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Abstract 

Classical models of brain organization have often considered the brain to be made up of a 

mosaic of patches that are demarcated by discrete boundaries, often defined histologically. In 

contrast, emerging views have pointed towards an alternative paradigm – referred to as 

gradients – by conceptualizing brain organization as sets of organizational axes that 

characterizes spatial variation of differing connectivity principles over the extent of a region. 

Such organizational axes provide a well-suited framework for elucidating underpinnings of 

brain connectivity and has garnered widespread attention across various domains of 

neuroimaging. This work seeks to explore various applications of gradient estimation 

techniques, in combination with resting-state functional connectivity data, across the fields of 

basic, comparative, and clinical neuroscience. 

First, gradient estimation was performed on resting-state functional connectivity (RSFC) 

patterns of the primary somatosensory cortex to unveil a secondary organizational axis that 

spans the region’s anterior-posterior axis, akin to circuitry fundamental to sensory cortical 

information processing. Second, gradient techniques were used in a cross-species comparison 

study to unify connectivity principles of humans and marmosets by mapping them 

simultaneously onto a set of organizational axes. In doing so, this provided a systematic 

framework to compare the functional architecture of both species, facilitating novel insight of 

a well-integrated default-mode network in humans, compared to marmosets. Third, 

connectivity gradients, along with a myriad of other resting-state fMRI features were used to 

explore the implications of focal lesion pathophysiology on functional organization of the 

thalamus in individuals with Multiple Sclerosis. A lack of focal changes to resting-state related 

features was observed suggesting the limited role of focal thalamic lesions to functional 

organization in MS.  

Together, these different avenues of research highlight the capacity for a gradient-centric view 

in neuroimaging to provide profound insights into brain organization, and its utility across the 

applications of basic, comparative, and clinical neuroscience. 
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Summary for Lay Audience 

Brain structure maps have typically been described by a set of areas separated by borders, much 

like countries on the globe. In this manner, brain mapping may overlook more subtle details of 

the brain – analogous to detailing a country’s cities and neighbourhoods – that are equally 

important for understanding how brain functions arise. Towards this latter goal, the notion of 

gradients has been proposed as a way to reveal more nuanced details of the brain. Gradients in 

brain organization have emerged as a powerful approach for studying different fields of 

imaging neuroscience. In this thesis, gradients are broadly applied to study finer-grained 

connectional principles of the brain in domains of basic, comparative, and clinical 

neuroscience.  

The first chapter applies gradients to the primary somatosensory cortex (S1) of the brain, 

revealing detailed connections that reflect the classical notion of information processing within 

this brain region. Additionally, this connectivity gradient demonstrated excellent 

correspondence to S1’s structural properties, which previously have gone underappreciated. 

Collectively, this insight provides a way to link local brain structure and connectivity properties 

within S1 to one another, providing a principled approach for studying their interplay in clinical 

populations. 

The second chapter uses gradients to systematically compare the human and marmoset brain. 

In doing so, differences in default-mode network brain organization were revealed. Given the 

importance of marmosets as a preclinical animal model, this difference may provide 

fundamental insights towards the limitations of the marmoset as an animal model for studying 

cognitive function, for which the default-mode network is thought to play a critical role in. 

The third chapter uses gradients (in addition to other approaches) to provide a simplified view 

of neuronal and connectivity principles in the human thalamus following neural degeneration 

– specifically from Multiple Sclerosis lesions. No obvious qualitative disruptions of thalamic 

organization were observed when using a myriad of approaches. This may suggest that lesions 

in the thalamus do not play a substantial role in mediating thalamic reorganization in Multiple 

Sclerosis. 
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Overall, this thesis demonstrates the wide use of gradients to study brain organization across 

various applications of imaging neuroscience. This demonstrates the collective versatility and 

receptiveness of gradients as a general investigative tool for studying brain mapping. 

Keywords 

Gradient estimation, brain organization, resting-state fMRI, resting-state functional 

connectivity, somatosensory cortex, marmosets, default-mode network, Multiple Sclerosis 

 

  



 

v 

 

Co-Authorship Statement 

The following thesis is presented in Integrated Article format and contains one published and 

two unpublished manuscripts.  

Chapter 2: Ngo, G. N., Haak, K. V., Beckmann, C. F., & Menon, R. S. (2021). Mesoscale 

hierarchical organization of primary somatosensory cortex captured by resting-state-fMRI in 

humans. NeuroImage, 235, 118031. https://doi.org/10.1016/j.neuroimage.2021.118031  

• Geoffrey N. Ngo: Project conceptualization, data processing, formal analysis, and 

writing of original draft of the manuscript. 

• Dr. Koen V. Haak: Project conceptualization, provision of software, and revision of 

manuscript. 

• Dr. Christian F. Beckmann: Project conceptualization, provision of software, and 

revision of manuscript. 

• Dr. Ravi S. Menon: Project conceptualization, supervision and guidance, and revision 

of manuscript. 

Chapter 3: Ngo, G. N., Hori, Y., Everling, S., & Menon, R. S. Joint-embeddings reveal 

functional differences in default-mode network architecture between marmosets and humans. 

(In preparation) 

• Geoffrey N. Ngo: Project conceptualization, data processing, formal analysis, and 

writing of original draft of the manuscript. 

• Dr. Yuki Hori: Project conceptualization, data processing, and revision of manuscript. 

• Dr. Stefan Everling: Project conceptualization, and revision of manuscript. 

• Dr. Ravi S. Menon: Project conceptualization, supervision and guidance, and revision 

of manuscript. 

Chapter 4: Ngo, G. N., Morrow S. A., & Menon, R. S. Charting the effects of thalamic lesions 

on resting-state fMRI features in secondary-progressive Multiple Sclerosis. (In preparation) 

• Geoffrey N. Ngo: Project conceptualization, data processing, formal analysis, and 

writing of original draft of the manuscript. 

• Dr. Sarah A. Morrow: Project conceptualization, patient recruitment and evaluation, 

and revision of manuscript. 

• Dr. Ravi S. Menon: Project conceptualization, supervision and guidance, and revision 

of manuscript. 

https://doi.org/10.1016/j.neuroimage.2021.118031


 

vi 

 

Acknowledgments 

First and foremost, I would like to thank Ravi Menon for providing the opportunity to pursue 

a PhD in his interdisciplinary lab under his supervision. I am very grateful for his unwavering 

support throughout the past five years, providing me the flexibility to learn and engage in a 

broad range of research endeavours, and for constantly reminding me to reconsider the big 

picture when pursuing these various lines of research. I would like to thank my advisory 

committee members: Drs. Sarah Morrow, and Ali Khan, for their support and advice 

throughout my degree. 

I would like to thank the CFMM (Center of Functional and Metabolic Mapping) for all their 

help to make a large portion of this research possible. This includes providing the immense 

administrative assistance in coordinating the longitudinal Multiple Sclerosis study, developing, 

and maintaining their advanced MR imaging capabilities, and ultimately acquiring all of the 

MR images from our research participants. I would like to extend this gratitude to the clinical 

team, led by Dr. Sarah Morrow who actively recruited participants for this study, and Heather 

Rosehart who was instrumental in the collective coordination of this research project. 

Additionally, I would like to give special thanks to all our participants for their generous 

commitment of time to research, without whom, would have made this research impossible. 

To all my other colleagues and friends in the lab, former and present, thank you for all your 

support throughout my PhD. 

I would like to extend my thanks to Christian Beckmann for hosting me in his lab at the 

Donders Institute for a collaborative fellowship in the Spring of 2019. Many thanks also to 

Koen Haak for providing me the support and mentorship during this time and ultimately 

providing inspiration for my first paper.  

Krystal, I could not have asked for a better person to share this journey with. Your never-

ending support has enriched my past five years, motivating me to be my best self, and whose 

unparalleled encouragement has given me the innate desire to finish my PhD. Thank you for 

taking care of our dogs when I was at my busiest. Finally, I would like to thank my family; my 

parents, who have been supportive at every step throughout my academic endeavours, and my 

brother, who provided unconditional support throughout my PhD, and who at times, showed 



 

vii 

 

more interest in my own research than myself. Lastly, I need to thank my two dogs, Pebbles 

and Remi, who have given me unconditional love through the ups and downs of my PhD 

journey. 



 

viii 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iii 

Co-Authorship Statement.................................................................................................... v 

Acknowledgments.............................................................................................................. vi 

Table of Contents ............................................................................................................. viii 

List of Tables ................................................................................................................... xiii 

List of Figures .................................................................................................................. xiv 

List of Abbreviations and Symbols.................................................................................. xvi 

List of Appendices ......................................................................................................... xviii 

Chapter 1 ............................................................................................................................. 1 

1 General Introduction ...................................................................................................... 1 

1.1 Brain Organization .................................................................................................. 1 

1.1.1 Microscale architecture ............................................................................... 1 

1.1.2 Macroscale architecture .............................................................................. 3 

1.2 Macroscale Connectivity ........................................................................................ 4 

1.2.1 Blood oxygenation level-dependent signal (BOLD) .................................. 5 

1.2.2 Functional magnetic resonance imaging paradigms ................................... 6 

1.2.3 The connectome .......................................................................................... 7 

1.3 Connectivity Representations ................................................................................. 9 

1.3.1 Parcellation ............................................................................................... 10 

1.3.2 Connectivity gradients .............................................................................. 13 

1.4 Thesis Objectives .................................................................................................. 20 

1.4.1 Chapter 2: Mesoscale hierarchical organization of primary somatosensory 

cortex captured by resting-state-fMRI in humans .................................... 21 



 

ix 

 

1.4.2 Chapter 3: Joint-embeddings reveal functional differences in default-mode 

network architecture between marmosets and humans ............................. 21 

1.4.3 Chapter 4: Charting the effects of thalamic lesions on resting-state fMRI 

features in secondary-progressive Multiple Sclerosis............................... 22 

1.4.4 Chapter 5: General Discussion and Conclusion........................................ 22 

1.5 References ............................................................................................................. 23 

Chapter 2 ........................................................................................................................... 34 

2 Mesoscale hierarchical organization of primary somatosensory cortex captured by 

resting-state-fMRI in humans 1 .................................................................................... 34 

2.1 Introduction ........................................................................................................... 34 

2.2 Methods................................................................................................................. 37 

2.2.1 Resting-state fMRI dataset and preprocessing .......................................... 37 

2.2.2 Motion exclusion criteria .......................................................................... 37 

2.2.3 Region of interest definitions of S1 anatomical hierarchy........................ 37 

2.2.4 Connectopic mapping ............................................................................... 38 

2.2.5 Structural MRI measures .......................................................................... 39 

2.2.6 Geodesic distance...................................................................................... 40 

2.2.7 Evidence of a functional boundary ........................................................... 40 

2.2.8 Seed selection............................................................................................ 41 

2.2.9 Statistical methods .................................................................................... 41 

2.2.10 Data and code availability statement ........................................................ 43 

2.3 Results ................................................................................................................... 43 

2.3.1 The dominant gradient of resting-state functional connectivity captures S1 

anatomical hierarchy and microstructure .................................................. 43 

2.3.2 Characterising the anterior-to-posterior axis of S1 and correspondence to 

Brodmann areas ........................................................................................ 48 

2.3.3 Thalamocortical connectivity reflects different Brodmann areas ............. 52 

2.4 Discussion ............................................................................................................. 54 



 

x 

 

2.5 References ............................................................................................................. 60 

2.6 Supplementary Figures ......................................................................................... 68 

Chapter 3 ........................................................................................................................... 74 

3 Joint-embeddings reveal functional differences in default-mode network architecture 

between marmosets and humans .................................................................................. 74 

3.1 Introduction ........................................................................................................... 74 

3.2 Methods................................................................................................................. 76 

3.2.1 Resting-state fMRI dataset and preprocessing .......................................... 76 

3.2.2 Region of interest definitions for joint embedding ................................... 78 

3.2.3 Joint embeddings ...................................................................................... 79 

3.2.4 Joint embeddings validation ..................................................................... 81 

3.2.5 DMN joint gradient analyses .................................................................... 81 

3.2.6 DMN RSFC analyses ................................................................................ 81 

3.2.7 Statistical methods .................................................................................... 83 

3.2.8 Data and code availability statement ........................................................ 83 

3.3 Results ................................................................................................................... 83 

3.3.1 Common brain architecture between humans and marmosets using joint 

embeddings ............................................................................................... 83 

3.3.2 A compact default-mode network in humans compared to marmosets .... 86 

3.3.3 Comparing internode DMN connectivity between marmosets and humans

................................................................................................................... 87 

3.3.4 Dissimilar spatial topography of connectivity in the marmoset DMN core

................................................................................................................... 90 

3.3.5 Details of a separate joint gradient that comprises marmoset mPFC ....... 92 

3.4 Discussion ............................................................................................................. 94 

3.5 References ............................................................................................................. 99 

3.6 Supplementary Tables ......................................................................................... 106 

3.7 Supplementary Figures ....................................................................................... 107 



 

xi 

 

Chapter 4 ......................................................................................................................... 117 

4 Charting the effects of thalamic lesions on resting-state fMRI features in secondary-

progressive Multiple Sclerosis ................................................................................... 117 

4.1 Introduction ......................................................................................................... 117 

4.2 Methods............................................................................................................... 119 

4.2.1 Participants .............................................................................................. 119 

4.2.2 MRI data acquisition ............................................................................... 120 

4.2.3 Resting-state fMRI preprocessing ........................................................... 121 

4.2.4 Diffusion MRI preprocessing ................................................................. 121 

4.2.5 Registration workflow ............................................................................ 121 

4.2.6 Region of interest definitions .................................................................. 123 

4.2.7 Intrinsic dynamics ................................................................................... 123 

4.2.8 Thalamocortical connectivity analysis .................................................... 124 

4.2.9 Localizing thalamic masks connected to corresponding resting-state 

networks .................................................................................................. 126 

4.2.10 Effects of MS lesions on thalamic resting-state maps ............................ 127 

4.3 Results ................................................................................................................. 128 

4.3.1 Charting individuals with thalamic lesions ............................................. 128 

4.3.2 Alignment between resting-state fMRI and T1w images ....................... 132 

4.3.3 Spatial topography of resting-state fMRI features in SPMS participants 133 

4.3.4 Association between diffusion tensor metrics and thalamocortical 

functional connectivity............................................................................ 137 

4.3.5 Association between diffusion tensor metrics and resting-state fMRI 

metrics ..................................................................................................... 139 

4.4 Discussion ........................................................................................................... 140 

4.4.1 Assessing diffusion tensor metrics of thalamic lesions .......................... 140 

4.4.2 Resting-state BOLD variability in MS lesions ....................................... 141 

4.4.3 Thalamic lesions do not affect thalamocortical connectivity ................. 143 



 

xii 

 

4.4.4 Limitations .............................................................................................. 145 

4.4.5 Conclusions ............................................................................................. 146 

4.5 References ........................................................................................................... 147 

4.6 Supplementary Tables ......................................................................................... 155 

Chapter 5 ......................................................................................................................... 157 

5 Discussion and Future Work ...................................................................................... 157 

5.1 Summary of Thesis ............................................................................................. 157 

5.1.1 Overlapping axes of connectivity principles in somatosensory cortex ... 157 

5.1.2 Conceptualizing cross-species brain evolution with resting-state fMRI 158 

5.1.3 Connectivity gradients of the thalamus in Multiple Sclerosis ................ 160 

5.2 Thesis Limitations ............................................................................................... 160 

5.2.1 Defining regions of interest .................................................................... 160 

5.2.2 Interpreting the functional significance of gradients .............................. 161 

5.3 Future Directions ................................................................................................ 162 

5.3.1 Somatosensory cortex connection topography in Parkinson’s Disease .. 162 

5.3.2 Gradient-based investigations of marmosets .......................................... 163 

5.3.3 Interpreting connectivity gradients with simulations .............................. 165 

5.4 Conclusion .......................................................................................................... 165 

5.5 References ........................................................................................................... 167 

Appendix ......................................................................................................................... 171 

Curriculum Vitae ............................................................................................................ 172 



 

xiii 

 

List of Tables 

Table 4.1 Scan session schedule of secondary-progressive MS patients .............................. 120 

Table 4.2 Secondary-progressive MS patient information ................................................... 129 

 



 

xiv 

 

List of Figures 

Figure 1.1 A simple depiction of the BOLD response as measured in fMRI ........................... 6 

Figure 1.2 Examples of resting-state functional connectivity derived brain parcellations ..... 11 

Figure 1.3 A geodesic manifold .............................................................................................. 14 

Figure 1.4 Interpretation of resting-state functional connectivity gradients across various 

brain regions............................................................................................................................ 19 

Figure 2.1 Data-driven characterization of RSFC patterns in somatosensory cortex and 

somatotopic subregions ........................................................................................................... 45 

Figure 2.2 Associations between anatomical hierarchies of S1 and metrics .......................... 47 

Figure 2.3 Association between dominant gradient and T1w/T2w across left and right 

somatotopic S1 subregions ..................................................................................................... 48 

Figure 2.4 Evidence of functional boundaries between Brodmann areas ............................... 50 

Figure 2.5 Agreement between K-means clusters and Brodmann areas ................................ 51 

Figure 2.6 Spatial analysis of dominant thalamocortical connectivity between ipsilateral 

thalamus and functional subdivisions of S1............................................................................ 53 

Figure 3.1 Joint gradient characterization of functional connectivity fingerprinting in humans 

and marmosets ........................................................................................................................ 84 

Figure 3.2 Positioning the human and marmoset DMN along the somatomotor-to-DMN joint 

gradient ................................................................................................................................... 88 

Figure 3.3 Interspecies comparison of dlPFC-PCC-PPC internode functional connectivity . 89 

Figure 3.4 Functional connection topography of human and marmoset DMN nodes ............ 91 

Figure 3.5 Details of mPFC-centric joint gradient in marmosets ........................................... 93 



 

xv 

 

Figure 4.1 Charting lesion metrics across SPMS patients .................................................... 130 

Figure 4.2 Voxel-wise association between diffusion tensor metrics and T1w intensity ..... 131 

Figure 4.3 Visualizing the thalamus of subjects with lesions with T1w and rsfMRI images133 

Figure 4.4 Visualizing resting-state features of subject D .................................................... 134 

Figure 4.5 Thalamic lesion Z scores across 26 resting-state features in subjects with lesions

............................................................................................................................................... 136 

Figure 4.6 Within scan session associations between resting-state features and diffusion 

tensor features ....................................................................................................................... 138 

 



 

xvi 

 

List of Abbreviations and Symbols 

A1 

ACF 

AD 

AN 

Primary auditory cortex 

Autocorrelation function 

Axial diffusivity 

Anterior nucleus 

  

BOLD Blood oxygen level-dependent signal 

  

CBF 

CON 

Cerebral blood flow 

Cingulo-opercular network 

  

dlPFC 

DMN 

DSC 

DTI 

Dorsolateral prefrontal cortex 

Default-mode network 

Dice similarity coefficient 

Diffusion tensor imaging 

  

FA 

FD 

FEF 

fMRI 

FPN 

FWHM 

Fractional anisotropy 

Framewise displacement 

Frontal eye fields 

Functional magnetic resonance imaging 

Frontoparietal network 

Full-width half max 

  

HCP Human Connectome Project 

  

ICA 

IL 

Independent component analysis 

Internal lamina 

  

LGN 

LH 

LL 

LP 

Lateral geniculate nucleus 

Left hemisphere 

Lower limb 

Lateral posterior 

  

M1 

MD 

MGN 

MNI 

mPFC 

MR 

MRI 

MS 

Primary motor cortex 

Medial dorsal 

Medial geniculate nucleus 

Montreal Neurological Institute 

Medial prefrontal cortex 

Magnetic resonance 

Magnetic resonance imaging 

Multiple Sclerosis 



 

xvii 

 

MT Middle temporal visual area 

  

NHP 

NIH 

Non-human primate 

National Institutes of Health 

  

PCC 

PD 

PET 

PO 

PPC 

PuA 

PuI 

PuL 

PuM 

Posterior cingulate cortex 

Parkinson’s Disease 

Positron emission tomography 

Posterior nucleus 

Posterior parietal cortex 

Anterior pulvinar 

Inferior pulvinar 

Lateral pulvinar 

Medial pulvinar 

  

RD 

RH 

ROI 

RSFC 

rsfMRI 

RSN 

Radial diffusivity 

Right hemisphere 

Region of interest 

Resting-state functional connectivity 

Resting-state functional magnetic resonance imaging 

Resting-state network 

  

S1 

S2 

SD 

SEM 

SNR 

SPMS 

Primary somatosensory cortex 

Secondary somatosensory cortex 

Standard deviation 

Standard error of the mean 

Signal-to-noise ratio 

Secondary-progressive Multiple Sclerosis 

  

T 

tSNR 

Trunk 

Temporal signal-to-noise ratio 

  

UL 

UWO 

Upper limb 

Western University 

  

V1 

V2 

VA 

VM 

VP 

Primary visual cortex 

Secondary visual cortex 

Ventral anterior 

Ventral medial 

Ventral posterior 



 

xviii 

 

List of Appendices 

Appendix A: Human Ethics for Chapter 4 ............................................................................ 171 

 

  



1 

 

Chapter 1  

1 General Introduction 

1.1 Brain Organization 

The human brain is an extraordinarily complex, interwoven, and scaffolded structure, 

serving as a substrate for the human mind while coordinating most of the body’s critical 

functions. Central to understanding brain function is the concept of brain organization, 

broadly referring to the blueprint, or spatial arrangements of cortical areas, and their 

connections that underlie these functional processes. The brain works concurrently at 

different organizational levels, from microscale – cellular scale of neurons that form the 

basic building blocks of brain architecture – to macroscale – the aggregation of these 

building blocks that form larger cortical areas. Brain organization through varying 

connectional properties enables integration of information that likely gives rise to unique 

brain functions and human behaviours (Jbabdi et al. 2013). Indeed, individualized 

connectivity mapping has predictive value for localizing functional brain regions in both 

healthy (Tavor et al. 2015) and clinical populations (Wang et al. 2015), on a single subject 

basis. Furthermore, these connectivity maps can be used to characterize inter-individual 

connectivity differences (Finn et al. 2015) and their associations to human behaviour (Kong 

et al. 2019). Although immense progress has been made in the field of brain mapping thus 

far, the need to elucidate finer-grained details of brain organization continues to be a major 

goal within clinical and cognitive neuroscience. 

1.1.1 Microscale architecture 

In the early 20th century, the first characterization of human cerebral cortex microstructure 

was performed by describing the spatial distribution of neuronal cell bodies – referred to 

as cytoarchitecture – and myelinated nerve fibers – referred to as myeloarchitecture – in 

the works by Korbinian Brodmann and the Vogts, respectively (Brodmann, 1909; Vogt 

and Vogt, 1919). These features of microstructure revealed sharp demarcations between 

areas of the brain, describing compartmentalization of the cerebral cortex into many 

seemingly homogeneous cortical areas. At the time, the prevalent notion was that each 
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cortical area ascribed to a unique role, thus reinforcing the importance of each region for 

brain function. Although the Vogts described 185 cortical areas and Brodmann described 

only 43, the Vogts believed that Brodmann may have underestimated the number of 

cortical areas as they were convinced, upon further inspection of cyto- and 

myeloarchectonic maps, that boundaries coincided across imaging techniques (or 

modalities). Other contemporaries at this time also developed their own accounts of 

cerebral cortex cytoarchitecture, providing their own brain maps consisting of 150 areas 

(more than what Brodmann had estimated). These later contributions noted that some 

boundaries between cortical areas were more subtle, which ultimately led to 

inconsistencies in the reported number of brain areas (Von Economo and Koskinas, 1925). 

Continued research efforts have aimed to refine cytoarchitectonic brain maps by mitigating 

problems of inter-observer bias and inter-subject variability, and have led to subsequent 

iterations of cytoarchitectonic cortical area maps (Amunts et al. 2005; Caspers et al. 2006; 

Scheperjans et al. 2008; Caspers et al. 2013). It is important to note that evidence for some 

boundaries may be predicated on more complicated and subtle transitional patterns 

determined by quantitative methods, rather than sudden changes in cytoarchitecture that 

are qualitatively visible in these maps. For example, this is observed in the proposed 

boundary between secondary visual cortex (V2, or BA 18) and dorsally adjacent area 

hOc3d (Kujovic et al. 2013).  

This ambiguity of boundary issues was acknowledged by Percival Bailey and Gerhardt von 

Bonin who proposed that parcellations did not fundamentally acknowledge the apparent 

heterogeneity of cytoarchitectonic data, suggesting that brain organization is optimally 

represented by gradual transitions, as opposed to homogeneous cortical areas (Bailey and 

von Bonin, 1951). They emphasized that although boundaries between Brodmann areas 17 

and 18 are very clear, and boundaries between areas 18 and 19 are relatively vague, all 

three areas are nonetheless considered unique, providing a misleading representation of the 

data. That is, dividing the brain into distinct cortical areas does not reflect the extent to 

which these areas differ from one another, thus warranting further consideration on how 

best to represent brain organization. 
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Convergence of multimodal evidence towards the goal of defining cortical areas is another 

important factor in understanding brain organization. The integration of more modern 

techniques, such as quantitative in vitro receptor autoradiography (Zilles et al. 2002; Zilles 

et al. 2004; Amunts et al. 2010; Zilles and Amunts, 2009), gene expression assays 

(Hawrylycz et al. 2012), and positron emission tomography (PET) (Hansen et al. 2022), 

have provided different interpretations of brain architecture based on neurotransmitter 

receptor density, cortical gene expression, and mapping of neurotransmitter systems, 

respectively. Although some of these findings are consistent with cyto- and 

myeloarchitecture descriptions of brain parcellations, others suggest evidence towards the 

further division of these parcels into finer-grained areas.  

Another fundamental property of brain organization is neural connectivity. Each 

cytoarchitectonic area corresponds to a different connectivity pattern with other cortical 

and deep brain areas, implying that connections observed on either side of a boundary will 

correspond to different pathways. Although this was primarily demonstrated ex-vivo 

within motor and somatosensory cortices of non-human primates [Burton et al.1995; 

Krubitzer et al. 1995], this concept is generally well-accepted in the field. More recently, 

congruent findings linking similarity of cytoarchitecture to anatomical connections have 

been demonstrated as a general governing principle across mammalian species, further 

emphasizing the importance of connectivity to cortical areas (Goulas et al. 2019). 

1.1.2  Macroscale architecture 

In the modern era of non-invasive, in-vivo neuroimaging, magnetic resonance imaging 

(MRI) has produced many metrics for indexing the brain’s macroscale architecture – that 

is, on the scale of whole brain areas. Such metrics include, but are not limited to, cortical 

morphology (a surrogate of cyto- and myeloarchitecture), and large scale communication 

pathways. Such macroscale measurements have afforded a similar breadth of information 

that has been shown to reflect brain architecture outlined on the microscale level. For 

example, proposed MRI myelin surrogates have enabled clear demarcation of heavily 

myelinated regions of sensory areas that have been described in microscale architecture 

(Glasser et al. 2011). Furthermore, MRI-myelin surrogates have also demonstrated utility 

beyond the resolution of brain areas, specifically examining columnar and inter- and intra-
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brain area profiles (Dinse et al. 2015; Geyer et al. 2011; Aggarwal et al. 2015; Glasser et 

al. 2011; Augustinack et al. 2014). However, some early in-vivo brain mappings of gyri 

and sulci (Lancaster et al. 2000; Tzourio-Mazoyer et al. 2002) do not correspond well with 

microscale architecture, despite providing consistent inter-subject landmarks that are 

useful in other applications (Robinson et al. 2014). For example, cortical morphology does 

not delineate boundaries between Brodmann area 4 and premotor cortex, whereas evidence 

of this is observed with microscale architecture (Geyer 2005). 

1.2 Macroscale Connectivity 

In-vivo structural and functional connectivity measures – referring to the estimation of 

large-scale connections between brain areas – are perhaps some of the most popular MRI 

methods used to study macroscale brain architecture. These include both diffusion 

weighted imaging and resting-state functional magnetic resonance imaging (fMRI).  

Diffusion weighted imaging is an MRI technique that is sensitive to the diffusion of water 

molecules within various compartments of the brain (Le Bihan and Breton, 1985). 

Exploitation of restricted water diffusion processes have afforded the opportunity to 

delineate the orientation of axon fiber bundles – that is, the direction of anatomical 

connections, and subsequently using computational approaches, have permitted for 

estimations of connections between brain regions. This process, commonly referred to as 

tractography, has allowed for estimations of prominent fiber bundles (Jbabdi et al. 2015), 

and in-vivo annotation of the thalamus into coarse nuclei (Behrens et al. 2003). However, 

one criticism of tractography is the occasional estimation of false-positive tracts (Maier-

Hein et al. 2017).  

An alternative technique to infer macroscale brain connectivity is using resting-state 

functional connectivity (RSFC), which measures the statistical correlation of blood 

oxygen-level dependent signal (BOLD) between brain regions while the participant is at 

‘rest’ (Biswal et al. 1995). Here, ‘rest’ refers to a task-free state in which the participant is 

asked to either stare at a fixed location, or keep their eyes closed without focusing their 

thoughts on anything in particular. BOLD relies on a neurovascular coupling effect that 

links neuronal activity to changes in cerebral blood flow and oxygenation.  The BOLD 
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signal provides an indirect measure of neural activity that can be obtained using MRI. As 

resting-state fMRI (rsfMRI) is only concerned with association of inter-region BOLD 

activity, it follows that inference of connections cannot determine the nature of the 

anatomical connection. For example, rsfMRI would not be able to deduce whether 

observed connectivity arises due to polysynaptic connections, or monosynaptic connection. 

Herein, connectivity inferred by rsfMRI will be referred to as resting-state functional 

connectivity, or simply, functional connectivity. In this thesis, all three experiments 

(Chapters 3 through 5) will focus on the technique of rsfMRI as a method to provide 

inference on macroscale connectivity. 

1.2.1 Blood oxygenation level-dependent signal (BOLD) 

Neural brain activity has a high energy demand, which consequently requires a constant 

and large supply of oxygen to the site of activity. This supply is provided by hemoglobin, 

an iron-rich protein found in red blood cells that supplies oxygen when metabolic demand 

increases. Oxygen-saturated hemoglobin is referred to as oxyhemoglobin, whereas non-

saturated hemoglobin is referred to as deoxyhemoglobin after it has released at least one of 

its four bounded oxygen molecules. To achieve a sufficient supply of oxygen, a cascade of 

metabolic events occurs and includes, initial vasodilation leading to increases in cerebral 

blood volume, a subsequent increase in blood flow and oxyhemoglobin (significantly more 

than is required by the active neurons), and finally a decrease in deoxyhemoglobin. This 

leads to a local increase in the ratio of oxyhemoglobin to deoxyhemoglobin (or blood 

oxygenation levels) in the veins and capillaries near the neural activity site. These 

fluctuations in blood oxygenation are represented in fMRI BOLD signals (Ogawa et al. 

1990). 

In fMRI, T2*-weighted images are the conventional contrast used to track changes in blood 

oxygenation. In the context of BOLD, the primary driver of the T2*-weighted contrast is 

hemoglobin. More specifically, oxyhemoglobin is diamagnetic, and deoxyhemoglobin is 

paramagnetic (Pauling and Coryell, 1936). With neural activity, increases in blood 

oxygenation leads to (1) a local shift in magnetic susceptibility, and (2) an increase in T2 

of the blood, such that T2*-weighted signal increases (Thulborn et al. 1982). Taken 

together, changes in blood oxygenation modulates the T2*-weighted signal, thus allowing 
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for the inference of connectivity by assessing the synchrony of two brain area’s BOLD-

modulated time series. Figure 1.1 provides a schematic of the BOLD response as measured 

by fMRI. 

 

Figure 1.1 A simple depiction of the BOLD response as measured in fMRI 

The BOLD response begins with increased neural activity that initiates a complex 

neurovascular coupling cascade. This causes the hemodynamic response resulting in 

changes to numerous mediators, ultimately leading to changes in blood oxygenation 

levels (oHb:dHb). Dynamic changes in local deoxyhemoglobin concentrations modulates 

T2*-weighted BOLD contrast which is measured by fMRI. Known mediators of the 

hemodynamic response includes arterial cerebral blood volume (CBVa), cerebral blood 

flow (CBF), venous cerebral blood volume (CBVv), cerebral vascular reactivity 

(CMRO2), and oxygen extraction fraction (OEF). 

1.2.2 Functional magnetic resonance imaging paradigms 

The two most common paradigms considered when collecting fMRI data are (1) task-based 

and (2) resting-state. In the former, fMRI data is collected while participants are performing 

a cognitive task in the MRI scanner. Here, the goal is to identify brain regions that are 

neuronally activated during the experimental paradigm to subsequently infer a brain area’s 
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functional role. Many tasks have been developed and investigated to probe the vast range 

of cognitive processes and includes, but is not limited to, somatomotor, motor, visual, 

auditory, working memory, and emotional processes (Barch et al. 2013). The second 

paradigm, commonly referred to as resting-state fMRI (task-free), requires the participant 

to be scanned in a state of rest whereby they are told to either keep their eyes-closed, or 

open and fixated on a crosshair while letting their thoughts wander freely. As will be 

discussed in more detail in subsequent sections, rsfMRI provides a convenient way to probe 

brain organization without requiring external stimuli. Participants typically undergo 

multiple 10–15-minute scans in order to improve statistical power of analyses, especially 

in research settings. 

In 1995, Biswal and colleagues measured resting-state fMRI in humans and found that low 

frequency (<0.1 Hz) BOLD time series of separate motor areas were strongly correlated 

with one another (Biswal et al. 1995), demonstrating the first use of rsfMRI to investigate 

functional connectivity. Subsequent studies have since used rsfMRI to map large-scale 

resting-state brain networks composed of distributed brain areas (Beckmann et al. 2005; 

Greicius et al. 2003; De Luca et al. 2005; Fox and Raichle, 2007; Fox et al. 2005), while 

demonstrating their replicability in subjects (Damoiseaux et al. 2006) and correspondence 

with brain activations from task-based paradigms (Smith et al. 2009). Although it is not a 

direct measure of anatomical connectivity, RSFC appears to provide insight into 

macroscale connectivity architecture (Vincent et al. 2007; Honey et al. 2009; Adachi et al. 

2012) and presents itself as a viable in vivo tool for probing brain organization. Resting-

state fMRI provides a unifying approach to probe whole brain organization in a single 

imaging session, which would otherwise not be possible with task-based fMRI paradigms. 

1.2.3 The connectome 

Resting-state functional connectivity investigations have often opted to use the 

“connectome” framework for studying brain organization (Sporns and Honey, 2006). In 

this framework, brain areas are referred to as nodes, and connections between brain areas 

as edges. Within the realm of rsfMRI, nodes are defined by sets of brain areas, or, “regions 

of interest (ROIs)”, and mean time series values can be extracted from each ROI to 

represent the neural activity of the brain area. Subsequently, edges between pairs of ROIs 
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can be computed using the Pearson correlation coefficient – a statistical measure of linear 

dependency between two time series – as a way to assess the strength of their functional 

connectivity. Other edge metrics have also been proposed with the goal of achieving a more 

direct measure of connectivity, such as partial correlation (Marrelec et al. 2006), or to 

determine polarity of connections with causal inference (Friston et al. 2003). Generally, 

the field has leaned towards an edge-centric view of the human connectome, oftentimes 

investigating edge properties of brain connectivity, and applying this knowledge to better 

understand clinical populations.  

Although historically edges have been the main focus when investigating resting-state 

fMRI data, there has been some open interest to assign values to nodes of the connectome. 

Here, the aim is to leverage edge features to provide values to every node in the 

connectome. In practice, this has been widely applied in connectivity literature to discover 

canonical “rich-club” organization of the human connectome (van den Heuvel and Sporns, 

2011), or other measures of graph centrality (Sporns et al. 2007). In general, these measures 

elucidate nodes that express a higher degree of connectivity in the connectome, which has 

been postulated to underlie important integration regions of the brain. An alternative 

approach relies on spectral graph methods to assign values to each node, such that network 

proximity of the node is preserved. In other words, nodes that are closer together in the 

network are assigned relatively similar values. This allows the possibility to characterize 

the heterogeneity of connectivity patterns across the cerebral cortex, the subcortex, and 

associated subareas (Margulies et al. 2016; Tian et al. 2020; Haak et al. 2018; Vos de Wael 

et al. 2018). This is achieved by generating very fine-grained connectomes – that is, nodes 

are represented by individual voxels (the highest resolution provided by MRI), as opposed 

to a cortical area – followed by application of these spectral graph methods to assign values 

to each voxel (or node). Intuitively, this provides an understanding of how connectivity 

patterns spatially change over a region and provides additional insight into parcel 

heterogeneity of a brain region. Herein, voxels or nodes that have been characterized in 

this way are collectively referred to as “connectivity gradients” due to their ability to 

intuitively map changes in connectivity patterns over a ROI. More details on the 

mathematical formulation and intuition of these spectral graph methods will be discussed 
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in subsequent sections: 1.3.3-1.3.6. In this thesis, I work with resting-state fMRI to estimate 

connectivity gradients and explore their applications across different areas of neuroscience. 

1.3 Connectivity Representations 

Brain representations are typically classified under one of two paradigms: (1) condensing 

brain organization into a mosaic of binary areas, and (2) characterizing brain organization 

as smoothly varying properties over an area. The former is referred to as brain parcellation 

and assumes that the brain is composed of a mosaic of structurally and functionally distinct 

patches where the boundaries between these patches are marked by rapid transition zones. 

This viewpoint is akin to observations by Brodmann and the Vogts who were strong 

advocates of brain parcellations. The latter representation is commonly referred to as 

gradients, and contrary to parcellations, proposes that features of structure and connectivity 

may vary gradually over the spatial extent of a region, as was advocated by Percival Bailey 

and Gerhardt von Bonin (Bailey and von Bonin, 1951). The application of one 

representation over the other offers different granular levels of insight into brain 

organization. Historically, a majority of studies have opted to use the brain parcellation 

representation due to its offer of a more coarse and simplistic view of brain connectivity 

that increases computational, statistical, and interpretational efficiencies (Eickhoff et al. 

2018). For example, the number of statistical comparisons performed in a connectivity 

analysis can be controlled within the research design by selecting the number of generated 

areas in a brain parcellation. However, while the general assumption is that a brain parcel 

is functionally specialized and by extension should express a homogeneous connectivity 

pattern, this is almost never the case (van den Heuvel and Hulshoff Pol, 2010; Van Essen 

and Glasser, 2018). Furthermore, if one is interested in voxel-level effects of pathology, 

then such coarse brain representations may lead to the blurring of a signal of interest over 

the entire parcel. Although studies often investigate RSFC through the lens of either 

parcellations or gradient representations, it is important to note that the two are not 

mutually exclusive, and together may provide unique perspectives for studying brain 

organization. 
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1.3.1 Parcellation 

The goal of brain parcellation is to subdivide the brain into spatially discrete regions by 

applying data-driven methods to connectivity “fingerprints”. Each brain region has its own 

connectivity fingerprint that can be calculated by computing the functional connectivity of 

itself to all other brain areas. In doing so, these fingerprints can be generally used to 

summarize a region’s connectivity properties, whose unique characteristics have been 

postulated to underlie specific brain functions (Passingham et al. 2002). For example, 

consideration of connectivity fingerprints along the primary motor cortex reveals a clear 

dorsal-to-ventral separation. Specifically, different points along the motor strip express 

differential RSFC fingerprints, presumably underlying the different anatomical regions 

associated with somatotopy (Penfield and Rasmussen, 1950). It follows that parcellation 

of the primary motor cortex may reveal relevant somatotopic divisions and can be used as 

a more sensitive measure of motor-related behaviors. In this way, improvement of brain 

parcellations to better capture biologically-plausible brain functions motivates finer-

grained descriptions of brain areas. 

Methodologically, brain parcellation has been primarily achieved in one of two ways: (1) 

by clustering connectivity fingerprints or time series of voxels into brain areas (Power et 

al. 2011; Yeo et al. 2011; Craddock et al. 2013), or (2) by using boundary-mapping 

approaches to deduce brain areas based on abrupt changes in connectivity (Cohen et al. 

2008; Nelson et al. 2010; Hirose et al. 2012; Wig et al. 2014; Laumann et al. 2015; Gordon 

et al. 2016). Other parcellation techniques, such as independent component analysis, or 

Bayesian modeling, have also been proposed as ways to achieve “soft” parcellations of the 

brain, whereby brain areas or networks are weighted and can therefore overlap with one 

another (Beckmann et al. 2005; Harrison et al. 2015). Together, these techniques have been 

widely applied to connectivity data to achieve whole brain, and cortical parcellations, in 

addition to parcellations of smaller brain areas, such as the thalamus (Zhang et al. 2008) 

and orbitofrontal cortex (Kahnt et al. 2012). Although there are many brain parcellation 

methodologies, each method comes with its own assumptions, strengths, and weaknesses, 

resulting in different parcellation schemes when applied to the same dataset (Arslan et al. 

2018). Figure 1.2 shows four common whole brain parcellations that were generated using 
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different methods highlighting differences in granularity (i.e., numbers of cortical areas) 

and differences between parcellation schemes. 

 

Figure 1.2 Examples of resting-state functional connectivity derived brain 

parcellations 

Examples of brain parcellations. (A) resting-state networks (Yeo et al. 2011), (B) resting-

state functional connectivity derived parcellation using boundary mapping (Gordon et al. 

2016), (C) multi-modal (Glasser et al. 2016), and (D) resting-state functional 

connectivity derived parcellation using a gradient-weighted Markov random field 

approach (Schaefer et al. 2018) 

Optimization of brain parcellations have often focussed on maximizing within-parcel 

homogeneity (Eickhoff et al. 2015). In principle, this parcellation solution would provide 

a set of brain regions that maximally expresses all connections inherent to the brain. In 

other words, voxels constituting a parcel should ideally possess very similar connectivity 

fingerprints. Additionally, maximizing parcel homogeneity also agrees with the theory that 

functionally specialized brain regions must be constrained by a unique set of anatomical 

connections. This means that a brain region that expresses differential connectivity patterns 

may have multiple brain functions, and further segregation should be considered. In a 

recent rsfMRI benchmarking paper, Dadi and colleagues showed that functionally-driven 

parcellations derived from resting-state fMRI data led to better prediction accuracies of 

psychological and clinical traits of individuals, compared to predictions using structurally-
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derived parcellations (Dadi et al. 2019). Additionally, Schaeffer and colleagues developed 

a novel rsfMRI parcellation that demonstrated best performance, compared to all other 

previous atlases, based on parcel homogeneity, and importantly, demonstrated consistency 

with histological boundaries achieved by Glasser and colleagues’ multimodal parcellation 

(Schaeffer et al. 2018; Glasser et al. 2016). Together, this shows that optimisation of parcel 

homogeneity indirectly improves other validations measures, such as clinical and human 

behaviour prediction accuracy and converges with multimodal evidence. 

1.3.1.1 Challenges 

Numerous brain parcellations have been proposed, with dimensionalities varying from the 

seven canonical large-scale networks (Yeo et al. 2011), to hundreds of brain areas (Glasser 

et al. 2016). However, there appears to be no consensus on which parcellation is optimal, 

largely due to the absence of a ground truth (recall that even when considering 

microstructure architecture, there were differing opinions related to brain parcellation, in 

part, due to inter-observer bias). In the absence of a gold standard metric for validation of 

brain representations, the field has often sought to use various indirect metrics to attempt 

to validate brain parcellations, such as clinical and/or human behaviour prediction 

accuracy, within-parcel homogeneity, test-retest reliability, and convergence of inter-

modal evidence. Moreover, although brain parcellations with maximized within-parcel 

homogeneity have offered biologically plausible representations of known 

cytoarchitecture, there is evidence that brain regions do have some degree of inherent 

heterogeneity (van den Heuvel and Hulshoff Pol, 2012; Van Essen and Glasser, 2018). 

Even with the application of finer-grained parcels, RSFC is not perfectly homogenous, 

suggesting that brain regions can serve multiple functions. This looming problem of brain 

heterogeneity warrants exploring alternative brain representations that can naturally 

characterize such diverse connections. Describing these diverse connections at finer-

grained resolutions is pertinent to provide a detailed account of inter-subject variability in 

brain organization that is known to arise over the course of development, through 

rehabilitation, and owing to other genetic/biological determinants. 
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1.3.2 Connectivity gradients 

The goal of gradient representations is to characterize overlapping, spatial variations of 

connectivity patterns over a region of interest. This overcomes issues of parcel 

homogeneity by considering connectivity measures on the voxel-level resolution of the 

fMRI image. It also presents a way to consider multiplicity of connectivity principles over 

a region of interest, broadly referring to the multiple overlapping sets of brain connectivity 

principles that underlie many brain regions, such as, somatosensory, visual, and entorhinal 

cortex, striatum, and the hippocampus (Jbabdi et al. 2013). In this section, I focus on 

methodologies underlying connectivity gradients and its applications, specifically to 

functional connectivity, as these two aspects are the focus of this thesis. 

1.3.2.1 Intuition of gradient methods 

The motivation underlying gradient representations can be reframed as a data 

dimensionality reduction problem applied to voxel-resolved connectivity matrices. Here, 

voxel resolution of connectivity fingerprints are considered, and ensuing gradient 

representations therefore provide the highest possible details of brain organization that can 

be afforded by MRI. However, a common problem with using voxel-resolved connectivity 

matrices is that they typically span very large sizes that complicate computational and 

statistical analyses (i.e., performing a manifold learning algorithm on the neocortex, 

accounting for >64,000 vertices, may require 32-64 GB of RAM). Consider the following 

simplified example: a toy brain model consisting of a meager 1,000 voxels, in which case 

a connectivity fingerprint for a single voxel would correspond to a dimensionality of 1,000. 

To gain full appreciation for the spatial heterogeneity of the connectivity fingerprints of all 

the voxels together, one can naïvely visualize connectivity patterns for each of the 1,000 

voxels separately. Of course, this process is both tedious and impractical, and in the end, 

only provides a qualitative understanding of the underlying data. Now consider that this 

problem is further exacerbated when using real brain data that may span tens of thousands 

of voxels; a typical mesh brain model of the cortex that assumes 2 mm spacing across left 

and right cerebral cortex hemispheres consists of >64,000 vertices (or brain coordinates), 

resulting in a connectivity matrix of size 64,000 by 64,000 (Glasser et al. 2013). Taken 

together, this raises the necessity to leverage methodological tools that can condense such 
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high dimensional data into a subset of features that can preserve the subtle nuances of 

voxel-resolved connectivity patterns. Fortunately, high-dimensional data – that is, 

connectivity patterns – are known to lie on a low-dimensional manifold that can be 

estimated and used to characterize such complex and heterogeneous connectivity patterns. 

 

Figure 1.3 A geodesic manifold  

The left image shows points sampled (black dots) from a 2D S-manifold (grey). The red 

line indicates the Euclidean distance between two points, whereas the dark blue line 

indicates the geodesic distance. The middle image shows a nearest-neighbour graph that 

connects sampled points that are closest to one another, and by following the edges 

provides an approach to estimate the manifold shown in grey, on the left. The right image 

shows sampled points assigned with arbitrary values based on their projections onto the 

estimated manifold, revealing a new coordinate system that is illustrated by the colour-

coded scheme, and can be used to infer the geodesic distance between pairs of points. 

In many cases, one can utilize a graph (a set of nodes connected by edges) to approximate 

the low-dimensional manifold and its underlying structure. For example, the graph in 

Figure 1.3 shows observed data points in 2D that exist along a 1D manifold, and by 

following graph edges of “nearest-neighbour” points, it allows for estimation of the 1D 

manifold of geodesic distances. In this example, the 1D manifold serves as an intrinsic 

coordinate system with geodesic distance between points (i.e., distance along the manifold 

surface) characterizing the degree of similarity between different observed points. 

Although this is a simple example of data dimensionality of 2D data projected onto a 1D 
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space, this intuition can be generalized to compress connectivity fingerprints of high 

dimensionality into smaller subspaces. Such subspaces – herein, referred to as gradients – 

provide an intrinsic coordinate system to understand the heterogeneity and multiplicity of 

connectivity patterns that arise within a brain area. 

1.3.2.2 Gradient estimation 

To estimate connectivity gradients, a graph must be constructed from resting-state fMRI 

data. Formally, a graph is defined by 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of voxels from a brain 

area, and 𝐸 is a set of edges. [Note, in the context of this thesis, 𝑉 will refer to a set of 

voxels in the current section and in Chapter 4, but will refer to a set of vertices on a cortical 

surface in Chapters 2 and 3. The two terms (voxels and vertices) are interchangeable in this 

work]. An edge, 𝐸𝑖𝑗, is a similarity measure between connectivity fingerprints of any two 

voxels 𝑖 and 𝑗. Here, connectivity fingerprints are used to calculate sets of edges between 

all voxels, as the focus of this work is on interpreting connectivity principles underlying a 

region. Neuroimaging literature has proposed many plausible similarity measures that can 

be used to compare connectivity fingerprints, including: cosine similarity measures (used 

in Chapters 3 and 4; Margulies et al. 2016), eta2 coefficient (used in Chapter 2; Cohen et 

al. 2008; Haak et al. 2018), and normalized cosine similarity (Vos de Wael et al. 2020). 

Graph, 𝐺 can be represented by the graph Laplacian (a matrix representation) as follows: 

𝐿 = 𝐷 − 𝐴  

where 𝐴 denotes the weighted adjacency matrix of all edges in the graph (𝐴𝑖𝑗 = 𝐸𝑖𝑗, this is 

a similarity matrix generated from all voxel-wise connectivity fingerprints) and 𝐷 denotes 

the degree matrix, the sum of all columns in 𝐴. 

𝐷𝑖𝑗 = ∑ 𝐴𝑖𝑗

𝑗

 

Using the graph Laplacian, 𝐿, the next aim is to estimate a low dimensional subspace for 

connectivity fingerprints that each voxel (or vertice) can be projected onto. Again, the goal 

is to map voxels onto a subspace such that local information is preserved (in other words, 



16 

 

pairs of voxels with very similar connectivity fingerprints are situated close to one another, 

and conversely, dissimilar voxels are far away on the manifold). This intuition is optimized 

as follows: 

�̂� = {𝑈(𝑦)} , 𝑈(𝑦) = ∑ 𝐴𝑖𝑗(𝑦𝑖 − 𝑦𝑗)2

(𝑖,𝑗)∈𝐸

 

where �̂� is the vector that minimizes the cost function, 𝑈(𝑦). Note, that 𝐴𝑖𝑗 measures the 

similarity between any two voxels, as such this objective function weights voxels with 

higher similarity as being relatively higher compared to dissimilar voxels, forcing similar 

voxels closer together in the vector �̂�. 

After further optimization, this optimization problem can be written as:  

�̂� = {𝑈(𝑦)} = min
𝑦

{𝑦𝑇𝐿𝑦 + 𝜆(1 − 𝑦𝑇𝑦)} 

and the solution to this minimization problem is: 

𝐿𝑦 = 𝜆𝑦 

The above equation is defined as the standard eigenvalue problem for the graph Laplacian 

matrix 𝐿. However, this eigenvalue problem is often biased by voxels with high degrees, 

𝐷𝑖𝑗, forcing these voxels to group together in 𝑦. This is often an uninteresting feature and 

is mitigated by solving for other variations of the graph Laplacian (random walk 

normalized Laplacian): 

𝐿𝑟𝑤 =  𝐷−1𝐿 

In this graph Laplacian, 𝐷−1 normalizes the high degree voxels, leading to the following 

standard eigenvalue problem: 

𝐿𝑦 = 𝜆𝐷𝑦 

The solution to this eigenvalue problem provides a new subspace of 𝑘 eigenvectors (or 

gradients). This is also the same procedure used in the Laplacian eigenmap algorithm (used 
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for gradient estimation in Chapters 2 to 4) (Belkin and Niyogi, 2003). The subspace 

spanned by its eigenvectors forms a 𝑉 × 𝑘 matrix labeled as 𝑌: 

𝑌 = [𝑦0|𝑦1| … |𝑦𝑘−1] 

The eigenvectors are sorted from smallest to highest based on their eigenvalues. In this 

way, the lowest eigenvalue is always 0 corresponding with the first eigenvector, 𝑦0 which 

is always constant given that the graph is connected (every pair of voxels are connected to 

one another). As such, 𝑦0 is uninformative and therefore only eigenvectors 𝑦1 and higher 

are considered. 

1.3.2.3 Manifold coordinate system 

Effectively, gradient estimation methods project each voxel’s connectivity fingerprint onto 

a new coordinate system characterized by the manifold underlying all voxels’ connectivity 

fingerprints (i.e., voxels with similar connectivity patterns will remain nearby in the 

reduced space). For example, eigenvector 𝑦1 corresponds to the primary axis of variation 

along the estimated manifold, and distance between voxel pairs are interpreted as their 

geodesic distance. It follows that remapping of 𝑦1 onto its brain area provides a qualitative 

way to visualize spatial changes in connectivity patterns over that area. Note that similar 

to boundary-mapping techniques, estimated gradients can characterize sharp 

discontinuities, while also being able to characterize areas of true parcellations (i.e., if two 

voxels have identical connectivity patterns, then they will be assigned the exact same 

coordinates on this manifold). In addition to 𝑦1, subsequent eigenvectors (i.e., 𝑦2, … , 𝑦𝑘−1) 

provide other dimensions along the connectivity fingerprints’ manifold corresponding to 

axes with lower variation, and may describe other overlapping connectivity principles that 

exist within that area. Finally, unlike parcellations, gradient estimates provide a 

quantitative framework to assess the relationship of voxel-resolved connectivity 

organization to other modalities, which would otherwise not be possible when considering 

the high dimensionality nature of such connectivity fingerprints. In Chapter 2, I investigate 

the heterogeneity and multiplicity of the human somatosensory cortex using gradient 

estimation. 
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Recent work has extended this framework to merge connectivity fingerprints across 

individuals – referred to as joint embeddings. Briefly, this is done by expanding the graph 

to also include connectome information of other individuals, but importantly, also 

considers edges between inter-subject voxels (Nenning et al. 2020). In doing so, gradient 

estimation procedures provide a coordinate system that considers connectomes of multiple 

individuals simultaneously, and subsequently allows ways to conceptualize connectivity 

architecture over the human lifespan (Bethlehem et al. 2020), and in disease (Hong et al. 

2019; joint embeddings can be used here to facilitate interindividual comparisons instead 

of using Procrustes shape analysis to align inter-subject gradients). This framework has 

also been generalized to study connectivity architectures across species by considering 

voxel-wise connectivity fingerprints defined using a set of homologous cortical areas (Mars 

et al. 2018), and considers edges between inter-species voxels during the graph 

construction process. Subsequent gradient estimation provides a coordinate system that 

aligns both species’ connectivity patterns, as demonstrated in macaques and humans (Xu 

et al. 2020), and as I will show in Chapter 3, with marmosets and humans to specifically 

study the cross-species default-mode network. 

Macroscale gradients have been studied in numerous neuropsychiatric illnesses and 

disorders, such as schizophrenia and autism disorder (Hong et al. 2019; Dong et al. 2020; 

Tian et al. 2019). However, no investigations have used gradient estimations to investigate 

connectivity amidst focal pathology, for example by demyelinating Multiple Sclerosis 

(MS) lesions. Again, gradient estimation of subcortical structures provides a qualitative 

framework to assess voxel-wise effects of pathology on connectivity architecture in single 

subjects. In Chapter 4, I investigate the impacts of focal MS thalamic lesions on thalamic 

connectivity architecture. 

1.3.2.4 Biological interpretation 

First application of gradients on the whole cerebral cortex with RSFC revealed the primary 

organizational axis spanning unimodal to transmodal association cortices, whereas the 

secondary axis spanned visual/auditory to somatosensory/motor cortices (Margulies et al. 

2016). It was postulated that these two axes provided a coordinate system that agreed with 

the theory of information processing that was proposed by Mesulam (Mesulam 1998).  
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Figure 1.4 Interpretation of resting-state functional connectivity gradients across 

various brain regions 

Visualizations of gradient 1 (G1) and gradient 2 (G2) for various brain regions. The 

scale denotes a relative scaling of voxels/vertices with similar connection patterns and is 

represented as arbitrary units. (A) Whole cortex (Margulies et al. 2016).  The first 

gradient corresponds to an organizational axis spanning unimodal-to-association 

cortices, and the second gradient corresponds to an organizational axis spanning 

somatomotor-and-auditory-to-visual cortices. Collectively, the two gradients were 

postulated to recapitulate the theory of cortical hierarchy as proposed by Mesulam 

(1998). (B) Primary visual cortex (Haak et al. 2018). The first gradient corresponds to 

retinotopic eccentricity, and the second gradient corresponds to polar angle. (C) 

Hippocampus (Vos de Wael et al. 2018). The first gradient corresponds to the 

hippocampal functional long-axis and the second gradient corresponds to its 

microstructure and infoldings. Hippocampal gradients were calculated using hippunfold 

surfaces (DeKraker et al. 2022). (D) Striatum (Marquand et al. 2017; Oldehinkel et al. 

2022). The first gradient corresponds to goal-directed behaviour cortical-striatal 

circuitry and the second gradient corresponds to dopaminergic pathways.  
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Subsequent work by Haak and colleagues focused on gradient mapping in cortical areas, 

emphasizing its ability to capture biologically plausible connectivity principles of the brain 

(Haak et al. 2018). For example, gradient estimation applied to the primary visual cortex 

revealed connectivity principles matching orthogonal representations of retinotopy. More 

specifically, the top two gradients were found to reflect eccentricity and polar angle, 

represented along and perpendicular to the calcarine sulcus, respectively. The ability to 

estimate such organization arises due to the presumed ability of resting-state fMRI to detect 

topographically organized retino-fugal, thalamo-cortical, and cortico-cortical connections 

to the primary visual cortex (Udin and Fawcett, 1988). Gradients have been estimated in 

other brain areas as well, such as the hippocampus (Vos de Wael et al. 2018; Przezdzik et 

al. 2019), where the first gradient was found to relate to its functionally differentiated long-

axis (Strange et al. 2014), while the second gradient corresponded to its infoldings. 

Furthermore, cerebellar gradients corresponded to neuronal engagement of different 

cognitive tasks (Guell et al. 2018), and insular gradients were investigated to evaluate 

contentious debates of cortical organization within this region (Tian and Zalesky, 

2018). Figure 1.4 shows various examples of connectivity gradients derived from different 

brain regions.  

Without correspondence with ground truth knowledge of brain organization and related-

surrogate measures, interpreting the biological relevance of ensuing gradients is 

problematic (Haak et al. 2018). This is especially true in association cortices where these 

regions’ correspondence to microstructural measures become increasingly dissociated 

when moving from unimodal to transmodal cortical areas (Paquola et al. 2019). Developing 

a better understanding of the biological factors underlying such differences observed 

between connectivity gradients and other brain metrics remains to be seen. 

1.4 Thesis Objectives 

Over recent years gradient representations of macroscale connectivity data have emerged 

as an incredibly intuitive tool to unravel the multifaceted nature of brain connectomes. Due 

to the complexities of connectivity data, principled methodologies to interpret connectivity 

in relation to other multiscale neuroanatomical metrics, across human evolution, and in the 

presence of pathophysiology have been cumbersome. The overarching goal of this thesis 
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aims to provide a comprehensive understanding of gradient representations as a general 

framework for conceptualizing macroscale connectivity and its various use cases in 

neuroscience. Gradient representations offer a unifying framework to bridge the gap across 

these various applications, as will be explored in the domains of basic neuroscience 

(Chapter 2), comparative neuroscience (Chapter 3), and clinical neuroscience (Chapter 4). 

1.4.1 Chapter 2: Mesoscale hierarchical organization of primary 
somatosensory cortex captured by resting-state-fMRI in 
humans 

Chapter 2 examines multi-overlapping gradients in human somatosensory cortex (S1) to 

reconcile its long-understood organizational principles. Although organization of S1 along 

its dorsal-to-ventral somatotopic axis has been well-established with resting-state 

functional connectivity, organization along its anterior-to-posterior anatomical hierarchical 

axis remains elusive. To this end, we explored subsequent lower order connectivity 

gradients and assessed their correspondence with S1 microstructure and architectonic 

divisions (i.e., Brodmann areas 3a, 3b, 1 and 2). We further reconciled that anterior-

posterior S1 subdivisions reflected thalamocortical connectivity that were consistent with 

non-human primate (NHP) literature. 

1.4.2 Chapter 3: Joint-embeddings reveal functional differences in 
default-mode network architecture between marmosets and 
humans 

Chapter 3 applies gradient estimations to holistically mapped marmoset and human 

connectomes onto a single coordinate system by considering connectivity fingerprints 

based on homologous regions. The ensuing coordinate system unveils candidate 

homologies across large-scale networks in both species in this novel framework. This new 

framework presents many advantages over previous cross-species connectivity 

fingerprinting studies that are hypothesis driven, and only consider comparisons of a small 

subset of brain areas between the two species. In comparison, ensuing cross-species 

gradients consider all permutations of voxel comparisons between species, thus providing 

insights into homologies that exist between species at finer-grained resolution. We use this 

framework to systematically compare cognitively relevant default-mode networks in 
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marmosets and humans to elicit possible insights into similarities and differences between 

species. We also offer qualitative insight into possible homology of the marmoset medial 

prefrontal cortex in humans using this gradient framework. 

1.4.3 Chapter 4: Charting the effects of thalamic lesions on 
resting-state fMRI features in secondary-progressive Multiple 
Sclerosis 

Chapter 4 applies gradient estimation to investigate connectivity changes in the presence 

of focal pathophysiology in Multiple Sclerosis (MS). MS pathophysiology (i.e., lesions), 

although traditionally considered to primarily occur in white matter, has also been widely 

documented in deep gray matter structures, including the thalamus. It is generally 

hypothesized that focal pathophysiology would disrupt connections associated with the 

afflicted site, which by extension, may be detectable using in-vivo connectivity measures. 

Here, we identified MS participants with focal thalamic lesions, and performed gradient 

estimation of the thalamus. The goal was to assess whether connectivity gradients – derived 

from whole-brain thalamocortical connectivity fingerprints – were able to detect the 

presence of focal lesions. In principle, if focal thalamic lesions do indeed affect 

connectivity metrics, then we might expect to see abrupt changes in connectivity at the site 

of the lesion, which should be detectable using connectivity gradients. Furthermore, to 

comprehensively chart the effects of focal thalamic lesions, we also considered its effects 

on more simple connectivity measures, in addition to a set of BOLD time series features. 

1.4.4 Chapter 5: General Discussion and Conclusion 

In the final chapter of this thesis, I will discuss and summarize the findings of Chapters 2 

through 4, and review the limitations of each chapter in detail with consideration for future 

directions relating to each project. More generally, I conclude with my views on future 

directions of gradient estimation techniques in neuroimaging. 
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Chapter 2  

2 Mesoscale hierarchical organization of primary 
somatosensory cortex captured by resting-state-fMRI in 
humans 1 

2.1 Introduction 

The primary somatosensory cortex (S1) is integral to the somatosensory system and 

important for many functions, such as tactile recognition (Drevets et al., 1995; Bensmaia 

et al., 2008; Pei et al., 2010), bodily perception (Kim et al., 2015), and motor control 

(Disamond et al., 2008; Lee et al., 2008). Hierarchical organization of S1 along the 

anterior-to-posterior axis supports these functions through sequential processing of afferent 

somatosensory inputs Iwamura, 1998). A vast body of animal literature has supported the 

role of S1 integration for computations related to object localization (Kleinfeld and 

Deschênes, 2011) and texture decoding (Isett et al., 2018), and may have further 

implications in goal-directed somatosensory-related behaviours (Yamashita and Petersen, 

2016). In humans, impairment to areas of S1 may lead to abnormal processing of 

somatosensory information and may contribute to sensorimotor related deficits commonly 

found in neurological disorders, such as stroke (Kim and Choi-Kwon, 1996), and 

Parkinson’s Disease (Conte et al., 2013). Despite the relevance of S1 in cognitive and 

clinical neuroscience, a method to characterize hierarchical organization of S1 in-vivo 

within human cortex remains elusive. 

To date, magnetic resonance imaging (MRI) using myelin mapping techniques have made 

it feasible to delineate S1 into anterior-to-posterior architectonic subdivisions – Brodmann 

areas 3a, 3b, 1 and 2 - corroborating findings from cytoarchitecture (Brodmann 1909; 

Glasser and Van Essen, 2011; Fischl et al., 2008). While structural MRI can sufficiently 

delineate architectonic boundaries with one or more MRI contrasts, 

 
1 A version of this chapter is published as: 

Ngo, G. N., Haak, K. V., Beckmann, C. F., & Menon, R. S. (2021). Mesoscale hierarchical organization of 

primary somatosensory cortex captured by resting-state-fMRI in humans. NeuroImage, 235, 118031. 

https://doi.org/10.1016/j.neuroimage.2021.118031    
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evidence from resting-state functional connectivity (RSFC) reveals further separation of 

S1 along its somatotopic boundaries following a ventral-to-dorsal axis (Yeo et al., 2011). 

In principle, measures of connectivity, in this case using macroscale RSFC patterns, should 

also align with architectonic S1 subdivisions along an anterior-to-posterior axis, as 

supported by non-human primate (NHP) anatomical studies (Krubitzer and Kaas, 1990; 

Pons and Kaas, 1986). However, a correspondence between mesoscale measures of 

structure and connectivity supporting notions of anatomical hierarchy on a millimetre scale 

have yet to be established in human S1. Here, mesoscale is defined as the spatial scale over 

which individual differences transition into species typicality. 

Recent methodological developments have shown manifold learning as a viable tool to 

embed high dimensional RSFC data into a low dimensional space while preserving 

biologically meaningful structure, commonly referred to as RSFC gradients (Haak et al., 

2018; Margulies et al., 2016). Macroscale gradients of the cerebral cortex have been shown 

to represent an embedding scheme that positions primary and transmodal cortices on 

opposite ends of a spectrum (Margulies et al., 2016). RSFC gradients estimated within 

specific cortical areas, referred to as ‘connectopic mapping’ (Haak et al., 2018), revealed 

biologically relevant interactions, such as linking hippocampus to microstructure (Vos de 

Wael et al., 2018), and striatum to goal-directed behaviours (Marquand et al., 2017). 

Additionally, this technique can be used to estimate multiple overlapping gradients, where 

each gradient may correspond to unique organizational principles of the cortical area. The 

aim of the current study was to extend the use of RSFC to investigate mesoscale 

hierarchical organization in human S1. We hypothesized that RSFC will enable 

characterization of S1 along an anterior-to-posterior axis in-vivo that spatially maps onto 

somatosensory Brodmann areas. 

A central part of this investigation is to use accurate regions of interest (ROI) to 

characterize the anatomical hierarchy of S1 using RSFC. Here, we take advantage of the 

Human Connectome Project’s multimodal parcellation, which subdivides the cerebral 

cortex into 360 cortical areas, four of which represent S1’s architectonic subareas (i.e., 

Brodmann areas 1, 2, 3a, and 3b) (Glasser et al., 2016). Although not part of the 

parcellation, Glasser and colleagues also propose further subdivision of S1 into their 
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somatotopic subareas that relate directly to distinct body parts (Penfield and Rasmussen, 

1950). With the goal to discover a mesoscale hierarchical gradient in S1 we explore other 

overlapping gradients, and the dominant gradients of S1 somatotopic subareas to see 

whether evidence of RSFC heterogeneity along the anterior-to-posterior axis exists. 

Given these considerations, we chose to use measures of RSFC to investigate structural 

organization of S1. RSFC provides a measure of function that closely follows principles 

guided by anatomical connectivity (Wang et al., 2013; Jbabdi et al., 2015). Additionally, 

RSFC can predict interindividual differences of task-based fMRI activations across a wide 

variety of cognitive paradigms, supporting the notion that cognitively relevant functional 

interactions are preserved at rest (Tavor et al., 2016). Here, we used resting-state data from 

the WU-Minn Human Connectome Project (Van Essen et al., 2013; Smith et al., 2013) and 

S1 architectonically-defined regions as a proxy for anatomical hierarchy taken from 

Glasser and colleagues multi-modal parcellation of the cerebral cortex (Glasser et al., 

2016). To characterize mesoscale structural organization of S1, we explore the principal 

gradient derived using RSFC of S1 somatotopic subareas and (1) demonstrate its use as a 

proxy for anatomical hierarchy, (2) its link to underlying tissue microstructure, and (3) its 

correspondence to Brodmann area boundaries – here, we specifically found evidence for a 

distinct functional division that exists between Brodmann areas 3b and 1, rather than four 

architectonic subareas. Finally, we demonstrate the application of this gradient scheme as 

a means to achieve a more comprehensive characterization of human thalamocortical 

connectivity profiles based on what is known in NHP literature. A characterization of S1 

topography that follows governing principles of anatomical hierarchy and microstructure 

may provide insight into studying the interplay between mesoscale structure and function 

in humans. In doing so, this may further offer an interpretative framework for studying 

sensorimotor-related deficits across a wide range of neurological disorders. Together, this 

work provides new insight into the use of RSFC to characterize mesoscale structural 

organization of human S1. 
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2.2 Methods 

2.2.1 Resting-state fMRI dataset and preprocessing 

This 3T resting-state dataset was taken from N=100 unrelated participants from the Human 

Connectome Project (HCP) of the 1200-participant release (Van Essen et al., 2013). Each 

participant underwent four 14.4-minute rsfMRI scans (TR = 0.72 s) acquired across two 

days (two scans per day, acquired in opposite phase-encode direction [left-right/right-left]). 

Each scan was preprocessed through the HCP with details described in Smith et al., 2013, 

and includes spatial distortion, and head-motion correction, registration to a T1 weighted 

structural, resampling to a 2 mm Montreal Neurological Institute (MNI) space, global 

intensity normalisation, high-pass filtering (cut-off at 2000 s), and ICA-based artefact 

removal (FSL-FIX [Griffanti et al., 2014; Salimi-Khorshidi et al., 2014]). In addition to 

HCP minimal preprocessing, mean white matter and ventricular signal was regressed from 

the data, followed by smoothing with a 5 mm FWHM Gaussian kernel respecting the 

natural geometry of the brain. Specifically, surface-base smoothing was applied to the 

cortical ribbon, whereas volumetric-base smoothing was applied to the subcortex. All scans 

from a single subject were Z-score normalised to zero mean and unit standard deviation 

and concatenated into a single one-hour rsfMRI scan. The concatenated rsfMRI scan was 

used in subsequent connectopic mapping of contralateral S1 subregions. 

2.2.2 Motion exclusion criteria 

To mitigate biases from the effects of motion we only include participants who fell within 

our necessarily stringent motion exclusion criterion (Power et al., 2012). Specifically, 

participants who had a mean framewise displacement (FD) greater than 0.2 mm in any of 

their four scans were excluded from analyses. This resulted in  N=65 (FD; mean = 0.138 

mm, SD = 0.023 mm) subjects used across all analyses. 

2.2.3 Region of interest definitions of S1 anatomical hierarchy 

All regions of interest were obtained from a surface-based multi-modal parcellation of the 

cerebral cortex (Glasser et al., 2016). We used Brodmann areas 3a, 3b, 1, and 2, to define 

an anatomical hierarchy of S1. The Glasser atlas also proposes five somatotopic subregions 
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within S1: lower limb (LL), trunk (T), upper limb (UL), ocular and face. For this current 

study, we only consider somatotopic regions that traverse all S1-related Brodmann areas 

to best illustrate anatomical hierarchy. As such, only LL, T and UL are included going 

forward (i.e., the ocular region includes only Brodmann area 3, and the face region includes 

areas 3 and 1). The UL and LL region were guided by left/right hand, and feet task 

contrasts, respectively, whereas, the definition of the trunk region was interpreted and 

localized between the UL and LL representations due to the absence of trunk-related 

contrasts. 

In summary, each somatotopic subregion under consideration (i.e., LL, T, and UL) can be 

further delineated by its hierarchical structure (i.e., Brodmann areas 3a, 3b, 1, and 2) 

permitting investigations of anatomical hierarchy in S1. Human S1 hierarchy was 

annotated using a hierarchical organization scheme as proposed in macaques (Felleman 

and Van Essen, 1991) with supporting evidence found in humans (Bodegård et al., 2001). 

The thalamus was also considered for seed-based connectivity analyses to explore and 

validate anatomical hierarchy of S1.  Here, the thalamus was defined using the Harvard-

Oxford atlas, and further parcellated into thalamic nuclei using the Morel atlas. The lateral 

geniculate nucleus (LGN) and inferior pulvinar (PuI) were excluded from all 

thalamocortical connectivity analyses due to the lack of overlap between the thalamic ROI 

from the Harvard-Oxford atlas and the Morel atlas. We considered thalamocortical 

connectivity ipsilaterally, therefore seed-based analyses of left hemisphere S1 regions only 

aimed to probe connectivity to the left thalamic nuclei, and vice versa. 

2.2.4 Connectopic mapping 

Connectopic mapping is a data-driven technique which can be used to spatially quantify 

RSFC patterns within a region of interest. Full details of the procedure are described in 

Haak et al. 2018 (only the Laplacian eigenmap technique used to embed voxel-wise RSFC 

patterns were used in the present study). In brief, RSFC was calculated between each ROI 

voxel (𝑨𝒕×𝒗: 𝑡=time,𝑣=number of voxels in the ROI) and the rest of the brain (𝑩𝒕×𝒗′: 

𝑣′=number of voxels in the rest of the brain (i.e., cortical and subcortical voxels)). To 

maintain computational tractability, the cortex and subcortex timeseries matrix (𝑩𝒕×𝒗′) was 



39 

 

projected onto a subspace spanned by its principal components (�̃�𝒕×𝒕−𝟏). A RSFC matrix 

(𝑪𝒗×𝒕−𝟏) was computed which describes an ROI’s RSFC pattern. Next, similarity between 

inter-voxel RSFC patterns were computed resulting in a similarity matrix (𝑺𝒗×𝒗). 

The Laplacian eigenmap algorithm is applied on the graph Laplacian of the similarity 

matrix to obtain a low dimensional manifold representation of the data, or gradients. The 

graph Laplacian is denoted as follows: 

𝑳 = 𝑫 − 𝑾, 

where 𝑾 is a graph representation of 𝑺 (sparsity is enforced such that the graph is 

connected), 𝑫 is the degree matrix defined as 𝑫𝒊,𝒊 = ∑ 𝑾𝒊𝒊 , and 𝑳 is the graph Laplacian. 

Solving the generalized eigenvalue problem 𝑳𝒚 = 𝜆𝑫𝒚 yields 𝑚 eigenvectors {𝑦1, … , 𝑦𝑚} 

corresponding to the smallest 𝑚 non-zero eigenvalues  {𝜆1, … , 𝜆𝑚}. Here, we focus on 𝑦1, 

defined as the region’s dominant gradient and reflects the greatest changes in RSFC 

connectivity over a ROI, whereas higher order gradients, denoted by 𝒚𝒏, 1 < 𝑛 < 𝑚, 

reflects more subtle changes in RSFC. 

This procedure is performed to generate dominant gradients of each region (i.e., left and 

right LL, T, and UL) for each subject. The direction, or sign of all generated gradients are 

often-times ambiguous and may be dependent on the selected dataset, and ROI-choice. To 

ensure consistency, the direction of all generated gradients was matched to have the same 

orientation. Specifically, the anterior-to-posterior and ventral-to-dorsal gradients 

corresponded to increases in gradient value. Additionally, each subject’s dominant 

gradients were normalized between 0 and 1 to ensure consistency in scale across the cohort. 

Dominant gradients for each ROI were used to investigate relationships to anatomical 

hierarchy and geodesic distance in subsequent analyses. 

2.2.5 Structural MRI measures 

We considered cortical thickness, and T1w/T2w (Glasser and Van Essen, 2011) as 

structural MRI surrogates of S1 anatomical hierarchy and compare them against our RSFC-

derived gradients. Due to the effects of surface folding and curvature on cortical thickness, 

a curvature-corrected cortical thickness measure is used in subsequent analyses. Similarly, 
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to mitigate the effects of B1 inhomogeneity, a bias-field-corrected T1w/T2w measure is 

used. 

2.2.6 Geodesic distance 

We considered geodesic distance to probe how the dominant gradient varies while 

traversing the anterior-to-posterior axis of S1 (i.e., a geodesic distance of zero indicates the 

most anterior portion of BA3a, and higher values indicate more posterior areas, moving 

towards BA2). In addition, geodesic distance may be able to capture inter-individual 

differences and may be relevant for interpreting subject-level behaviour. Here, geodesic 

distance was measured as the shortest vertex-to-vertex path across a cortical surface 

connecting the middle vertex of the Brodmann area boundaries (i.e., vertex-to-vertex path 

adjoining areas 3a & 3b, 3b & 1, and 1 & 2). The middle vertex of the anterior border of 

BA3a, and posterior border of BA2 was hand-selected due to ambiguity of where these 

regions begin and end, respectively. Vertex-to-vertex paths were generated for left and 

right, LL, T and UL ROIs separately and used to extract dominant gradient values (based 

on RSFC) along this trajectory for all subjects. We also repeated this procedure considering 

other vertex-to-vertex paths, specifically considering 1st quantile, and 3rd quantile 

vertices. 

2.2.7 Evidence of a functional boundary 

We define a functional boundary to exist if it separates two discrete parcels. In theory, this 

means a sharp transition in RSFC should be expected at the interface of a functional 

boundary. Each boundary between Brodmann areas 3a & 3b, 3b & 1, and 1 & 2 is 

considered separately: a ‘parcel line’ is drawn to represent parcellation of each pair of 

regions using the vertex-to-vertex path described in the previous section – i.e., vertices of 

the anterior Brodmann area is given a value of 1, and vertices of the posterior Brodmann 

area is given a value of 0 (the line is smoothed with a 5 mm FWHM Gaussian kernel to 

match rsfMRI preprocessing procedures). The RSFC values were extracted from the 

vertex-to-vertex paths for each pair of Brodmann areas (3a & 3b, 3b & 1, and 1 & 2) and 

normalized between 0 and 1 to match the scaling of the ‘parcel line’. Evidence for a 

functional boundary is defined by computing the L2 norm between the parcel line and 
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RSFC values extracted from the dominant gradient. A value of zero suggests a perfect 

overlap between the dominant gradient and parcel line to be used as evidence for a 

functional boundary. 

2.2.8 Seed selection 

K-means clustering was performed on the dominant gradient map to assess the degree of 

overlap between clusters and Brodmann areas. The number of clusters considered were 

𝐾 = 2, 3, 4. If the dominant gradient reliably clusters well into the architectonic Brodmann 

areas, then this may further substantiate structure and function relationship of cortical S1. 

We justify the use of a clustering scheme that optimizes overlap with Brodmann area 

regions. Furthermore, we used this clustering scheme to define seed ROIs in subsequent 

thalamocortical connectivity analyses. 

Choice of cluster number (K) was optimized by calculating an average dice similarity 

coefficient (DSC) between each of the K-clusters and a configuration of the Brodmann 

areas such that the average DSC is maximized. The DSC measures the similarity between 

a set X and Y (i.e., a K-means cluster and its corresponding ground truth label), if the sets 

are identical (i.e., they contain the same vertices), the coefficient is equal to 1, while if X 

and Y have no vertices in common, then it is equal to 0, otherwise the DSC falls somewhere 

between 0 and 1 (Dice, 1945). A silhouette analysis was conducted to assess the choice of 

K clusters. Silhouette coefficients are calculated for each vertex in a clustered region, 

providing a similarity measure ranging between -1 to 1. A high coefficient value indicates 

that the vertex is well matched to its cluster, a value of 0 indicates the vertex is between 

two clusters, and a negative value indicates a possible incorrect cluster assignment. 

2.2.9 Statistical methods 

2.2.9.1 Multiple comparisons corrections 

All statistical comparisons were conducted using an 𝛼-level of 5% fully Bonferroni 

corrected for the number of comparisons. 
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2.2.9.2 Dependent correlation test 

As a statistical test for the difference between similarities of the measures, we employed 

the dependent correlation test. This test provides a nonparametric test to compare the 

Spearman correlations of two variables against a common dependent variable using a 

bootstrapping approach (Wilcox, 2016). The dependent correlation test was used to 

compare Spearman rank correlation of different metrics to anatomical hierarchy. 

2.2.9.3 Polynomial regression 

Trend lines in Fig. 2.2a-c were calculated using polynomial regression, a form of regression 

analysis in which the dependent variable is modelled as an nth degree polynomial (in this 

case we choose n = 2 to account for the U-shape observed in the data). 

2.2.9.4 Thalamocortical connectivity analyses 

We considered each ipsilateral LL, T, and UL as its own functional unit, as such, 

thalamocortical connectivity analyses were performed for each of these ROIs 

independently. The average timeseries were extracted from architectonic subdivisions of 

S1 determined from the K-means clustering analysis. Partial correlations maps of the 

unilateral thalamus were calculated using the extracted timeseries. Thalamocortical 

connectivity between Brodmann areas 3a & 3b, and 1 & 2 of somatotopic S1 and the 

thalamus was quantified by calculating the average partial correlation in the thalamus. 

Next, dominant connectivity of architectonic subregions of S1 to the thalamus was assessed 

using a nonparametric one-sample t-test (Nichols and Holmes, 2002). Significant voxels 

are considered as areas demonstrating dominant connectivity (P < 0.05, correcting for 

multiple comparisons after threshold-free cluster enhancement). Using the t-statistic image 

obtained from the one-sample t-test permutation test, and the Morel atlas of the thalamus, 

we quantified which thalamic nuclei demonstrated peak thalamocortical connectivity in 

each ROI (Krauth et al., 2010). Lastly, differences in the magnitude of partial correlation 

scores (or thalamocortical connectivity) of Brodmann parcels to each thalamic nucleus 

were assessed (P < 0.05, nonparametric Wilcoxon signed-rank test). 
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2.2.10 Data and code availability statement 

All relevant MRI data are publicly available at https://db.humanconnectome.org. The 

processed data including the S1, and somatotopic subarea gradients, in addition to K-means 

clustering analyses can be found in the following repository: 

https://github.com/gngo4/S1_RSFC_Gradients. 

The code for connectopic mapping is available in the following repository: 

https://github.com/koenhaak/congrads. Note, connectopic mapping was performed to 

resting-state fMRI data in CIFTI format. To generate RSFC gradients, the CIFTI formatted 

resting-state fMRI data must first be converted to NIFTI format. For further requests please 

contact the corresponding author. 

2.3 Results 

2.3.1 The dominant gradient of resting-state functional connectivity 
captures S1 anatomical hierarchy and microstructure 

To enable the study of anatomical hierarchy in S1 using RSFC, our first aim was to embed 

high-dimensional RSFC data of S1 into a lower dimensional space. Specifically, the 

Laplacian eigenmap algorithm was computed on voxel-wise RSFC patterns to obtain 

gradients of S1 where each gradient represents a one-dimensional embedding of a region 

of interest. Previous work looking at the dominant gradient, or the gradient corresponding 

to the lowest non-zero eigenvalue of precentral gyri (i.e. primary motor cortex as defined 

using FreeSurfer (M1)) revealed somatotopic organization (Haak et al., 2018). In line with 

this previous work, we replicated the observation of somatotopy in left and right S1 cortices 

derived from group data. The dominant gradient reflected somatotopy, as observed by a 

gradual change in RSFC moving from lower limb to upper limb areas, whereas a clear 

boundary distinguishing the face from the upper limb region was observed. Furthermore, 

higher order gradients 2 and 3 of S1 revealed subtler differences in connectivity between 

the S1 subfields (i.e., anterior-to-posterior), notably observed in LL, T, and UL (Fig. 2.1b). 

Together, these observations suggest variation in RSFC is sensitive to biologically 

plausible functional organization, in this case, of S1. Motivated by this, we applied this 

technique to investigate functional organization within each somatotopic region of S1 (i.e., 

https://db.humanconnectome.org/
https://github.com/gngo4/S1_RSFC_Gradients
https://github.com/koenhaak/congrads
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left and right hemisphere, LL, T and UL regions) to tease apart subregion-specific RSFC 

differences, and we hypothesized that the dominant gradient will provide a non-invasive 

predictor for anatomical hierarchy in S1. 

The dominant gradient obtained of left and right LL, T and UL regions, to some degree, 

revealed an anterior-to-posterior axis (Fig. 2.1c) which may be an indicator of S1 

hierarchical organization. The dominant gradients across all somatotopic regions were 

stable across individual subjects: the mean pairwise Pearson correlation between subjects’ 

dominant gradients were [0.89, 0.96, 0.99, 0.98, 0.79, 0.62] for left and right LL, T, and 

UL, respectively. In the case of right UL, we observed a clear change in RSFC traversing 

from anterior-to-posterior (i.e., Brodmann areas 3a to 2). However, it was also noted that 

the maximum and minimum values of the gradient occurred in a dorsal-to-ventral manner 

within the region. This may be due to an imprecise definition and over estimation of the 

right UL region in the most ventral portion of the ROI. Such a definition may include 

voxels of S1 that encodes somatosensory face information, reflected by voxels with 

differing RSFC patterns, which in turn, may skew the right UL embedding. Subsequent 

cropping of the right UL region by removing the ventral-most area (which appears to 

overlap with the somatosensory face information) revealed a gradient spanning the region’s 

anterior-to-posterior axis (Supplementary Fig. 2.1). Specifically, the cropped right UL 

region was generated by removing 10% of the voxels with the lowest gradient values. As 

a result, this improvement was matched by a mean pairwise Pearson correlation between 

subjects’ dominant gradient of 0.76 (compared to 0.62). 
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Figure 2.1 Data-driven characterization of RSFC patterns in somatosensory cortex 

and somatotopic subregions 

(A) ROI definitions mapped onto the cortical surface. (B) Group level gradients derived 

from S1 to whole brain and subcortex RSFC patterns (N = 65). The top three gradients are 

shown where each gradient represents a similarity embedding, as such, areas of similar 



46 

 

colours express similar connectivity patterns. The first gradient matches somatotopic 

organization, and the second and third gradient suggests separation of S1 along the 

anterior-to-posterior axis. (C) Group level gradients derived from somatotopic S1 

subregions (i.e., LL, T, and UL) to whole brain and subcortex RSFC patterns (N = 65). All 

dominant gradients demonstrate a change in RSFC along the anterior-to-posterior axis. 

Gradient directionality is arbitrary; orientations have been matched to ensure consistency 

of interpretation. 

Next, we considered the ability of the dominant gradients to estimate anatomical 

hierarchical levels by comparing them to alternative surrogate measures derived from 

structural MRI. Based on previous work, measures of cortical thickness (Wagstyl et al., 

2015) and T1w/T2w (i.e., considered as a proxy for microstructure/myelination) were 

considered: cortical thickness generally increases in areas higher up along the anatomical 

hierarchy, whereas the inverse is true for measures of myelination. Although all three 

measures were strongly associated with hierarchical levels of S1 (***𝑃 < 10−4; Spearman 

correlation between all measures, and all somatotopic regions, see Fig. 2.2a-c), we found 

that the dominant gradients with the exception of right UL were more strongly correlated 

to hierarchical levels in S1 compared to cortical thickness (***𝑃 < 10−4; dependent 

correlation test, see Fig 2.2d-e). Dominant gradients of left and right, LL and T performed 

better than T1w/T2w, whereas left UL performed the same, and right UL performed worse 

(presumably due to improper ROI definition) (***𝑃 < 10−4; dependent correlation test, 

see Fig. 2.2d-e). Overall, we found that the dominant gradient was more strongly correlated 

to our annotated hierarchy scheme of S1 compared to structurally-derived surrogates. This 

finding provides evidence for the utility of RSFC-based gradients for characterizing 

anatomical hierarchy of S1. 

Interestingly, the dominant gradient across all somatotopic regions strongly correlated to 

T1w/T2w intensity (***𝑃 < 10−4; Pearson correlation, see Fig. 2.3) providing evidence 

of structure-function relationships in S1. With the exception of right UL, correlations 
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Figure 2.2 Associations between anatomical hierarchies of S1 and metrics 

(A) Correlation between anatomical hierarchy of somatotopic S1 subregions and their 

corresponding dominant gradients derived from RSFC data. (B) Correlation between 

anatomical hierarchy of somatotopic S1 subregions and T1w/T2w. (C) Correlation 

between anatomical hierarchy of somatotopic S1 subregions and cortical thickness. (D) 

Absolute spearman rank correlation between different metrics and anatomical hierarchy 

of S1 for each somatotopic subregion (***𝑃 < 10−4 for all metrics and ROIs). (E) 

Comparison between metrics correlation to S1 anatomical hierarchy, across all 

somatotopic ROIs demonstrating RSFC gradient performs on par with T1w/T2w. Error 

bars in (A-C) indicate the SEM. Hierarchical levels (1, 2, 3, 4) correspond to (Brodmann 

areas 3a, 3b, 1, 2). 

were high across all regions (left LL: 𝑟=.84; left T: 𝑟=.90; left UL: 𝑟=.93; right LL: 𝑟=.91; 

right T: 𝑟=.87; right UL: 𝑟=.44). Although significance was observed between right UL’s 

dominant gradient and T1w/T2w intensity, we attribute its low correlation values due to 

improper definition of this region as was previously suggested. In fact, an improved 

correlation value of 𝑟=.82 (compared to 𝑟=.44) was observed when using the truncated-

right UL (Supplementary Fig. 2.2). 
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Figure 2.3 Association between dominant gradient and T1w/T2w across left and right 

somatotopic S1 subregions 

(A) Dominant gradient (left) and T1w/T2w intensities (right) for left and right, lower limb, 

trunk, and upper limb. (B) Correlation between the dominant gradient and T1w/T2w across 

all somatotopic S1 subregions (***𝑃 < 10−4 for all ROIs). 

2.3.2 Characterising the anterior-to-posterior axis of S1 and 
correspondence to Brodmann areas 

It is unclear how RSFC changes across the anterior-to-posterior axis in S1. Specifically, 

does RSFC within somatotopic S1 regions have discrete boundaries or does it gradually 

change over the space of the ROI? We considered the shortest vertex-to-vertex trajectory 

connecting the midpoint of adjacent Brodmann area boundaries to one another (i.e., a path 

joining Brodmann areas 3a, 3b, 1, and 2; see Fig. 2.4a) and used this path to investigate 

this question. We used geodesic distance away from the beginning of the trajectory to see 

how the RSFC embedding changes along this path, that is, a geodesic distance of zero 

corresponds to the most anterior portion of Brodmann area 3a. Figure 2.4b shows that 

RSFC gradually changes moving along this trajectory with gradual changes observed 
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within each Brodmann area as represented by the black points. Clear inter-individual 

variability in RSFC across the trajectory was also observed. 

Next, we aimed to investigate whether discrete functional boundaries existed between 

Brodmann areas. To this end, boundaries between each adjacent Brodmann area were 

considered, such that a sharp transition exists at the interface between the two areas. These 

boundaries were additionally smoothed with a 5 mm FWHM Gaussian kernel to ensure 

consistency with the smoothing criterion that was used in the rsfMRI preprocessing steps. 

Three parcels boundaries were drawn as coloured lines adjoining areas 3a-to-3b, 3b-to-1, 

and 1-to-2 (i.e., blue, green, and purple, respectively; Fig. 2.4b), and the black points 

represent data from the dominant gradient. Any observed overlap between the coloured 

lines and points would suggest evidence for a discrete functional boundary. Comparisons 

of the average L2 norm between the definition of a parcel boundary, and dominant gradient 

suggests the most evidence (mean L2 norm closer to 

zero) for a discrete boundary between Brodmann areas 3b and 1. Specifically, a 

significantly lower mean L2 norm was observed for the Brodmann area 3b-to-1 boundary, 

compared to boundaries between areas 3a-to-3b, and 1-to-2 in all somatotopic regions, with 

the exception of right UL and LL (*𝑃 < 0.05; nonparametric Wilcoxon signed-rank test, 

see bar plots in Fig. 2.4b). In the case of right UL, the evidence for a boundary was observed 

equally between areas 3b-to-1 and 1-to-2, and for right LL, evidence for a boundary was 

observed between areas 1-to-2. Similar observations were also observed when considering 

two other vertex-to-vertex paths (Supplementary Fig. 2.3 & 2.4). However, in both vertex-

to-vertex paths, evidence for a boundary in the right UL (lowest L2 norm) were observed 

between Brodmann areas 3b-to-1. Overall, these results provide evidence for a discrete 

functional boundary between Brodmann areas 3b-to-1 as compared to the interfaces 

between Brodmann areas 3a-to-3b, and 1-to-2, which may be better characterized by a 

gradual change in RSFC. 

Rather than investigating the gradients’ trajectory, here we investigate the correspondence 

between each somatotopic ROIs’ dominant gradients and Brodmann areas using K-means 

clustering. In the case of two clusters (K = 2), we found that the gradients clustered well 

into Brodmann areas 3a & 3b, and 1 & 2 (average dice  
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Figure 2.4 Evidence of functional boundaries between Brodmann areas 

(A) Left and right S1 separated by somatotopic regions and colour coded by architectonic 

Brodmann areas. Black lines in each somatotopic region indicates the vertex-to-vertex 

path (or trajectory) used to extract values from the RSFC-derived gradients. A geodesic 

distance of 0 indicates the most anterior vertex of the trajectory. (B) Left and right 

somatotopic regions’ RSFC connectivity pattern plotted against geodesic distance as 

defined by a rostro-to-caudal vertex-to-vertex trajectory. Black points represent the 

average gradient value across all participants (N = 65). Overlaid are three ‘parcel’ 

definition lines drawn for each boundary between 3a & 3b, 3b & 1, and 1 & 2 (blue, green, 

and purple) smoothed with a 5 mm FWHM. Corresponding bar plots shows the L2 norm 

between parcel definition and RSFC connectivity pattern with a value closer to 0 

suggesting more evidence for a functional boundary. Error bars in (B) indicate the 

standard deviation for all plots. *𝑃 < .05, ***𝑃 < 10−4. 

coefficient across all somatotopic regions: 0.856) as expected based on previous results. 

Using three and four clusters (K = 3, 4) led to a decrease in cluster performance, clustering 

of S1 into Brodmann areas 3a & 3b, 1, and 2, and Brodman areas 3a, 3b, 1, and 2, 

respectively (average dice coefficient across all somatotopic regions: 0.564 for K = 3;  



51 

 

 

Figure 2.5 Agreement between K-means clusters and Brodmann areas 

(A) Average dice similarity coefficient scores (N = 65) for K clusters and their closest 

corresponding Brodmann areas. For K = 2, the DSC is calculated with Brodmann areas 

3, and 1 & 2. For K = 3, the DSC is calculated with Brodmann areas 3, 1, and 2. For K = 

4, the DSC is calculated with Brodmann areas 3a, 3b, 1, and 2. Bootstrap 95% confidence 

intervals are denoted by the error-bars. (B) Clustering performance using K = 2, 3, 4 

clusters into their respective Brodmann areas. Maps show the fraction of participants (N 

= 65) showing overlap in the region. 

0.396 for K = 4). Fig. 2.5a provides further details regarding the performance of clustering 

for each somatotopic region. Furthermore, Fig. 2.5b shows the fraction of participants 

showing cluster overlap to each Brodmann area and demonstrating that high clustering 

stability was observed in Brodmann areas 3a & 3b, and areas 1 & 2 (i.e., K=2 clusters). 

The choice of K = 2 clusters was further validated by silhouette analyses, which 
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demonstrated highest average silhouette coefficient values at K = 2 clusters across all 

somatotopic regions, with incremental decreases observed with the choice of K = 3, and K 

= 4 clusters (Supplementary Fig. 2.5). Although variation in RSFC is not homogeneous in 

somatotopic S1 regions, here, we provided evidence for the separation of somatotopic S1 

into two functional parcels that respect underlying architectonics, specifically, Brodmann 

areas 3a & 3b, and areas 1 & 2. 

2.3.3 Thalamocortical connectivity reflects different Brodmann 
areas 

Here, we applied the functional parcels defined by Brodmann areas 3a & 3b, and 1 & 2 to 

investigate thalamocortical connectivity for each somatotopic region. First, spatial maps 

showing areas of dominant thalamocortical connectivity between unilateral thalamus and 

Brodmann areas 3a & 3b, and 1 & 2 were examined to identify thalamic sites that are 

connected to S1. Fig. 2.6a shows each cortical component, and its significant areas of 

connectivity to the thalamus (*𝑃 < 0.05; nonparametric one-sample t-test). Qualitatively, 

these maps show Brodmann areas 3a & 3b have widespread connectivity to the whole 

thalamus across left and right, LL, T and UL. Contrary to this, thalamocortical connectivity 

of Brodmann areas 1 & 2, although widespread in the LL, was predominantly localized in 

the posterior of the thalamus. We investigated the dominant thalamocortical connectivity 

maps to further characterize which thalamic nuclei (i.e., using the Morel atlas [Krauth et 

al., 2010]) showed peak connectivity for each cortical ROI of S1. In general, we found 

peak thalamocortical connectivity to areas adjacent to VP nucleus (i.e., posterior nucleus 

[PO], medial geniculate nucleus [MGN], and anterior pulvinar [PuA]) (Fig. 2.6b), whereas 

only right Brodmann areas 1 & 2 showed peak connectivity to ventral posterior (VP) 

nucleus. Furthermore, left and right Brodmann areas 3a & 3b trunk showed peak 

connectivity to more anterior regions of the thalamus (i.e., medial dorsal [MD], and 

intralaminar [IL] nuclei), and the left T and UL of Brodmann areas 1 & 2 also showed peak 

connectivity to the lateral pulvinar (PuL). Next, we assessed whether the magnitude of 

RSFC differed between the functional parcels (Brodmann areas 3a & 3b, and areas 1 & 2) 

and each thalamic nucleus. In general, higher functional connectivity was observed 

between each thalamic nucleus and Brodmann  
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Figure 2.6 Spatial analysis of dominant thalamocortical connectivity between 

ipsilateral thalamus and functional subdivisions of S1 

(A) Areas of the thalamus significantly correlated with corresponding cortical region 

(*𝑃 < .05). To qualitatively assess areas of the thalamus that display higher connectivity, 

the t-statistic map is overlaid on these maps obtained from the one-sample t-test 

permutation test. (B) Mean t-statistic values for each thalamic nucleus based on the Morel 

atlas (Krauth et al., 2010). Only thalamic nuclei that were significantly correlated with the 

corresponding cortical region are shown. Numbers 1, 2, 3 corresponds to the top three 

thalamic nuclei with the highest t-statistic value in descending order. (C) Difference in 

thalamocortical connectivity (measured by partial correlation score) between Brodmann 

areas 3a & 3b, and 1 & 2 to each thalamic nucleus. Thalamocortical connections with 

significant differences are annotated by an asterisk (*𝑃 < .05). The 13 thalamic nuclei are 

as follows: anterior nucleus (AN), medial dorsal (MD), internal lamina (IL), pulvinar 

medial (PuM), pulvinar lateral (PuL), pulvinar anterior (PuA), lateral posterior (LP), 

medial geniculate nucleus (MGN), posterior nucleus (PO), ventral posterior (VP), ventral 

lateral (VL), ventral anterior (VA), and ventral medial (VM). 

areas 3a & 3b than with Brodmann areas 1 & 2. Specifically, thalamocortical connectivity 

was significantly higher between somatotopic Brodmann areas 3a & 3b and seven out of 

the 13 thalamic nuclei, compared to thalamocortical connections to areas 1 & 2: AN (left 

& right T, and left & right UL) , MD (left LL, left & right T, and left & right UL), IL (left 
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LL, left & right T, and right UL), VP (left T only), VL (left & right T, and left & right UL), 

VA (left & right T, and left & right UL), and VM (left LL ,left & right T, and left & right 

UL) (*𝑃 < 0.05; nonparametric Wilcoxon signed-rank test, specific details documenting 

all of the thalamic nuclei-to-S1 functional connections can be found in Fig. 2.6c with box 

plots shown in Supplementary Fig 2.6). Contrary to this, thalamocortical connectivity of 

the MGN (right T only), and PuL (right T, and right & left LL) were higher with Brodmann 

areas 1 & 2 compared to connections with areas 3a & 3b (*𝑃 < 0.05; nonparametric 

Wilcoxon signed-rank test). Overall, most thalamic nuclei demonstrated differences in 

thalamocortical connectivity between functional parcels with a trend towards having 

stronger connectivity to Brodmann areas 3a & 3b, than to areas 1 & 2. Together, these 

results demonstrate that VP and VP-adjacent nuclei are primarily connected to both S1 

Brodmann parcels, as supported by NHP-related anatomical studies (Nelson and Kaas, 

1981; Mayner and Kaas, 1986). We further showed that different Brodmann area parcels 

led to spatial differences in connectivity patterns to the thalamus, in addition to some 

differences in magnitude of connectivity to thalamic nuclei. Taken together, this suggests 

the application of the proposed gradient scheme in future RSFC-related connectivity 

studies. 

2.4 Discussion 

In the present study, we demonstrated the use of resting-state functional connectivity to 

characterize mesoscopic structural organization of primary somatosensory cortex. First, a 

novel technique, connectopic mapping, was applied to RSFC data and revealed a RSFC 

gradient in S1 which serves as a proxy for anatomical hierarchy of that region. Subsequent 

analysis of the RSFC gradient revealed evidence for two distinct functional parcels that 

delineate Brodmann areas 3a & 3b from areas 1 & 2. Thalamocortical connectivity using 

these parcels was then applied to reveal differing connectivity patterns that are supported 

by anatomical studies of NHPs, and further underscores the value of using this gradient 

scheme for future S1-related work in humans. Collectively, these results provide evidence 

for an anterior-to-posterior gradient in the resting primary somatosensory cortex and 

suggests close associations to anatomical hierarchy, microstructure, and Brodmann 

boundaries. Application of this novel technique provides new insight into bridging the gap 
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between mesoscale connectivity and microstructure along the architectonic axis of S1, and 

builds upon previous multimodal characterization of S1 along its somatotopic axis (Kuehn 

et al., 2017). Crucially, our work suggests a secondary direction of functional heterogeneity 

intrinsic to S1 and may be used in conjunction with structural MR measures to fully 

appreciate the interplay between functional connectivity and structure.  

Manifold learning or ‘connectopic mapping’ was used to demonstrate that the dominant 

RSFC gradients of somatotopic S1 regions were able to accurately predict anatomical 

hierarchy, and in most cases, demonstrated stronger associations when compared to other 

structural MR metrics. As such, application of RSFC could be used as another surrogate 

for local mesoscopic hierarchy, and may be used in conjunction with structural MR metrics 

to investigate structure-function interplay. Evidence for using structural MR metrics as a 

surrogate for anatomical hierarchy is supported by close associations between patterns of 

feedforward/feedback innervations (Barbas and Rempel-Clower, 1997), laminar 

differentiation (Barbas, 1986), and cytoarchitecture (Dinse et al., 2015). In principle, 

structural organization revealed in this manner only accounts for intraregional 

characteristics and does not consider interregional connectivity. For example, it is possible 

that structural damage to S1-connected regions may have downstream effects on the 

dominant RSFC gradient which may not be evident using structural measures. This has far 

reaching implications for S1, as S1 has been shown to topographically map onto the 

cerebellum (Hahamy and Makin, 2019), primary motor cortex, supplementary motor 

cortex (Zeharia et al., 2012), operculum and insula (Brooks et al., 2005), and parietal cortex 

(Huang et al., 2012), among other regions. More critically, the notion of S1 interregional 

connectivity is fundamental for brain function as suggested in animals to facilitate whisker-

detection tasks (Yamashita and Petersen, 2016; Kwon et al., 2016), and in humans for deep 

brain stimulation (Horn and Fox, 2020).  Thus, the identification of a surrogate for 

anatomical hierarchy in humans that is grounded by the principles of RSFC may provide 

further insight into the relationships between structure-function, behaviour, and disease. 

A more detailed analysis assessing the anterior-to-posterior gradients found in somatotopic 

regions of S1 revealed gradual changes in RSFC between boundaries of Brodmann areas 

3a & 3b and 1 & 2, whereas a more pronounced change in RSFC can be identified between 
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areas 3b & 1, and suggests a possible functional boundary. Based on NHP anatomical 

studies it is well understood that different architectonic regions demonstrate distinct 

connectivity patterns (Krubitzer and Disbrow, 2008). Specifically, Brodmann area 3b 

connects primarily to adjacent S1 regions, such as areas 3a, 1, 2, secondary somatosensory 

cortex (S2), and primary motor cortex (M1) (Krubitzer and Kaas, 1990; Jones et al., 1979; 

Juliano et al., 1990; Darian-Smith et al., 1993). In comparison, Brodmann area 1 

demonstrates more dispersed connections to areas 3b, 2, 7b, S2, in addition to sparse 

connections with areas 3a, M1 and frontal cortex (Pons and Kaas, 1986; Burton and Fabri, 

1995; Burton et al., 1995). These separate connectivity patterns may explain the sharp 

divergence in RSFC patterns between Brodmann areas 3b & 1. Furthermore, Geyer and 

colleagues (Geyer et al., 1999) conducted a transmitter binding study which characterized 

the Brodmann areas with a ‘neurochemical fingerprint’, and the most differences in 

neurotransmitter binding sites were observed at the interface between areas 3b & 1, 

providing further evidence of a functional boundary between these two regions.  

Gradual changes in functional topography observed between areas 3a & 3b, and 1 & 2 may 

be due to similar, but not identical connectivity patterns displayed by each pair of regions. 

Although area 3b is densely connected to area 3a, area 3a has additional connections to 

motor and posterior parietal areas of the cortex, as found in anatomical tracer studies in 

marmosets (Huffman and Krubitzer, 2001), and macaques (Jones et al., 1978; Darian-

Smith et al., 1993). Similar findings have been observed in electrophysiological-guided 

tracer studies in macaques for Brodmann areas 1 and 2 (Pons and Kaas., 1985). Slightly 

differing connectivity patterns in these pair of regions may explain the gradual changes in 

RSFC observed in our data.  Interestingly, we showed that RSFC also changes gradually 

within each Brodmann area (see Fig. 2.4b). These gradual changes reflect intrinsic RSFC 

heterogeneity in somatotopic areas along the anterior-to-posterior axis and may be related 

to possible connection topography of somatotopic ROIs onto other cortical areas. Such 

functional topography may be important for developing a better understanding of 

mesoscopic hierarchical function in humans. 

Although thalamic connections to S1 predominantly originate in VP, it has been shown 

that thalamic inputs to areas 3a & 3b vary widely, whereas inputs to 1 & 2 localize more 
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to posterior nuclei. For example, NHP anatomical tracer literature has shown that in 

addition to inputs from VP, areas 3a & 3b receive collective input from pulvinar (Cusick 

and Gould, 1990) (Pu), ventral lateral (VL), ventral anterior (VA) and central medial 

thalamic nuclei (Lang et al., 1979) (CL; as part of the internal lamina (IL)), and areas 1 & 

2 receive inputs from VL, and Pu (Pons and Kaas, 1985; Friedman and Jones, 1981). In the 

present study, connections were observed between all investigated thalamic nuclei and 

Brodmann areas 3a & 3b, while only some thalamic nuclei, majority of which were located 

in the posterior of the thalamus, showed connections to areas 1 & 2. Nuclei that were 

connected to both Brodmann parcels trended towards having stronger functional 

connectivity to Brodmann areas 3a & 3b, compared to areas 1 & 2. Perhaps the most 

important thalamic nucleus associated to S1 is VP, which is known to have more dense 

connections to Brodmann area 3 compared to area 1 (Mayner and Kaas, 1986). However, 

here we observed only a trend favouring stronger functional connectivity between areas 3a 

& 3b and VP. This inconsistency with existing NHP literature may be attributed to a 

reduced signal-to-noise ratio and sensitivity to blood-oxygenation-level-dependent signal 

in the subcortex (compared to the cortex) (Puckett et al., 2018). Despite the lack of 

significant differences in observed functional connectivity between VP (and VP-adjacent) 

nuclei and Brodmann parcels, here, we demonstrated the parcels’ ability to accurately 

describe well-known NHP anatomical thalamocortical connections. Together, these 

findings suggest that consideration of S1 as two separate architectonic ROIs, rather than 

the common method of using whole S1 (Woodward et al., 2017; Chen et al., 2019), may 

provide complimentary information regarding thalamocortical RSFC. This approach could 

be used in clinical neuroscience to conduct more in-depth investigations into 

thalamocortical connectivity in future studies. 

Interestingly, in Brodmann areas 3a & 3b, and 1 & 2, we saw ipsilateral thalamocortical 

connectivity to be higher in thalamic nuclei adjacent to VP (posterior nucleus (PO), medial 

geniculate nucleus (MGN), and anterior pulvinar (PuA)), compared to VP itself. It is 

possible that misregistration between the Morel cytoarchitectonic atlas (used to define the 

nuclei) may explain for these inconsistencies. For example, the Oxford thalamic 

connectivity probability atlas (Behrens et al., 2003) derived from diffusion tractography 

showed that PO, VP and PuA demonstrated similar likelihood of connectivity to the 
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somatosensory cortex (31, 26.8, and 23.6 %, respectively), suggesting that Morel’s atlas 

definition of PO should be considered the primary relay nucleus of S1, which is 

traditionally acknowledged as VP. With these considerations in mind, our thalamocortical 

analyses of Brodmann areas suggests peak RSFC to VP or VP-adjacent nuclei, and further 

supports the VP-centric role of the thalamus for S1. 

Our results are subject to several methodological limitations. In this study, the ensuing 

dominant gradients were generated from RSFC data which relies on inter-brain region 

timeseries correlation values during an at-rest paradigm. In principle, this technique cannot 

be used to draw inference on the functional role of a cortical region, whereas task-based 

multivariate fMRI analyses could be used to fill this gap (Yokoi and Diedrichsen, 2019). 

Nonetheless, RSFC enables an accessible way to index brain connectivity, and holds strong 

parallels to how anatomical hierarchy has been traditionally annotated based on anatomical 

connectivity information (Felleman and Van Essen, 1991). Furthermore, RSFC provides a 

more practical solution for acquiring data from clinical participants who may be unable to 

cooperate and perform task-related experimental designs. 

Another limitation is that our results only investigate the primary gradient generated from 

each somatotopic S1 subregion while ignoring other higher order gradients. In the context 

of this work, constraining our investigations to only the primary gradient was sufficient for 

us to accurately characterize an anterior-to-posterior axis of the somatosensory cortex 

while demonstrating its correspondence with underlying cytoarchitectonic boundaries. It is 

acknowledged that multiple overlapping gradients may exist within any given ROI (for 

example, a retinotopic and visuotopic gradient in V1 [Haak and Beckmann, 2020]), thus 

future investigations could evaluate whether higher-order gradients provide further 

information towards the characterization of S1.  

Finally, as this work uses previously defined ROIs, any limitations associated with ROI-

based analyses are also shared with this study. To mitigate ROI-inaccuracies, we used 

Brodmann area ROIs taken from Glasser and colleagues’ atlas which takes advantage of 

convergent multi-modal information to reduce errors associated with mis-defining of 

architectonic borders23. Furthermore, it is suggested that the medial-superior definition of 
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Brodmann area 2 may slightly overlap with area 5L (Scheperjans et al., 2008), which in 

turn, may skew embeddings of LH/RH upper limb. Nonetheless, although inaccuracies in 

ROI may attend this work, we believe our results demonstrate a clear anterior-to-posterior 

axis in somatotopic S1 that is strongly associated with microstructure and corresponds well 

with Brodmann areas. Moving towards finer-grained descriptions of functional topography 

using RSFC, we stress the importance of accurate ROI definition to reliably capture 

biologically meaningful gradients. 

The present study uses RSFC data to demonstrate anatomical hierarchy of S1 in humans, 

in addition to its association with microstructure and correspondence to Brodmann areas. 

Such insight suggests close coupling between structure and function and offers a 

framework for studying structure-function interplay in humans. Beyond this, examination 

of S1 at the systems level could lead to improved understanding of sensorimotor 

behaviours, and deficits whose pathophysiology is not well understood. 
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2.6 Supplementary Figures 

 

Supplementary Figure 2.1 Dominant gradient of right hemisphere upper limb ROI 

(Left) Group level gradients derived from right hemisphere upper limb ROI. The minimum 

and maximum of the gradient spans the ventral-dorsal axis. The ROI definition may include 

spatial information encoding somatosensory face information skewing the behaviour of the 

dominant gradient. (Right) Removal of the ventral portion of the right hemisphere upper 

limb ROI definition yields a dominant gradient where the minimum and maximum of the 

gradient spans the anterior-posterior axis indicative of S1 hierarchical organization. 
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Supplementary Figure 2.2 Association between dominant gradient and T1w/T2w of 

the right upper limb ROI 

(A) Dominant gradient (left) and the correlation between the dominant gradient and 

T1w/T2w for the full right upper limb ROI. (right) (B) Dominant gradient (left) and the 

correlation between the dominant gradient and T1w/T2w for the truncated right upper limb 

ROI. (***𝑃 < 10−4 for both ROIs). 
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Supplementary Figure 2.3 Evidence of functional boundaries between Brodmann 

areas (using 3rd quantile vertices) 

(A) Left and right S1 separated by somatotopic regions and colour coded by architectonic 

Brodmann areas. Black lines in each somatotopic region indicates the vertex-to-vertex 

path (or trajectory) used to extract values from the RSFC-derived gradients. A geodesic 

distance of 0 indicates the most anterior vertex of the trajectory. (B) Left and right 

somatotopic regions’ RSFC connectivity pattern plotted against geodesic distance as 

defined by a rostro-to-caudal vertex-to-vertex trajectory. Black points represent the 

average gradient value across all participants (N = 65). Overlaid are three ‘parcel’ 

definition lines drawn for each boundary between 3a & 3b, 3b & 1, and 1 & 2 (blue, green, 

and purple) smoothed with a 5 mm FWHM. Corresponding bar plots shows the L2 norm 

between parcel definition and RSFC connectivity pattern with a value closer to 0 

suggesting more evidence for a functional boundary. Error bars in (B) indicate the 

standard deviation for all plots. *𝑃 < .05, **𝑃 < 10−3,***𝑃 < 10−4. 
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Supplementary Figure 2.4 Evidence of functional boundaries between Brodmann 

areas (using 1st quantile vertices) 

(A) Left and right S1 separated by somatotopic regions and colour coded by architectonic 

Brodmann areas. Black lines in each somatotopic region indicates the vertex-to-vertex 

path (or trajectory) used to extract values from the RSFC-derived gradients. A geodesic 

distance of 0 indicates the most anterior vertex of the trajectory. (B) Left and right 

somatotopic regions’ RSFC connectivity pattern plotted against geodesic distance as 

defined by a rostro-to-caudal vertex-to-vertex trajectory. Black points represent the 

average gradient value across all participants (N = 65). Overlaid are three ‘parcel’ 

definition lines drawn for each boundary between 3a & 3b, 3b & 1, and 1 & 2 (blue, green, 

and purple) smoothed with a 5 mm FWHM. Corresponding bar plots shows the L2 norm 

between parcel definition and RSFC connectivity pattern with a value closer to 0 

suggesting more evidence for a functional boundary. Error bars in (B) indicate the 

standard deviation for all plots. *𝑃 < .05, **𝑃 < 10−3,***𝑃 < 10−4. 
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Supplementary Figure 2.5 Silhouette analyses of each somatotopic ROI for determining the choice of K clusters 

(A)  Silhouette plots of group-level gradients for each K-means cluster choice (i.e., K=2, 3, 4) across each somatotopic ROI (i.e., left 

and right, LL, T and UL). Each plot displays the silhouette coefficient and assesses the closeness of each clustered vertices to all 

neighbouring clusters. The average silhouette coefficient value across all vertices in each K-cluster case is indicated by the vertical 

dotted red line. (B) Average silhouette coefficient values plotted against K-clusters for each somatotopic ROI. All somatotopic ROIs 

demonstrate highest average silhouette coefficient values at K = 2 clusters. 
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Supplementary Figure 2.6 Connectivity between ipsilateral thalamic nuclei and functional subdivisions of S1 

Connectivity strength (mean partial correlation coefficient across ipsilateral thalamic nuclei; each plot shows data from a different 

thalamic nuclei) calculated for left and right somatotopic region (i.e., LL, T, and UL). Points represent connectivity strength for each 

participant (N=65), and gray lines indicate pairwise changes. *𝑃 < .05 
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Chapter 3  

3 Joint-embeddings reveal functional differences in 
default-mode network architecture between marmosets 
and humans 

3.1 Introduction 

Dynamic reconfiguration of functional brain organization is essential for supporting 

diverse cognitive tasks in humans (Sporns, 2010; Bassett and Bullmore, 2017). Cognitive 

tasks that are complex in nature rely on increases in functional integration between 

segregated systems, whereas simpler tasks may rely on only a single isolated system (Deco 

et al. 2015; Shine, 2019). Since diverse cognitive processes can exist in either of these two 

juxtaposed task-states, the resting-brain must dwell in an equilibrium condition that can 

support adaptive switching during various cognitive demands (Wang et al. 2021). In this 

regard, the default-mode network (DMN) – composed of a set of tightly interconnected 

cortical association areas (Raichle 2001; Buckner et al. 2008) – is postulated to subserve a 

role in broader cortical dynamics, as it is optimally positioned between sensory cortices, 

serving as convergence zones for neural activity (Margulies et al. 2016). DMN nodes have 

been shown to mediate interaction between other macroscopic functional networks (Braga 

et al. 2013; Kernbach et al. 2018), and have also been shown to adaptively reconfigure 

during tasks involving heavy cognitive load (Braun et al. 2015; Finc et al. 2020). 

Collectively, the DMN’s ability to subserve higher-order cognitive functions may be 

anchored by its capacity to integrate diffuse cortical dynamics across the cerebral cortex. 

While evidence supporting this view is widely recognized in the DMN of humans, the 

generalizability of this DMN architecture to pre-clinical animal models that are used to 

investigate higher-order cognition must be validated. This is particularly important for 

translational research, since animal models are invariably used to develop and assess 

therapeutics at the pre-clinical stage for many brain disorders that have a major cognitive 

component. 

 

In preparation for submission to PNAS 
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The common marmoset is a favored non-human primate animal model for studying 

sophisticated cognitive and social behaviours, such as those encapsulated by the DMN 

(Miller et al. 2016; Jennings et al. 2017; Okano et al. 2016). Within-species research has 

shown that, similar to humans, macroscopic networks occupy cortical association areas of 

the marmoset brain (Buckner and Margulies, 2019), among which is believed to be the 

marmoset DMN consisting of three nodes: dorsolateral prefrontal cortex (dlPFC), posterior 

cingulate cortex (PCC), and posterior parietal cortex (PPC; Liu et al. 2019). Interestingly, 

the medial prefrontal cortex (mPFC), which is considered to be part of the human DMN, 

appears to be absent in the marmoset DMN (Liu et al. 2019). Although general 

conservation of the DMN between these two species is evident, relative to humans, primate 

DMN nodes corresponding to cortical association areas are expanded (Stephan et al. 1981; 

Chaplin et al. 2013) and display nuanced discrepancies in wiring principles (Goulas et al. 

2019). Given that these differences between humans and marmosets emerge through 

increasing phylogenetic distances, an intriguing question arises: To what extent does the 

default-mode network architecture differ between these two species?  

Our cross-species comparison study of marmosets and humans interrogated the extent of 

divergence in DMN architecture between these two primate species, providing critical 

insight into the utility of the marmoset as an animal model for higher cognition and clues 

as to the evolution of this fundamental brain network that appears to be conserved to 

varying degrees across all mammals studied to date. To this end, we used joint embeddings 

to map candidate homologous RSFC gradients in human and marmoset cortices (Xu et al. 

2020). Next, we identified the canonical DMN-centric gradient used to empirically 

compare interspecies DMN architecture. We found an expanded DMN gradient in the 

marmoset compared to human, and this was attributed to the dlPFC, which (1) was weakly 

bounded, and (2) expressed spatially inconsistent connection topography compared to 

posterior DMN-nodes. Due to the importance of mPFC in the human DMN and its 

previously-suggested absence in the marmoset DMN (Liu et al. 2019), we also identified a 

subsequent joint gradient that included a mPFC area in both marmosets and humans. 

Interestingly, the human mPFC component of the joint gradient was located caudally 

relative to the known DMN mPFC area. Our exploration using joint gradients suggests 

marked differences in anterolateral-posterior DMN architecture (dlPFC-PCC-PPC) and 
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provides clarity towards identifying provisional homology between human and marmoset 

mPFC. Taken together, these findings suggest the default-mode network of the marmoset 

may lack the functional architecture to efficiently integrate neural information to subserve 

broader cortical dynamics and diverse cognitive demands, as compared to humans. 

3.2 Methods 

3.2.1 Resting-state fMRI dataset and preprocessing 

3.2.1.1 Human data 

This 3T resting-state dataset was taken from 𝑁 = 100 unrelated young adults from the 

Human Connectome Project (HCP) of the 1200-participant release 

(https://www.humanconnectome.org/study/hcp-young-adult). Each participant 

underwent four 14.4-minute rsfMRI scans (TR = 0.72 s) acquired across two days (two 

scans per day, acquired in opposite phase-encode direction [left-right/right-left]). Each 

scan was preprocessed through the HCP with details described by Smith and colleagues, 

and includes spatial distortion, and head-motion correction, registration to a T1 weighted 

structural, resampling to a 2 mm Montreal Neurological Institute (MNI) space, global 

intensity normalisation, high-pass filtering (cut-off at 2000 s), and ICA-based artefact 

removal (FSL-FIX) (Glasser et al. 2013; Griffanti et al. 2014; Salimi-Khorshidi et al. 2014; 

Smith et al. 2013). In addition to HCP minimal preprocessing, mean white matter and 

ventricular signal was regressed from the data, followed by cortical surface smoothing with 

a 5 mm FWHM Gaussian kernel, bandpass filtering (0.01-0.1 Hz) and downsampling to a 

10k (10,242 vertices) mid-cortical surface. All scans from a single subject were Z-score 

normalised to zero mean and unit standard deviation. 

To mitigate biases from the effects of motion we only include participants who fell within 

our necessarily stringent motion exclusion criterion (Power et al. 2012). Specifically, 

participants who had a mean framewise displacement (FD) greater than 0.2 mm in any of 

their four scans were excluded from analyses. This resulted in  𝑁 = 65 (FD; mean = 0.138 

mm, SD = 0.023 mm) subjects used across all analyses. 

https://www.google.com/url?q=https://www.humanconnectome.org/study/hcp-young-adult&sa=D&source=docs&ust=1642796518348393&usg=AOvVaw1C60waUHEakkFdnNHRBuUZ
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3.2.1.2 Awake marmoset data 

Marmoset resting-state datasets were taken from 

https://www.marmosetbrainconnectome.org (Schaeffer et al. 2022) and includes two 

datasets from Western University (UWO;  𝑁 = 5) and the National Institutes of Health 

(NIH; 𝑁 = 26). Each marmoset from the UWO dataset was acquired using a 9.4 T, 31 cm 

horizontal bore magnet (Varian/Agilent, Yarnton, UK) and underwent 4-6 15-minute 

rsfMRI scans (TR = 1.5 s) acquired in an anterior-posterior phase encode direction over 

multiple days. Each marmoset from the NIH dataset was acquired using a 7T 30 cm 

horizontal bore magnet (Bruker BioSpin Corp, Billerica, MA, USA) and underwent 4-8  

17.1-minute rsfMRI scans (TR = 2.0 s) acquired in opposite phase encode direction [left-

right/right-left] of a single session. Additionally, a T2-weighted structural was acquired 

during one of the multi-session scans for the UWO dataset (voxel size = 0.133  0.133  

0.5 mm), and during the single-session scan for the NIH dataset (voxel size = 0.25 × 0.25 

× 0.5 mm). Specific details regarding awake marmoset scanning methodology (i.e., 

acclimatization of marmosets to MRI environment), MRI acquisition parameters, and 

preprocessing details are described in Schaeffer et al. 2022. Apart from phase-encoding 

distortion correction that was applied to the NIH dataset, all pre-processing of rsfMRI scans 

were identical. Briefly, pre-processing includes removal of the first ten timeframes (for 

magnetization to reach a steady-state), time-series despiking, slice-timing correction, and 

motion correction. In addition, nuisance regression was performed to further mitigate 

motion parameters, and to achieve linear and non-linear detrending and bandpass filtering 

(0.01-0.1 Hz). Resampling of the rsfMRI data to the NIH marmoset brain atlas (Liu et al. 

2021) was conducted by concatenating a linear registration between the mean functional 

and T2 weighted structural images with a non-linear registration between the structural and 

template images. Next, the preprocessed rsfMRI data was projected onto the NIH 

marmoset brain atlas surfaces where surface smoothing using a 1.5 mm FWHM Gaussian 

Kernel, and downsampling to a 10k (10,242 vertices) graymid surface was performed (i.e., 

a surface located at the midpoint between the white matter and pial surfaces). All scans 

from a single marmoset were Z-score normalized to zero mean and unit standard deviation. 

https://www.marmosetbrainconnectome.org/
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3.2.2 Region of interest definitions for joint embedding 

Homologous region of interests (ROIs) of humans and marmosets were obtained from a 

surface-based multi-modal parcellation of the human cortex (Glasser et al. 2016) and 

Paxinos’ histological-based atlas of the marmoset cortex (Paxinos et al. 2012; Majka et al. 

2021), respectively. A total of 13 candidate homologous ROIs were selected across humans 

and marmosets and includes areas V1, V2, A1, M1, 3a, 3b, 1+2, FEF, MT, dlPFC, PCC, 

PPC, and hippocampus (Solomon and Rosa, 2014; Kaas 2004; Liu et al. 2019). Oftentimes 

it is difficult to identify homologies in higher-order areas due to lack of convergent 

multimodal evidence (i.e., cytoarchitecture, function, anatomical connectivity), such as for 

areas FEF, dlPFC, PCC, and PPC. Nonetheless, association areas were carefully included 

as we wanted to include a wide range of cortical areas into the joint embedding algorithm. 

A summary of ROIs used in the joint embedding can be found in Supplementary table 3.1.  

A likely candidate for marmoset FEF is marmoset area A8aV as supported by tract-tracing 

(Reser et al. 2013), microstimulation (Selvanayagam et al. 2019), RSFC, and task-based 

fMRI (Schaeffer et al. 2019)). A corresponding homologous human FEF was defined using 

the human multi-modal parcellation (Glasser et al. 2016).  

Candidate marmoset DMN areas (i.e., dlPFC, PCC, and PPC) were selected based on Liu 

and colleagues’ definitions (Liu et al. 2019). In concordance with their methodology, ICA 

was performed on all of the marmoset data (scans of all marmosets were temporally 

concatenated) using MELODIC in FSL (Jenkinson et al. 2012). Thirty ICA components 

were estimated, and the candidate DMN network was identified based on the inclusion of 

a dlPFC, PCC, and PPC component. Furthermore, the selected DMN network was visually 

assessed to ensure that each DMN node included marmoset areas corresponding to peaks 

areas of ICA activation as previously described (i.e., dlPFC, PCC, and PPC included 

marmoset areas A8aD, PGM, and LIP, respectively). Lastly, the DMN ICA component 

was thresholded at a level of 0.5 using a mixture model and alternative hypothesis testing 

approach and masked with a threshold of Z>6.0 to obtain ROIs of each DMN node. 

Spatially consistent DMN were identified independently in both cohorts (NIH and UWO) 

supporting the use temporally concatenated data, across all cohorts, for identification of 

the ROIs for the marmoset DMN (see Supplementary Fig. 3.1). 
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 Human homologous DMN areas dlPFC, PCC and PPC were hand selected using HCP 

labels that were reannotated with canonical RSNs (Ji et al. 2019). Specifically, human 

dlPFC was assigned to area 8Ad, PCC was assigned to area 7m, and PPC was assigned to 

area PG (includes areas PGi & PGs). With the consideration that human PCC includes 

multiple human areas, RSFC analyses of other PCC areas demonstrated strong internode 

connectivity, and similar spatial topography of RSFC, as such, choice of human PCC ROI 

should not affect ensuing joint embedding results. 

3.2.3 Joint embeddings 

Joint embedding is a spectral embedding technique that can be used to spatially quantify 

and align RSFC patterns across individuals (Nenning et al. 2017). Recently, this technique 

has been extended to achieve spatial alignment using RSFC patterns between the human 

and macaque cortex (Xu et al. 2020). In this work, joint embeddings were achieved by 

generating a joint similarity matrix (𝑊𝑗𝑜𝑖𝑛𝑡) that integrates RSFC information from humans 

and marmosets, as follows: 

𝑾𝐣𝐨𝐢𝐧𝐭 = [ 𝑰𝒉 𝑾𝒉−𝒕𝒐−𝒎

𝑾𝒎−𝒕𝒐−𝒉 𝑰𝒎
] 

where 𝑰𝒉 and 𝑰𝒎 represents the identity matrices whose size corresponds to the number of 

cortical vertices (superscripts 𝒉 and 𝒎 annotates humans and marmosets, respectively). 

Here, the identity matrix was chosen to represent intraspecies similarity to remove all 

interaction of intraspecies cortical vertices. This was done to ensure that ensuing joint 

gradients considers only vertex-wise interspecies similarity (𝑾𝒎−𝒕𝒐−𝒉 and 𝑾𝒉−𝒕𝒐−𝒎) 

similar to typical connectivity fingerprint analyses (Mars et al. 2018).  

Interspecies similarity matrices (𝑾𝒎−𝒕𝒐−𝒉 and 𝑾𝒉−𝒕𝒐−𝒎) were generated by first, 

calculating vertex-to-vertex RSFC for each species (𝑪𝑴×𝑴
𝒚

: 𝑴=number of cortical vertices, 

and 𝑦 corresponds to the species [i.e., human or marmoset]). Note that 𝑪𝑴×𝑴
𝒚

 was 

calculated by computing the group average across all subjects in a cohort. This was 

followed by row-wise thresholding of each vertex’ RSFC pattern, preserving only 

relatively strong resting-state functional connections. Next, the average RSFC patterns for 
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each homologous ROI were calculated resulting in 𝑳𝑵×𝑴
𝒚

 (𝑵=number of homologous ROIs, 

𝑴=number of cortical vertices, and 𝒚 corresponds to the species [i.e., human or 

marmoset]). Next, cosine similarity between RSFC patterns of homologous ROIs (𝑳𝑵×𝑴
𝒚

) 

and RSFC patterns of the whole brain (𝑪𝑴×𝑴
𝒚

) was calculated resulting in 𝑺𝑵×𝑴
𝒚

, 

representing the similarity in RSFC patterns between homologous ROIs and the whole 

brain. Finally, cosine similarity between 𝑺
𝑵×𝑴𝒉
𝒉  and 𝑺𝑵×𝑴𝒎

𝒎 , across all vertices of humans 

and marmosets can be computed as they share the same number of homologous ROIs (𝑵), 

resulting in the cross-species similarity matrix, 𝑾
𝑴𝒉×𝑴𝒎
𝐡−𝐭𝐨−𝐦. Note that 𝑾

𝑴𝒎×𝑴𝒉
𝐦−𝐭𝐨−𝐡 corresponds 

to the transverse of 𝑾
𝑴𝒉×𝑴𝒎
𝐡−𝐭𝐨−𝐦. See figure 1b for schematic overview of the construction of 

the joint similarity matrix (𝑾𝒋𝒐𝒊𝒏𝒕). 

To perform spectral embeddings, the Laplacian eigenmap algorithm was applied on the 

graph Laplacian of the joint similarity matrix to obtain a low dimensional manifold 

representation (Belkin and Niyogi, 2003), commonly referred to as gradients. The graph 

Laplacian is denoted as follows:  

𝑳 = 𝑫 − 𝑾, 

where 𝑾 is the adjacency matrix defined by 𝑾𝐣𝐨𝐢𝐧𝐭, 𝑫 is the degree matrix defined as 

𝑫𝒊,𝒊 = ∑ 𝑾𝒊𝒊 , and 𝑳 is the graph Laplacian. Solving the generalized eigenvalue problem 

𝑳𝒚 = 𝜆𝑫𝒚 yields 𝑚 eigenvectors {𝑦1, … , 𝑦𝑚} corresponding to the smallest 𝑚 non-zero 

eigenvalues  {𝜆1, … , 𝜆𝑚}. Critically, each eigenvector, or gradient, can be mapped back 

onto the cortices of the human and marmoset, to describe axes of matched RSFC 

organization across species. Additionally, all gradients were normalized between 0 and 1 

to ensure consistency in scale. 

To determine the thresholding parameter of intraspecies RSFC (i.e., 𝑪𝒗×𝒗
𝒚

), a sparsity of 

1%, 5% and 10% was used. Selection of 1% row-wise sparsity was chosen for subsequent 

analyses as this sparsity parameter led to the most similar gradient profiles between all 

homologous ROIs. Note that varying the sparsity parameter only minimally affect the joint 

gradients that are subsequently investigated in this work. 
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3.2.4 Joint embeddings validation 

To ensure joint embeddings describe cross-species homology, average gradient values 

from the top 12 gradients were extracted from all pre-defined homologous ROIs in humans 

and marmosets. Selection of only the top 12 gradients were obtained because subsequent 

gradients (i.e., gradients 13 and higher) were noisy and did not explain cross-species 

homology. The correlation of gradient profiles between species were assessed for all 

homologous pairs of homologous ROIs. 

3.2.5 DMN joint gradient analyses 

Investigations looking at the joint gradient distributions corresponding to the human DMN 

was performed to examine differences in gradient values between DMN nodes, 

intraspecies, and interspecies. To do this, we identified the joint gradient with a human 

component that spatially corresponded with the canonical human sensorimotor-to-DMN 

gradient (Margulies et al. 2016), then we extracted and compared joint gradient values from 

the following DMN nodes: dlPFC, PCC, and PPC. Selection of marmoset areas dlPFC, 

PCC, and PPC was identified using an ICA approach as previously described (Liu et al. 

2019). Due to a well annotated and established DMN in humans (Glasser et al. 2016; Ji et 

al. 2019), more expansive ROIs were chosen to capture a broader representation of the 

human DMN, as compared to those selected for the joint embedding approach. Here, 

human dlPFC corresponded to areas 8Ad and 8Av, PCC corresponded to areas 7m, 31pd, 

31pv, 31a, v23ab, d23ab, 23d and POS1, and PPC corresponded to areas PGi and PGs. 

Note that mPFC was excluded as recent evidence has suggested its exclusion from the 

marmoset DMN and was outside the scope of this investigation (Liu et al. 2019). 

3.2.6 DMN RSFC analyses 

To provide interpretation for differences observed from the DMN joint gradient results, we 

conducted (1) internode DMN RSFC, and (2) seed based RSFC analyses using each DMN 

ROI. Average timeseries were extracted from left and right hemisphere of each DMN node 

for each scan session (each subject had multiple sessions for humans and marmosets). For 

each session computations of (1) internode DMN RSFC and (2) RSFC maps for each DMN 
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node were performed. Next, the average was calculated across each subjects’ scan sessions 

and used in subsequent analyses. 

Internode DMN RSFC analyses examined group-level differences between humans and 

marmosets. We postulated that homology between DMN nodes of humans and marmosets 

would imply consistent differences in RSFC strength between all pairs of DMN nodes. For 

example, if human DMN nodes are all strongly connected with one another, a similar 

observation would be expected between marmoset DMN nodes, however the difference in 

RSFC magnitude may be offset by a constant magnitude due to differences in rsfMRI 

scanning acquisition parameters. To conduct inference, a bootstrapping approach 

(n=1,000) was used to iteratively calculate group-level differences in RSFC strength of 

humans and marmosets for each pair of DMN nodes. Lastly, group-level differences in 

RSFC between pairs of DMN nodes were assessed (P < 0.05, nonparametric Mann-

Whitney U test). 

Seed based RSFC analyses were conducted to assess the similarity and differences between 

spatial topography of RSFC connections of each DMN node. Here, cortical connections of 

each DMN node were assessed using a nonparametric one-sample t-test (Nichols and 

Holmes, 2002).  Significant vertices are considered as areas of connections (P < 0.05, 

correcting for multiple comparisons). Significant vertices were used to mask group-level 

connectivity maps for visualization purposes. Next, the significant vertices of each DMN 

node were treated as binary masks and the dice similarity coefficient (DSC) between pairs 

of binary masks were calculated to measure the degree of overlap between the spatial 

topography pairs of DMN nodes. The DSC measures the similarity between a set X and Y 

(i.e., a thresholded connectivity map of dlPFC and PCC), if the sets are identical (i.e., they 

contain the same vertices), the coefficient is equal to 1, while if X and Y have no vertices 

in common, then it is equal to 0, otherwise the DSC falls somewhere between 0 and 1 

(Dice, 1945). Furthermore, these analyses were repeated by varying the stringency level of 

the nonparametric one-sample t-test, to probe for cortical connections with higher RSFC 

strength (𝒓𝟎) across each species' cohort. 
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3.2.7 Statistical methods 

3.2.7.1 Multiple comparisons 

All statistical comparisons were conducted using an 𝛼-level of 5% fully Bonferroni 

corrected for the number of comparisons. 

3.2.7.2 Spatial autocorrelation-preserving surrogate map test 

We employed the spatial autocorrelation-preserving surrogate map test to identify 

correspondence between topographies of two brain maps (Burt et al. 2020). This allows for 

statistical inference to be conducted between brain maps while accounting for spatial 

autocorrelation. The spatial autocorrelation-preserving surrogate map test was used to 

determine statistical associations between pairs of brain maps (i.e., human intra-species 

and cross-species somatomotor-to-DMN gradient). 

3.2.8 Data and code availability statement 

Code is made available on Github (https://github.com/gnngo4/cross-species-

embeddings_2022). Resting-state functional connectivity data of humans can be obtained 

from the Human Connectome Project (https://db.humanconnectome.org), and data of 

marmosets can be obtained from the Marmoset Functional Brain Connectivity Resource 

(www.marmosetbrainconnectome.org). 

3.3 Results 

3.3.1 Common brain architecture between humans and marmosets 
using joint embeddings 

A common embedding space to enable marmoset and human comparison was generated 

by adapting a recently developed cross-species joint embedding approach (Xu et al. 2020). 

In brief, spectral embedding was applied to a joint similarity matrix – constructed by 

concatenating four submatrices: identity matrices were placed on the diagonals and  

https://github.com/gnngo4/cross-species-embeddings_2022
https://github.com/gnngo4/cross-species-embeddings_2022
https://db.humanconnectome.org/
http://www.marmosetbrainconnectome.org/
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Figure 3.1 Joint gradient characterization of functional connectivity fingerprinting in 

humans and marmosets 

(A) Homologous ROIs mapped onto left hemisphere inflated cortical surfaces of humans 

and marmosets. (B) A schematic overview for generating joint gradients. Timeseries across 

the whole cortex and across all homologous regions are denoted by (𝑨), (𝑩), respectively. 

Group averaged cortex-to-cortex (𝑪) and homologous ROI-to-cortex (𝑳) connectivity 

matrices were generated for humans and marmosets. The similarity matrix (𝑺) in 

connectivity fingerprints between pairs of cortical vertices and homologous ROIs was 

computed using cosine similarity. Next, the similarity in similarity fingerprints between 

pairs of cortical vertices in humans and marmosets was computed using cosine similarity, 

yielding the cross-species similarity matrix (𝑾𝒉−𝒕𝒐−𝒎). Concatenation of the cross-

species similarity matrix on off-diagonals and identity matrix on diagonals yielded the joint 

similarity matrix. Eigendecomposition were computed on the graph Laplacian of the joint 

similarity matrix resulting in ensuing eigenvectors (or joint gradients). 𝑴, number of 

cortical vertices; 𝑵, number of homologous ROIs; 𝑻, number of time frames; 𝒇𝒄 , Pearson 

correlation; 𝒇𝒔 , cosine similarity. (C) Visualization of the top five joint gradients mapped 

onto right hemisphere inflated cortical surfaces for humans (top row) and marmosets 



85 

 

(bottom row). Lateral view (left) and medial view (right). Each gradient shows continuous 

variation in functional connectivity fingerprinting across the cortices of humans and 

marmosets. Details of homologous ROI selections are provided in Supplementary Table 

3.1. 

interspecies similarity matrices were placed on the off diagonals (see Fig. 3.1b for more 

details) – resulting in multiple Laplacian eigenvectors (referred to as joint gradients). Each 

joint gradient can be mapped vertex-wise onto the human and marmoset cortices 

representing a common feature space describing brain regions with similar connectivity 

fingerprints across both species (Fig. 3.1c). 

After mapping joint gradients onto the human and marmoset cortices, we qualitatively 

observed that similar colours within each joint gradient describes candidate homologs in 

both species. For example, joint gradient 1 of the human describes the previously 

established somatomotor-to-DMN gradient (Margulies et al. 2016) (***𝑃 < 10−4; spatial 

autocorrelation-preserving surrogate map test; LH: 𝑟=.88; RH: 𝑟=.90, see Supplementary 

Fig. 3.2), as quantified by ascending gradient values starting from the somatomotor 

network, and increasing towards the DMN. Similarly, joint gradient 1 of the marmoset 

describes a similar organizational axis, with lower, and higher gradient values describing 

the somatomotor areas, and marmoset DMN homolog, respectively (Fig. 3.1c). Although 

joint gradient 1 revealed a matching organizational axis in both species, we also observed 

striking differences in intensity values of DMN nodes inter-species, and intra-species. For 

example, differences in intensities of DMN nodes between species, and between distal 

marmoset DMN nodes were observed (i.e., the marmoset dlPFC was annotated with higher 

gradient values). These deviations suggest differences in underlying functional 

connectivity patterns and will be revisited in subsequent sections. 

In addition to joint gradient 1, evidence of homology was also observed with subsequent 

gradients, for example, red areas of gradient 2 appear to describe both somatomotor, and 

DMN regions. In gradient 3, visual regions (i.e., V1, V2 and MT) can be described by red 

and orange (or higher gradient values) in humans and marmosets, respectively, and 

auditory areas are described by blue (or lower gradient values). Interestingly, finer grain 
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features are also noted in joint gradient 11, specifically delineating ventral somatomotor 

regions in both species which is akin to separation along this region’s somatotopic axis and 

consistent with previous intraspecies findings (Thomas Yeo et al. 2011; Hori et al. 2020) 

(See Supplementary Fig. 3.3).  

Visualizations of the top 12 joint gradients are shown in Supplementary Fig. 3.3 and 

replicated twice using group averaged RSFC data of two marmoset cohorts (NIH and 

UWO) and a single human cohort (HCP). Here, only the top 12 joint gradients are 

visualized, as the subsequent mappings (i.e., gradients 13 and higher) described noisy 

features. Next, we validated the joint gradients’ ability to describe marmoset and human 

homology by examining the similarity of the gradient profiles across all the pre-defined 

homologous ROIs. Strong associations between mean gradient values of humans and 

marmosets in most pre-defined homologous ROIs were observed, except for areas A1, 

FEF, and PPC (*𝑃 < 0.05; Pearson correlation using top 12 joint gradients ranging from 

𝑟=0.803 [dlPFC] to 𝑟=0.950 [V1], see Supplementary Fig. 3.4). It is noteworthy that out 

of all homologous ROIs that yielded strong interspecies correlations, dlPFC and PCC had 

the lowest correlation coefficients. In addition to marmoset A1, this might suggest 

marmoset association cortices are not as evolutionarily conserved, relative to primary 

motor and sensory cortices. 

3.3.2 A compact default-mode network in humans compared to 
marmosets 

Having assessed the validity of the joint gradients to estimate cross-species homology, all 

remaining investigations aim to empirically compare the proposed marmoset DMN 

homolog to the human DMN. Here, we use joint gradient 1 for subsequent analyses as it 

recapitulates the well-established somatomotor-to-DMN gradient in both species. As such, 

distribution of joint gradient values of the DMN, and associated nodes can be compared 

between species. DMN nodes of humans were based on Ji and colleagues’ relabeling of 

the HCP parcellation with canonical RSN labels (Glasser et al. 2016; Ji et al. 2019) and 

marmoset DMN nodes was determined using an ICA approach (Liu et al. 2019). This 

provided two sets of DMN nodes that include ROIs for dlPFC, PCC, and PPC in both 

species (Fig. 3.2a). The distribution of gradient values in the human DMN core was 
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markedly reduced, compared to that of the marmoset (mean±SD: 0.786±0.043 and 

0.846±0.057, for humans and marmosets, respectively) (***𝑃 < 10−4; Mann-Whitney U 

test, see Fig. 3.2b). This is attributed to the inclusion of marmoset dlPFC (0.947±0.040) 

which had significantly higher gradient values compared to all other pairs of DMN nodes 

in humans and marmosets (***𝑃 < 10−4; Mann-Whitney U test; Cohen’s d = [4.14, 4.58, 

3.21, 2.56, 3.29] for human dlPFC, PCC, PPC and marmoset PCC, PPC, respectively, see 

Fig. 3.2c).  The joint somatomotor-to-default-mode gradient provides evidence positioning 

the marmoset dlPFC further away from all other DMN nodes in both humans and 

marmosets. 

We next used the marmoset DMN nodes to probe other marmoset and human areas that 

had similar gradient values (𝑃 > .05; Mann-Whitney U test). This analysis was performed 

in marmosets to identify areas with similar gradient values as each DMN node. This was 

also repeated to probe human cortical areas to validate that marmoset nodes did indeed 

match closest to human DMN areas, and not other higher order RSNs. Marmoset dlPFC 

matched to area A6DR; PCC matched to areas PGM, A30, V3A, LIP, A8b; and PPC 

matched to areas LIP, PGM, A30, A8b, A8aD. Worth noting, heterogeneity in gradient 

values of certain ROIs were observed making it difficult to interpret some of the matches. 

Nonetheless, marmoset DMN nodes tend to localize with other distant DMN and DMN-

adjacent nodes. Similarly, we found human DMN, and in some cases DMN-adjacent 

frontoparietal areas to be situated closest to each marmoset DMN node along the 

somatomotor-to-DMN axis. 

3.3.3 Comparing internode DMN connectivity between marmosets 
and humans 

Group level RSFC analyses using DMN nodes of marmosets and humans were performed 

to disseminate the factors underlying differences in gradient values that were observed in 

the previous section. First, RSFC analysis of inter-node connectivity of the DMN in each 

species was conducted and revealed consistent RSFC strength between all areas of the 

human DMN core (i.e., between left & right dlPFC, PCC, and PPC). By contrast, varying 

degrees of RSFC strength were observed between DMN nodes in the marmoset (i.e., left 

& right dlPFC appeared to have relatively weaker RSFC to all other DMN nodes) (Fig. 
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3.3a). This was recapitulated when calculating the difference in DMN inter-node RSFC 

between species (i.e., group-level marmoset subtracted from human DMN RSFC), which  

 

Figure 3.2 Positioning the human and marmoset DMN along the somatomotor-to-

DMN joint gradient 

(A) Visualization of the somatomotor-to-DMN joint gradient is shown on 

medial/lateral/dorsal and flat map views of the surface to capture full display of the dlPFC-

PCC-PPC DMN core in marmosets and humans (black). (B) Gradient value distributions 

of the human DMN (black) and marmoset DMN (red). Boxplots show more detailed 

gradient value distributions for each species’ DMN node (dlPFC – blue; PCC – orange; 

PPC – green). (C) Absolute effect size of gradient value differences in all pairs of DMN 

nodes. ** 𝑃 < 10−3 , *** 𝑃 < 10−4 
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Figure 3.3 Interspecies comparison of dlPFC-PCC-PPC internode functional 

connectivity 

(A) Visualization of internode DMN functional connectivity in humans and marmosets. (B) 

Distribution of group-level internode DMN functional connectivity differences between 

humans and marmosets were generated using a bootstrapping approach (n=1,000). 

Asymmetry in connectivity differences (human – marmoset) is observed with highest 

magnitudes in dlPFC connections compared to all other connections (***𝑃 < 10−4). 

Yellow arrow denotes interhemispheric dlPFC connections. 

revealed a disproportionately large change in RSFC of dlPFC connections compared to all 

other connections (𝑃 < .05; Mann-Whitney U test with bootstrapped RSFC differences, 

Fig. 3.3b shows distributions of bootstrapped RSFC differences [n=1000]). The largest 

differences were observed between connections of dlPFC & PPC, followed by dlPFC & 

PCC, whereas the difference in interhemispheric dlPFC connectivity remained relatively 

low and appears to be consistent with all other non-dlPFC connections (interhemispheric 
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dlPFC connections denoted by yellow arrow, see Fig 3.3b). As inconsistent internode 

RSFC was observed in marmosets, we conducted subsequent control experiments to test 

whether tSNR was a main contributing factor. Although a significant association was 

observed between absolute tSNR difference and RSFC across all DMN node pairs, we 

identified a subset of the marmoset cohort that demonstrated the opposite effect and 

supports the overall observation of weaker dlPFC connections in the marmoset DMN 

(Supplementary Fig. 3.5). This places the marmoset dlPFC as the weakest bounded node 

within the marmoset DMN, a finding that is inconsistent with that of the human DMN. 

3.3.4 Dissimilar spatial topography of connectivity in the marmoset 
DMN core 

To further understand the potential divergence of the marmoset dlPFC from the marmoset 

DMN core observed in the joint gradient results, seed-based analyses were conducted to 

probe the spatial topography of RSFC from each DMN node in both humans and 

marmosets. The goal was to evaluate the consistency of overlap between RSFC patterns 

generated from each DMN node to each other, and to further identify inter-species 

differences using RSFC. Figure 3.4a-b shows each DMN node and its corresponding 

spatial topography of RSFC to the rest of the cortex corresponding to a connectivity 

threshold of 𝑟0 = 0.1 and 𝑟0 = 0.05 for humans and marmosets respectively (*𝑃 < 0.05; 

nonparametric one-sample t-test). RSFC maps of humans revealed consistent topography 

of RSFC across all DMN nodes (i.e., dlPFC, PCC, and PPC). Contrary to this, the spatial 

RSFC maps of marmosets revealed the most consistent topography of RSFC patterns 

between PCC and PPC, whereas the dlPFC displayed relatively sparser corticocortical 

connections. Specifically, the marmoset PCC and PPC displayed widespread connections 

to adjacent areas, as well as connections to the dlPFC and adjacent areas. Interestingly, the 

marmoset dlPFC showed sparse and weaker connections to posterior DMN regions that 

encompassed the PCC and PPC, but stronger connections to its own adjacent areas. 

Connection topography at varying degrees of RSFC strength are shown in supplementary 

figure 3.6 and 3.7. 
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Figure 3.4 Functional connection topography of human and marmoset DMN nodes 

Areas of the cortex significantly correlated with the corresponding cortical DMN node 

(*𝑃 < .05) in each species. Significant areas are obtained from a one-sample t-test 

permutation test probing areas of the cortex with higher than 0.1 and 0.05 correlation 

score for humans and marmosets, respectively. To qualitatively assess areas of the cortex 

that display higher connectivity, the correlation maps are overlaid on the significant areas. 

Teal arrows denote the seeded DMN node. (A) Human DMN connection topographies. (B) 

Marmoset DMN connection topographies. Connectional topography dice coefficient 

overlap curves at varying degrees of connectivity strength (𝒓𝟎) determined by a one-sample 

t-test permutation test for (C) humans and (D) marmosets. Overlap of DMN node pairs 

were organized in descending order by calculating the area under the curve. 

The degree of overlap between the spatial topography of activation maps was assessed over 

a range of thresholds, where higher thresholds indicated areas associated with stronger 
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RSFC (*𝑃 < 0.05; nonparametric one-sample t-test, see Fig. 3.4c-d). In descending order, 

the overlap of human RSFC maps was highest between areas dlPFC & PPC, followed by 

PPC & PCC, and dlPFC & PCC (measured by area under the curve). In the low threshold 

regime, spatial overlap was high between all pairs of DMN nodes (i.e., Dice coefficient > 

0.8), and an increasing threshold led to spatial maps with decreasing overlap, but 

importantly, preservation of overlap in connectivity between distant DMN nodes was still 

conserved (Supplementary Fig. 3.6). Contrary to this finding, marmoset RSFC maps 

displayed the highest degree of overlap between areas PPC & PCC, followed by dlPFC & 

PCC, and dlPFC & PPC. Increasing the threshold led to spatial maps with only connections 

to adjacent areas, with overlap only observed between areas PCC & PPC, and leaving the 

RSFC map of the dlPFC completely segregated from posterior DMN areas (Supplementary 

Fig. 3.7). Taken together, humans and marmosets showed inconsistent RSFC patterns 

across DMN nodes, with inter-species differences largely attributed to RSFC topography 

of the marmoset dlPFC. 

3.3.5 Details of a separate joint gradient that comprises marmoset 
mPFC 

Given that the human DMN includes a large mPFC component which was absent in the 

marmoset’s somatomotor-to-DMN joint gradient, we investigated subsequent marmoset 

joint gradients that included a mPFC component to better elucidate candidate marmoset-

human homology. Visualization of joint gradient 3 of the marmoset (Fig. 3.5a) revealed a 

visual-to-auditory/mPFC axis, with lower and higher gradient values describing 

auditory/mPFC and visual areas, respectively. The spatial topography of lower gradient 

values (i.e., blue areas) included mPFC areas (i.e., A10, A32, A32V, A11 and A9) and 

temporal association areas (i.e., lower, and higher order auditory areas, and area TPO) 

which is generally consistent with marmoset anatomical connectivity findings, with the 

exception of TE3 (Buckner and Margulies, 2019). Buckner and colleagues (2019) also 

described sparse anatomical connections from mPFC and temporal association areas to 

other posterior DMN nodes (i.e., PCC and PPC), however this is not evidently seen in  
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Figure 3.5 Details of mPFC-centric joint gradient in marmosets 

(A) Visualization of marmoset joint gradient 3 reveals a visual-to-mPFC/auditory axis. 

Red arrows & white label boundaries annotate candidate homologous marmoset mPFC 

(A10/A32) and anatomically-connected temporal association areas (TPO/TE3) (Buckner 

et al. 2019; Liu et al. 2019). (B) Visualization of human joint gradient 3 shows consistent 

spatial configuration to the marmoset. Red arrow (lateral view) annotates human auditory 

regions, and the black circle (medial view) annotates a candidate homologous mPFC 
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region in the human. (C) An exploratory cortical vertex seed was placed in the caudal 

mPFC of the left hemisphere yielding a functional connectivity map that includes the 

auditory region. White and blue arrow denotes A1 and the seed vertex, respectively. (D) 

Areas of the cortex significantly correlated with the corresponding cortical mPFC nodes 

(A10/A32) and demonstrates connectivity to auditory and auditory-adjacent temporal lobe 

areas (*𝑃 < .05). Significant areas are obtained from a one-sample t-test permutation test 

probing areas of the marmoset cortex with higher than 0 correlation score. Pink circles 

denote sparse connections to posterior cingulate cortex. 

joint gradient 3. Subsequent RSFC seed-based analyses using mPFC areas A10 and A32, 

demonstrate a consistent connection topography with the joint gradient results, in addition 

to weak and sparse connections observed in PCC areas (*𝑃 < 0.05; nonparametric one-

sample t-test; see Fig. 3.5d).  

The corresponding human joint gradient described an organizational axis akin to the 

marmoset, with lower gradient values describing auditory and a caudally situated mPFC 

area, in addition to other distributed regions (Fig. 3.5b). In this gradient, the proximal 

mPFC areas localized to the cingulo-opercular network (CON) and frontoparietal network 

(FPN), respectively, which are positioned caudally to the DMN’s mPFC, and includes areas 

8BM, a32pr, and p24 (Supplementary Fig. 3.8). By conducting an exploratory seed-based 

analysis using a vertex within the proximal mPFC ROI from joint gradient 3, we were able 

to demonstrate a connection topography that includes human auditory areas consistent with 

marmoset mPFC RSFC findings (Fig. 3.5c; shows a correlation analysis using a left 

hemisphere vertex). Similar observations can be reproduced using other proximally located 

vertices in both hemispheres. Together, this provides evidence for candidate homology 

between marmoset mPFC and the human proximal mPFC areas, specifically areas 8BM, 

a32pr, and p24, which notably does not include human DMN mPFC areas. 

3.4 Discussion 

Marmosets are a propitious animal model for studying higher-order cognitive and social 

functions (Miller et al. 2016; Jennings et al. 2016; Okano et al. 2016), such as the DMN, 

which in the human, has been prescribed as a candidate functional substrate (Buckner et 
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al. 2008; Smallwood et al. 2021). This has spurred recent interests to thoroughly 

characterize a marmoset DMN homologue composed of a collection of distributed regions 

that includes the dlPFC, PCC, and PPC (Liu et al. 2019). Here, we used joint embeddings’ 

for studying homology between humans and marmosets and conducted subsequent 

supportive analyses and found that the marmoset dlPFC, although known to correspond to 

an anatomically connected anterior node of the DMN, displays inconsistent RSFC 

properties with the rest of the DMN core (i.e., PCC and PPC). This presents evidence for 

a less evolutionarily conserved area in the dlPFC compared to the rest of its connected 

DMN constituents.  

Braga and Buckner (2017) previously indicated the presence of two juxtaposed DMN 

components - DMN-A and DMN-B - as demonstrated in single subject human RSFC data 

(Braga and Buckner, 2017). In the marmoset, it has been proposed that DMN-A includes 

the frontopolar A10 region, despite the lack of evidence showing A10-to-posterior parietal 

connections (Buckner and Margulies, 2019). Meanwhile, other evidence suggests the 

dlPFC-PCC-PPC as a homologous candidate for DMN-B (Liu et al. 2019). Revealed here, 

joint gradients identified correspondence between the human DMN, and marmoset DMN-

B as described by Liu and colleagues, with no evidence of a mPFC component (or DMN-

A-like component) in the marmoset. Worth noting, is that because group-level RSFC data 

was used to identify the human DMN, it likely blurs together DMN subtypes A & B, and 

yet, no evidence of an anterior mPFC was observed in the marmoset.  

To further highlight this distinction, we found spatial consistency between RSFC patterns 

of marmoset mPFC areas and another joint gradient which included marmoset mPFC, 

auditory, and auditory-adjacent temporal lobe areas. Marmoset mPFC RSFC connection 

topographies were proximally consistent with monosynaptic anatomical connectivity 

findings which demonstrated connections between mPFC and auditory-adjacent temporal 

lobe areas, whereas connections to auditory cortex was minimal and contrary to the 

findings here (Buckner and Margulies, 2019). This difference may be attributed to spatial 

smoothing that is typical during RSFC preprocessing, or to polysynaptic connections that 

might be enabled by RSFC (i.e., RSFC between mPFC and auditory areas may be mediated 

by monosynaptic connections from area A10 to TPO, and TPO to auditory areas). In 
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concordance with the marmoset mPFC gradient, a similar spatial configuration was 

observed in the corresponding human joint gradient component which included three 

medial frontal regions (i.e., 8BM, a32pr, and p24) that primarily localized to the CON and 

FPN. In humans, these RSNs are known to support executive control functions, such as 

error processing (Dosenbach et al. 2007), executive control during goal-directed 

behaviours (Dosenbach et al. 2006), and likely includes other variety of executive control 

functions. Intriguingly, areas 24 and 32, found in joint gradient 3 of both species, are known 

to be involved in the “cingulate vocalization pathway” important for executive control of 

innate and affective vocalization (Jürgens and Pratt, 1979; Hammerschmidt and Fischer, 

2008). Furthermore, connections between auditory and frontal areas may support 

integration of auditory information known to also assist operant control of vocal 

productions (Hage and Nieder, 2015). It is interesting to the postulate the functional role 

of marmoset mPFC and whether it supports similar executive control functions to the 

human CON and FPN, in addition to vocalization. Development of more complex 

behavioural assays (Oikonomidis et al. 2017; Pomberger et al. 2019) and further 

investigations to validate the functional role of the marmoset mPFC will be necessary. 

Taken together, joint gradient analyses revealed evidence for candidate homology between 

marmoset mPFC and human CON/FPN, as opposed to the DMN-A.  

Perhaps more interesting, and is the primary focus of this work, are the notable differences 

observed in the marmoset dlPFC, which displayed distinguishably larger gradient values 

compared to all other DMN areas in marmosets (PCC & PPC) and humans (all DMN 

areas). Subsequent analyses implicate these differences are due to a weaker internode DMN 

connectivity, as well as overall differences in the spatial topography of node-to-cortex 

RSFC patterns of the marmoset dlPFC. This observation is consistent with conventional 

methods to identify the DMN using task suppression analyses (Raichle et al. 2001), which 

only showed deactivations in posterior DMN nodes during a simple visual task, whereas 

deactivation of the dlPFC was absent (Liu et al. 2019). This was rationalized by the 

simplicity of the task; however, it is possible that marmoset dlPFC subserves a different 

brain function from the posterior DMN as supported by its differential circuitry, and thus 

may not deactivate even during more complex tasks. Additionally, cross-species movie-

driven fMRI experiments did not describe correspondence between anterior DMN areas of 
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marmosets and humans, whereas correspondence between cross-species posterior DMN 

areas (i.e., marmoset adjacent intraparietal areas to human areas PGi & PGs) were 

established, further recapitulating evidence of apparent functional differences between 

anterior and posterior DMN areas (Hori et al. 2021). Moreover, in the present study, the 

marmoset-human joint gradient demonstrated a wider distribution of gradient values across 

the marmoset DMN core relative to humans, likely attributed to the dlPFC. Similar findings 

of widely-distributed gradient values have been shown using joint gradients with macaques 

and humans (Xu et al. 2020), and may be attributed to a weakly connected anterior-

posterior DMN (Mantini et al. 2011). Together, this alludes to an evolutionarily divergent 

anterior-posterior DMN axis between humans and primates. 

Understanding the similarities and differences between spatial topography of RSFC 

patterns through different DMN nodes may provide a better understanding of the DMN’s 

relevance to function. For example, many forms of complex processing, such as episodic 

memory (Moscovitch et al. 2016), semantic memory (Ritchey and Cooper, 2020) and 

emotion (Gendron and Barrett, 2018) are thought to rely on widely distributed sets of 

processes, and the DMN offers itself as a useful substrate to facilitate these functions 

(Smallwood et al. 2021). In line with this, we found that all distant human DMN nodes 

(i.e., dlPFC, PCC, PPC) are highly interconnected and demonstrated a high degree of 

overlap across all their RSFC profiles. This suggests the possibility for efficient processing 

of local sensory information across distributed DMN nodes. Inconsistent with humans, we 

found that spatial topography of RSFC from the marmoset dlPFC displayed sparse and 

weak connections to posterior DMN areas, while also displaying relatively less RSFC to 

adjacent areas compared to the adjacent RSFC that was observed in posterior DMN areas. 

It is possible that non-human primates lack (1) a disproportionate expansion of prefrontal 

areas (Smaers et al. 2017) and/or (2) an increase in underlying white matter volume 

(Donahue et al. 2018) that would facilitate the necessary anatomical connections to enable 

convergent and overlapping connection topographies between prefrontal and posterior 

DMN nodes, such as that seen in humans.  

Our results are subject to several methodological limitations. One of the goals of this work 

was to draw inferences of homology of the DMN between marmosets and humans using 
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joint gradients (Xu et al. 2020) which heavily relied on a-priori definitions of interspecies 

homologous areas. Relative to macaques (Van Essen and Dierker, 2007; Neubert et al. 

2014), marmosets have only more recently gained traction as an animal model, and as such, 

established human-marmoset homologous areas remain lacking. It is unclear whether a 

reduced alignment in gradient profiles of homologous association regions (i.e., FEF and 

PPC) and A1 is due to this fact, or due to evolutionarily divergence in these regions. 

Nonetheless, robust identification of homologous of large-scale networks was achieved in 

the work presented here.  

This study also relied on group-level analyses to demonstrate joint gradients and can in 

future works be generalized to joint pairs of individual human and marmoset subjects. To 

do so, sufficient data collection and high quality data, in addition to personalization of 

homologous ROIs must be achieved to account for sufficient SNR and anatomical 

variability (Rajkowska and Goldman-Rakic, 1995). Individualized joint gradients may be 

able to enable more accurate matching of canonical DMN subtypes (i.e., A & B [Braga and 

Buckner, 2017]) in the humans and marmosets. Here, we also relied heavily on group-

derived atlases (i.e., Paxinos histological atlas [Majka et al. 2021]) which oftentimes 

described ROIs with high variability of gradient values. Advances in marmoset atlas 

development derived using unimodal resting-state fMRI data would be beneficial, taking 

advantage of techniques such as gradientography (Tian et al. 2020) in combination with 

histological data, to allow for more comprehensive RSFC studies of the marmoset.  

Finally, discussion of the functional implications of a divergent anterior-posterior DMN 

axis in the marmoset is largely conjecture. Here, we draw inferences based purely on 

interspecies differences that was observed between humans and marmosets. It will be 

prudent to conduct further interspecies investigations to see how different DMN areas, 

including the marmoset mPFC, engage during different task-states to fully appreciate their 

roles in the landscape of cognition and higher-order functions. 
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3.6  Supplementary Tables 

Supplementary Tables 3.1 Details of homologous regions of interest 

 
Homologous 

region label 

Human label  

(Glasser et al. 2016) 

Marmoset label  

(Paxinos et al. 2012) 

References 

1 V1 V1 V1 Solomon and 

Rosa, 2014 

2 V2 V2 V2 Solomon and 

Rosa, 2014 

3 A1 A1 AuA1 
 

4 M1 4 A4ab+A4c Kaas 2004  

5 3a 3a A3a Kaas 2004  

6 3b 3b A3b Kaas 2004  

7 1+2 1+2 1+2 Kaas 2004  

8 FEF FEF A8Av Solomon and 

Rosa, 2014 

9 MT MT V5 Solomon and 

Rosa, 2014 

10 dlPFC 8Ad Localized w/ICA Ji et al. 2019, 

Liu et al. 2019 

11 PCC 7m Localized w/ICA Ji et al. 2019, 

Liu et al. 2019 

12 PPC PGi+PGs Localized w/ICA Ji et al. 2019, 

Liu et al. 2019 

13 Hippocampus Hippocampus Hippocampus 
 

   

https://www.nature.com/articles/nature18933
https://research.monash.edu/en/publications/the-marmoset-brain-in-stereotaxic-coordinates
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://anatomypubs.onlinelibrary.wiley.com/doi/full/10.1002/ar.a.20120
https://anatomypubs.onlinelibrary.wiley.com/doi/full/10.1002/ar.a.20120
https://anatomypubs.onlinelibrary.wiley.com/doi/full/10.1002/ar.a.20120
https://anatomypubs.onlinelibrary.wiley.com/doi/full/10.1002/ar.a.20120
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.frontiersin.org/articles/10.3389/fncir.2014.00096/full
https://www.sciencedirect.com/science/article/pii/S1053811918319657
https://pubmed.ncbi.nlm.nih.gov/31036814/
https://www.sciencedirect.com/science/article/pii/S1053811918319657
https://pubmed.ncbi.nlm.nih.gov/31036814/
https://www.sciencedirect.com/science/article/pii/S1053811918319657
https://pubmed.ncbi.nlm.nih.gov/31036814/
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3.7 Supplementary Figures 
 

 

Supplementary Figure 3.1 Association between DMN RSN of the NIH and UWO 

marmoset cohort  

Correlation between group level DMN RSN of the NIH (n=26) and UWO (n=5) marmoset 

cohort. Group level DMN RSN of the marmoset cohorts were derived using ICA 

(dimensionality of 30) applied to each cohort’s resting-state-fMRI data. The DMN RSN of 

each cohort was hand-selected for comparison. (A) Left hemisphere and (B) right 

hemisphere. (C) Visualization of the DMN in the NIH (left) and UWO (right) cohort. 

(***𝑃 < 10−4 for both hemispheres) 
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Supplementary Figure 3.2 Association between human individual and joint 

somatomotor-to-DMN gradients 

Correlation between group level human somatomotor-to-DMN gradient derived from 

human cortex-to-cortex functional connectivity patterns (N = 65), and human 

somatomotor-to-DMN joint gradients derived using the joint gradient approach that 

considers both human and marmoset group level functional connectivity patterns. (A) Left 

hemisphere and (B) right hemisphere. (***𝑃 < 10−4 for both hemispheres) 
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Supplementary Figure 3.3 Top 12 joint gradients in humans and marmosets  

Joint gradients computed using human and marmoset group-averaged RSFC data, and 

subsequently mapped onto the human and marmoset cortices. Results shown here include 

joint gradients computed twice using two marmoset cohorts (NIH and UWO) paired with 

a single human cohort (HCP100). 

  



111 

 

 

 

Supplementary Figure 3.4 Gradient profiles of homologous regions of interests  

(A) Homologous ROIs mapped onto the cortical surface of humans and marmosets. (B) 

Gradient profiles of mean gradient values extracted from the top 12 joint gradients in 

humans (black) and marmosets (red). 
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Supplementary Figure 3.5 Association between tSNR and connectivity between 

DMN nodes of marmoset resting-state fMRI data 

(A) Single-subject averaged tSNR across DMN nodes in marmosets (n = 31). Differences 

were observed across all pairs of DMN nodes (dlPFC–blue; PCC –orange; PPC –green). 

(B-D) Left and middle chord diagrams visualizes internode DMN tSNR differences and 
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functional connectivity in marmosets, respectively. Right scatter plot visualizes group level 

correlation between the absolute tSNR difference and the connectivity between all 

permuted pairs of DMN nodes (all dlPFC connections –red; dlPFC-dlPFC connection –

orange; all other connections –blue), stratified into three groups based on single-subject 

magnitude of this correlation. Here, DMN internode functional connectivity are stable and 

reproducible (middle chord diagram across B-D), even in a subset of the population (B & 

C) where tSNR is not confounding the connectivity results (right scatter plot across B & 

C). 

  



114 

 

    

Supplementary Figure 3.6 Connection topography of DMN nodes at varying 

connectivity strengths in humans 

 Areas of the human cortex significantly correlated with the corresponding cortical DMN 

node at varying degrees of connectivity strength (𝒓𝟎 > 0, 0.1, 0.2, and 0.3 [*𝑃 < .05; one-

sample t-test permutation test]). Correlation maps were overlaid onto significant areas.  
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Supplementary Figure 3.7 Connection topography of DMN nodes at varying 

connectivity strengths in marmosets 

Areas of the marmoset cortex significantly correlated with the corresponding cortical 

DMN node at varying degrees of connectivity strength (𝒓 𝟎 > 0, 0.05, 0.10, and 0.15 [*𝑃 <

.05; one-sample t -test permutation test]). Correlation maps were overlaid onto significant 

areas. 
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Supplementary Figure 3.8 Detailed examination of the human mPFC component of 

joint gradient 3  

Visualization of the (A) medial view of the left hemisphere and (B) magnified to only 

include the mPFC of interest and associated labels. To aid with visualization and 

interpretation: (i) shows joint gradient 3 with boundary lines corresponding to canonical 

RSN assignment, (ii) shows colour coded RSN network assignments, and (iii) shows multi-

modal parcellation labels encasing the mPFC region of interest. 
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Chapter 4  

4 Charting the effects of thalamic lesions on resting-
state fMRI features in secondary-progressive Multiple 
Sclerosis 

4.1 Introduction 

The thalamus is a critical subcortical structure in cognition due to its ability to actively 

regulate information transmitted to the cortex (Sherman 2016; Halassa and Kastner, 2017). 

It is composed of clusters of functional nuclei, each of which is a unique relay center for 

specific sensory signals, sending the information to the appropriate cortical region for 

processing. Any subsequent damage to these nuclei can result in a wide range of 

dysfunctions, including deficits to sensory processing, attention, and memory (Saalmann 

and Kastner, 2011; Baxter 2013; Bradfield et al. 2013; Jankowski et al. 2013). Various 

pathophysiological processes of the thalamus have been detailed with in-vivo MRI, such 

as focal lesions (Harrison et al. 2015; Mehndiratta et al. 2021), iron accumulation (Al-

Radaideh et al. 2013; Khalil et al. 2015), and of clinical relevance, thalamic atrophy 

occurring in the earliest stages of neurodegenerative diseases, such as Multiple Sclerosis 

(MS; Zivadinov et al. 2013; Azevedo et al. 2015). Given the central role of the thalamus in 

brain organization and MS disease trajectory, there is an important but largely unmet 

clinical need to investigate the utility of non-invasive measurements of thalamic neural 

activity and functional reorganization in single subjects. This would provide much needed 

insight towards disentangling the role of thalamic damage in the neural organization of MS 

patients.  

Resting-state functional magnetic resonance imaging (rsfMRI) provides an indirect 

measure of neural activity by probing the blood oxygenation level-dependent (BOLD) 

signal over time (Ogawa et al. 1990). To date, most rsfMRI studies have focused on group-

level investigations, specifically, by probing resting-state functional connectivity (RSFC) 

in stratified MS disease groups and their associations with clinical measurements (Jandric 

et al. 2021). Studies performed in this way provide only a general interpretation of 

functional reorganization during different stages of MS disease trajectory, overlooking the 
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profound heterogeneity of MS pathologies that exist across individuals (Roosendaal et al. 

2010; Schoonheim et al. 2015). Importantly, these investigations do not draw inferences 

on direct pathophysiological impacts on brain architecture during disease. Given that 

neural disconnections induced by MS pathology are postulated to cause clinical deficits in 

patients (Dineen et al. 2009), it is reasonable to believe that focal damage to the thalamus 

may result in ensuing neural alterations at the stricken site, which in turn may be detectable 

using rsfMRI in single subjects. Furthermore, inconsistencies between MR-visible lesion 

burden and clinical outcomes in MS – referred to as the clinico-radiological paradox – 

urges the exploration of MR-indices of brain function, such as that provided by rsfMRI. In 

this regard, imaging the focal changes in brain function induced by thalamic lesions may 

prove a useful prognostic tool in MS, but has largely been under-investigated. 

Resting-state BOLD signal can be used in two ways to infer brain function. First, the BOLD 

timeseries – a surrogate measure of neural activity – can be condensed into a plethora of 

summary metrics that characterize the rich temporal dynamics of BOLD across voxels of 

a region of interest (Fulcher and Jones, 2017; Lubba et al, 2019). Previous work has 

characterized such timeseries using intrinsic timescales – focusing on the autocorrelative 

properties of the timeseries – while demonstrating its relationship to micro- and macroscale 

architecture of the cerebral cortex (Murray et al. 2014; Watanabe et al. 2019). More 

generally, other timeseries properties that have been shown to be discriminative across 

canonical resting-state networks (Keitel and Gross, 2016), display close associations to 

structural and functional connectivity profiles (Shafiei et al. 2020), and are deemed relevant 

across neurological disorders, such as autism and Alzheimer’s disease (Watanabe et al. 

2019; Scarapicchia et al. 2018), and human behaviour (Waschke et al. 2021). 

Second, rsfMRI can also be used to both infer connectivity between brain regions, and to 

probe widespread thalamocortical connections. However, the localization between 

thalamic voxels and cortical connections is not clearly defined, therefore adding 

complexity to connectivity analyses. Considerations of thalamocortical RSFC gradient 

estimation methods may address this problem. Connectivity gradients provide a systematic 

way to characterize how connectivity patterns vary over a brain area, permitting detection 

of boundaries or transitions in a region. Recently, Yang and colleagues examined gradients 
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associated with thalamocortical RSFC patterns to reveal two primary axes of RSFC 

variability along the 1) lateral-medial, and 2) anterior-posterior direction of the thalamus 

(Yang et al. 2020). The intuition follows that if lesions impact thalamocortical RSFC 

patterns, then gradient estimations would detect abrupt transitions adjacent-to, or focal-to 

areas of MS pathophysiology. In principle, detection of thalamocortical RSFC alterations 

in this way provides an accessible and practical approach for evaluating functional re-

organization in single subjects. Many RSFC gradient investigations thus far have only 

looked at group stratification, and thus have not explored its use in single-subject cases to 

detect alterations due to pathophysiology. 

In this pilot study, we examined a small longitudinal cohort of secondary progressive MS 

(SPMS) patients from an ongoing multimodal 7T MRI study. We comprehensively charted 

(i) intrinsic dynamics of the resting-state BOLD signal, and (ii) thalamocortical RSFC on 

the voxel-wise thalamus in single subjects to qualitatively assess the effects of focal 

thalamic lesions. Furthermore, we assessed the effects of MRI surrogate measures of 

microstructure to all rsfMRI features by broadening the scope of this investigation to 

include ROI-based analyses. The present study provides a preliminary assessment 

investigating the impacts of focal MS thalamic lesions on resting-state BOLD dynamics 

and functional organization on the scale of single subjects. 

4.2 Methods 

4.2.1 Participants 

Seven secondary progressive MS participants (one male and 6 females; age range, 43-53 

years) were included in this preliminary investigation, with data obtained from an ongoing 

longitudinal study. These individuals participated in several neuroimaging sessions, and a 

single cognitive assessment that took place at the time of their first neuroimaging session. 

The number of neuroimaging sessions considered in this analysis varies across individuals 

as some participants were recruited earlier on in this ongoing study, and therefore will have 

participated in more sessions. Additionally, other factors, such as MRI maintenance, or 

COVID-19 restrictions, have also led to neuroimaging session dropouts for some 

participants. Generally, neuroimaging sessions were scheduled every six months beginning 
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at the time of their first session, and included structural, rsfMRI, and diffusion MRI scans, 

acquired on a 7 Tesla MRI. Details of each subject’s scanning itinerary considered in this 

investigation is shown in Table 4.1. 

Table 4.1 Scan session schedule of secondary-progressive MS patients 

ID Scan sessions (scan ID [days from first scan]) 
A 1 [0] 2 [188] 3 [364] 4 [728] 5 [910] 6 [1134] 
B 1 [0] 2 [214] 3 [368] 4 [732] 5 [904] 6 [1127] 
C 1 [0] 2 [208] 3 [532] 4 [741] 5 [1075] 

 

D 1 [0] 2 [182] 3 [728] 4 [941] 5 [1092] 
 

E 1 [0] 2 [172] 3 [354] 4 [536] 
  

F 1 [0] 2 [182] 
    

G 1 [0] 2 [195] 3 [364] 
   

4.2.2 MRI data acquisition 

All MRI data were acquired from a 68-cm, 7T MRI outfitted with an AC84 Mark II head 

gradient coil. During this on-going study period, the 7T MRI scanner underwent an MRI 

upgrade from a Siemens Magnetom Step 2.3 (Erlangen, Germany) to a Siemens MRI Plus, 

and due to a lack of sequence availabilities, inconsistent structural images were acquired 

(see Table 4.1; shaded in orange are all the pre-upgrade MRI scans).  

Structural images – In the pre-upgrade MRI, ME-MP2RAGE T1w images were collected 

at 750 μm isotropic resolution, TE1/TE2/TR=2.28/7.68/6000 ms, TI=800/2700 ms, 

BW=190Hz/Px, and FA=4°/5°. In the post-upgrade MRI, MP2RAGE T1w images were 

collected with 750 μm  isotropic resolution, TE/TR=2.13/6000 ms, TI=800/2700 ms, 

BW=190Hz/Px, and FA=4°/5°. 

rsfMRI images – Two rsfMRI runs were collected with a duration of 10-minutes each using 

a gradient-echo EPI sequence with 1.6 mm isotropic resolution, TE/TR = 22.2/1000 ms, 

BW = 1924 Hz/Px, FA = 45°, multiband factor 5, GRAPPA of 2, and acquired in opposite 

phase-encode directions (AP/PA). 

Diffusion MRI images – Two diffusion runs were collected with 95-directions over 2 shells 

(b=1000 and 2000 s/mm2) using a spin-echo EPI sequence with 1.6 mm isotropic 

resolution, TE/TR = 59/6700 ms, BW = 1602 Hz/Px, FA = 90°, multiband factor 2, 

GRAPPA of 3, and acquired in opposite phase-encode directions (AP/PA). 
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4.2.3 Resting-state fMRI preprocessing 

Each subject’s neuroimaging session consisted of two rsfMRI runs. Each run was 

preprocessed using fMRIPrep-20.1.3 pipeline (Esteban et al. 2019). In brief, a B0-

nonuniformity map was estimated with SDCFlows and was used to create a displacement 

field map to correct for geometric distortions. This was followed by motion-correction 

using mcflirt (FSL; Jenkinson et al. 2012) and co-registration to the run’s corresponding 

single-band reference image with six degrees of freedom. Subsequently, independent 

component analysis (ICA) was applied with FSL’s melodic, decomposing each run into a 

set of components that was labelled as either signal or noise (Griffanti et al. 2014). Next, 

nuisance regression was performed using the ICA hand-labeled noise components, mean 

white-matter and cerebrospinal fluid time series, and 24 motion parameters (6 basic motion 

parameters + 6 temporal derivatives + 12 quadratic terms and their 6 temporal derivatives). 

Finally, the data was bandpass filtered (0.01-0.1 Hz), and spatially smoothed using susan 

(FSL; 1.6 and 3 mm). 

4.2.4 Diffusion MRI preprocessing 

Diffusion MRI data were preprocessed using prepdwi-0.0.13 pipeline 

(https://github.com/khanlab/prepdwi). In brief, the preprocessing included denoising, 

unringing, susceptibility distortion and eddy current correction, co-registration to the 

session’s corresponding T1w image, and diffusion tensor fitting. Of the diffusion tensor fit 

parameters, only fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity 

(RD) were considered. 

4.2.5 Registration workflow 

A primary focus of this investigation was to assess the effects of thalamic lesions on rsfMRI 

BOLD dynamics and RSFC in single subjects. As such, it was important to perform all 

analyses in single subject space to minimize distortions from multiple spatial normalization 

steps. Note that additional distortion correction steps were taken for the resting-state fMRI 

scans to improve registration quality to the anatomical scan for all subjects. 

https://github.com/khanlab/prepdwi
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For each subject, single subject T1w templates were constructed with 

antsMultivariateTemplateConstruction2.sh (ANTs; Avants et al. 2009) using all sessions’ 

structural T1w images. Multimodal images (rsfMRI and diffusion) from each imaging 

session were all spatially registered to their corresponding subject specific T1w templates 

for analyses. 

rsfMRI registration workflow – For all subjects, inconsistent spatial alignment between 

their two opposite phase-encoded rsfMRI runs and their corresponding T1w template were 

observed, likely due to the displacement field maps inability to fully correct for geometric 

distortions. To improve this alignment, an average rsfMRI template was created using the 

two opposite phase-encoded rsfMRI runs of each session (deformation was restricted along 

the phase-encode direction). Finally, the registration workflow for each subject’s imaging 

session included registrations between (1) rsfMRI run and the average rsfMRI template, 

(2) average rsfMRI template and within session T1w image, and (3) within session T1w 

image and the subject’s T1w template. All registrations were performed using 

antsRegistration (ANTs) with six degrees of freedom, and transformations were 

concatenated and applied in a single step to reduce blurring when applicable 

(antsApplyTransforms).  

Diffusion registration workflow – The prepdwi workflow provided transformations 

between diffusion images and the within session T1w image. Additionally, the registration 

in the rsfMRI registration workflow between within session T1w image and the subject’s 

T1w template could be concatenated to allow for spatial normalization of diffusion images 

to each subject’s T1w template space. 

Additionally, two analyses required registration to a group template. As such, an addition 

transformation was computed between each subject’s T1w template and the 

MNINonLinear 6th asymmetric T1w group-template (FSL) with antsRegistration (ANTS). 

When applicable, resampling between transformation spaces maintained a resolution of 1.6 

mm to match the native resolution of the rsfMRI and diffusion images. 
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4.2.6 Region of interest definitions 

All regions of interest (ROIs) were segmented with each subject’s T1w template. 

Freesurfer v7.0.1 was used to provide segmentation of the thalamus and cortex. Each 

subjects’ segmentations were assessed visually. Of note, some subjects, especially those 

with more lesion burden were more prone to segmentation errors. Segmentation errors were 

corrected manually. Thalamic lesions were segmented as hypointense voxels using each 

subject’s T1w-template. Qualitative inspection of the T1w image across imaging sessions 

of each subject was performed to ensure that there were no obvious changes in MS 

pathology overtime and rationalizing the decision to average rsfMRI features across 

sessions in subsequent analyses (although single session rsfMRI features were also 

considered). 

4.2.7 Intrinsic dynamics 

We used the catch22 timeseries analysis toolbox to characterize rsfMRI BOLD timeseries 

dynamics. This toolbox uses 22 time series feature that were carefully filtered from the 

hctsa feature library (consisting of >6000 features; Fulcher and Jones, 2017). The catch22 

time series features represent the diverse and interdisciplinary literature of timeseries 

analysis methods that have been developed to date, while simultaneously probing different 

types of interpretable time series features, including linear and non-linear autocorrelation, 

successive differences, value distributions and outliers, and fluctuation scaling properties 

(Lubba et al. 2019). These features have been categorized into seven labeled groups: (1) 

distribution, (2) simple temporal statistics, (3) linear autocorrelation, (4) non-linear 

autocorrelation, (5) successive differences, (6) fluctuation analysis, and (7) others (details 

of the catch22 feature set and associated feature names are shown in Supplementary Table 

4.1). All voxels’ time series were demeaned prior to feature calculation as it was important 

to not have the mean rsfMRI image confound localization of thalamic lesions.  

Additionally, the mean and standard deviation of the time series were also considered as 

features and are labelled as basic features. The standard deviation was divided by the mean 

image to scale the fluctuations across all scan sessions consistently. Additionally, due to 

the relevance of autocorrelation properties apparent in neural dynamic timeseries literature, 
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intrinsic timescale was also included, which is estimated by calculating the sum of 

autocorrelation function (ACF) values in the initial period where the ACF showed positive 

values. This feature is motivated by electrode spiking activity literature, and validation 

work supports its generalizability to rsfMRI (Murray et al. 2014; Watanabe et al. 2019). 

Intrinsic timescale was characterized as another measure of linear autocorrelation. 

In summary, a total of 25 time series features were used to characterize resting-state BOLD 

dynamics. Voxel-wise features of the thalamus were computed across rsfMRI runs of all 

subjects’ imaging sessions. 

4.2.8 Thalamocortical connectivity analysis 

Widespread anatomical connections between the thalamus and cortex exist. As such, 

careful steps must be taken to derive anatomically accurate measures of thalamocortical 

connectivity when using RSFC by (1) selecting cortical ROIs used for probing 

thalamocortical RSFC, and (2) localizing thalamic voxels associated to thalamocortical 

connections. To comprehensively characterize thalamocortical connections, two methods 

were used: (1) gradient estimation applied over whole cortex thalamocortical connections, 

and (2) thalamocortical RSFC using the seven canonical resting-state networks (RSN) as 

cortical seeds regions. The former option provides characterization of thalamocortical 

connections on the voxel-level, whereas the latter option characterizes RSFC on the ROI-

level. All voxels’ time series were Z-score normalized prior to calculating RSFC. 

(1) Gradient estimation. This is a data-driven technique which can be used to spatially 

quantify thalamocortical RSFC patterns, by projecting this information onto the voxel-wise 

thalamus (see Haak et al. 2018 for more details). In brief, RSFC was calculated between 

each subjects’ whole thalamus (𝑨𝒕×𝒗: 𝑡=time,𝑣=number of voxels in the thalamus) and the 

rest of the cortex (𝑩𝒕×𝒗′: 𝑣′=number of cortical voxels). A RSFC matrix (𝑪𝒗×𝒗′) was 

computed which describes RSFC pattern of the whole thalamus, and sparsity was added, 

retaining only the top 10% of RSFC connections for each voxel. Next, similarity between 

inter-voxel RSFC patterns were computed resulting in a similarity matrix (𝑺𝒗×𝒗; similarity 

is computed using cosine similarity).  
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The Laplacian eigenmap algorithm is applied on the graph Laplacian of the similarity 

matrix to obtain a low dimensional representation of the RSFC data, referred to as 

gradients. The graph Laplacian is denoted as follows:  

𝑳 = 𝑫 − 𝑾, 

where 𝑾 is a graph representation of 𝑺, 𝑫 is the degree matrix defined as 𝑫𝒊,𝒊 = ∑ 𝑾𝒊𝒊 , 

and 𝑳 is the graph Laplacian. Solving the generalized eigenvalue problem 𝑳𝒚 = 𝜆𝑫𝒚 yields 

𝑚 eigenvectors {𝑦1, … , 𝑦𝑚} corresponding to the smallest 𝑚 non-zero eigenvalues  

{𝜆1, … , 𝜆𝑚}. Here, we focus on 𝑦1, defined as the region’s dominant gradient and reflects 

the greatest changes in RSFC connectivity over a ROI, whereas higher order gradients, 

denoted by 𝒚𝒏, 1 < 𝑛 < 𝑚, reflects more subtle changes in RSFC.  

Only the top two gradients, denoted by G01 (𝒚𝟏), and G02 (𝒚𝟐) are retained for subsequent 

analyses, as they explained a total of 41% variance in the thalamocortical RSFC patterns 

(Yang et al. 2020). These gradient features are included in Supplementary Table 4.1 and 

labelled as RSFC gradients, providing a total of 27 voxel-wise features corresponding to 

resting-state BOLD features. 

(2) Thalamocortical RSFC. Connectivity to the thalamus was computed using resting-state 

networks (RSNs) as ROIs. The seven RSNs – visual, somatomotor, dorsal attention, ventral 

attention, limbic, frontoparietal, and default – were defined using the Schaeffer-100 ROI 

atlas (Schaeffer et al. 2018; in MNI152Nonlinear6Asym template space). Each RSN ROI 

was spatially normalized to each subject’s T1w template space and was masked using a 

cortical grey matter mask (Freesurfer) to improve the ROI’s cortical specificity. The mean 

rsfMRI time series was extracted using left and right hemisphere RSN as ROIs. Ipsilateral 

Pearson correlation coefficient maps to the voxel-wise thalamus were computed using the 

seven RSNs as cortical seeds. Here, only ipsilateral connections were considered, reflecting 

anatomical thalamocortical connections. 

Note that we explored the use of partial correlations in this work (for example, Pearson 

correlation between a RSN and the thalamus while accounting for all other RSN time series 

as nuisance variables). However, partial correlation scores were not consistent across all 
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subject’s sessions resulting in a lack of thalamocortical localization by nonparametric one-

sample t-test. 

4.2.9 Localizing thalamic masks connected to corresponding 
resting-state networks 

In addition to investigating voxel-wise effects of MS lesions on resting-state BOLD 

dynamics and RSFC, we conducted subsequent ROI-based analyses assessing the 

relationship between resting-state BOLD features and MS pathophysiology. To do this, the 

thalamus was parcellated based on thalamocortical RSFC. Ipsilateral thalamic voxels 

associated to connections of each RSN were assessed using a nonparametric one-sample t-

test that was applied over all subjects’ RSFC maps (n=7; all subjects’ thalamocortical 

RSFC connectivity maps were averaged across all sessions and runs, and spatially 

normalized to the MNI152Nonlinear6Asym template space). Significant voxels were 

considered as thalamic areas with connection to their associated RSN (P < 0.01, with 

threshold-free cluster enhancement). Sensitivity of connections between thalamic voxels 

and each RSN were further improved using left-right symmetrisation in two ways. First, 

for each RSN, the left hemisphere t-statistic map was reflected across the mid-sagittal 

plane, and the average t-statistic map was computed with the right hemisphere t-statistic 

map. After computing the average t-statistic map for all RSNs, a winner-take-all 

parcellation approach was applied, assigning each voxel of the right thalami to an RSN. 

This parcellation was subsequently projected back to the left hemisphere. Second, mask 

symmetrisation was applied to significant voxels denoting left hemisphere ipsilateral 

connections. Voxels constituting the intersection with right hemisphere ipsilateral 

connections yielded a right thalamus mask, which was merged with its reflection to yield 

the final left-right thalamic connectivity mask for each RSN. Finally, significance masks 

of each RSN were used to mask the parcellated thalamus obtained in the previous step. 

Here, in concordance with previous subcortical literature (Pauli et al. 2018), 

symmetrisation was performed as a useful step to improve signal-to-noise ratio (SNR) and 

was a sensible step to consider given that contralateral asymmetries are not as evident in 

the subcortex of healthy participants, as compared to the cortex (Guadalupe et al. 2017). 



127 

 

Thalamic masks denoting thalamocortical connections to each RSN were used as ROIs in 

subsequent analyses to further evaluate association between resting-state BOLD dynamics 

or thalamocortical RSFC and diffusion tensor features on the ROI-level. 

4.2.10 Effects of MS lesions on thalamic resting-state maps 

Two analyses were considered to assess the effects of thalamic lesions on resting-state 

BOLD dynamics and RSFC: (1) Voxel-wise, and (2) ROI-based. 

(1) Voxel-wise analyses. Single-subject rsfMRI feature maps were visually 

inspected to assess whether obvious changes in underlying resting-state features 

were affected by the thalamic lesions. Additionally, single-subject resting-state 

feature maps were converted to voxel-wise Z score maps. Specifically, 

bootstrap sampling (n=100) was performed across all subject’s scan sessions 

while controlling for subject id (for example, each subject was sampled the 

same number of times) and followed by resampling to each subject’s T1w 

template space, resulting in voxel-wise distributions across all feature maps. 

Using these distributions, single-subject feature maps can be converted to Z 

score values, specifying the deviation voxel-wise features from the cohort 

distribution mean. In addition to visual inspections of these Z score maps; the 

mean thalamic lesion values were extracted across lesioned subjects with the 

hypothesis that lesioned voxels would have relatively high absolute Z score 

values. A high absolute Z score indicates that the lesioned areas expressed 

relatively different values compared to the other participants in this 

bootstrapped population, indicating that the lesion modulates the resting-state 

feature.  

(2) ROI-based analyses. To improve sensitivity of the voxel-wise analysis, an 

ROI-based approach was also considered to boost sensitivity of the resting-state 

features. Thalamic masks were determined based on RSFC with the goal to 

delineate coarse thalamic parcels suggestive of known thalamic nuclei. These 

thalamic parcels were used as masks to extract average values from all resting-

state features. In addition to the 27 feature maps that were examined in the 

voxel-wise analysis (see Supplementary Table 4.1), RSFC Pearson correlation 
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measurements between RSN and connected thalamic parcels were also 

considered. 

To test for hypothesized relationships between thalamic MS pathology and 

resting-state features, the mean value was extracted from the diffusion tensor 

metrics (surrogate of underlying microstructure) and resting-state features, 

across all thalamic parcels, in the left and right hemisphere, and inputted into a 

linear regression model: 

𝑦𝑑 = 𝑚𝑥 + ∑ 𝑏𝑠𝛿𝑑,𝑠

𝑠∈{𝑠𝑒𝑠𝑠𝑖𝑜𝑛}

 

The model assumes that all scan sessions (𝑠), have a linear dependence (𝑚) between 𝑦 and 

𝑥, allowing each scan session to have different constant terms (𝑏𝑠). 𝛿𝑑,𝑠 is a dummy 

variable, and is 1 if scan session 𝑠 matches 𝑑, and is 0 otherwise. The statistical significance 

of a regressor, and of interest here – m – was assessed by a t-test. This regression analysis 

was applied to test dependencies between all combinations of (1) diffusion tensor features 

(fractional anisotropy, axial, and radial diffusivity), and (2) resting-state features (all 

BOLD dynamics and RSFC metrics, including Pearson correlation measures). Note that 

diffusion tensor features were used, instead of the T1w image because T1w-contrast is not 

quantitative and can lead to an ambiguous interpretation of regression results. Such 

problems of interpretation are further distorted by pre-and-post MR scanner upgrades. 

4.3 Results 

4.3.1 Charting individuals with thalamic lesions 

Out of the seven SPMS subjects in this study, only four displayed MR-visible thalamic 

hypointense T1w lesions. For each subject, high contrast hypointense lesions were 

segmented. However, some subjects’ lesion pathology appeared more diffuse with varying 

degrees of lesion contrast, making them more difficult to segment, and possibly leading to 

an underestimation of overall lesion volume. The total segmented thalamic lesion volume 

was 135.17, 466.94, 811.01, and 561.15 mm3 for subjects C, D, E, and F, respectively (each 

subject’s segmented lesion volume and demographics are available in Table 4.2). Across 

subjects, thalamic lesion distribution was heterogeneous with varying lesion sizes and 
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shapes (see Fig. 4.1a for axial and single slice view of T1w examples displaying thalamic 

pathophysiology of subjects C, D, E and F). 

Table 4.2 Secondary-progressive MS patient information 

ID Age (years at time of first 

scan session) 
Gender Handedness Number of scan 

sessions 
Thalamic lesion load 

(mm3) 
A 50.28 F R 6 0 
B 45.31 F R 6 0 
C 46.4 F R 5 135.17 
D 43.87 F R 5 466.94 
E 53.27 F R 4 811.01 
F 53.41 M L 2 561.15 
G 53.03 F R 3 0 

In addition to visual inspection, quantitative summary metrics (mean and standard 

deviation [SD] across all thalamic voxels) of structural scans of the thalamus were 

computed for each subject’s scan session, and included: intensity of the T1w image, and 

three diffusion tensor features (FA, AD, and RD). Diffusion tensor features were included 

as it offers sensitivity to myelination and axonal integrity which may be relevant to 

thalamic lesions in MS. Inspection of summary metrics showed generally stable mean 

diffusion tensor features across scan sessions within subjects, whereas mean intensity of 

T1w images appeared to be less stable (see Fig. 4.1b). Two scan sessions – second scan 

session of subject F and fourth scan session of subject A – displayed notably large changes 

in their diffusion tensor features that could be attributed to registration errors and motion 

corruption, respectively. DTI metrics corresponding to these two scan sessions were 

removed in subsequent analyses. Moreover, stable thalamic variability (i.e., standard 

deviation) was observed across all quantitative summary metrics – apart from the two 

outlier scan sessions – with lesioned subjects (C, D, E, and F) typically displaying higher 

variability compared to non-lesioned subjects (A, B, and G; see Fig 4.1b, bottom row). 

To validate the utility of diffusion metrics for assessing thalamic lesion damage, diffusion 

metrics’ sensitivity to thalamic lesion detection was explored by comparing the mean  
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Figure 4.1 Charting lesion metrics across SPMS patients 

(A) Visualization of the T1w image showing thalamic lesions in SPMS patients. (B) Mean 

and standard deviation of the whole thalamus across various structural MR metrics: T1w 

intensity, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). 

(C) Comparing mean value of lesions to its surroundings over various structural MR 

metrics. *𝑃 < .05 

metric intensity of lesioned and non-lesioned areas within a subject’s thalamus. Significant 

differences were observed between areas across all subjects with thalamic lesions (Subjects 

C, D, E, and F), and is indicated by a decrease in FA, and an increase in AD and RD (see 

Fig. 4.1c; P < 0.05, nonparametric Wilcoxon signed-rank test). This analysis was repeated 

using a dilated lesion mask, instead of the whole thalamus, to investigate more local effects 

of lesion and non-lesion contrast while mitigating partial volume  
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Figure 4.2 Voxel-wise association between diffusion tensor metrics and T1w intensity 

Voxel-wise associations were observed between all diffusion tensor metrics (FA, AD, and 

RD) and T1w intensity across all subjects and scan sessions. Note that only scan session 

one for subjects with lesions are shown here. *𝑃 < .05 

effects when investigating the whole thalamus; apart from AD (P = 0.33), all results 

remained consistent. Additionally, voxel-wise associations between DTI metrics and T1w 

intensities were observed across lesioned subjects (P < 0.05; spatial correlation, see Fig. 

4.2). 
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Although contrast of lesions and non-lesion voxels are qualitatively most evident in the 

T1w images, DTI metrics were considered in all subsequent ROI-based analyses as they 

are quantitative and more interpretable when conducting regression analyses. 

4.3.2 Alignment between resting-state fMRI and T1w images 

To assess the impacts of thalamic lesions on resting-state BOLD dynamics and RSFC 

gradients, voxel-wise features were generated in each subject’s scan session. More 

specifically, an average value was calculated between rsfMRI runs (n=2; 10-minute in 

length), for all 27 features denoted in Supplementary Table 4.1. A goal of this work was to 

localize changes in resting-state features at lesioned sites to infer changes in neural 

dynamics. Accurate spatial normalization between T1w and rsfMRI images were 

qualitatively assessed by comparing the T1w template to the mean T2*-weighted rsfMRI 

image to ensure lesion locations were consistent. T2*-weighted lesions appear as 

hyperintensities due to demyelination (Duyn et al. 2008), and consistently co-localized 

with T1w hypointense lesions (Fig. 4.3 shows lesion alignment for Subjects C, D, and E). 

Although only subject averaged data is shown in Figure 4.3, T2*-weighted images across 

sessions were spatially consistent with one another (𝑟=.928±.036). 

The T2*-weighted rsfMRI image also detailed hypointense voxels on the medial sides of 

the thalamus (see Fig. 4.3, Subject C, Z=-16 for an example), and was consistently 

observed across all SPMS subjects. This may be due to venules, or intra-thalamic draining 

veins of the thalamus, and in some cases, can be observed passing through thalamic lesions 

(see Fig. 4.3; Subject D, left thalamus, Z=-13; right thalamus, Z=-16). Veins running 

through lesions are clinical signs of MS lesions – referred to as the central vein sign – 

which appears hypointense due to increased levels of deoxyhemoglobin in veins 

(Reichenbach et al. 1997; Sati et al. 2016). A consequence of relatively larger veins, as in 

the case of intra-thalamic draining veins, is increased temporal variability of BOLD, which 

consistently coincided with T2*-weighted hypointense voxels across all subjects (Fig. 4.3, 

bottom row shows standard deviation of rsfMRI images). Together, this demonstrates that 

the acquired resting-state fMRI scans appear to delineate structural features of the lesioned 

thalamus and suggests that alignment between rsfMRI scans and the T1w images are 
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adequate. Subsequent investigations in this work aimed to investigate whether resting-state 

BOLD features are affected by lesions. 

 

Figure 4.3 Visualizing the thalamus of subjects with lesions with T1w and rsfMRI 

images 

Visualization of the thalamus in three subjects who displayed lesions are shown. Top row 

shows a T1w template generated using all T1w images from each subject’s scan sessions, 

middle row is the mean rsfMRI (T2*-weighted) image averaged over each subject’s runs, 

and bottom row is the standard deviation rsfMRI image averaged over each subject’s 

runs. Teal arrows shows hypointense lesions as visualized by the T1w template of each 

subject. All images are normalized between 0 and 1. 

4.3.3 Spatial topography of resting-state fMRI features in SPMS 
participants 

Resting-state features of the thalamus were computed with 1.6 mm smoothed rsfMRI data 

to qualitatively assess whether effects due to thalamic lesions can be observed (see 

Supplementary Table 4.1 for details of all features). A total of 27 spatial maps 

corresponding to resting-state BOLD dynamics (25 features) and RSFC (2 features) of  



134 

 

 

Figure 4.4 Visualizing resting-state features of subject D 

Visualization of resting-state features of subject D showing a slice with two thalamic 

lesions. All resting-state features are averaged across all rsfMRI runs of subject D (5 

scan sessions/10 rsfMRI runs). 9 out of 25 randomly selected resting-state BOLD 

dynamic features are shown (b-j), 2 RSFC gradient features are shown (k/l), and a 

connectivity map using the salience ventral attention network as a cortical seed region is 

shown (m). (a) T1w template, teal arrows show the hypointense thalamic lesions in 

contralateral hemispheres. (b) Mean. (c) SD. (d) IntrinsicTimescale. (e) 

DN_HistogramMode_5. (f) SB_BinaryStats_mean_longstretch1. (g) CO_f1ecac. (h) 

SP_Summaries_welch_rect_centroid. (i) SB_MotifThree_squantile_hh. (j) 

SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1. (k) G01. (l) G02. (m) Salience ventral 

attention connectivity map. All images are normalized between 0 and 1. 
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the thalamus was averaged across each subject’s scan sessions and considered individually. 

The intuition is if lesions perturb neural activity, then this may manifest in changes to 

voxel-level BOLD dynamics or thalamocortical RSFC, and thus can be qualitatively 

assessed in single subject feature maps. 

All subject’s rsfMRI feature maps were qualitatively assessed to determine if evidence of 

abrupt changes at lesion and non-lesion interfaces were observed. Figure 4.4b-j shows 9 

randomly selected BOLD dynamic feature maps of Subject D (averaged across 10 rsfMRI 

runs, over 5 scan sessions), with no obvious effects caused by the MS lesion pathology, 

except for in the mean T2*-weighted rsfMRI image (Fig. 4b). Although standard deviation 

and intrinsic time scale (Fig. 4.4c/d) appears to delineate the lesion in the right hemisphere, 

generalization to other lesions both within the same subject and across subjects was not 

observed.  

Furthermore, Figure 4.4k-m shows 3 RSFC-based feature maps. Figure 4.4k/l corresponds 

to thalamocortical RSFC gradients whereby changes in voxel’s value are modulated by 

similarity between connectivity patterns. For example, if lesions impacted RSFC, then it 

follows that changes in the ensuing gradients, demarcated by lesioned voxels will be 

evident, however this was not the case (Fig. 4.4k/l). To simplify matters further, we also 

inspected RSFC maps generated using RSNs as cortical seed regions and observed no 

qualitative effects by the focal lesion. For example, Figure 4.4m shows an example 

connectivity map of the thalamus corresponding to the salience ventral attention network 

which showed peak connectivity to Subject’s D right hemisphere lesion. In this example, 

no changes were apparent at or adjacent to lesioned voxels and connectivity patterns 

appeared symmetric between hemispheres, suggesting that lesions do not impart any 

qualitative effects on RSFC. 

To quantitatively assess the impact of lesions, each lesioned subject’s rsfMRI feature maps 

were converted to Z score maps based on bootstrapped distributions generated from all 

SPMS subjects in this cohort. This provides a quantitative metric to determine the extent 

to which rsfMRI features deviated from expected population mean on a voxel level. The Z 

score values were extracted from lesion voxels across each of the four  
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Figure 4.5 Thalamic lesion Z scores across 26 resting-state features in subjects with 

lesions 

(A) Bar plot of average Z-score quantifying how each feature averaged over each 

individuals’ lesions deviate from a bootstrapped sampled population (n=100). The 

bootstrapped sampled population corresponds to all SPMS subjects in this cohort 

(subject A-G). A higher absolute Z-score suggests that the lesion is modulating the 

associated resting-state feature and is shown for each subject. (B) Positive association 

between Z-score of lesion and non-lesion areas across all resting-state features. *𝑃 < 

.05 
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participants and across all rsfMRI features maps (rsfMRI mean was excluded due to 

inconsistencies in scaling of pre- and post MR upgrade images). Figure 4.5a shows mean 

Z score values of lesions across all lesioned subjects and rsfMRI features. No consensus 

polarity in lesion Z scores was observed across all subjects, suggesting that lesions do not 

have a consistent effect on BOLD dynamics or RSFC gradients. Furthermore, a strong 

association between the mean Z score of lesions and non-lesions was observed, suggesting 

that Z scores are not driven by lesions (*𝑃 < 0.05; Pearson correlation, see Fig. 4.5b). 

4.3.4 Association between diffusion tensor metrics and 
thalamocortical functional connectivity 

Consideration of thalamocortical connectivity in the previous section was assessed using 

RSFC gradients – describing smooth transitions of thalamocortical RSFC patterns along 

the voxel-wise thalamus – which did not appear to demarcate lesions. However, it is 

possible that thalamic lesions only lead to marginal changes in thalamocortical RSFC and 

do not impart detectable changes in RSFC gradients. To account for this possibility, the 

next aim was to assess the effect of lesions on thalamocortical RSFC.  

In this section, thalamic localization was not feasible with 1.6 mm smoothed data, as such 

we used 3 mm smoothed data in analyses of this section. First, spatial maps showing voxels 

of thalamocortical connectivity between ipsilateral thalamus and the cortex were 

considered. The cortex was partitioned into the seven cortical RSNs, which were 

subsequently used as seed regions to probe connectivity to the thalamus (for example, 

visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal control, and 

default mode networks). Figure 4.6a shows each cortical component, and its significant 

areas of connectivity to the thalamus (*P<0.05; nonparametric one-sample t-test, refer to 

methods for filtering details of the thalamic ROIs). Thalamocortical connections were not 

detected to the limbic and frontoparietal control network. Lack of limbic connections may 

be due to lowered temporal signal-to-noise ratio (tSNR) in cortical limbic areas due to 

susceptibility-induced signal dropout in these areas. More generally, improved sensitivity 

for localizing thalamic connections can be achieved with an increased sample size, which 

may explain for the lack of observed thalamus-to-frontoparietal connections.  
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Figure 4.6 Within scan session associations between resting-state features and 

diffusion tensor features 

(A) Localization of thalamic parcels using thalamocortical resting-state functional 

connectivity of five resting-state network seeds overlaid (*𝑃 < .05). (B) Manhattan plot 

assessing within scan session associations between resting-state and diffusion tensor 

features using 10 thalamic parcels as regions of interests (five for each hemisphere). This 

plot does not include resting-state network, and brain hemisphere as covariates. (Red 
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line denotes *𝑃 < .05; corrected for multiple comparisons). (C-G) Associations between 

five resting-state features and corresponding diffusion tensor features. Each black line 

corresponds to a linear regression for a single scan session derived using mean feature 

values extracted from the 10 thalamic parcels. 

Nevertheless, thalamic localization of the other five RSNs appear in agreement with 

previous works (Yang et al. 2020). For example, default-mode, ventral attention, and dorsal 

attention were mapped onto the thalamus sequentially from anterior-to-posterior, and 

somatomotor connections were localized to the ventral-posterior-lateral thalamus. In 

contrast, the visual network was expected to show connections to the lateral geniculate 

nucleus, located in the lateral-posterior of the thalamus, however, disproportionate and 

diffuse connections were observed in the posterior of the thalamus. 

Next, the thalamus and cortical RSN ROI pairs were used to assess the effects of MS 

pathophysiology on thalamocortical RSFC. Specifically, a linear regression model was 

used to test the hypothesized relationship between measures of thalamic DTI metrics (i.e., 

FA, AD, and RD), and the strength of thalamocortical connectivity (averaged across two 

rfMRI scans) while controlling for each subject’s scan session. Significant negative 

associations between thalamocortical connectivity and AD (P < 0.05; 𝐵 = [−2.30 ×

10−4, −6.61 × 10−5]; see Fig. 4.6c), and RD (P < 0.05; 𝐵 = [−1.90 × 10−4, −6.57 ×

10−5]; see Fig. 4.6e) was observed, whereas no associations were observed with FA (P = 

0.360). To account for the possibility that this result is confounded by RSNs, the linear 

regression models were re-assessed incorporating the RSNs as covariates. This led to a 

modest negative effect, although not significant between thalamocortical connectivity and 

AD (Puncorrected = 0.016), and no associations were observed with FA (P = 0.150), and RD 

(P = 0.263). 

4.3.5 Association between diffusion tensor metrics and resting-
state fMRI metrics 

Linear regression analyses were also extended to investigate the relationships between 

thalamic DTI metrics and all other resting-state features using these thalamic ROIs. Figure 

4.6b shows a Manhattan plot summarizing all significant associations between all 
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combinations of DTI metrics and resting-state fMRI metrics. The mean of the rsfMRI scans 

were negatively and positively associated with FA and RD, respectively. The standard 

deviation demonstrated the largest effect size, with a positive association observed with 

AD and RD. Additionally, a positive association was also observed between AD and 

SB_TransitionMatrix_3ac_sumdiagcov (a measure of time series variability using motifs) 

(P < 0.05; see Fig. 4.6c-g for plots demonstrating associations across all scan sessions). 

With the addition of RSNs as a covariate, significant positive associations were only 

retained between standard deviation and AD, and RD (P < 0.05). 

4.4 Discussion 

The present study provides a preliminary assessment of the impacts of thalamic lesions on 

resting-state BOLD dynamics and thalamocortical RSFC. To date, and to our knowledge, 

there have been no studies investigating the role of MS thalamic pathophysiology in 

resting-state fMRI measurements in single subjects. Given the heterogeneous nature of MS 

lesion burden across subjects, investigating the effect of focal MS lesions to neural 

organization is an important goal, and yet remains ambiguous. Here, 7T MR imaging was 

leveraged for improved signal-to-noise ratio allowing for improved lesion detection and 

improved BOLD sensitivity. 

4.4.1 Assessing diffusion tensor metrics of thalamic lesions 

The following DTI metrics were used to assess their sensitivity to thalamic lesions: FA, 

AD and RD. Here, when comparing the effects of thalamic lesions to their surroundings, 

we observed significant decreases in FA and increases in RD, as well as a non-significant 

trend of increases in AD. These findings are somewhat consistent with other investigations 

that have primarily looked at white matter pathology in both humans and animal models 

of MS, as well as other neurodegenerative disorders. Across these studies it is suggested 

that decreases in FA and increases in RD likely reflect demyelination (Schmierer et al. 

2007; Klawiter et al. 2011; Chang et al. 2017), whereas reduced AD is believed to 

correspond to axonal injury (Budde et al. 2009). The latter finding of reduced AD in mouse 

models of MS does contradict our findings in the current work of increased AD, albeit 
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Budde at colleagues (2009) were investigating spinal cord lesions as opposed to thalamic 

lesions here.  

Another possibility is that increases in AD and RD, combined with reductions in FA 

suggests an overall increase in diffusion, and may be explained by cellular infiltration and 

changes in extracellular water caused by inflammation that corresponds to collective axon 

and myelin damage (Aung et al. 2013). However, these interpretations are complicated by 

challenges with modelling water diffusion in the thalamus, which is comprised of a 

complex mixture of both white and gray matter (Jelescu et al. 2020). Firstly, diffusion of 

non-myelinated neurites, which are commonly found in subcortical gray matter, is 

confounded by non-negligible diffusion between neurites (Jelescu and Novikov, 2020). 

Secondly, the directionality of neurites in the thalamus may be randomly oriented, further 

complicating diffusion tensor modeling in this region. Collectively, due to the ambiguity 

of what microstructure features modulate diffusion in the thalamus, it remains difficult to 

interpret whether changes in DTI metrics are modeling axon integrity or demyelination. 

For example, although only increases in RD have been previously associated with 

demyelination (Klawiter et al. 2011), the presence of demyelination within the thalamus – 

where axon direction is largely incoherent and randomly-oriented – could result in 

increases in both RD and AD. Nevertheless, given that DTI metrics appear to be modulated 

by thalamic lesion pathology, albeit with reduced effect sizes compared to T1w contrasts 

(see Fig. 4.2), we suggest that these directional trends are associated with demyelination, 

primarily due to increases in RD, and collectively supports its use as a quantitative metric 

for lesion pathophysiology in subsequent regression analyses. 

4.4.2 Resting-state BOLD variability in MS lesions 

Across all 25 time series features used to describe resting-state BOLD dynamics, only the 

mean and standard deviation appeared to reflect the effects of the focal thalamic lesions. 

The mean rsfMRI image is perhaps unsurprising as this feature corresponds to a low 

resolution, 1.6 mm T2*-weighted image, and is a common MR contrast used to identify 

cortical and thalamic MS lesions (Maranzano et al. 2019; Mehndiratta et al. 2021). 

Interestingly, the variability of the resting-state time series, as measured by standard 

deviation, in some cases expressed high variability at the site of the thalamic lesion. This 
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can be explained by the presence of central venules that commonly coincide within MS 

lesions (Kilsdonk et al. 2014), and specifically have been found in 78% of thalamic lesions 

(Mehndiratta et al.). Here, larger veins have relatively higher blood flow, which directly 

leads to an increase in the modulation of BOLD, as reflected by increases in BOLD 

variability. This effect is clearly discernable in the case of relatively large intra-thalamic 

draining veins that were detailed to pass through a thalamic lesion in the left hemisphere 

of Subject D, and may explain for the large increase in BOLD variation (see Figure 4.3; 

Subject D; Z = -13; bottom row). A more subtle example can be seen in the case of Subject 

D’s right thalamic lesion, which shows a decrease in T2*-weighted intensity and an 

increase in BOLD variability in the middle of the lesion, suggestive of the presumed effect 

of a smaller venule (see Figure 4.3; Subject D; Z=-16; middle row shows the mean T2*-

weighted image; bottom row shows BOLD variability). Although not all lesions displayed 

central venules, it is possible that the low resolution afforded by the rsfMRI image is not 

sufficient to detect them in all thalamic lesions. It is likely that BOLD variability may still 

be modulated by these veins even when they are not visible in the mean T2*-weighted 

image.  

In ROI-based analyses, BOLD variability (i.e., standard deviation) was the only feature 

that was positively associated with axial and radial diffusivity, after correcting for multiple 

comparisons and controlling for the effects of RSN-localized thalamic areas. Given that 

increases in AD and RD correspond to lesions, positive associations observed here are 

consistent with the presence of central venules as discussed in the prior section, which may 

contribute, in part, to the observed effects. 

Another source that may complicate the interpretation of BOLD variability is due to 

vasculature effects that have been widely documented in MS lesions. For example, several 

studies have shown reduced perfusion in MS lesions (Ge et al. 2005; Holland et al. 2012; 

Francis et al. 2013), with as much as a 25% reduction in cerebral blood flow (CBF; Sowa 

et al. 2015). More generally, others have reported reduced vascular reactivity (Marshall et 

al. 2014), and reduced oxygen metabolism of the MS brain (Ge et al. 2012). Collectively, 

these vascular impairments would suggest reduced efficacy of neurovascular coupling, 

subsequently leading to reduced BOLD variability. However, the opposite effect was 
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observed in the current work, where increased BOLD variability was noted, suggesting 

that changes in BOLD variability may not be due to vascular changes of MS, and may 

suggest a neural effect (i.e., increases in neural activity) instead. 

It has been suggested that variability of neural activity supports human behaviour in 

adapting to internal and external demands (Waschke et al. 2021). As such, studies have 

shown that younger and better performing adults expressed higher BOLD variability in a 

set of cortical regions (Garrett et al. 2010; McIntosh et al. 2010; Guitart-Masip et al. 2016). 

Interestingly, BOLD variability measurements have been shown to be robust, even after 

considering vascular controls in a healthy population (Garrett et al. 2017). In fact, previous 

studies have investigated BOLD variability in various diseases (Nomi et al. 2018; Zhu et 

al. 2019), including MS (Petracca et al. 2017). Petracca and colleagues found a positive 

association between BOLD variability and cortical lesion volume in some cortical areas, 

consistent with our observations in the thalamus. In this regard, it was suggested that an 

increase in BOLD variability may be due to a failed attempt to compensate for pathological 

damage by cortical lesions (Petracca et al. 2017). Although it appears BOLD variability 

may provide a candidate assay of neural activity, more rigorous investigations into 

confounding factors of central venule sizes, and aspects of neurovascular coupling 

underlying BOLD measurements must be considered. 

4.4.3 Thalamic lesions do not affect thalamocortical connectivity 

To date, many research groups have documented changes in resting-state functional 

connectivity across different phenotypes of MS, and have further demonstrated that these 

changes correspond to clinical and cognitive outcomes of patients (Rocca et al. 2010; 

Bonavita et al. 2011; Hawellak et al. 2011; Loupre et al. 2014; Schoonheim et al. 2014). 

Although not explicitly investigated, it is generally understood that MS pathology directly 

modulates RSFC changes observed in these studies. Interestingly, in this work we assessed 

the effects of focal thalamic lesions on RSFC, and did not find any evidence of 

thalamocortical RSFC changes at the single subject level. Unlike other studies, we focused 

on brain mapping of single subjects, and lesion effects on RSFC were defined as being 

changes that were qualitatively visible in lesioned voxels. In doing so, we mapped 

connectivity changes that were assessed using two methods: (1) estimated thalamocortical 
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RSFC gradients, and (2) computing thalamic connectivity maps using seven RSNs as 

cortical seed regions. Thalamocortical RSFC gradients and connectivity maps were 

subsequently used to determine whether qualitative evidence of lesion demarcation could 

be observed (see Fig. 4.4k-m for examples of RSFC maps of the thalamus in a subject who 

has a thalamic lesion that is shown in Fig. 4.4a). Although Figure 4.4 only shows subject 

averaged maps across all Subject D’s scan sessions, we qualitatively inspected all 

connectivity maps across all lesioned subjects’ rsfMRI runs (4 subjects and 32 rsfMRI 

runs; under 1.6 mm and 3 mm smoothing) to account for potential confounding effects of 

motion, scanner quality, and biological pathophysiological changes that may have 

theoretically reduced our ability to identify such focal lesion effects. In considering each 

subject’s thalamic connectivity maps, we found no evidence of connectivity changes 

induced by thalamic lesions. It is possible that any effects of lesions on RSFC may be 

diffuse and impact the whole thalamus, rather than be focal to the lesion itself. As such, 

clear demarcations of lesioned voxels with their surroundings would not be observed in 

ensuing connectivity maps. However, such investigations require case-controlled 

experiments and was beyond the scope of this investigation.  

Furthermore, this investigation took a thalamus-centric view towards understanding how 

thalamic lesions alone may affect only thalamocortical RSFC, effectively ignoring other 

pathophysiology that is evidently widespread in the SPMS brain. Prior to conducting these 

analyses, we reasoned that a focal lesion, especially at the site of neural activity, in this 

case the thalamus, would impart the largest detectable changes to thalamocortical RSFC, 

compared to pathology at distant brain areas. However, it is possible that a lack of 

detectable RSFC changes may be related to whether thalamic lesions correspond to axonal 

damage or demyelination. In the latter case, it may be possible that demyelination in the 

thalamus – already relatively low in myelin content compared to white matter – does not 

translate to changes in RSFC, whereas demyelination to white matter may play a larger 

role in this regard. This is predicated on the fact that myelination is fundamental for fast 

neural connections between distance brain regions, and therefore demyelination of 

thalamocortical white matter connections may be the primary modulator of RSFC changes. 

Conversely, it is not known whether MR visible thalamic lesion pathology corresponds to 

axonal damage, which may lead to poor neuronal function in lesioned thalamic voxels, and 
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subsequently reduced thalamocortical RSFC. Given that no changes in thalamocortical 

RSFC was observed in any thalamic lesions of this cohort, we postulate that axonal damage 

is unlikely. In fact, ex vivo histology of post-mortem MS patients has shown that even in 

demyelinated hippocampal areas, neurons were preserved (Dutta et al. 2011). Considering 

these null results and the multifaceted nature of MS pathophysiology, it remains to be seen 

whether focal damage to white matter or grey matter along thalamocortical pathways 

modulates thalamocortical RSFC. 

4.4.4 Limitations 

Our preliminary study is not without limitations. As highlighted in previous sections, 

there are many important factors to consider when interpreting these results. Firstly, 

interpreting diffusion parameter changes as either axonal injury or demyelination has 

been difficult due to the general limitations of diffusion tensor modelling in the thalamus. 

In addition, histological validation of thalamic lesions with diffusion tensor imaging has 

been limited, further hampering our ability to interpret these diffusion tensor results. Such 

uncertainties may have implications for all resting-state BOLD features that were used to 

investigate lesions in this study, as axonal damage may have larger implications in 

underlying BOLD dynamic measurements and RSFC, whereas demyelination (albeit 

reduced in the thalamus) may not. Secondly, results shown here suggest that central 

venules are a large confounder in BOLD variability of thalamic lesions (not all thalamic 

lesions expressed an obvious central venule, yet appeared to show increased variability). 

Further works may consider performing high resolution T2*-weighted images to assess 

the role of central venules more precisely to resting-state fMRI measurements in the 

thalamus of MS patients.  

In this study, an important goal was to evaluate whether RSFC can be used to 

qualitatively assess effects of thalamic lesions in single subjects. Previous studies have 

generally used ROI-based analyses to conduct these investigations, however this 

overlooks the effects of thalamic lesions on voxel resolution RSFC. To overcome this, 7 

cortical RSNs were defined as seed regions and used to probe voxel resolution RSFC 

patterns of the thalamus. However, this approach assumes that time series from 7 cortical 

RSNs provides an adequate characterization of thalamocortical RSFC, which may not be 
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optimal considering that these large RSNs will likely blur opposing brain regions 

together, and consequently reduce the sensitivity of RSFC profiles to thalamic lesions. In 

this regard, voxel resolution RSFC between thalamus and whole cortex was considered 

using gradient estimation techniques to resolve gradual changes in RSFC patterns over 

the thalamus. In both scenarios, from 7 cortical RSN seeds to gradients, no qualitative 

evidence of abrupt changes in RSFC or gradient measurements were observed. It is 

possible that the qualitative nature of these assessments makes it difficult to detect more 

subtle changes in RSFC and requires group-level comparisons. However, the 

heterogeneous nature of thalamic lesions in MS makes group-level inference for 

investigating the effects of lesions to be suboptimal, particularly given the objective of 

trying to make single-subject inferences. 

To further address this problem of single-subject inference, individual scan sessions were 

assessed independently in a linear model. The goal was to assess whether lesions 

modulated thalamocortical connections between seven cortical RSNs, and their 

corresponding localized thalamic parcels within each scan session. Although negative 

associations were observed between RSFC and both AD and RD, we discovered that each 

thalamocortical RSFC map had intrinsically different RSFC strength, which subsequently 

confounded these results to make inference on single subjects limited. Furthermore, all 

ROI analyses in this study used thalamic parcels localized with RSFC data of only seven 

participants, which may be insufficient for delineating precise boundaries around 

thalamic parcels. Increasing the number of participants used to generate thalamic parcels 

may improve accuracy for subsequent ROI analyses, for example, in the case of the 

lateral geniculate nucleus, we would ideally want it to map more specifically onto 

posterior-lateral thalamus, as opposed to taking up a large posterior portion of the 

thalamus.  

4.4.5 Conclusions 

The goal of this preliminary work was to investigate whether focal thalamic lesions in 

MS impart detectable changes to thalamic functional organization as measured by 

resting-state fMRI features of dynamics and connectivity in single subjects. Here, the 

only relevant resting-state feature that was modulated by thalamic pathophysiology was 
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BOLD variability, and upon closer examination this result appears to be confounded by 

the presence of central venules, commonly found in MS thalamic lesions. This work 

provides some insights and caveats for performing and interpreting single-subject 

mapping of thalamic functional organization with resting-state fMRI at 7 Tesla. 
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4.6 Supplementary Tables 

Supplementary Table 4.1 Calculated rsfMRI features 

Feature 

categories 
feature name Description 

Basic Mean Mean 
Basic SD Standard deviation 
Distribution DN_HistogramMode_5 Mode of z-scored distribution (5-

bin histogram) 
Distribution DN_HistogramMode_10 Mode of z-scored distribution 

(10-bin histogram) 
Simple temporal 

statistics 
SB_BinaryStats_mean_longstretch1 Longest period of consecutive 

values above the mean 
Simple temporal 

statistics 
DN_OutlierInclude_p_001_mdrmd Time intervals between 

successive extreme events above 

the mean 
Simple temporal 

statistics 
DN_OutlierInclude_n_001_mdrmd Time intervals between 

successive extreme events below 

the mean 
Linear 

autocorrelation 
CO_f1ecac First 1/e crossing of 

autocorrelation function 
Linear 

autocorrelation 
CO_FirstMin_ac First minimum of autocorrelation 

function 
Linear 

autocorrelation 
SP_Summaries_welch_rect_area_5_1 Total power in lowest fifth of 

frequencies in the Fourier power 

spectrum 
Linear 

autocorrelation 
SP_Summaries_welch_rect_centroid Centroid of the Fourier power 

spectrum 
Linear 

autocorrelation 
FC_LocalSimple_mean3_stderr Mean error from a rolling 3-

sample mean forecasting 
Linear 

autocorrelation 
Intrinsic Timescale Sum of autocorrelation function 

values until first crossing 

(Watanabe et al. 2019) 
Nonlinear 

autocorrelation 
CO_trev_1_num Time-reversibility statistic 

Nonlinear 

autocorrelation 
CO_HistogramAMI_even_2_5 Automutual information 

Nonlinear 

autocorrelation 
IN_AutoMutualInfoStats_40_gaussian_fmmi First minimum of the automutual 

information function 
Successive 

differences 
MD_hrv_classic_pnn40 Proportion of successive 

differences exceeding 0.04σ 

(Mietus 2002) 
Successive 

differences 
SB_BinaryStats_diff_longstretch0 Longest period of successive 

incremental decreases 
Successive 

differences 
SB_MotifThree_quantile_hh Shannon entropy of two 

successive letters in equiprobable 

3-letter symbolization 
Successive 

differences 
FC_LocalSimple_mean1_tauresrat Change in correlation length after 

iterative differencing 
Successive 

differences 
CO_Embed2_Dist_tau_d_expfit_meandiff Exponential fit to successive 

distances in 2-d embedding space 
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Fluctuation 

analysis 
SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 Proportion of slower timescale 

fluctuations that scale with DFA 

(50% sampling) 
Fluctuation 

analysis 
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 Proportion of slower timescale 

fluctuations that scale with 

linearly rescaled range fits 
Others SB_TransitionMatrix_3ac_sumdiagcov Trace of covariance of transition 

matrix between symbols in 3-

letter alphabet 
Others PD_PeriodicityWang_th0_01 Periodicity measure of (Wang et 

al. 2007) 
RSFC Gradients G01 Eigenvector of the graph 

Laplacian corresponding to the 

lowest non-zero eigenvalue 

(Haak et al. 2018) 
RSFC Gradients G02 Eigenvector of the graph 

Laplacian corresponding to the 2nd 

lowest non-zero eigenvalue 

(Haak et al. 2018) 
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Chapter 5  

5 Discussion and Future Work 

5.1 Summary of Thesis 

Gradient estimation techniques have emerged as a valuable framework for conceptualizing 

high-dimensional brain connectivity across various domains of neuroimaging. This thesis 

provides broad contributions to resting-state connectivity gradient literature by 

demonstrating the ability to (a) unveil an anterior-posterior organizational axis of the 

somatosensory cortex that has previously gone overlooked, (b) unify organizational axes 

of marmosets and humans allowing for systematic cross-species comparisons of the 

default-mode network, and (c) assess the focal impacts of Multiple Sclerosis thalamic 

pathophysiology on thalamocortical organization. Together, this work outlines several 

advances that have been afforded by a gradient-centric approach in the domains of basic, 

comparative, and clinical neuroscience. 

5.1.1 Overlapping axes of connectivity principles in 
somatosensory cortex 

In Chapter 2 of this thesis, I explored the use of gradient estimations to reveal a secondary 

axis of connectivity organization in S1, using resting-state fMRI. Previous resting-state 

connectivity literature has often differentiated somatosensory cortex along its dorsal-

ventral axis, akin to the long-understood notion of somatotopy that corresponds to the 

mapping of body parts along this cortical strip (Yeo et al. 2011; van den Heuvel and 

Hulshoff Pol, 2010; Penfield and Rasmussen, 1950). In addition to somatotopy, S1 is 

known to follow a hierarchical organization with afferent somatosensory inputs being 

processed along an anterior-posterior axis, as supported by anatomical connectivity studies 

(Felleman and Van Essen, 1991). Given the duality of connectivity principles that is 

fundamental to S1, I contended that gradient estimations, specifically looking at higher-

order gradients, may reveal this anterior-posterior axis. Indeed, the primary gradient 

revealed a somatotopic axis, whereas the secondary and tertiary gradients collectively 

indicated evidence of division along the anterior-posterior axis. Subsequent division of S1 

into somatotopic regions – lower limb, upper limb, and trunk – confirmed a primary 
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gradient that traversed the anterior-posterior axis while critically providing a coordinate 

system for espousing structure-connectivity relationships. Specifically, I demonstrate 

correspondence of RSFC-derived gradients with hierarchical organization, structural 

organization, and architectonic Brodmann areas.  

This study adds to a growing body of literature that explores the multiplicity of connectivity 

principles underlying different brain areas using RSFC gradient representations. Prior 

works have shown correspondence of gradients with primary visual cortex to eccentricity 

and polar angle maps of the visual field (Haak et al. 2018), hippocampus to its functional 

long-axis and structural infoldings (Vos de Wael et al. 2018), striatum to its cortico-striatal 

reward and dopaminergic pathways (Marquand et al. 2017; Oldehinkel et al. 2022), and in 

this work, S1 to somatotopic and hierarchical organization. Critically, discovery of 

different representations of brain connectivity that adheres to biologically plausible 

solutions may provide more sensitive assays of different brain function. For example, the 

gradient corresponding to the S1 hierarchical organization, compared to somatotopy may 

better model human tactile goal directed behaviour as it better characterizes circuitry 

supporting processing of tactile information. Additionally, identifying organizational axes 

consistent with brain microstructure provides an elegant framework to study the interplay 

between brain connectivity and structure amidst possible structural pathophysiology due 

to disease. 

5.1.2 Conceptualizing cross-species brain evolution with resting-
state fMRI 

In Chapter 3, I applied gradient estimation to cross-species connectivity fingerprints to 

derive a parsimonious coordinate system that unifies macroscale brain organization of 

marmosets and humans. To date, this study is one of two investigations conceptualizing 

cross-species comparisons using gradient estimation techniques and, in this case, 

comparing the cortical connectome of marmosets and humans. Xu and colleagues were the 

first to propose the use of gradients in a cross-species framework – referred to as joint-

embeddings (or gradients) – and demonstrated gradient estimations in macaques and 

humans (Xu et al. 2020). In the current work, connectivity fingerprints were computed at 

every cortical vertex, across both species, and anchored by a set of a-priori defined 
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homologous brain regions (Mars et al. 2018). In this way, cross-species similarity of 

vertex-wise connectivity fingerprints could be computed, effectively linking brain 

organization across both species allowing for subsequent gradient estimation to 

simultaneously situate both species brain vertices onto a set of organizational axes. Each 

organizational axis conceptualizes consistent brain architecture between marmosets and 

humans. For example, the primary gradient revealed a consistent somatomotor-to-default-

mode network axis in both species, allowing for cross-species comparison. In doing so, I 

found that the connectivity fingerprints underlying marmoset DMN are more dispersed 

compared to humans, and this is attributed to the marmoset’s dorsolateral prefrontal cortex 

(dlPFC). To further explore this novel insight, subsequent connectivity analysis was 

performed to show that, although marmoset dlPFC is connected to its posterior DMN 

constituents, it is weakly bounded and expresses differential connectivity compared to its 

posterior DMN regions, that is unlike humans. Together, the work in this chapter reveals 

more subtle cross-species differences between marmosets and humans, and suggests that, 

unlike in marmosets, human cognitive behaviour likely relies on a deeply integrated 

anterior-posterior DMN axis, as observed in human brain organization.  

Together, this cross-species comparative framework inherits previously mentioned 

benefits of gradient techniques, such as heterogeneity and multiplicity of cross-species 

connectivity representations. Firstly, it provides vertex resolved comparisons of 

connectivity fingerprints without making any ROI assumptions, aside from the selection of 

homologous ROIs. Historically, most prior comparative cross-species connectivity 

fingerprinting studies were limited in this regard by probing only a subset of brain areas, 

in search of homologies, often disregarding other brain areas of putative cross-species 

homology. This is emphasized in understanding homology of medial prefrontal cortex in 

marmosets relative to humans, which has thus far remained ambiguous. Due to the 

hypothesis-free nature of this gradient approach, I found that the third gradient revealed 

brain organization that matches mPFC to areas of human frontoparietal and cingulo-

opercular networks, and not the DMN. Together, gradient estimation applied to cross-

species connectivity fingerprinting provides a parsimonious framework for 

conceptualizing and quantitatively evaluating putative homologies across species. 
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5.1.3 Connectivity gradients of the thalamus in Multiple Sclerosis 

In Chapter 4, I used connectivity gradients, in addition to a myriad of other resting-state 

BOLD dynamic measurements, to explore voxel-resolved effects of thalamic Multiple 

Sclerosis (MS) lesions in secondary-progressive MS patients (SPMS). Previous resting-

state studies in MS largely rely on group-level studies to gauge the effects of brain 

reorganization through MS disease trajectory, and have often disregarded the spatial role 

of focal MS pathophysiology (Jandric et al. 2022). This is a cumbersome problem due to 

spatial heterogeneity of pathophysiology across individuals with MS (Lucchinetti et al. 

2000), in combination with the complexity of brain connectivity. In the current work, I 

proposed the use of thalamocortical RSFC gradients to resolve the latter issue, which 

theoretically should be able to detect lesion effects given the assumption that lesions impart 

changes to underlying resting-state functional connectivity. In single-subject investigations 

of four SPMS patients imaged over multiple scanning sessions, I found no evidence of 

voxel-level effects of lesions on thalamocortical RSFC gradients, in addition to 27 

measures of resting-state BOLD dynamics. Notably, only BOLD variability appeared to be 

able to resolve thalamic lesions in some cases, however this observation is confounded by 

prominent central veins known to occur in MS lesions. Although others have used gradients 

to characterize connectivity organization in numerous neurological and neuropsychiatric 

disorders (Hong et al. 2019; Dong et al. 2020), the work in Chapter 4 provides first 

investigations of gradients to resolve the effects of pathophysiology on RSFC in an attempt 

to advance biomarker discovery of neural reorganization in single subjects with MS. 

5.2 Thesis Limitations 

5.2.1 Defining regions of interest 

In Chapter 2 of this thesis, a-priori definitions of somatosensory cortex were heavily relied 

on to gain insights of an anterior-posterior axis. Here, regions of interests were taken from 

Glasser and colleagues’ multimodal parcellation, which heavily relied on converging 

multimodal evidence to yield precise delineation of architectonic divisions of S1, and 

furthermore used task-based localizers to delineate coarse somatotopic areas of S1. It is 

important to note that although gradients were derived on the group-level to maximize 
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signal-to-noise ratio, the dominant gradient of right hemisphere upper limb appeared to 

span its somatotopic axis, and not an anterior-posterior axis as depicted by all other 

somatotopic regions. Despite employing careful strategies to determine the definition of 

right upper limb, it is possible that an overestimation of this region of interest included 

ventral vertices that corresponded with somatotopic face or eye regions, that could have 

potentially driven subsequent gradient estimation to characterize heterogeneity along its 

somatotopic axis (see Supplementary Fig. 2.1). Broadly, this observation implies that 

recovery of biological plausible gradients can be biased by the region’s definition. This 

problem may be further compounded in the case of single-subject brain mapping where it 

is known that spatial configuration of functional brain areas is highly variable (Bijsterbosch 

et al. 2018), even after best efforts to spatially normalize individuals (Robinson et al. 2014; 

Coalson et al. 2018). This raises questions whether variability of gradients in single 

subjects arise due to inaccurate region definitions, or from biologically driven processes. 

To properly tackle these problems, it would be important to consider precision mapping of 

single subjects to obtain proper areal definitions of a specific region of interest prior to 

estimating gradients. Of note, these problems are less likely to manifest in subcortical 

structures, such as the thalamus (explored in Chapter 4), given more robust structural 

processing pipelines that have been prominently used in neuroimaging to accurately enable 

segmentation of the subcortex (Dale et al. 1999). 

5.2.2 Interpreting the functional significance of gradients 

It is important to consider that gradients at their core present only a simplified 

representation of resting-state functional connectivity measurements, which at best 

correspond to synchrony of neural activity that is subsequently used to infer brain 

connectivity. In this way, the functional meaning of all gradient results presented in this 

thesis remains largely conjecture, and are predicated on the belief that different brain areas, 

based on their unique connectivity properties, support distinct brain functions. To address 

the interpretational issues of gradient representations, the best that can be done is to use 

gradients to guide follow-up connectivity analyses, further elucidating their connectional 

properties for more in-depth interpretation. In Chapter 2, subsequent thalamocortical 

connectivity analyses using hierarchically derived S1 ROIs were performed, reconciling 
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known circuit properties that predicated early understandings of hierarchy in S1. 

Additionally, in Chapter 3, subsequent connectivity analyses were performed to fully 

appreciate the divergent connectivity properties of marmoset DMN compared to humans, 

and this cross-species difference was used to emphasize the importance of the DMN to 

human cognitive behaviour. Alternatively, many have used meta-analysis to determine 

functional significance of gradient representations (Margulies et al. 2016; Yang et al. 2020; 

Xu et al. 2021), however this too provides only an indirect approach for gauging the 

functional significance of gradients.  

To fully appreciate the functional significance of these gradients in humans, multivariate 

task-based paradigms may be employed to explore whether hierarchical neural 

representations exist in different areas of the brain (Yokoi and Diedrichsen, 2019). 

However, developing task-based paradigms of different brain regions is limited by the 

tasks’ ability to evoke hierarchical responses in those brain areas, oftentimes leaving 

explorations of association areas, such as the default-mode network, a terra incognita 

(Raichle 2015). Furthermore, establishing the functional significance with task-based 

fMRI in cross-species studies implies that non-human primates must be trained to 

effectively engage in tasks while in an MRI. In this way, disentangling the functional 

significance of gradient representations in the context of human cognition remains an 

enormous endeavour, and resting-state functional connectivity may serve as a pragmatic 

compromise. 

5.3 Future Directions 

5.3.1 Somatosensory cortex connection topography in Parkinson’s 
Disease 

The somatosensory cortex is widely connected to cortical and subcortical brain areas, and 

widely believed to play a role in somatosensory abnormalities in Parkinson’s Disease (PD) 

(Conte et al. 2013). Having demonstrated a way to map connection topography that may 

correspond to circuitry underlying hierarchical processing of S1 (Chapter 2), subsequent 

investigations could potentially evaluate whether S1 gradients are altered in Parkinson’s 

Disease. A few different approaches, employed by recent studies, could be explored to 
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statistically compare spatial gradients between PD and healthy populations. Tian and 

colleagues used a clustering approach applied to insula gradients, to infer changes in 

schizophrenia compared to healthy individuals (Tian et al. 2019). Other works by Haak 

and colleagues proposed a trend surface analysis model – adopted from geosciences – to 

model spatial variances across a cortical gradient allowing for inference between groups 

(Haak et al. 2018). Alternatively, Nenning and colleagues proposed joint gradients between 

a group template and individuals to enable flexible alignment of all individuals in a 

population, allowing for improved pointwise comparisons of gradients in single subjects 

(Nenning et al. 2020). As such, future investigations could be directed towards evaluation 

of the efficacy of these different approaches to understand the impacts of PD on S1 

connectivity by means of gradient representations. 

5.3.2 Gradient-based investigations of marmosets 

The common marmoset has recently become a popular animal model for neuroscientific 

research. In this regard, much progress is needed to further elucidate the structural and 

functional organization of the marmoset brain. Towards this open-ended goal, gradient 

representations offer many avenues for exploration, but so far have been largely under-

investigated. 

Firstly, gradient representations have recently been proposed as a unifying framework 

allowing for holistic cross-species comparisons of brain organization with resting-state 

fMRI, while offering many advantages over other comparative approaches. This 

framework has been adapted in this thesis (Chapter 3) to unveil unifying gradients of 

marmosets and humans and was used to investigate similarities and differences of the 

default-mode network. In principle, gradient representations can be modified to include 

other longstanding preclinical animal model species, such as mice and Old-World 

Primates, to test novel hypotheses regarding functional organization. Furthermore, 

unifying gradients across multiple species provides a quantitative way for estimating brain 

deformation fields to investigate brain evolution across species (Xu et al. 2020). Although 

the work in this thesis primarily focuses on resting-state fMRI, diffusion MRI can also 

capitalize off such methodological advances. To this end, several open access diffusion 
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MRI datasets of marmosets and many non-human primates have been made available and 

can readily leverage such advances (Liu et al. 2020; Bryant et al. 2021). 

A second research avenue could aim to extend the utilization of the abovementioned 

gradient-derived cross-species framework to consider individual homologous cortical 

areas, rather than the whole cortex as was demonstrated in Chapter 3 of this thesis. 

Consideration of comparisons of finer grained organization within specific homologous 

brain areas may provide much needed insight towards elucidating the evolution of a brain 

area, and in turn these differences may account for behavioural variations that are observed 

between species (Krubitzer 1995). Recently, many cross-species investigations have been 

undertaken to achieve exactly this, by comparing connectivity fingerprints of a set of coarse 

brain areas across species using the brain parcellation paradigm. Gradient-based 

investigations could overcome blurring issues that arise with the use of parcellation, 

ultimately achieving voxel-resolved gradients of homologous brain areas that can be used 

to fully appreciate more subtle evolution of a homologous brain area between species. 

A third line of research focuses on individual marmoset brain mapping, rather than cross-

species comparison. Recent efforts in brain mapping have made significant progress in 

unveiling spatial gradients in humans, and this can be readily extended to provide insights 

in marmoset brain organisation as well. In addition to performing gradient mapping on all 

cortical and subcortical areas of the marmoset (which to date, has not yet been conducted), 

another exciting area of research would be to use gradient techniques to derive rsfMRI-

derived marmoset brain atlases. Thus far, histologically defined marmoset brain atlases 

have predominantly been used across studies (Paxinos et al. 2012), and as discussed 

throughout this thesis, may be not suitable for use in resting-state connectivity analyses of 

this animal model. Therefore, novel marmoset brain atlases derived using resting-state 

fMRI may be preferred for investigations related to connectivity. Recent mapping of the 

human subcortex demonstrates many advantages of using gradient techniques to guide 

brain parcellation (Tian et al. 2020). I propose that this approach could be successfully 

extended to develop new atlases for the marmoset cortex and subcortex as well. 
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5.3.3 Interpreting connectivity gradients with simulations 

In Chapter 4, I investigated the impact of thalamic lesions on RSFC gradients, with the 

hypothesis that focal thalamic lesions would directly alter thalamocortical connectivity 

patterns, and in turn lead to observable changes in ensuing thalamic gradients. However, 

no qualitative changes were observed, which would appear to suggest that thalamic lesions 

do not modulate thalamocortical RSFC, and furthermore that RSFC, and related-gradient 

representations have minimal clinical utility in neurological disorders, at least in the case 

of Multiple Sclerosis.  

If lesion pathology does in fact disrupt observed resting-state connectivity, then it leads us 

to wonder why the employed gradient estimation techniques did not detect changes in the 

associated RSFC patterns. To explore this question further, simulation experiments using 

rsfMRI data could be conducted to understand how a hypothetical lesion should impact 

derived gradients. For example, this could involve adding perturbations to time series 

and/or connectivity fingerprints of specific voxels (simulating a lesion that is disrupting 

local connectivity) in rsfMRI data of an otherwise healthy individual, and subsequently 

generating gradient representations. These simulated gradients would theoretically provide 

a framework for interpreting gradient representations in the presence of pathophysiology 

within neurological disorders, which may provide clinical utility. Given the complexities 

of the neural connections that gradient estimation techniques aim to approximate and the 

growing interest of using gradients to study cortical evolution, development, and plasticity, 

simulation experiments would provide an interpretational understanding of how spatial 

variations in ensuing gradients arise. 

5.4 Conclusion 

A gradient-centric view of brain organization has become an increasingly prominent 

perspective in neuroscience. Many research works have capitalized on various 

methodological advances in this domain, demonstrating its widespread applications to 

broadly build upon current understandings of all research areas of neuroimaging. This 

thesis uses resting-state fMRI to demonstrate through various examples where gradient 

representations of brain connectivity may be beneficial for elucidating underpinnings of 
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neural organization. By further extending upon this work, we hope to further enable 

advancements in gradient estimation of brain organization across the fields of basic, 

comparative, and clinical neuroscience. 
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