.2a and 4.2b show the application of live load to single spans of the two- and 

three-span beams, respectively. This “patterned” loading arrangement maximizes the 

deflections in the spans that carry the live loads.  
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(a) 

 

(b) 

Figure 4.2: Live load application in continuous beams: (a) Two-span beam (b) 

Three-span beam 

The steps in the deflection calculation are as follows: 

1. Determine the gross cross section area, Ac, centroid, y̅
c
, and moment of inertia, Ig, 

assuming a rectangular cross section. Let ‘b’ be the beam cross section width, and 

‘h’ be the minimum cross section height as determined from Table 9.2 in A23.3:19. 

Then 

 [4.4] Ac = bh 

[4.5] y̅
c
 = 

h

2
 

[4.6] Ig = 
bh

3

12
 

2. Determine the modular ratio and rupture stress of the concrete when it is 7 or 28 

days old 

a. Modulus of elasticity at 7 days, Ec,7  

  [4.7] Ec,7 = 4500√fc,7 
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  where fc,7 is the concrete compressive strength at age 7 days and ranges  

  between 20 and 40 MPa. 

  Modulus of elasticity at 28 days (and older ages), Ec,28 

  [4.8] Ec,28 = 4500√fc
'
  

  where f’c is the concrete compressive strength at age 28 days and ranges  

  between 20 and 40 MPa. 

b. Modular ratio at 7 days, n7 

[4.9] n7 = 
Es

Ec,7

 

  where Es is the young’s modulus for steel.  

Modular ratio at 28 days (and older ages), n28 

[4.10] n28 = 
Es

Ec,28
 

c. Rupture stress at 7 days, fr,7 

  [4.11] fr,7 = 0.6√fc,7  

  Rupture stress at 28 days (and older ages), fr,28 

  [4.12] fr,28 = 0.6√fc
'
 

In accordance with the assumed loading history shown in Table 4.1, 

 deflections due to shrinkage and own weight (instantaneous and creep) are 

 based on the 7-day modular ratio and rupture stress (Equations [4.9] and  

 [4.11], respectively). All other deflections are computed using the 28-day 

 values, Equations [4.10] and [4.12], respectively. 



83 

 

4.2.1 Instantaneous Deflection 

The method to compute instantaneous deflections involves four steps, as follows: 

1. Determine the transformed cross section area, centroid, and moment of inertia of 

the uncracked section. 

a. Find the transformed area, At. Let ‘As’ be the steel tensile reinforcement 

area 

  [4.13] At = Ac + (n - 1)As 

b. Find the transformed centroid, y̅t. Let ‘d’ be the effective depth of the 

reinforcing steel 

[4.14] y̅
t
 = 

Acy̅
c
 + (n - 1)Asd

At

 

c. Find the transformed moment of inertia, It 

  [4.15] It = Ic + Ac(y̅
t
 - y̅

c
)

2
 + (n - 1)As(d - y̅

t
)

2
 

2. Determine the cracked moment of inertia, Icr 

[4.16] Icr=
b(kd)

3

3
 + nAs(d - kd)2 

where (CAC 2016) 

[4.17] kd = 
√2db + 1 -1

B
 

and  

[4.18] B = 
b

nAs

 

3. Determine the effective moment of inertia and instantaneous curvatures: 

a. Find the cracking moment, Mcr 
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[4.19] Mcr = 
frIt

h - y̅
t

 

b. Find the effective moment of inertia, Ie, using the Bischoff Equation 

(Bischoff 2007) 

[4.20] Ie = 
Icr

1 - 0.5 (1 - 
Icr

It
) (

Mcr

Ma
)

2
 <0.6It 

The requirement that Ie be less than 0.6It is recommended by Gilbert 

(2011). 

c. Compute instantaneous midspan curvature, m 

[4.21] 
m

=
M

EcIe

 

 where M is the applied moment due to the specified load, Mow, MSDL or 

MLL for own weight, superimposed dead load, or live load, respectively. 

4. Find the instantaneous deflection, i 

[4.22] ∆i = 
Ln

2

96
(

l
 + 10

m
 + 

r
) 

 where l is the curvature at the left support, m is the curvature at midspan, and r 

is the curvature at the right support. As the moments (and curvatures) at the ends of 

a simply supported beam are zero, Equation [4.22] simplifies to 

[4.23] ∆i = 
Ln

96
(10

m
) 
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4.2.2 Creep Deflection 

The method to compute creep deflections due to sustained loads is presented in the three 

steps below. Creep is quantified using an ultimate creep coefficient, Cu, that ranges 

between 1.3 and 4.15 (CAC 2016). This value is modified by correction factors Qcr that 

account for the age at loading, t0, relative humidity, volume/surface area ratio and other 

factors (CAC 2016). 

5. Find curvature weights, ζ, based on the long-term cracking moment, Mcr(t) 

 [4.24] Mcr(t) = 0.7Mcr 

[4.25] ζ = 1 - (
Mcr(t)

Ma

)

2

 

6. Find the uncracked and cracked creep curvatures, c,un and c,cr, respectively, and 

compute average creep curvature at midspan, avm,c 

[4.26] 
c,un

 = 1 + (45ρ - 900ρ2)(1 + 
ρ'

ρ
) 

where  and ’, are the tension and compression reinforcement ratios, 

respectively. 

[4.27] 
c,cr

 = 
0.48

√ρ

Icr

Ie

0.33

(1 + (125ρ + 0.1) (
ρ'

ρ
)

1.2

)  

[4.28] 
avm,c

 = (
ζ


c,cr

 + 
1 - ζ


c,un

) 
m

Q
cr

Cu 

where m is the instantaneous midspan curvature calculated using Equation [4.21]. 

7. Compute the creep deflection, c, using Equation [4.22]. For a simply supported 

beam, the curvatures at the ends due to creep, avl,c and avr,c are zero so 
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[4.29] ∆c=
Ln

2

96
(10

avm,c
) 

For live load applied on a two-span beam, Figure 4.2a, the instantaneous and creep 

curvature at the left support, l, is 0, midspan curvature, m, is calculated using Equation 

[4.21], and right support curvature, r, is calculated by substituting the applied moment at 

the interior support into ‘M’ in Equation [4.21]. For live load applied on a three-span beam, 

Figure 4.2b, the instantaneous and creep curvatures at the left and right support are the 

same due to symmetry and midspan curvature is calculated separately using the same 

procedure as that for the two-span beam. 

4.2.3 Shrinkage Deflection 

The method to compute the shrinkage deflection, sh, is presented in the following two 

steps. The ultimate shrinkage strain, shu, is taken as 780 microstrain (CAC 2016). 

8. Determine the uncracked and cracked shrinkage curvatures, sh,un and sh,cr, 

respectively, and compute average curvature due to shrinkage, avm,sh 

[4.30] 
sh,un

 = (100 - 25002) (
2d

h
 - 1) (1 - 

'


)

1.3
shu

h
 

[4.31] 
sh,cr

 = 1.2 (
Icr

Ie

)
0.67

(1 - 0.5
ρ'

ρ
)

shu

d
 

[4.32] 
avm,sh

 = ζ
sh,cr

 + (1 - ζ)
sh,un

 

9. Find shrinkage deflection, sh. The curvature due to shrinkage is constant along the 

span of a simply supported beam assuming that the steel tensile reinforcement is 

continuous from left end support to the right end support. Thus 

[4.33] ∆sh=
Ln

2

96
(

avl,sh
+10

avm,sh
+

avr,sh
) 
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where avl,sh, avm,sh, and avr,sh are the shrinkage curvatures at the left support, 

 midspan, and right support, respectively. Since these shrinkage curvatures are 

 equal for a simply supported beam, Equation [4.33] simplifies to 

[4.34] ∆i=
Ln

2

96
(12

avm,sh
) 

The shrinkage curvatures at the left support and midspan of a two-span beam under the 

loading illustrated in Figure 4.2a are the same while the shrinkage curvature at the right 

support is computed separately. In a three-span beam, Figure 4.2b, the shrinkage curvatures 

at the left and right supports are the same due to symmetry while the midspan shrinkage 

curvature is computed separately.  

4.3 METHOD TO DETERMINE LIVE AND DEAD 

LOADS 

4.3.1 Simply Supported Beams 

The midspan reinforcement ratio is chosen and corresponding moment capacity, Mr, is 

determined according to A23.3:19 (CSA 2019) using the concrete stress block 

approximation. Live and dead loads are determined after computing the corresponding 

specified moments at the critical sections according to CSA A23.3:19. The load 

combination used is 

[4.35] Mr = 1.25Md + 1.5Ml 

Expressing the ratio of live to dead load moments as K, Equation [4.35] can be expressed 

as 

[4.36] Mr = Md(1.25 + 1.5K) 

The dead load moment is therefore 

[4.37] Md = 
Mr

(1.25 + 1.5K)
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The live load moment is  

[4.38] Ml = 
Mr - 1.25Md

1.5
 

4.3.2 Continuous Beams 

The reinforcement ratio at an interior support and corresponding moment capacity, Mr
-, are 

determined. The associated applied factored uniformly distributed load, wf, is calculated 

using the approximate moment coefficients in Table 9.1 of A23.3:19. For a two-span beam 

that is continuous over the interior support 

[4.39] wf = 
Mr

-L2

9
 

For a three-span beam, the wf corresponding to the moment at the first interior support is 

(CAC 2019) 

[4.40] wf = 
Mr

-L2

10
 

The dead load is therefore 

[4.41] wd = 
wf

(1.25 + 1.5k)
 

The live load, wl, is Kwd. The loads from the approximate moment coefficients are the used 

to calculate the corresponding in-service linear-elastic live and dead load moments given 

in Table 4.2 for the critical interior support(s) and span sections.  
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Table 4.2: Linear-elastic moment summary for 2-span and 3-span beams continuous 

over interior support(s) 

Span Md interior sup. Md span Ml interior sup. Ml span 

2 wdL2

8
 

9wdL2

128
 

wlL
2

16
 

49wlL
2

512
 

3 wdL2

10
 

wdL2

40
 

wlL
2

20
 

47wlL
2

625
 

 

The superimposed dead load and own weight moments were assumed to be 10% and 90% 

of the total dead load computed using Equation [4.41], respectively. The sustained and 

instantaneous live load moments were assumed to be 25% and 75% of the total live load 

moment, respectively.  

4.4 PARAMETRIC STUDY 

4.4.1 Scope 

The total and incremental deflections of reinforced beams with heights that satisfy the 

limits specified in Table 9.2 of A23.3:19 are computed to determine whether these limits 

are appropriate for beams reinforced with HSR. A total of 288 beams were investigated for 

the following range of parameters: 

• Ratios of specified live to dead loads, K, of 0.5, 1, and 1.5; 

• Steel yield strengths, fy, of 400, 500, 600, and 700 MPa; 

• Concrete compressive strengths, fc’, of 30 and 50 MPa (23 and 38 MPa at 7 days); 

• Simply supported, two-span continuous, and three-span continuous beams;  
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• Reinforcement ratios, , of 0.006, 0.009, 0.012, 0.015. 

Equations [4.7] and [4.8] are used to determine the modulus of elasticity, Ec, at 7 days, and 

28 days, respectively, when fc
’ ranges between 20 MPa and 40 MPa as specified in 

A23.3:19 (CSA 2019). However, these equations are used to find Ec for a fc
’ of 50 MPa in 

this investigation because of their simplicity, and because the error between the actual Ec 

and the Ec from these equations, when fc
’ is 50 MPa, is 1.3%. A Note to Clause 8.6.2 of 

A23.3:19 cautions that Ec may fluctuate between 80% and 120% of the value computed 

using Equations [4.7] and [4.8].   

The impact of the yield stress correction factor, sf, on deflections is investigated. The 

yield stress correction factor is defined in A23.3:19 as 

[4.42] sf = 0.4 + 
fy

670
 

where fy is the yield stress in MPa. A higher reinforcement yield stress increases sf which 

is then used as a multiplicative factor to determine the minimum beam height for which 

deflections need not be checked.  

Two distinct parametric studies were carried out. The first, described in Section 4.4.2 

“Results with Height Correction Factor”, determined incremental deflections, inc, and 

span-to-incremental deflection ratios, Ln/inc, for beams with minimum heights from 

A23.3:19 Table 9.2 as modified using the height correction factor, Eq. [4.42]. In the second, 

described in Section 4.4.3 “Results without Height Correction Factor” the minimum 

heights from A23.3:19 Table 9.2 were not modified, which is equivalent to assuming that 

sf equals 1.0 irrespective of the steel yield strength. 

Table 4.3 shows the results of a preliminary parametric study conducted to investigate the 

effects of the listed parameters on hmin, nominal moment resistance, Mn, dead load moment, 

Md, live load moment, Ml, and Icr as given in Equation [4.16]. The control beam (B1) is 

simply supported with a midspan  of 0.006 which is increased to 0.009 in B2, fy of 500 

MPa which is increased to 700 MPa in B3, K of 1 which is increased to 1.5 in B4, and fc
’ of 
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50 MPa which is reduced to 30 MPa in B5. The yield stress correction factor given by 

Equation [4.41] was accounted for in this preliminary study. 

Table 4.3: Effects of various parameters on applied moments and cracked moment 

of inertia 

Change hmin (mm) Ma (kNm) Md (kNm) Ml (kNm) Icr (mm4) 

B1: Control  358 37.9 18.9 18.9 2.1 x 108 

B2: Increase  358 55.4 27.7 27.7 2.9 x 108 

B3: Increase fy 451 85.7 42.9 42.9 4.5 x 108 

B4: Increase K 358 37.3 14.9 22.4 2.1 x 108 

B5: Reduce fc
’ 358 36.7 18.4 18.4 2.6 x 108 

 

Increasing  by 50% in B2 increases the live and dead loads on the beam by 47% but also 

increases Icr by 38%. These factors counteract each other, so the net effect of increasing  

by 50% is to increase deflections by roughly 6.5%. Increasing fy in B3 by 40% also 

increases hmin by 26%. The combination of these factors increases the live and dead loads 

by 127% but Icr also increases by 114%. These factors gain counteract, so the effect of 

increasing fy by 40% is to increase deflections by approximately 11%. Increasing K by 

50% in B4 increases live loads by 19% and decreases dead loads by 21% while Icr does not 

change. An increase in K would therefore increase the incremental deflections that occur 

after the superimposed dead load is applied when the concrete is three months old, due to 

an increase in live load. The total deflection would be reduced, however, because the 

smaller dead load reduces the instantaneous and creep deflections due to the own weight 

and superimposed dead loads. The higher K factor also reduces Ma slightly, by 1.6%, which 

slightly increases the weight factor Equation [4.25], giving more weight to the cracked 

curvatures. This reduces the creep deflections but increases the shrinkage deflections 

slightly. Finally, reducing fc
’ by 40% in B5 reduces the applied dead and live load moments 
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by 2.6%, reduces the concrete modulus of elasticity by 22.5% and reduces Icr by 23%. The 

effect of these counteracting factors on the deflections is essentially negligible.  

4.4.2 Results With Height Correction Factor 

Tables 4.4 and 4.5 show the effects of increasing fy, , and K on the total and incremental 

deflections, respectively. The incremental deflections are those that occur after the 

superimposed dead load is applied when the concrete is assumed to be three months old. 

The effect of an increase of fy, , or K on the deflection is represented by +, - or 0, if the 

deflection is increased, reduced, or unchanged, respectively, when the factor is increased. 

Table 4.4: Effect of fy,  or K on total deflection (Height correction factor 

considered) 

Deflection due to Increase fy Increase  Increase K 

Shrinkage - + ~0 

Own weight + + - 

Superimposed DL + + - 

Sustained LL (creep) - + + 

Instantaneous LL (total) + + + 

Table 4.5: Effect of fy,  or K on incremental deflection (Height correction factor 

considered) 

Deflection due to Increase fy Increase  Increase K 

Shrinkage - + ~0 

Own weight (creep) - + - 

Superimposed DL (creep) - + - 

Sustained LL (creep) - + + 

Instantaneous LL (total) + + + 
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4.4.2.1 Shrinkage 

Shrinkage deflection is reduced with increasing fy. This is because the steel area needed to 

achieve the necessary moment demand is reduced and so reduces the axial stiffness, kN, of 

the reinforcing steel, given by 

[4.43] kN=
EA

L
 

where Es and As are the elastic modulus of the reinforcement, respectively, and L is an 

arbitrary length. This stiffness reduction causes a reduced restraint of shrinkage 

deformations and so smaller curvatures due to restrained shrinkage. Conversely, a higher 

 increases shrinkage deflection. 

The K value, the ratio of live to dead loads, affects the weight factor, Equation [4.25], 

because a higher K slightly reduces the total nominal capacity and increases the weight 

factor. The difference in results is negligible, however, because giving more weight to the 

cracked curvatures reduces the creep deflections but increases the shrinkage deflections. 

4.4.2.2 Own Weight (OW) And Superimposed Dead Load (SDL) 

The total deflections due to OW and SDL include both creep and instantaneous deflections. 

In contrast, the incremental deflections due to OW and SDL include only creep deflections 

because inc is the deflection that occurs after the concrete is three months old, and so after 

the OW and SDL loads are applied. 

Increasing fy while maintaining  and K constant increases the beam height, the beam 

depth, and therefore also increases the steel reinforcement area. The applied dead load 

moments also significantly increase and therefore the instantaneous curvature due to dead 

load slightly increases, Equation [4.21]. The ratio of long-term cracking moment, Equation 

[4.24], to total applied moment is reduced which causes the weight factor, Equation [4.25], 

to marginally increase. The cracked creep curvature, Equation [4.27], increases while the 

uncracked creep curvature remains constant. This decreases the creep curvature and 

therefore the creep deflection due to dead load. Hence an increase in fy increases the 
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instantaneous dead load deflections and reduce the creep deflections due to dead load if 

 and K are unchanged. 

Increasing  for a given fy and K increases dead load moments and therefore the 

instantaneous deflections due to dead loads. The cracked creep curvature, Equation [4.27], 

decreases and the creep curvature, Equation [4.28], increases. Hence increasing  increases 

both the instantaneous and creep dead load deflection if fy and K are unchanged. 

Increasing K, while maintaining fy and  constant, increases the live load moments and 

consequently reduces the dead load moments which reduces dead load deflections.  

4.4.2.3 Sustained Live Load (SLL) And Instantaneous Live Load (ILL) 

The entries for Sustained Live Load in Tables [4.4] and [4.5] only consider creep 

deflections. These increases for higher  while fy and K are unchanged, and decrease for 

higher fy values when  and K are unchanged, as previously stated. Increasing K increases 

the live load moments and therefore increases the live load deflections. 

Figure 4.3 shows the variation of the ratio of effective length to incremental deflection, 

Ln/inc, with the span reinforcement ratio,   for two-span beams with one end continuous 

with reinforcing steel fy of 400 MPa and 700 MPa, K values of 0.5, 1, and 1.5, and fc
’ of 

30 MPa. For all K values, Ln/inc decreases with increasing . A higher  increases the 

cracked moment of inertia, Icr, and associated flexural rigidity which reduces deflections. 

In all investigated cases, the deflections meet the requirements of A23.3:19 because Ln/inc 

is greater than 240 – that is, inc is less than Ln/240. 
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Figure 4.3: Variation of Ln/inc with  two-span beams continuous over interior 

support 

Figure 4A.1 in Appendix 4 is similar to Figure 4.3 but is computed for fc
’ of 50 MPa. The 

higher fc
’ increases Ec and the subsequent flexural stiffness but the applied service loads 

are also slightly increased. The different in deflections due to this change of fc
’ is marginal.  

Figure 4.4 shows the variation of incremental deflection with span reinforcement ratio for 

two-span beams that are continuous over the interior support. The analysis considers beams 

with fy of 400 MPa and 700 MPa, K of 0.5, 1, and 1.5, and fc
’ of 30 MPa. The span lengths 

are 5 m and the deflections shown are for the span that carries the live load. Increasing 

 increases the factored moment resistance, approximately proportionally, and so increases 

the service live and dead loads. The greater  also increases Icr and Ie, so the overall effect 

of  on inc is relatively slight. A larger K value increases the incremental deflections, as 

discussed in Section 4.4.1, as the live load increases and so the incremental deflections 

increase significantly. Differences between fy are minor: there is roughly a 2 mm difference 

between the two fy for the critical case when K = 1.5 and  = 0.015. At higher  values, a 

higher fy is more favourable because the deeper beam actually deflects less.  
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Figure 4.4: Variation of inc with  two-span beams continuous over interior 

support 

Figure 4.5 shows the variation of the ratio of effective length to incremental deflection, 

Ln/inc, with the span reinforcement ratio,   for a simply supported beam with reinforcing 

steel fy of 400 MPa and 700 MPa, K of 0.5, 1, and 1.5, and fc
’ of 30 MPa. The deflections 

shown are slightly larger at smaller  values compared those shown in Figure 4.3 and are 

similar at higher  values.  
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Figure 4.5: Variation of Ln/inc with  simply supported beams 

Figure 4.6 shows the variation of the ratio of effective length to incremental deflection, 

Ln/inc, with the span reinforcement ratio,   for three-span beams continuous at both 

interior supports. The computations are based on beams with reinforcing steel fy of 500 

MPa and 700 MPa, K values of 0.5, 1, and 1.5, and fc
’ of 30 MPa. Equation [4.20], which 

calculates the effective moment of inertia and states the condition that 0.6It cannot be 

exceeded, was not satisfied at low  with an fy of 400 MPa Hence the lower fy was set to 

500 MPa. The smallest Ln/inc ratio in the figure is 340 which satisfies the limit of 240 

specified in A23.3:19. 
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Figure 4.6:Variation of Ln/inc with  three-span beams continuous over the 

interior supports 

Figure 4.7 shows the variation in the incremental deflection, inc, with the span 

reinforcement ratio,   for three-span beams continuous at both interior supports. The 

computations again are based on fy of 500 MPa and 700 MPa, K values of 0.5, 1, and 1.5, 

and fc
’ of 30 MPa. The deflections presented are the smallest of the three end support 

configurations investigated. A higher fy yields smaller deflections at high , as was 

previously observed for simply supported, and two-span beams.  
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Figure 4.7: Variation of inc with  three-span beams continuous over the interior 

supports 

4.4.3 Results Without Height Correction Factor  

Figure 4.8 shows the variation of the span to incremental deflection ratio, Ln/inc, with   

for simply supported beams with fc
’ of 50 MPa. In this case, however, when the yield stress 

correction factor on hmin, Equation [4.42], is assumed equal to 1.0. As the steel yield stress 

is increased for a given , the deflection is increased which reduces the Ln/inc ratio. As  

is increased for a given fy, the deflection is increased. For given  and K values, a higher 

fy markedly increases the applied dead and live load moments, Ml and Md, which increase 

the deflections at service loads. For beams reinforced with Grade 700 steel (MPa) and a  

greater than 0.013, Ln/inc is less than 240 regardless of the K value, so the beam deflections 

exceed the limit specified in A23.3:19. A higher K value increases incremental deflections 

because live loads increase.  
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Figure 4.8: Variation of Ln/inc with  without height modification, simply 

supported beams with a higher fc
’  

Figure 4.9 shows the variation of the span to incremental deflection ratio with   for simply 

supported beams with fc
’ of 30 MPa when the yield correction factor for hmin, Equation 

[4.42], is taken equal to 1.0. The values for K of 1.5 and fy of 700 MPa are again all less 

than 240, and so do not satisfy the A23.3:19 limit. 
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Figure 4.9: Variation of Ln/inc with  without height modification simply 

supported beams with a lower fc
’  

Figure 4.10 shows the variation of the span to incremental deflection ratio with   for two-

span beams that are continuous over the interior support, with fc
’ of 30 MPa, when the yield 

stress height correction factor for hmin, Equation [4.42], is taken equal to 1.0. The values 

for K of 1.5 and fy of 700 MPa are again all less than 240, and so do not satisfy the A23.3:19 

limit. 
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Figure 4.10: Variation of Ln/inc with  without height modification, two span beam 

continuous over interior support 

4.5 REFINING THE YIELD STRESS CORRECTION 

FACTOR FOR hmin 

As fy increases above 400 MPa, the height correction factor, sf, as given in Equation [4.42], 

also increases. However, as shown in Section 4.4.2, adopting the limiting beam height 

always gives conservative deflection results and so may not be cost effective. As the 

deflections consistently increase with , the critical case will be for the maximum 

reinforcement ratio, max, defined as 

[4.43] ρ
max

= 1
1


c


s

fc
'

fy

u

u+y

 

where u is the ultimate concrete compression strain, taken as 0.0035, y is the steel yield 

strain, taken as fy/Es, fy is 700 MPa, Es is 200000 MPa. In accordance with A23.3:19 (CSA 

2019) 1 and 1 are the concrete stress block parameters, computed from Equations [2.8a] 

and [2.8b], respectively. 



103 

 

The current provisions of Clause 10.5.2 of A23.3:19 actually limit max to 80% of the value 

given by Equation [4.43]: for simplicity, this refinement is ignored in the present work so 

the reduced sf values in this section will still be conservative.  

Figure 4.11 shows the ratio of clear span, Ln, to incremental deflection, inc, for simply 

supported beams. The computations are based on reinforcing steel fy of 700 MPa,  from 

0.6 % to max , K of 1.5, and fc
’ of 30, 50, 70, and 90 MPa. For a fc

’ greater than 40 MPa, 

the elastic modulus for concrete at 7 days, Ec,7, in this investigation is computed as 

[4.44] Ec,7= (3300√fc,7+6900)(


c

2300
)
1.5

 

for the 7-day concrete compressive strength, fc,7, and the elastic modulus for concrete at 28 

days, Ec,28, is computed as 

[4.45] Ec,28= (3300√fc
'
+6900)(


c

2300
)
1.5

  

for the 28-day concrete compressive strength, fc
’. The unit weight of concrete, c, is taken 

as 2400 kg/m3.  

In each case the sf value has been reduced by a constant factor to yield a maximum 

incremental deflection of Ln/240 at max. For example, the hmin for a beam with fc
’ of 30 

MPa can be reduced by 19% and satisfy the A23.3:19 Ln/240 incremental deflection limit 

at max. Similarly, the hmin for a beam with fc
’ of 90 MPa be reduced by 2%. As noted in 

Section 4.4.2, increasing fc
’
 causes increased deflections for a given  value and fy of 700 

MPa. 
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Figure 4.11: Variation of Ln/inc with midspan ratio, : factored minimum height 

correction factor in simply supported beams 

4.6 SUMMARY AND CONCLUSIONS 

The research reported in this chapter has focussed on code provisions for deflections of 

beams reinforced with High Strength Steel Reinforcement (HSR). CSA A23.3:19 Table 

9.2 specifies a minimum height, hmin, for beams that are simply supported, or have one or 

both ends continuous. If the beam height is less than this limit, deflections must be 

computed and compared with the limits in Table 9.3 of A23.3:19. The values listed in Table 

9.2 pertain to beams reinforced with steel that has a minimum specified yield strength fy of 

400 MPa. For higher yield strengths, hmin is increased by the factor (0.4 + fy/670), where fy 

has units of MPa. 

The total and incremental deflections were investigated for concrete beams with concrete 

compressive strengths, fc
’
, of 30 and 50 MPa, reinforcing steel yield strengths, fy of 400, 

500, 600, and 700 MPa, and K values, the ratio of specified live to dead loads, of 0.5, 1, 

and 1.5. The incremental deflection is that which occurs after deflection-sensitive elements 
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are installed, which is assumed in the present study to correspond to the application of the 

superimposed dead load when the concrete is three months old. Shrinkage deflection, creep 

and instantaneous deflections due to own weight, superimposed dead load, sustained live 

loads, and deflection due to instantaneous live loads were investigated in simply supported 

beams, two-span beams continuous over the interior support, and three-span beams 

continuous over both interior supports. The impact of the beam height correction factor, sf, 

which increases for a greater fy value, was also investigated and refined for specific beam 

configurations. For each beam considered, hmin was determined from Table 9.2 of A23.3:19 

and, for a given  fy, and K, the factored moment capacity and associated service dead and 

live load moments were calculated. Gilbert’s Method (Gilbert 2011) was then used to 

calculate the instantaneous, creep, and shrinkage deflections in beams.  

The following conclusions are drawn 

1. The yield stress correction factor for hmin specified in Table 9.2 of A23.3:19 for 

beams reinforced with higher yield strength steels cannot be ignored. Beams that 

satisfy the hmin requirement when reinforced with Grade 400 reinforcement 

consistently do not satisfy the incremental deflection limit of clear span/240 as 

specified in A23.3:19 when higher-grade reinforcement is used.  

2. If the yield stress correction factor specified in Table 9.2 of A23.3 is used to modify 

hmin for beams reinforced with higher-grade reinforcement, beams that exactly meet 

this hmin requirement have acceptable incremental deflections. For 288 cases 

investigated, the limit of clear span/240 was satisfied. 

3. For a given yield strength and service live-to-dead load ratio, the incremental 

deflections increase for higher reinforcement ratios,   

4. For a given reinforcement ratio and yield strength, the incremental deflection 

increases with higher service live-to-dead load ratios, K. 

5. The ratios of incremental deflection to clear span ratios are relatively insensitive to 

the yield strength, fy, for all cases considered when the yield stress correction factor 

for hmin is accounted for. 
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6. The yield stress correction factor for hmin can be reduced depending on the fc
’, fy, 

K, and the end support conditions. For a K of 1.5, fc
’ ranging from 30 to 90 MPa, 

steel fy of 700 MPa in a simply supported beam, a 19% reduction in sf is possible 

with fc
’
 of 30 MPa and a 2% height reduction is possible with fc of 90 MPa at 

maximum  
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Chapter 5  

5 Summary, Conclusions, And Recommendations 

5.1 SUMMARY 

The objective of the research reported in this thesis was to investigate the flexural 

behaviour of concrete beams reinforced with High Strength Reinforcement (HSR) and to 

determine whether current provisions in CSA Standard A23.3:19 “Design of Concrete 

Structures” (CSA 2019) are appropriate for beams reinforced with HSR. To assess whether 

beams reinforced with HSR provide less warning of failure than those reinforced with 

conventional reinforcement, a parametric study was conducted. A moment-curvature code, 

created specifically for this project, allowed the curvature ductility ratios of beams 

reinforced with different steel quantities, types, and grades to be quantified and compared. 

The curvature ductility also influences the inelastic rotation capacities of plastic hinges and 

so the impact of different steel quantities, types, and grades on the maximum permissible 

moment redistribution could be assessed. As a beam reinforced with HSR requires a 

reduced steel area to satisfy Ultimate Limit State requirements compared to a beam with 

conventional reinforcement, the cracked moment of inertia is reduced at Serviceability 

Limit States. Another research objective was to investigate the serviceability of beams 

reinforced with HSR, particularly crack widths and deflections. Reinforcing steels that met 

the specifications of ASTM A615/615M Grades 60 & 100 (ASTM 2020a), ASTM 

A706/706M Grade 60 & 80 (ASTM 2016), and A1035/1035M Grade 100 (ASTM 2020b) 

were investigated. 

Chapter 2 presented a sensitivity analysis to determine the effect of reinforcing steel 

quantity, type and grade, concrete compressive strength and other variables on the 

curvature ductility ratios, ultimate steel stresses, ultimate maximum concrete compressive 

strains, and the transition from tension-initiated to compression-initiated flexural failures. 

Various concrete and steel stress-strain idealizations reported in the literature were 

presented used to derive moment-curvature relationships based on the underlying first 

principles. The variation of the flexural curvature ductility ratios with the mechanical 
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reinforcement ratio was quantified using regression analysis. The variation of the ultimate 

steel stress with the mechanical reinforcement ratio was also quantified using regression 

analysis. The extreme fibre concrete compressive strain at ultimate moment was 

investigated for different reinforcement quantities, types and grades, and was compared to 

the value of 0.0035 specified in Clause of 8.5.3 in A23.3:19 to verify its appropriateness 

for beams reinforced with HSR. The balanced conditions that mark the transition between 

tension-initiated and compression-initiated flexural failures were also investigated.  

Chapter 3 presented a parametric study to determine the effect of the reinforcement 

quantity, type and grade and concrete compressive strength on the moment redistribution 

in two-span beams that are continuous over the interior support. The moment redistribution 

was quantified using a 3-step process: (1) the reinforcement at critical positive (midspan) 

and negative (interior support) sections was designed; (2) moment-curvature relationships 

for these critical sections were derived; and, (3) these relationships were input to the 

SAP2000 finite element analysis software to determine the failure load, from which the 

moment redistribution was determined. Two cases of moment redistribution, involving the 

formation of complete and incomplete collapse mechanisms, were encountered. The in-

service crack widths at cross sections designed at Ultimate Limit States accounting for 

moment redistribution were investigated, and the maximum permissible moment 

redistribution was quantified to ensure that crack width criteria in ACI 318:19 (ACI 2019) 

were satisfied.  

Chapter 4 presented a parametric study to determine the effect of the reinforcement 

quantity, type and grade and concrete compressive strength on the short- and long- term 

deflections of simply supported beams, two-span beams continuous over the interior 

support, and three-span beams continuous over the interior supports. Gilbert’s method 

(Gilbert 2011) was applied to compute shrinkage deflections, and instantaneous and creep 

deflections due to dead and live loads. Beam deflections can be deemed adequate without 

detailed calculations if minimum height criteria specified in Table 9.2 of CSA A23.3:19 

(CSA 2019) are met. The investigation focused on the adequacy of the equation specified 

for use with this table to increase the minimum permissible beam height when the 

reinforcement yield stress exceeds 400 MPa. This yield stress correction factor equation 
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was refined to make it less conservative, while still ensuring that the actual deflection of a 

member that satisfies the minimum height requirements using the refined equation is less 

than the acceptable limit. 

5.2 CONCLUSIONS 

1. The curvature ductility ratio, defined as the ratio of ultimate to yield curvatures 

uy, is approximately inversely proportional to the mechanical reinforcement 

ratio,  defined as Asfy/bdfc
’. It can be shown that the ultimate curvature, u, is 

inversely proportional to   For different steel grades, magnitudes of the ultimate 

curvature are similar at a given  but the yield curvatures, y, of beams reinforced 

with HSR are markedly greater because the steel area and cracked section modulus 

are reduced. Thus, the curvature ductility ratio is less for beams reinforced with 

HSR.  

2. For a given value of , beams reinforced with A706/706M Grade 60 steel have the 

highest curvature ductility ratios, and beams reinforced with ASTM A615/615M 

Grade 100 and A1035/1035M Grade 100 steels have the lowest curvature ductility 

ratios. If extreme fibre concrete compressive strain, c,max, at ultimate is limited to 

0.0035, then the differences between the variation of uy with  are statistically 

significant for each steel grade investigated. If c,max is not limited, then the 

difference between the variation of uy with  is not statistically significant for 

cross sections reinforced with A615/615M Grade 60 and A706/706M Grade 80 

reinforcement. 

3. Equations are derived for computing the ultimate steel stress as a function of  for 

the steel grades investigated. These are suitable for design-office use.  

4. The extreme fibre concrete compressive strain at ultimate is reduced significantly 

as fc
’ increases while the steel type has a relatively smaller impact. The A23.3:19-

specified value of 0.0035 can be unconservative when  is greater than 0.20. 
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5. To ensure a tension-initiated flexural failure, A23.3:19 specifies a c/d limitation, 

where c is the depth of the compression region at ultimate and d is the effective 

reinforcement depth. This equation is appropriate for cross sections reinforced with 

the various types of high strength reinforcement investigated.  

6. If a full plastic collapse mechanism forms when a continuous beam member fails, 

the moment redistribution percentage is independent of the grade and quantity of 

the steel reinforcement.  

7. If a full plastic collapse mechanism does not form, because the inelastic rotational 

capacity of the first plastic hinge that forms is insufficient, the percentage of 

moment redistribution reduces as the steel yield stress increases. The maximum 

redistribution percentages permitted by Clause 9.2.4 of A23.3:19 are appropriate, 

however, for all grades of reinforcement investigated. 

8. The maximum permissible moment redistribution can be limited to ensure that 

crack widths at critical cross sections at Serviceability Limit States are acceptable. 

If the steel area at a cross section is reduced by accounting for moment 

redistribution at Ultimate Limit State, it is recommended that crack widths at this 

cross section be checked using the computed in-service steel stress, instead of 

assuming a value of 0.6fy, as is currently permitted in A23.3:19.  

9. The use of reinforcement with higher yield strengths leads to lesser steel areas, 

smaller cracked and effective moments of inertia, and so greater deflections than 

those obtained with conventional yield strengths. If the minimum height criteria 

specified in Table 9.2 of CSA A23.3:19 (CSA 2019) are met, beam deflections can 

be deemed adequate without further calculation. Beams reinforced with HSR do 

not satisfy the incremental clear span deflection limit of span/240 specified in 

A23.3:19 when the height correction factor specified in the notes to Table 9.2 is 

ignored. For all 288 beam cases investigated, however, the limit of clear span/240 

was satisfied when the yield stress correction factor for hmin was used. 
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10. The yield stress correction factor for hmin can be reduced depending on the concrete 

compressive strength, steel yield strength, and other factors. For a simply supported 

beam with fy of 700 MPa, a 19% reduction in sf is possible with fc
’ of 30 MPa and 

2% reduction is possible with fc
’ of 90 MPa. 

5.3 RECOMMENDATIONS FOR FUTURE WORK 

5.3.1 Calibration Of Steel Resistance Factor For HSR 

The reduced curvature ductility ratios of beams reinforced with high strength reinforcement 

that have a given mechanical reinforcement ratio, , and so a given factored moment 

resistance, imply that these beams will exhibit less warning of failure at collapse. In 

accordance with CSA S408-11 “Guidelines for the Development of Limit State Design 

Standards” (CSA 2011), the target reliability indices for these failure modes should be 

more stringent, which may require reduced reinforcing steel resistance factors, s, currently 

specified to be 0.85, for beams reinforced with HSR. The resistance factor should be 

recalibrated to incorporate the loss of ductility.  

The equation for the reliability index, , is (Ravindra et al, 1978) 

[5.1]  = 

ln (
R̅

Q̅
)

√VR
2  + VQ

2

 

where Q̅ is the mean load effect and is a function of applied loads on the beam, and VR
2 

and VQ
2 are the coefficients of variation of the resistance and load effect, respectively. The 

mean resistance of the reinforced concrete beam, R̅ , can be written as 

[5.2] R̅ = Rn (P̅ M̅ F̅)  

where Rn is the nominal resistance, computed using the design provisions of A23.3:19 and 

P̅, M̅, and F̅ the bias coefficients for the professional, material and fabrication factors. 
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The calibration would follow procedures described in CSA S408-11 (CSA 2011) that have 

been employed recently by Bartlett and Zhang (2018) for welded-wire reinforcement in 

bridges and Zhang and Bartlett (2019) for partial material resistance factors for ACI 318. 

5.3.2 Moment Redistribution Provisions in A23.3:19 

Clause 9.2.4 in A23.3:19 defines the maximum permissible moment redistribution in terms 

of increasing or reducing negative moments. It should be revised to indicate clearly that 

the maximum permissible redistribution is limited to the smaller of 20% or 30%-50(c/d) 

%, where c and d are the neutral axis depth and depth of the member at the cross section 

where the moments are being reduced using moment redistribution, respectively. It should 

also require that, if the steel area at a cross section is reduced by accounting for moment 

redistribution at Ultimate Limit State, crack widths at this cross section must be checked 

using the computed in-service steel stress, instead of assuming a value of 0.6 fy as is 

currently permitted. This recommendation involves a simple code change without 

requiring further research. 
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Appendix 2A: Concrete Stress-Strain Idealizations 

 

Concrete idealization Thorenfeldt et al (1987) 

[2A.1] 
fc

fc
'

 = 

n
c

0

n - 1 + (
c

0
)

nk
 

[2A.2] n = 0.8+
fc
'

2500
 

[2A.3] 0 = 
fc
'

Ec

n

n - 1
 

[2A.4] k = 0.67 + 
fc
'

9000
 

where: 0 is the strain corresponding to the peak compressive stress, fc
’; fc and 0 are the 

concrete compressive stress and strain, respectively; and Ec is the elastic modulus of 

concrete. 

Concrete idealization Wee et al (1996) 

[2A.5] fc = fc
' [

k1B (
c

0
)

k1-1+ (
c

0
)

k2
] 

[2A.6] k1 = (
50

fc
'

)

3

 

[2A.7] k2 = (
50

fc
'

)

1.3

 

where: k1,2 are parameters with values of 1 if fc
’ < 50 MPa and calculated using Equations 

[2A.6] and [2A.7] for fc
’ > 50 MPa; and  is calculated using Equation [2.15].  
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Appendix 2B: Steel Stress-Strain Idealizations 

 

Steel Idealization Mast et al (2008) For ASTM A1035/1035M Grade 100 Steel 

If s < 0.0027 then 

[2B.1] fs=sEs 

If εs > 0.0027 then (in MPa) 

[2B.2] fs = (1172 - 
2.379

εs + 0.00104
) 

where: fs and s are the reinforcing steel stress and strain, respectively; and Es is the 

elastic modulus of steel. 

Steel Idealization Yosefani (2018) (in ksi) For A615/615M Grade 100 Steel 

*Eq. derived from experimental plot 

fs = 29000εs, (0 < εs < εy) 

fs = fy, (εy < εs < εsh) 

fs = fy [1.2 - 0.2 (
εu - εs

εu - εsh

)
2

] , (εsh < εs < εu) 

where: y is the strain corresponding to steel yield stress, fy, sh is the strain at the onset of 

strain hardening, and u is the steel strain at ultimate.  
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Appendix 4A: Incremental Deflections 

Figures 4A.1, 4A.3, and 4A.5 show the variation of the ratio of effective length to 

incremental deflection, Ln/inc, with the span reinforcement ratio,   for two-span beams 

continuous over the interior support, simply supported beams, and three-span beams 

continuous at both interior supports, respectively. The fc
’ is 50 MPa, K has values of 0.5, 

1, and 1.5, and the steel yield stress fy is 400 MPa or 500 MPa (for the three-span beam 

only), and 700 MPa. Figures 4A.2, 4A.4, and 4A.6 shows the variation in the incremental 

deflection, inc, with the span reinforcement ratio,  for the three different support 

configurations.  

 

Figure 4A.1: Variation of Ln/inc with  two-span beams continuous over the 

interior support 
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Figure 4A.2: Variation of inc with  two-span beams continuous over the interior 

support 

  

 

Figure 4A.3: Variation of Ln/inc with  simply supported beams 
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Figure 4A.4: Variation of inc with  simply supported beams 

 

Figure 4A.5:Variation of Ln/inc with  three-span beams continuous over the 

interior supports  
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Figure 4A.6: Variation of inc with  three-span beams continuous over the interior 

supports 
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