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Review

Neuropeptide Y and neurovascular control in skeletal muscle and skin
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Hodges GJ, Jackson DN, Mattar L, Johnson JM, Shoemaker JK. Neuropep-
tide Y and neurovascular control in skeletal muscle and skin. Am J Physiol Regul
Integr Comp Physiol 297: R546–R555, 2009. First published July 1, 2009;
doi:10.1152/ajpregu.00157.2009.—Neuropeptide Y (NPY) is a ubiquitous peptide
with multiple effects on energy metabolism, reproduction, neurogenesis, and
emotion. In addition, NPY is an important sympathetic neurotransmitter involved in
neurovascular regulation. Although early studies suggested that the vasoactive
effects of NPY were limited to periods of high stress, there is growing evidence for
the involvement of NPY on baseline vasomotor tone and sympathetically evoked
vasoconstriction in vivo in both skeletal muscle and the cutaneous circulation. In
Sprague-Dawley rat skeletal muscle, Y1-receptor activation appears to play an
important role in the regulation of basal vascular conductance, and this effect is
similar in magnitude to the �1-receptor contribution. Furthermore, under baseline
conditions, agonist and receptor-based mechanisms for Y1-receptor-dependent
control of vascular conductance in skeletal muscle are greater in male than female
rats. In skin, there is Y1-receptor-mediated vasoconstriction during whole body, but
not local, cooling. As with the NPY system in muscle, this neural effect in skin
differs between males and females and in addition, declines with aging. Intrigu-
ingly, skin vasodilation to local heating also requires NPY and is currently thought
to be acting via a nitric oxide pathway. These studies are establishing further
interest in the role of NPY as an important vasoactive agent in muscle and skin,
adding to the complexity of neurovascular regulation in these tissues. In this
review, we focus on the role of NPY on baseline vasomotor tone in skeletal muscle
and skin and how NPY modulates vasomotor tone in response to stress, with the
aim of compiling what is currently known, while highlighting some of the more
pertinent questions yet to be answered.

skin blood flow; skeletal muscle blood flow; blood flow control; BIBP3226

SKELETAL MUSCLE AND SKIN REPRESENT two organs that are under
strong sympathetic neurogenic vasomotor control, a neural
mechanism that contributes to the large range of vascular
conductance in these tissues. Historically, emphasis has been
placed on the purinergic and adrenergic (norepinephrine; NE)
neurotransmitters and receptor mechanisms mediating neuro-
vascular control in these beds. However, advances in the
pharmacology of neuropeptide Y (NPY) and the Y-receptor
family over the past two decades have enabled direct exami-
nation of the role of Y-receptor mechanisms influencing sym-
pathetic neurogenic vasomotor control. NPY and Y-receptors
are ubiquitous and involved in many neurogenic functions
ranging from cortical actions in satiety and emotion, to blood
flow distribution in the periphery. Determining a role of this
neurotransmitter in vasomotor control has been challenging, as
its effects appear to vary from tissue to tissue and with sex
hormones. NPY and its receptors have been reported to be
present in all the major tissues of the body and implicated in
numerous processes; however, in this review, we limit our

discussion to 1) NPY and the Y1-receptor (Y1R) and Y2-
receptors (Y2R) involved in vasomotor control, 2) the concept
of frequency-dependent neuronal release of NPY and/or Y1R
activation, 3) sexual dimorphism in the NPY-Y1R control
system, and 4) recent evidence regarding a role for this system
in the control of blood flow in skeletal muscle and skin.

Neuropeptide Y Structure and Synthesis

NPY, first isolated from the porcine brain (98), is a 36-amino
acid residue member of a family of peptides that includes
pancreatic polypeptide and peptide YY. Its name derives from
the tyrosine residues located at both the NH2- and COOH-
terminal ends, as well as the relatively high tyrosine content of
the complete NPY1–36 molecule. Biologically active NPY is
derived from a 97-amino acid precursor, preproneuropeptide
Y. NPY is formed following four posttranslational enzymatic
reactions (42), the first of which results in the 69 amino acid
residue proNPY after the removal of the signal sequence by
signal peptidase. Subsequently, proNPY is broken down by
prohormone convertase PC2 and/or PC1/3 at the paired basic
site Lys38-Arg39, in turn, releasing the 30 amino acid C-
flanking peptide of NPY and NPY1–39 (77). A carboxypepti-
dase-like enzyme further processes NPY1–39, resulting in
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NPY1–37, which becomes amidated at its COOH-terminal end
by peptidyl-glycine-�-amidating monooxygenase that cleaves
another amino acid. The resulting fragment, NPY1–36, is re-
ferred to as biologically active NPY or simply NPY.

NPY is coreleased with NE from within peripheral sympa-
thetic nerves that supply blood vessels. Specifically, it is
proposed that NE is contained and released from small dense
cored vesicles, whereas NPY is contained within large dense-
cored vesicles. This hypothesis predicts that NE primarily
controls vascular smooth muscle tone during basal conditions,
whereas NPY should not; its release only occurrs during
periods of high stress. Although some debate remains, phar-
macological and physiological studies support the differential
release of NPY and NE (56, 62). The discovery of the physi-
ological potential of NPY in blood vessels originated from
experiments on the feline submandibular gland where, after
sympathetic nerve stimulation, slow and persisting �-adrener-
gic independent vasoconstriction was observed (65). Anatom-
ical evidence confirms that, in peripheral tissues, nerve fibers
that contain NPY are more abundant around resistance vessels
with increasing density as vessel size decreases (97).

Neuropeptide Y Y1 Receptor

The NPY Y1R, first of the Y-receptors cloned, was origi-
nally recognized in the rat brain (31), and it was cloned soon
after from human transfected cells (41, 58). Y1R are abundant
throughout mammalian systems. Peripherally, Y1R are ex-
pressed mainly in arteries and veins, where they are associated
with vasoconstriction and potentiation of other vasoconstric-
tors of neurogenic origin (39). Although limited, there is
evidence of prejunctional Y1R inhibition of neurotransmitter
release (24). Nonetheless, the NPY Y1R is primarily located
postjunctionally on vascular smooth muscle cells. The Y1R is
a G protein-coupled receptor. When activated, uncoupled Gi�
and G�� subunits lead to the inhibition of adenylyl cyclase
with subsequent reductions in the production of cAMP and
increased phospolipase C activation. This sequence results in
increased intracellular Ca2� and potent, long-lasting vasocon-
striction (29, 67, 115).

The complete NPY1–36 molecule is necessary for NPY
binding to Y1R. Any proteolytic processes leading to alter-
ations in the NH2-terminal domain essentially abolishes the
ability of NPY to bind to Y1R. Therefore, NH2-terminally
truncated NPY fragments such as NPY2–36, or NPY3–36 have
little or no affinity for the Y1R (e.g., 7, 26). However, these
fragments exhibit increased binding affinity for the Y2R (dis-
cussed below). Modification of COOH-terminal residues does
not affect agonist binding. Thus, it has been established that the
NH2 terminus is essential for NPY to activate Y1R (73).

Neuropeptide Y Y2 Receptor

The NPY Y2R was first cloned in 1995 from SMS-KAN
cells and later from human brain and neuroblastoma cells (34).
Recent evidence has illustrated that endogenous, neuronally
released NPY activates prejunctional Y2R to exert auto-inhi-
bition of its own release, as well as that of NE (69, 70, 105);
this effect has also been exhibited using exogenous NPY
and/or its truncated analogs (69). The concept of prejunctional
autoinhibitory NPY receptors was first introduced by Lundberg
and colleagues (66). Soon after, prejunctional auto-inhibitory

NPY effects were suggested to be mediated by Y2R (105). The
auto-inhibitory effect of Y2R binding is manifested though
inhibition of neuronal adenylyl cyclase and voltage-dependent
(N-Type) Ca2� channels. Recently, the development of a
highly selective Y2R antagonist, BIIE0246 (25) has led to the
discovery of a vascular role for Y2R in a limited number of
species and tissues. Y2R have been shown to regulate the
release of NPY in porcine kidney (69, 70), porcine spleen (68,
70, 78), and rat vas deferens (92). Recent work by Gradin and
coworkers (37) indicates that both Y1R and Y2R are involved
in vasoconstriction of mesenteric arteries of spontaneously
hypertensive rats (SHR).

Interaction Between Neuropeptide Y and Norepinephrine

Sympathetic postganglionic neurons in rat tail artery and
guinea pig vas deferens release NE, NPY, and ATP (11, 52),
with release of these contents being more prevalent at high
nerve stimulation frequencies (11, 61). ATP and NPY provide
significant contributions to rat tail vascular tone, especially at
higher impulse frequencies (11). This cocktail of neurochem-
ical messengers enables a number of biological effects and
interactions (e.g., slow, intermediary, and rapid signaling) (61).
For example, Lundberg and Tatemoto (65) describe the fol-
lowing vasoconstrictor potencies of sympathetic neurotrans-
mitters: NPY produces a slow acting, potent, and persistent
increase in vascular contractile state; NE-induced vasoconstric-
tion develops and dissipates more quickly; ATP-induced va-
soconstriction has a rapid onset but short duration. It has been
postulated that the duration of the effects for each transmitter
relies on the unique mode of deactivation/removal. For exam-
ple, vascular effects of NE are removed quickly via NE
reuptake, or rapid degradation by catechol-O-methyl trans-
ferase, whereas the prolonged duration of NPY-induced vaso-
constriction is mediated by slower enzymatic degradation of
“free” NPY (61).

NPY potentiates �-adrenergic vasoconstriction in both
in vivo (17, 59, 88) and in vitro (11, 27, 28, 36, 105) prepa-
rations. The synergistic interaction between NPY and NE is
receptor mediated. Thus, NPY enhances the vasoconstrictor
response to both sympathetic nerve stimulation (11, 17) and
phenylephrine- (specific �1R agonist) induced vasoconstriction
(17). The likely mechanism responsible for the synergistic
effects of NPY and NE is the convergence of second messen-
ger signaling pathways acting through phospholipase C, result-
ing in protein kinase C activation (108). Also NPY transiently
increases myosin light-chain phosphorylation (60), an effect
that would augment contraction. This is consistent with the
known ability of NPY to potentiate NE-mediated vasoconstric-
tion and inhibition of vasorelaxation. Thus, the interactive
effects must be due to consequent modification of specific
receptor properties and/or second messengers (33).

Role of Neuropeptide Y in the Regulation of Vasomotor Tone

General background. A major issue regarding the involve-
ment of NPY in neurovascular regulation in muscle has been
the uncertainty regarding a role of this neurotransmitter under
baseline (resting) conditions. These concerns are particularly
important in regard to the controversies surrounding any im-
pact of NPY on baseline blood pressure, as well as with the
hypotheses regarding the mechanistic role of sympathetic neu-
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rotransmitters in cardiovascular tissue damage during periods
of chronically heightened sympathetic discharge with advanc-
ing age and disease. These issues are complicated further by
variations of NPY composition that may heighten any detri-
mental aspects of this neurotransmitter.

NPY, blood pressure, and sympathetic discharge. As men-
tioned above, the role of NPY in blood pressure regulation is
debated. Evidence from Y1R knockout mice that display nor-
mal basal blood pressure (85) suggests that NPY does not play
a critical role in blood pressure maintenance. Moreover, infu-
sion of the Y1R antagonist BIBP3226 does not affect basal
blood pressure in normotensive or in SHR (which have ele-
vated plasma NPY levels) (110). Consequently, a role for NPY
as a regulator of baseline vascular control has been discounted.
Nonetheless, circulating NPY levels rise during circulatory
shock, chronic stress (e.g., sepsis, hemorrhage, cold stress) (87,
114), and even heavy exercise (63, 74). Thus, it may be that
NPY release is related to discharge frequencies of the postgan-
glionic sympathetic neurons and play a more important role in
blood pressure regulation in times of significant stress.

Additional evidence in support of the idea that NPY is
released primarily during periods of high sympathetic outflow
comes from studies of sympathetic activity and vascular dis-
ease. Although the sympathetic nervous system is critical for
maintaining blood flow/pressure homeostasis during acute
stress (e.g., during exercise, cold exposure, or orthostatic
stress), several investigations indicate that this nervous system
is also involved in long-term vascular control and/or morpho-
logical changes in vascular structure. For example, a relation-
ship is described between essential hypertension and chroni-
cally augmented sympathetic nerve activity and its association
with increased vascular resistance (71), intimal wall thickness
(23), and damage to cardiovascular tissues (30, 53, 84, 109).
These deleterious effects of sympathetic outflow appear to
include the dual actions of the sympathetic neurotransmitters
NE (e.g., 38) and NPY (57) acting on postjunctional �- and
Y-receptors, respectively. In this regard, NPY has been impli-
cated in hypertension (76), as there are high circulating levels
of NPY present in both men and women with the disease (106).
Moreover, the mitogenic potential of NPY has been established
(86, 90, 111, 112). These data suggest that NPY release is
dependent upon the magnitude of nerve discharge frequency;
thus, elevated sympathetic nerve activity may lead to increased
mitogenesis via the actions of NPY. Nonetheless, Y1R activa-
tion must occur chronically under baseline conditions if it is to
factor importantly in long-term blood pressure regulation,
and/or mitogenic effects. Chronic basal Y1R activation, how-
ever, has not been demonstrated with certainty as outlined
above.

The evidence that NPY does not affect baseline blood
pressure but is released during periods of high stress suggests
that NE and NPY are differentially released (4, 19, 62) with NE
released at lower nerve activity and NPY released only under
high neuronal stimulation frequencies. This hypothesis predicts
that NE primarily controls vascular smooth muscle tone during
basal conditions, whereas NPY does not; its release only
occurring during periods of high stress. Pharmacological and
physiological studies support the differential release of NPY
and NE (56, 62).

Conversely, data produced by De Potter and coworkers
(20–22) suggested that both NE and NPY contribute to base-

line vascular tone. The premise of this research was the
analysis of proteins from small and large dense cored vesicles
in sympathetic varicosities. Differential release of NE and
NPY might occur if they are stored in different presynaptic
vesicles. Analysis of the ratios of proteins from these different
vesicles was reasoned to provide a means to assess the differ-
ential release hypothesis. In their studies, De Potter and col-
leagues (20–22) tested a number of different vascular beds
innervated by sympathetic nerves with differing ratios of large
dense cored vesicles and small dense cored vesicles. These
vascular beds included the isolated perfused sheep spleen, dog
spleen, and rat vas deferens (the latter containing primarily
small dense cored vesicles). Using a range of nerve stimulation
frequencies from 2 to 20 Hz, they observed that the ratio of
proteins reflecting large and small dense cored vesicular re-
lease remained constant. Thus, from these data, it could be
predicted that both NPY and NE are released concurrently and
should contribute to baseline vascular tone. This issue of the
influence of NPY on peripheral vasomotor control has been
addressed recently in studies of Y1R antagonism in skeletal
muscle and skin and is discussed below.

NPY and vasomotor control in skeletal muscle. Skeletal
muscle represents 30–40% of body mass and is under consid-
erable neurogenic and metabolic control that enables blood
flow changes that are rapid and large in magnitude, ranging
from 5 ml �100 ml�1 �min�1 to at least 250 ml �100ml�1 �min�1

(1). This translates to skeletal muscle receiving up to 85 to 90%
of maximal cardiac output during extended periods of exercise
(3, 18). Even under baseline conditions, sympathetic neuro-
genic inputs account for �50% of the tonic contractile state.
Thus, this tissue offers the ability to study NPY-induced
vasomotor control under various conditions.

The first evidence that the NPY Y1R caused an NPY-
induced vasoconstriction was observed in cat skeletal muscle
(29). More recently, Jackson and colleagues (46) reported an
increase in baseline hindlimb blood flow and vascular conduc-
tance after Y1R blockade with BIBP3226 in the Sprague-
Dawley rat. In mongrel dogs, Buckwalter and colleagues (13)
reported that intra-arterial infusion of BIBP3226 led to sub-
stantial increases in limb blood flow, without changes in
systemic hemodynamics or contralateral limb blood flow. Fur-
thermore, this latter group showed the contribution of Y1R to
blood flow, and vascular conductance was similar to that of
�1R (Fig. 1). These findings supported previous work by De
Potter et al. (20, 21) that NPY and NE are coreleased from
peripheral sympathetic nerves, even under baseline conditions.

By contrast, Coney and Marshall (16) observed no effect of
Y1R antagonism on baseline femoral vascular resistance. The
authors (16) suggested that perhaps the different anesthetic
regimes used offered a potential explanation for these opposing
findings. For example, Jackson and colleagues (46, 47) used
the barbiturate thiobutabarbital sodium (Inactin) anesthetic,
whereas, Coney and Marshall (16) used halothane anesthesia at
surgical depth (absence of withdrawal reflex) for their studies.
Barbiturate anesthesia, including Inactin, has been shown to
elevate baseline sympathetic outflow, relative to �-chloralose
(nonbarbiturate) (101) with increases in hindlimb vascular
resistance (99). Other studies have indicated that barbiturates
have little impact on sympathetic levels or baseline vascular
conductance (10, 72). Thus, it remains possible that a higher
average muscle sympathetic nerve activity existed under the
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conditions of Jackson and coworkers (46) compared with
Coney and Marshall (16). But, just how any such changes fit
into the concept of frequency-dependent NPY release remains
to be established. A less likely, but nonetheless testable,
alternative explanation for these apparently conflicting results,
is that neither NPY receptors nor the control of systemic blood
pressure are homogenously distributed among strains of spe-
cies, as Jackson and colleagues (46) studied Sprague-Dawley
rats, whereas Coney and Marshall (16) examined Wistar rats.

Sex-dependent NPY neurovascular control in skeletal mus-
cle. Several lines of evidence support the conclusion that sex
affects neurovascular control. In human studies, females have,
on average, lower levels of baseline (51, 83) and reflex-
mediated changes in muscle sympathetic nerve activity (91).

Similar studies on baseline sympathetic levels in rodents have
not been in agreement, as sympathetic nerve activity is not
reported in the same way. However, if the release of NPY is
frequency dependent, then females might be expected to elicit
less NPY Y1R vascular control, compared with males. The few
investigations that have addressed sex differences in the effects
of NPY on the cardiovascular system have produced contrast-
ing conclusions. In support of the postulate that NPY release is
affected by one’s sex, Morris et al. (81) and Zukowska-Grojec.
(111) observed a greater increase in blood pressure, heart rate,
and mesenteric vasoconstriction in males compared with fe-
males during cold stress, an effect that was directly associated
with increases of plasma NPY immunoreactivity. In contrast,
Glenn et al. (35) found that NPY-induced vasoconstriction of

Fig. 1. A: representative responses of arterial blood pressure and hindlimb blood flow for each of the N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-
arginine amide (BIBP3226), prazosin, and BIBP3226 � prazosin treatments. The bold arrow represents the time at which infusion of the respective drug
(indicated above arrow) was given. The white trace indicates mean hindlimb blood flow for each treatment. Note the increase in diastolic blood flow only when
BIBP3226 was present. B: mean changes (�) from baseline for hindlimb blood flow (left) and vascular conductance (right) with each treatment. Values
represent means � SE. *P 	 0.05, significant difference from baseline; †P 	 0.05, significant difference from BIBP3226 and prazosin conditions. [From
Jackson et al. (46).].
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rat tail artery was greater in female compared with male rats.
Other studies suggest that the blood pressure response to NPY
infusion was similar between intact conscious male and female
rats (113). The complexity of sex-dependent differences in
NPY-induced cardiovascular control is advanced by studies of
cortical Y1R expression and sensitivity. Michel et al. (75)
examined the cerebral cortex of Wistar-Kyoto rats and SHR
and noted that although the number of Y1R was similar
between the breeds, females had half as many Y1R compared
with males. However, binding affinity of these Y1R in females
was twice that of males (75).

In skeletal muscle, there appears to be strong influence of
sex hormones on the neurogenic regulation of baseline vascular
contractile state. Jackson and et al. (48) provided the first
account that female skeletal muscle contained greater overall
Y2R expression compared with males. Also, only males exhib-
ited Y1R modulation of vasoconstriction (with similar anes-
thetic regimes), illustrating sexual dimorphism in the control
and maintenance of vascular tone in skeletal muscle. Although
there was no observable difference in baseline blood flow
between males and females, baseline vascular tone in males
appears to be established by a synergy between Y1R and �1R.
This interaction was unmasked with simultaneous antagonism
of Y1R and �1R in the rat hindlimb. These findings support
similar observations of synergism in studies of blood pressure
(45) and vessel tone in human omental arteries, guinea pig
uterine arteries, and rabbit gastroepiploic, pulmonary, and
femoral arteries (6, 27, 32, 105). Thus, this Y1R -�1R “cross-
talk” mechanism appears to exist in several tissue types, at
least in males. In contrast, females appear to compensate for
the lower NPY control through the up-regulation of �1R
modulation on hindlimb vascular conductance (47).

The functional data indicating reduced Y1R activation in
females vs. males are supported by evidence (47) that males
exhibited greater Y1R expression and NPY concentration in
whole muscle tissue homogenate compared with females.
These data are congruent with, and provide the mechanistic
basis for, earlier findings of 1) greater and sustained pressor
responses and NPY increases during stress in male vs. female
rats, and 2) greater pressor responses to exogenous NPY in
areflexive pithed male vs. female rats (113).

The mechanistic basis of gender differences in NPY and
Y1R-mediated vasomotor control is not fully understood. The
mechanisms could include differences in postganglionic sym-
pathetic neural activity, as discussed briefly above. Unfortu-
nately, the relationship between sympathetic nerve discharge
patterns and NPY release is not known. In addition, sex
differences in the modulation of prejunctional control of NPY
release and/or its metabolism may exist. For example, in
skeletal muscle, Y2R blockade with BIIE0246 resulted in a
decrease in hindlimb vascular conductance in both female and
male Sprague-Dawley rats (48). However, the BIIE0246-in-
duced decrease in vascular conductance was Y1R dependent in
females, but not males. In addition, compared with baseline,
BIIE0246 infusion resulted in increased plasma NPY concen-
tration in females, while there was no observable change in
males. These studies indicate that, although female rats do not
appear to use a Y1R vasomotor control system during baseline
conditions in skeletal muscle, the molecular and neurotransmitter
machinery exists for such a control mechanism to occur. Paren-
thetically, the ability of Y2R blockade to increase vascular tone in

male animals by a non-Y1R mechanism suggests that prejunc-
tional control of NE release is also modulated by Y2R.

In addition to prejunctional auto-inhibitory control, postre-
lease metabolism of NPY by junctional peptidases is an im-
portant mechanism regulating the effect of NPY. Glenn et al.
(35) concluded that NPY-converting enzymes (peptidases)
may be more active in females compared with males. This
effect may reduce NPY availability for Y1R binding and
enhance Y2R activation. Such differences in NPY metabolism
may also explain some of the confusion regarding sex differ-
ences in sensitivity to exogenous NPY (9, 35, 113). Our group
demonstrated that systemic inhibition of proteolytic enzymes
dipeptidylpeptidase IV (via 500 nM diprotin A) and amino-
peptidase P (via 180 nM 2-mercaptoethanol) elicited a Y1R-
dependent decrease in hindlimb vascular conductance in fe-
males (47). Therefore, NPY bioavailability is an important
regulated mechanism in rat skeletal muscle, particularly in
female animals. The role of prejunctional and peptidase mod-
ification of NPY bioavailability in muscle of other species is
not known. Moreover, it is not yet clear if ovarian hormones
are an important factor in sex-dependent differences in Y1R
activation within skeletal muscle.

Involvement of NPY in the Regulation of Skin Blood Flow

General background. Skin blood flow (SkBF) in humans is
controlled through two branches of the sympathetic nervous
system: a vasoconstrictor system and an active vasodilator system
of uncertain neurotransmitter (49). The vasodilator system is not
tonically active but is engaged during periods of increased
internal temperature (49). Previous studies suggest this system
to be cholinergic and to involve a cotransmitter, possibly
vasoactive intestinal peptide (5, 55). In contrast, the vasocon-
strictor system is tonically active, mediating the subtle changes
in SkBF required to maintain internal temperature in normo-
thermia (12) and the cutaneous vasoconstriction during periods
of cold exposure (8, 12).

The sympathetic nature of the vasoconstrictor nerves was
demonstrated by their sensitivity to bretylium tosylate, which
can completely abolish reflex cutaneous vasoconstriction
through inhibiting transmitter release from nerve endings (54).
This reflex system accounts for �50% of the cutaneous vaso-
constrictor response to local cooling of skin (44, 107). There is
mounting evidence that NPY is an important neurotransmitter
in skin vascular conductance. Morris (79) demonstrated a
vasoconstrictor effect of exogenously administrated NPY in
subcutaneous arteries of the ear in guinea pigs. Nilsson et al.
(82) demonstrated a vasoconstrictor effect of NPY in human
subcutaneous arteries that had been dissected out of the ab-
dominal regions from patients who underwent nonvascular
disease surgeries (e.g., hernia). Using electrical neural stimu-
lation approaches that mimicked high physiologic stress, they
noted that NPY released from sympathetic nerves played a
significant role in the regulation of the rat cutaneous microcir-
culation. Heath and colleagues (40) demonstrated that exoge-
nous NPY, administered at physiological levels, consistently
invoked a dose-dependent decrease in rat tail SkBF. In mice,
Chu et al. (14) concluded that NPY decreased cutaneous blood
flow via Y1R, with evidence for the additional involvement of
postjunctional Y2R. This ability of NPY and Y1R to affect skin
vascular conductance varies in accordance with relative inner-
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vations at specific sites (80). Thus, conclusions about the role
of NPY in skin microvascular control may depend on where
you look and, more specifically, how deep you look.

In addition to the effects of NPY infusions, fundamental
evidence that Y1R activation affects vasomotor behavior is
derived from blockade of the Y1R. Following early studies
with the BIBP3226 blockade approach in pigs (64), this ap-

proach was used. The Y1R antagonist was then introduced in
human studies (89), which led to explorations of the Y1R
cutaneous control in humans. With respect to human skin,
Stephens and coworkers (94, 95) identified nonnoradrenergic
reflex control in men and women by showing a persistent vaso-
constriction to whole body cooling after pharmacological block-
ade of the effects of NE. Inasmuch as reflex cutaneous vasocon-

Fig. 3. Data from a representative subject showing axon reflexes were either offset to a higher local temperature, as in this case, or were abolished at the
YOH/PRO and BIBP-3226 sites. They were uniformly abolished at sites treated with the combination of YOH, PRO, and BIBP-3226. Importantly, note the
reduced responses in CVC at all treated sites. Arrows indicate the presence of an axon reflex. [From Hodges et al. (43).]

Fig. 2. Average responses in cutaneous vascular con-
ductance (CVC) as a percentage of baseline (means �
SE) from skin sites treated with Ringer solution; yohim-
bine plus propranolol; or yohimbine, propranolol, and
BIBP3226 during whole body cooling in eight healthy
men. *Significant reduction from baseline (P 	 0.05).
At sites treated with yohimbine, propranolol, and BIBP-
3226, CVC was not significantly reduced at any point in
this cooling protocol (P 
 0.05). These data indicate the
vasomotor response to whole body cooling is mediated
largely, if not entirely, by norepinephrine and NPY. P
values indicate significant differences in the response
between Ringer solution and yohimbine plus proprano-
lol (P 	 0.001) and between yohimbine plus propran-
olol plus BIBP3236 and the other two sites (P 	 0.01).
[From Stephens et al. (96).]
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striction is blocked by the sympathetic presynaptic antagonist
bretylium tosylate, but only partially inhibited by noradrenergic
receptor antagonists, these nonnoradrenergic mechanisms are
likely mediated by sympathetic cotransmitters. In a follow-up
study, Stephens et al. (96) and colleagues used Y1R antagonism
with BIBP3226 and demonstrated the nonnoradrenergic constric-
tion was due to Y1R activation (Fig. 2). These data support the
notion that, at least in skin under these particular conditions, NPY
acts independently of NE to elicit vasoconstriction. In contrast to
the above studies, using whole body cooling, Johnson et al. (50)
observed that the involvement of NPY in the vasoconstrictor
response to local cooling was minimal. Thus, it appears that
NPY-induced cutaneous vasoconstriction requires a stress-in-
duced increase in sympathetic nerve activity that would occur
with systemic cooling but not local cooling.

NPY and vasomotor control in the cutaneous circulation. In
human tissues, RT-PCR and immunocytochemistry studies
have been used to determine the distribution of the Y1R and
Y2R. Y2R mRNA was detected weakly in subcutaneous arter-
ies in the peripheral circulation (102), particularly when com-
pared with Y1R expression levels, suggesting that Y1R are the
primary receptors in human cutaneous circulation, with Y2R
playing little, if any, role in the regulation of vascular tone.
This finding offers further support to the findings that local
nonnoradrenergic mechanisms are entirely Y1R based. Further-
more, it was also noted that this nonnoradrenergic mechanism
of vasoconstriction was affected by reproductive hormone
status, either being modulated directly by female reproductive
hormones or indirectly by pathways sensitive to female repro-
ductive hormones. When both estrogen and the progesterone
are elevated (e.g., luteal phase), a significant, persistent vaso-
constrictor response in cutaneous vascular conductance was
observed at sites after �- and �-receptor antagonism (95).
These findings are similar to the earlier observation in men
(94), but in women, the nonadrenergic portion appears to play
a measurable role only when estrogen and progesterone are
high. During the time when both estrogen and progesterone are
low (e.g., follicular phase), pharmacological blockade of �-
and �-receptors essentially abolished reflex vasoconstriction.
The interactive nature among ovarian hormones, adrenergic
receptor sensitivity, and Y1R-mediated cutaneous vasomotor
control remains to be determined. Furthermore, there may be
differences in those actions between exogenous (oral contra-
ceptives) and endogenous hormones, as Thompson and Ken-
ney (100) did not see the loss of apparent cotransmitter func-
tion in the follicular phase of normally menstruating women.
Also, the role of nonnoradrenergic vasoconstriction is age
dependent (100). Thompson and Kenney (100) noted that
blockade of adrenergic receptors removed about 60% of cool-
ing-induced vasoconstriction in younger subjects, similar to the
results from Stephens and colleagues (94–96), but such block-
ade completely inhibited reflex cutaneous vasoconstriction in
older subjects (100). Those findings indicate that the role of
NPY (or other cotransmitters) in the reflex control of skin
blood flow becomes less important with increasing age.

The role of NPY in skin vascular control is not limited to
vasoconstriction during cooling. Intriguingly, recent work has
shown that NPY is necessary for a complete vasodilator re-
sponse in human skin to direct skin warming. Hodges and
coworkers (43) found that inhibition of Y1R with BIBP3226 or
antagonism of �-receptors and �-receptors, with yohimbine

and propranolol, respectively, caused a delay in the onset of
vasodilation and significantly reduced the cutaneous vasodila-
tor response (Fig. 3). It is also noteworthy that the combination
of Y1R, �-receptor, and �-receptor antagonism did not cause a
further depression of the vasodilator response (Fig. 3). Al-
though it is somewhat counter-intuitive that adrenergic nerve
transmitters should promote the vasodilator response, there are
data that show NE and NPY bind to �2R and Y1R on endo-
thelial cells and stimulate endothelial nitric oxide synthase,
leading to the production of nitric oxide (2, 15, 103). In
keeping with this possibility, we also tested whether the effects
of NE and NPY on cutaneous vasodilation were dependent on
nitric oxide synthase function (43). We observed that the
heat-induced vasodilation was abolished with both presynaptic
sympathetic blockade with bretylium tosylate and/or with local
applications of L-nitro-arginine methyl ester (L-NAME) with-
out evidence of any synergistic effect (43). Therefore, the
neurogenic support of vasodilation appears to require the serial
production of nitric oxide. The role of this vasodilatory path-
way in constraining cutaneous vasoconstriction during whole
body cooling has not been investigated.

Perspectives and Significance

NPY is now understood to be an important neurotransmitter
in the control and regulation of skeletal muscle vasculature
tone. In addition, cutaneous vasoconstrictor and vasodilator
responses require NPY for a complete response with antago-
nism of Y1R removing 20 to 30% of the reflex cutaneous
vasoconstrictor response and 40 to 60% of the vasodilator
response to local heating. However, many questions remain
regarding this system. For example, is sympathetic nerve
discharge related to NPY release and if so, does this control
feature vary between “rest” and stress? Furthermore, the mech-
anism(s) by which ovarian hormones affect the NPY-Y1R
system remain unknown. Sex-based dimorphism is present in
the NPY-supported vasomotor system for both muscle and
skin, whereby the Y1R control over vascular control appears to
be minimized by ovarian hormones. The mechanistic basis of
this sex-hormone effect is not known and may include alter-
ations in postganglionic nerve activity, prejunctional auto-
inhibition, junctional NPY metabolism by peptidases, and even
alterations in receptor sensitivities.
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