
Citation: Tama, B.A.; Comuzzi, M.

Leveraging a Heterogeneous

Ensemble Learning for

Outcome-Based Predictive

Monitoring Using Business Process

Event Logs. Electronics 2022, 11, 2548.

https://doi.org/10.3390/

electronics11162548

Academic Editor: David Defour

Received: 7 July 2022

Accepted: 12 August 2022

Published: 15 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Leveraging a Heterogeneous Ensemble Learning for
Outcome-Based Predictive Monitoring Using Business Process
Event Logs
Bayu Adhi Tama 1 and Marco Comuzzi 2,*

1 Department of Information Systems, University of Maryland, Baltimore County (UMBC), MD 21250, USA
2 Department of Industrial Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
* Correspondence: mcomuzzi@unist.ac.kr

Abstract: Outcome-based predictive process monitoring concerns predicting the outcome of a running
process case using historical events stored as so-called process event logs. This prediction problem
has been approached using different learning models in the literature. Ensemble learners have been
shown to be particularly effective in outcome-based business process predictive monitoring, even
when compared with learners exploiting complex deep learning architectures. However, the ensemble
learners that have been used in the literature rely on weak base learners, such as decision trees. In
this article, an advanced stacking ensemble technique for outcome-based predictive monitoring is
introduced. The proposed stacking ensemble employs strong learners as base classifiers, i.e., other
ensembles. More specifically, we consider stacking of random forests, extreme gradient boosting
machines, and gradient boosting machines to train a process outcome prediction model. We evaluate
the proposed approach using publicly available event logs. The results show that the proposed
model is a promising approach for the outcome-based prediction task. We extensively compare
the performance differences among the proposed methods and the base strong learners, using also
statistical tests to prove the generalizability of the results obtained.

Keywords: ensemble learning; event logs; stacking; process monitoring

1. Introduction

Business process monitoring is concerned with extracting previously unknown and
valuable insights about business processes from historical data, usually available as so-
called event logs [1]. Event logs contain events. Each event is characterized by information
regarding the process execution to which it belongs, a.k.a. process case, the activity that
was executed, a timestamp capturing the time instant at which an activity was executed,
and other domain-specific attributes, such as the human resource that executed the activity.
We refer to the sequence of events belonging to the process case as a trace. For instance, in
a process about granting building permits by a public administration, a trace collects the
events regarding the processing of one specific building permit application.

Predictive process monitoring of business processes has emerged in the last ten years
and aims at extracting insights about business processes by building predictive models
using event log data [2]. There are several aspects of a process that can be predicted,
such as the timestamp of next events [3], the future activities that will be executed in a
process case [4–6], or the outcome of a process case [7]. Predictive monitoring enables
proactive decision making, such as informing customers that their request may be processed
later than expected or addressing the possible occurrence of an unfavorable exception by
implementing protective measures.

Predictive process monitoring models are developed using classification and regres-
sion techniques. Predicting future activities in a case or the outcome of process cases entail

Electronics 2022, 11, 2548. https://doi.org/10.3390/electronics11162548 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11162548
https://doi.org/10.3390/electronics11162548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1821-6438
https://orcid.org/0000-0002-6944-4705
https://doi.org/10.3390/electronics11162548
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162548?type=check_update&version=2

Electronics 2022, 11, 2548 2 of 17

the use of classification techniques, whereas predicting timestamps requires regression tech-
niques. In this paper, we focus on outcome-based predictive monitoring, where normally
the aim is to predict a binary label capturing the outcome of process cases, e.g., positive vs.
negative or regular vs. deviant.

The research on process-outcome-based predictive monitoring has evolved along two
main lines. On the one hand, recently, one objective has been to devise more advanced features
that can improve the predictive power of the models. Examples are features capturing the
load level of the system in which business processes are executed [8] or features capturing
the experience of the human resources involved in a process [9]. On the other hand, the
objective of researchers historically has been to develop more accurate predictive models.
Classifier ensembles have demonstrated some advantages over individual classifiers when
they are used in outcome-based predictive monitoring. Teinemaa et al. [7] have reported
that XGB emerged as the best overall performer in over 50% of datasets considered in
their extensive benchmark. However, its success is assessed in the benchmark against a
restricted alternative ensemble architecture.

In this paper, we leverage an advanced heterogeneous ensemble learning method for
outcome-based predictive process monitoring. Specifically, we propose to adopt a stacking
ensemble technique involving strong learners [10]. In many classification problems, in fact,
only weak classifiers such as decision trees or feed-forward neural networks are chosen
as base classifiers. Rather than utilizing a weak classifier, we consider in this paper the
potential of constructing a classifier ensemble using strong learners. We build an ensemble
scheme based on the stacking algorithm, where the base learners are other ensemble
learners, i.e., extreme gradient boosting machine (XGB), random forest (RF), and gradient
boosting machine (GBM). While XGB and RF have been considered already in previous
benchmarks on outcome-based predictive monitoring, GBM has not been considered by
previous research in this particular classification problem.

We carried out an extensive experiment considering 25 event log datasets publicly
available. Moreover, to provide a fair assessment, we consider an extensive set of per-
formance measures—i.e., F1, F2, MCC, accuracy, area under ROC curve (AUC), and area
under precision recall (AUCPR) indices—and use statistical tests to assess the significance
of the performance levels and rankings obtained in the experiment. The results show that
the proposed model generally outperforms the baselines, i.e., the strong learners used as
base models for the ensemble. The performance difference is significant, particularly when
considering measures that are more appropriate for imbalanced datasets, such as MCC and
AUCPR. Note, in fact, that most outcome labels in most publicly available real-world event
logs are strongly imbalanced.

The paper is organized as follows. Section 2 discusses the related work. Section 3
formally defines the problem of outcome-based predictive process monitoring and intro-
duces the stacked ensemble learning method to address it. The evaluation of the proposed
method is presented in Section 4 and conclusions are drawn in Section 5.

2. Related Work

Di Francescomarino et al. [11] provided a qualitative value-driven analysis of various
predictive process monitoring techniques to assist decision-makers in selecting the best
predictive technique for a given task. The review presented by Marquez-Chamorro et al. [2]
considers standard criteria for classifying predictive monitoring approaches in the literature,
such as the prediction task or technique used. Furthermore, it categorizes approaches in
the literature based on their process-awareness, i.e., whether or not an approach employs
an explicit representation of process models. Santoso [12] specified a language for properly
defining the prediction task, enabling researchers to express various types of predictive
monitoring problems while not relying on any particular machine learning techniques.

As far as outcome-oriented predictive monitoring is concerned, Teinemaa et al. [7]
developed a comprehensive analysis and quantitative benchmark of different encoding
techniques and models using real-world event logs. In this benchmark, RF and XGB are

Electronics 2022, 11, 2548 3 of 17

the only ensemble models considered. XGB emerges as the top-performing classifier in the
majority of the prediction tasks.

Verenich et al. [13] proposed a transparent approach for predicting quantitative
performance indicators of business process performance. The predicted indicators could
be more explainable since they were decomposed into elementary components. The
explainability of process outcome predictions was addressed recently by Galanti et al. [14]
using the SHAP method.

Recently, researchers have increasingly focused on applying deep learning techniques
to solve the problem of process outcome prediction. Rama-Maneiro et al. [15] provided a
systematic literature review of deep learning techniques for predictive monitoring of busi-
ness process, discussing an in-depth analysis and experimental evaluation of 10 approaches
involving 12 event log datasets. Similarly, in Neu et al. [16], a systematic literature review
was carried out to capture the state-of-the-art deep learning methods for process prediction.
The literature is classified along the dimensions of neural network type, prediction type,
input features, and encoding methods.

Kratsch et al. [17] compared the performance of deep learning, e.g., feed forward
neural networks and LSTM networks, and machine learning algorithms, i.e., random forests
and support vector machines using five publicly available event logs. Metzger et al. [18]
proposed an ensemble of deep learning models that can produce outcome predictions at
arbitrary points during process executions. Wang et al. [19] proposed a real-time, outcome-
oriented predictive process monitoring method based on bidirectional LSTM networks
and attention mechanisms. Better performance could be achieved as the features having a
decisive effect on the outcome were identified and optimized.

To address the issue of inaccurate or overfitting prediction models, a fine-tuned
deep neural network that learns general-enough trace representations from unlabeled log
traces was proposed in [20]. Pasquadibisceglie et al. [21] leveraged a convolutional neural
network (CNN) architecture to classify the outcome of an ongoing trace, showing that the
proposed technique could be integrated as an intelligent assistant to support sales agents
in their negotiations.

Generally, the deep learning approaches in the literature do not always necessarily
outscore other more traditional techniques, such as ensembles (e.g., XGB and RF). Therefore,
devising novel architectures based on such traditional techniques is still relevant in this
prediction context, in particular, to avoid the high training costs (time and computational
resources) of deep-learning-based architectures.

3. Problem Definition and Method

In this section, we first formalize the problem of outcome-based process predictive
monitoring. Then, we present in detail the proposed stacking ensemble method using
strong learners.

3.1. Problem Definition

In an event log, a trace represents the sequence of events recorded during the execution
of a business process instance (i.e., a case). Each event in a trace records the information
about a specific activity that occurs during the execution of a process case.

We denote the collection of all event identifiers (event universe) by E and the universe
of attribute names by A. An event e is a tuple e = 〈(c, a, t(d1, v1), . . . , (dm, vm)〉), where c is
the case id; a is the activity recorded by this event; t is the timestamp at which the event has
been recorded; and (d1, v1), . . . , (dm, vm), with m ≥ 0, are other domain-specific attributes
and their values. For instance, the event e = (5, check, 2022.1.2, resource = Alice, amount
= 1000, type = eligibility) captures the fact that, in a process case associated with loan
request number 5, the human resource Alice has executed an eligibility check of a loan
request of 1000 USD on 2 January 2022. The value of attribute dm of an event e is denoted
by the symbol #m(e). The timestamp of the event e, for example, can be represented as #t(e).
Whenever an event e does not have a value for an attribute di, we write vi = ⊥ (where ⊥ is

Electronics 2022, 11, 2548 4 of 17

the undefined value). For instance, the human resource associated with an event may have
not been recorded.

We denote a finite series over E of length m by the mapping ω : {1, ..., m} → E , and we
denote this sequence by the tuple of elements of E denoted by the symbols ω = 〈e1, e2,..., em〉,
where ej = ω(j) for each of the integers j ∈ {1, ..., m}. E∗ is used to represent the set of all
finite sequences over E , whereas |ω| is used to express the length of a sequence ω.

An event trace τ is a finite sequence over E such that each event e ∈ E occurs only
once in τ, i.e., τ ∈ E∗, and for 1 ≤ j < k ≤ |τ|, we have τ(j) 6= τ(k), where τ(j) refers to
the event of the trace τ at the index j. We assume τ = 〈e1, e2, ..., em〉 to be a trace, and let
τl = 〈e1, e2, ..., el〉 be the l-length trace prefix of τ (for 1 ≤ l < m). Lastly, an event log L
is a set of traces such that each event occurs at most once in the entire log—i.e., for each
τ1, τ2 ∈ L such that τ1 6= τ2, we have that τ1 ∩ τ2 = ∅, where τ1 6= τ2 = {e ∈ E}∃j, k ∈
Z+. τ1(j) = τ2(k) = e.

Outcome-oriented predictive process monitoring seeks to make predictions concerning
the outcome of a trace given a series of completed traces (i.e., event log) with their known
outcomes. Let S be the universe of all possible traces. A labeling function y : S → Y maps
the trace τ to its class label (outcome), y(τ) ∈ Y . For making predictions about what might
happen, Y is a finite collection of distinct categorical outcomes. In this work, and normally
in the outcome-based predictive monitoring literature, we consider a binary outcome label,
i.e., Y = {−1,+1}. The classification model uses independent variables (referred to as
features) and learns a formula to estimate the dependent variable (i.e., the class label).
Hence, it is necessary to encode every event log trace as a feature vector in order to train a
classification model to learn the class label.

We formally specify a trace encoder and a classification model as follows. A trace
encoder f : S → X1 × . . .Xq is a function that transforms a trace τ and coverts it into a
feature vector in the q-dimensional vector space X1 × . . .Xq, where Xr ⊆ R, 1 ≤ r ≤ q
denotes the domain of the r-th feature. A classification model is a function that classifies
a feature vector based on class labels. A classification model cls : X1 × . . .Xq → Y is a
function that converts an encoded q-dimensional trace and estimates its class label.

3.2. Proposed Prediction Model

We propose a stacking model for combining strong learners in an ensemble for
outcome-based predictive monitoring of business process. In this work, we consider the fol-
lowing strong learners: XGB, RF, and GBM. XGB and RF have been successfully employed
in outcome-based predictive monitoring in the past (Teinemaa et al. [7]), whereas GBM is
acknowledged to be a high-performing learner in many different classification scenarios.

The stacking is based on the super learner technique [10], in which each base classifier
is trained using an internal k-fold cross validation. Stacking ensemble, or stacked general-
ization [10,22], entails training a second-level metalearner to determine the best mixture of
constituent learners. The aim of our stacking ensemble model is to blend together strong
and varied groups of learners.

Algorithm 1 outlines the procedures required to build a stacked generalization en-
semble in the case of outcome-based predictive process monitoring. Let D be an event
log training subset with i instances and j features. Each constituent learning algorithm
C undergoes a 10-fold cross-validation (10cv) on the training set. The same type of 10cv
(e.g., stratified in our case) must be specified. The cross-validated prediction outcomes
R1,R2, ...,RC are aggregated to form a new matrix T . Together with the initial response
vector Y , they train and cross-validate the metalearner, which in our case is a generalized
linear model. Once the metalearning model is constructed, the proposed ensemble model
that is composed of constituent learning models and the metalearning model are employed
to generate predictions on the event log testing subset.

Electronics 2022, 11, 2548 5 of 17

Algorithm 1 Procedure to construct a stacked generalization ensemble with an
internal 10cv for outcome-based predictive monitoring of business process

Preparation:
Event log training dataset, D with i rows and j columns, depicted as input matrix
X and response matrix Y .

i
{ j︷ ︸︸ ︷[

X
] [
Y
]

Set tuned C constituent learning algorithms, i.e., RF, GBM, and XGB.
Set the metalearner, e.g., generalized linear model.
Training phase:
Train each C on the training set using stratified 10cv.
Gather the prediction results,R1,R2, ...,RC
Gather P prediction values from C models and construct a new matrix T = P × C
Along with original response vector Y , train and cross-validate metalearner:
Y = f (T).

i
{[
R1

]
. . .
[
RC
][
Y
]
→ P

{ C︷ ︸︸ ︷[
T

] [
Y
]

Prediction phase:
Collect the prediction results from C models and feed into metalearner.
Collect the final stacked generalization ensemble prediction.

The hyperparameters of each constituent learner are tuned using random search [23].
The details of hyperparameters’ search space as well as the best values obtained to train each
constituent learner on each dataset are reported in Appendix A. For the implementation,
we utilize the H2O machine learning framework, which provides an interface in R to run
the experiment.

More details about the base learners utilized in this study along with details regarding
the hyperparameter settings to tune are presented next.

(a) Random forest (RF) [24]
A variant of bagging ensemble, in which a decision tree is employed as the base
classifier. It is composed of a set of tree-structured weak classifiers, each of which is
formed in response to a random vector Θk, where Θk, k = 1, ..., L are all mutually
independent and distributed. Each single tree votes a single unit, voting for the
most popular class represented by the input x. The hyperparameters to specify to
build a random forest model are the number of trees (ntrees), minimum number of
samples for a leaf (min_rows), maximum tree depth (max_depth), number of bins
for the histogram to build (nbins and nbins_cats), row sampling rate (sample_rate),
column sampling rate as a function of the depth in the tree (col_sample_rate_level),
column sample rate per tree (col_sample_rate_tree), minimum relative improvement
in squared error reduction in order for a split to occur (min_split_imprv), and type
of histogram to use for finding optimal split (histogram_type).

(b) Gradient boosting machine (GBM) [25]
A forward learning ensemble, where a classification and regression tree (CART)
is used as the base classifier. It develops trees in a sequential fashion, with sub-
sequent trees relying on the outcomes of the preceding trees. For a particular
sample S, the final estimate h(x) is the total of the estimates from each tree. The
hyperparameters to specify to build a gradient boosting machine model are the
number of trees (ntrees), minimum number of samples for a leaf (min_rows), maxi-
mum tree depth (max_depth), number of bins for the histogram to build (nbins and
nbins_cats), learning rate (learn_rate), column sampling rate (col_sample_rate), row
sampling rate (sample_rate), column sampling rate as a function of the depth in
the tree (col_sample_rate_level), column sample rate per tree (col_sample_rate_tree),

Electronics 2022, 11, 2548 6 of 17

minimum relative improvement in squared error reduction in order for a split to
occur (min_split_imprv), and type of histogram to use for finding the optimal split
(histogram_type).

(c) Extreme gradient boosting machine (XGB) [26]
One of the most popular gradient boosting machine frameworks that implements
a process called boosting to produce accurate models. Both gradient boosting ma-
chine and extreme gradient boosting machine operate on the same gradient boosting
concept. XGB, specifically, employs a more regularized model to prevent overfitting,
which is intended to improve the performance. In addition, XGB utilizes sparse
matrices with a sparsity-aware algorithm that allows more efficient use of the pro-
cessor’s cache. Similar to previous classifiers, there are hyperparameters that must
be specified when creating an XGB model such as number of trees (ntrees), mini-
mum number of samples for a leaf (min_rows), maximum tree depth (max_depth),
learning rate (learn_rate), column sampling rate (col_sample_rate), row sampling
rate (sample_rate), column sample rate per tree (col_sample_rate_tree), and mini-
mum relative improvement in squared error reduction in order for a split to happen
(min_split_imprv).

4. Evaluation

This section presents the evaluation of the proposed predictive model. We first intro-
duce the datasets considered in the evaluation. Then, we discuss in detail the settings of
the experiments and the performance metrics considered in the experimental evaluation.

4.1. Datasets

To compare how the proposed classification model performs in different situations,
we considered 7 real-world event logs. The event logs are publicly available: four of them
are available at the 4TU Centre for Research Data https://data.4tu.nl/info/en/, accessed
on 6 July 2022, whereas the other three have been made available by the ISA Group at the
University of Seville (https://www.isa.us.es/predictivemonitoring/ea/#datasets, accessed
on 6 July 2022).

For each event log, one or more labeling functions y can be defined. Each labeling
function, depending on the process owner’s objectives and requirements, defines a dif-
ferent outcome for the cases recorded in an event log. From the experimental evaluation
standpoint, each outcome corresponds to a separate predictive process monitoring task.
A total of 25 separate outcome prediction tasks were defined based on the 7 original
event logs.

Table 1 shows the characteristics of each dataset used in this work, such as the total
number of samples (ςT); the number of samples labeled positive (ς+); the number of
samples labeled negative (ς−); the number of attributes; and the imbalance ratio (IR), which
is calculated as the ratio between the number of samples of the minority class (i.e., the least
frequent class) and the number of samples of the majority class (i.e., the most frequent
class). Significantly imbalanced datasets have a low IR value and vice versa. Normally,
datasets with an IR lower than 0.5 are considered strongly imbalanced. Note that only
6 of the datasets considered in this evaluation have IR greater than 0.5. Therefore, this
evaluation considers mostly data that are strongly imbalanced. This can be expected since
companies normally strive to achieve a positive process outcome. Hence, in a normal
situation, negative outcomes should be a small fraction of the total number of outcomes—
i.e., cases—recorded in an event log.

https://data.4tu.nl/info/en/
https://www.isa.us.es/predictivemonitoring/ea/#datasets

Electronics 2022, 11, 2548 7 of 17

Table 1. The characteristics of event log datasets employed in this study. A severely imbalanced
dataset occurs when IR < 0.5.

Dataset Event Log ςT ς+ ς− #Input Features IR

BPIC 2011

bpi11. f 1 67,480 53,841 13,639 22 0.253
bpi11. f 2 149,730 50,051 99,679 22 0.502
bpi11. f 3 70,546 62,981 7565 22 0.120
bpi11. f 4 93,065 71,301 21,764 22 0.305

BPIC 2012
bpi12.ac 186,693 86,948 99,745 14 0.872
bpi12.cc 186,693 129,890 56,803 14 0.437
bpi12.cd 186,693 156,548 30,145 14 0.193

BPIC 2013

bpi13.2 33,861 30,452 3409 23 0.112
bpi13.3 35,548 32,140 3408 34 0.106
bpi13.4 7,301 3893 3,408 45 0.875
bpi13.5 30,916 27,508 3408 56 0.124
bpi13wup.2 65,530 61,659 3871 23 0.063
bpi13wup.3 65,530 61,659 3871 34 0.063
bpi13wup.4 65,529 61,659 3871 45 0.063
bpi13wup.5 65,528 61,659 3871 56 0.063
bpi13pp.2 61,135 59,619 1516 45 0.025
bpi13pp.3 61,135 59,619 1516 67 0.025

BPIC 2015

bpi15.1 28,775 20,635 8140 31 0.394
bpi15.2 41,202 31,653 9549 31 0.302
bpi15.3 57,488 43,667 13,821 32 0.317
bpi15.4 24,234 19,878 4356 29 0.219
bpi15.5 54,562 34,948 19,614 33 0.561

BPIC 2017
bpi17.a 1,198,366 665,182 533,184 25 0.802
bpi17.c 1,198,366 677,682 520,684 25 0.768
bpi17.r 1,198,366 1,053,868 144,498 25 0.137

The event logs and the labeling functions to create the datasets are discussed in
detail next.

1. BPIC 2011
This log records the events of a process in a Dutch academic hospital over a three-year
period. Each process case compiles a patient’s medical history, where operations and
therapies are recorded as activities. There are four labeling functions defined for this
event log. Each label records whether a trace τ violates or fulfills linear temporal
logic constraints defined over the order and occurrence of specific activities in a trace
ϕ [27]:

• bpi11. f 1 : ϕ = F(“tumor marker CA-19.9”)∨ F(“ca-125 using meia”)
• bpi11. f 2 : ϕ = G(“CEA- tumor marker using meia”→

F(“squamous cell carcinoma using eia”))
• bpi11. f 3 : ϕ = ¬(“histological examination-biopsies nno”)∪(“ca-125 using meia”)
• bpi11. f 4 : ϕ = F(“histological examination-bug resectiep”)

2. BPIC 2012
Each case in this event log records the events that occurred in connection with a loan
application at a financial institution. Three different labeling functions are defined
for this event log, depending on the final result of a case, i.e., whether an application
is accepted, rejected, or canceled. In this work, we treat each labeling function as
a separate one, which leads us to consider three datasets (bpi12.ac, bpi12.cc, and
bpi12.dc) with a binary label.

3. BPIC 2013
This event log records events of an incident management process at a large European
manufacturer in the automotive industry. For each IT incident, a solution should be

Electronics 2022, 11, 2548 8 of 17

created in order to restore the IT services with minimal business disruption. An inci-
dent is closed after a solution to the problem has been found and the service restored.
In this work, we use the same datasets already considered by Marquez et al. [2]. In
their work, the authors consider three distinct prediction tasks, depending on the
risk circumstances to be predicted. In the first one, a push-to-front scenario considers
the situation in which first-line support personnel are responsible for handling the
majority of occurrences. A binary label is assigned to each incident depending on
whether it was resolved using only the 1st line support team or if it required the
intervention of the 2nd or 3rd line support team. As in the original publication [2], for
this binary label, a sliding window encoding is considered, leading to five datasets
(bpi13.i, with i = 2, ..., 5), where i specifies the number of events. Another situation
in this event log concerns the abuse of the wait-user substatus, which should not be
utilized by action owners unless they are truly waiting for an end-user, according to
company policy. Further in this case, five datasets bpi13wup.i are available, where i
is the size—i.e., number of events—of the window chosen for the encoding. A third
situation concerns anticipating the ping-pong behavior, in which support teams repeat-
edly transfer incidents to one another, increasing the overall lifetime of the incident.
Two datasets are defined (bpi13pp.2 and bpi13pp.3) for the window size i = 2, 3.

4. BPIC 2015
This dataset contains event logs from five Dutch municipalities regarding the process
of obtaining a building permit. We consider each municipality’s dataset as a distinct
event log and use the same labeling function for each dataset. As with BPIC 2011, the
labeling function is determined by the fulfillment/violation of an LTL constraint. The
prediction tasks for each of the five municipalities are designated by the abbreviation
bpi15.k, where k = 1, ..., 5 denotes the municipality’s number. The LTL constraint that
is utilized in the labeling functions is
bpi15.k : ϕ = G(“send confirmation receipt”→ F(“retrieve missing data”))

5. BPIC 2017
This dataset is an updated version of the BPIC 2012 event log containing events cap-
tured after the deployment of a new information system in the same loan application
request management process at a financial institution. Even for this event log, three
labeling functions are defined based on the outcome of a loan application (accepted,
canceled, rejected), which leads to the three datasets bpi12.a, bpi12.c, and bpi12.r.

4.2. Experimental Settings and Performance Metrics

The data preparation phase in outcome-based process predictive monitoring entails
extracting the prefixes of the traces in an event log, defining the features, and encoding
the prefixes [7]. For the BPIC 2013 datasets, we use the same encoding used in [2] and
discussed in Section 4.1; the encoding used for the other datasets is presented next. For
each trace in a dataset, we extracted prefixes until the second-last event. As far as the
event log encoding is concerned, we used last-state encoding [7]—that is, for each prefix
extracted, we encode the attributes of its last event and the case-level attributes, i.e., the
attributes that are constant for all prefixes. We then use the index-based strategy to generate
features, which creates a separate feature for every attribute in the encoded prefixes, with
the only exception of the timestamp, for which we generate separate features for the time
of day, day, and month. Categorical attributes are one-hot encoded, whereas numerical
attributes are encoded as-is. Note that the aim of this experiment is not to compare different
encoding and/or feature engineering techniques, but to establish the level of performance
of the proposed stacking ensemble scheme in outcome-based process predictive monitoring.
With this aim in mind, we argue that, on the one hand, the design choices that we made
in this experimental evaluation are fairly standard in the literature while, on the other
hand, they have allowed us to keep the number of experiments manageable within a
reasonable timeframe.

Electronics 2022, 11, 2548 9 of 17

In the experiments, we adopted a subsampling validation technique (five runs of
80/20 hold-out), where the final result for each model and dataset is the average of 5 runs.
As previously stated, a total of 25 event log datasets (see Table 1) were considered, along
with 4 classification algorithms (the proposed one and its three base models), giving a total
of 100 classifier–dataset pairs. All experiments were conducted on a machine with an Intel
Xeon processor, 32 GB of memory, and running the Linux operating system. The code
to reproduce the experiment is publicly available at https://bit.ly/3tlZIIT (accessed on
7 July 2022).

The performance of a model on a dataset is evaluated based on six different metrics:
accuracy, the area under the receiver operating characteristic curve (AUC), the area un-
der the precision–recall curve (AUCPR), F1-score, F2-score, and Matthews Correlation
Coefficient (MCC). Next, we briefly outline the definition of these metrics.

A classification algorithm predicts the class for each data sample, providing a predicted
label (i.e., positive or negative) to each sample. As a result, each sample belongs to one of
these four categories at the end of the classification process:

• TP: positive samples that are (correctly) predicted as positive (True Positives).
• TN: negative samples that are (correctly) predicted as negative (True Negatives).
• FP: negative samples that are (wrongly) predicted as positive (False Positives).
• FN: positive samples that are (wrongly) predicted as negative (False Negatives).

This categorization is typically displayed in a confusion matrix T =

(
TP FN
FP TN

)
,

which summarizes the outcome of a binary classification. Let us denote FN + TP = ς+

and FP + TN = ς−; then, a classifier has perfect performance if T =

(
ς+ 0
0 ς−

)
. From the

confusion matrix T, several performance metrics can be derived as follows.
Accuracy is the ratio between the correctly predicted samples and the total samples

(i.e., ςT) in the dataset:

Accuracy =
TP + TN

ςT
(1)

The F− β score is defined as the harmonic mean of precision and recall. Precision is
the ratio of true positives (TP) on all the predicted positives (TP + FP), while recall is the
ratio of the true positives on the actual positives (ς+); β is a parameter of the harmonic
mean. The common formulation of the F− β score is the following:

Fβ = (1 + β2).
precision.recall

(β2.precision) + recall
, {β ∈ R | β > 0} (2)

AUC refers to the summarization of the area under the receiver operating characteristic
(ROC) curve. It measures the probability of recall in the vertical axis against fallout in the
horizontal axis at different thresholds. It is formally estimated as

AUC =
∫ 1

0
recall(fallout)dfallout =

∫ 1

0
recall(fallout−1(x))dx (3)

where recall and fallout can be obtained by TP
ς+

and FP
ς− , respectively.

AUCPR is a less common performance measure defined as the area under the precision–
recall curve. Even though AUCPR is less common in usage, it is deemed to be more infor-
mative than AUC, particularly on the imbalanced classification task [28]. For the calculation
of AUCPR, the interpolation between two points α and β in the AUCPR space is specified as
a function:

y =
TPα + x

TPα+x+FPα+((FPβ−FPα)·x)
TPβ−TPα

(4)

where x is any real value between TPα and TPβ.

https://bit.ly/3tlZIIT

Electronics 2022, 11, 2548 10 of 17

The MCC is a contingency matrix approach of determining the Pearson product
moment correlation coefficient between the actual and predicted samples:

MCC =
TP.TN − FP.FN√

(TP + FP).ς−.(TN + FN).ς+
(5)

These abovementioned metrics were adopted to provide more realistic estimates on
the behavior of the investigated classifiers. While accuracy and F− β are two widely used
measures in machine learning research, they may provide inaccurate findings when used
with imbalanced datasets because they do not account for the ratio of positive to negative
classes. Chicco and Jurman [29] have shown that the objective of MCC is obvious and
concise: to obtain a high-quality score, the classifier must correctly predict the majority
of negative examples and the majority of positive examples, regardless of their ratios
in the entire dataset. F1 and accuracy, however, produce trustworthy estimates when
applied to balanced datasets, but offer inaccurate results when applied to imbalanced data
problems. In addition, Chicco and Jurman [29] proved that MCC is more informative and
truthful than balanced accuracy, bookmaker informedness, and markedness metrics. We
consider AUCPR for evaluating the performance of classifier since it has been found to be
informative than AUC, particularly when dealing with imbalanced cases [28].

4.3. Results

The objectives of the experimental evaluation are to appraise whether the proposed
approach outperforms the base models (RF, XGB, and GBM) and whether the performance
difference, if any, is statistically significant. To address these objectives, we first analyze the
performance obtained by the proposed method and the base models using the six perfor-
mance metrics defined in the previous section. Note that, while presenting the results, to
facilitate the comparison between the proposed model and the baselines, we always con-
sider the performance aggregated across all the prefixes extracted from the datasets—that
is, we do not breakdown the performance of the models by prefix length.

Figure 1 shows the average performance of the proposed and base models over
different event logs. The proposed model (e.g., PROP) demonstrates its superiority over its
base models, irrespective of the performance metrics considered. The performance increase
obtained by the proposed model is more evident when the MCC metric is considered.
Note that the MCC metric is an appropriate performance metric when the classes to be
predicted are imbalanced, which is the case with most event logs considered in this paper
(see Section 4.2). The relative performance increase in PROP with respect to the base models
for each dataset and performance metric is reported numerically in Table 2.

Among the base models, GBM emerges as the best-performing one. Teinemaa et al. [7],
in their benchmark of outcome-based predictive model, reported XGB to be the superior
classifier in this type of predictive problem. However, in their study, they did not consider
GBM as a classifier, nor some of the performance metrics considered here, such as MCC
and AUCPR. Our results show that the base model GBM generally outperforms XGB.

To better understand the superior performance of the proposed method, Figure 2
shows boxplots of the performance results achieved on all event logs. We can see that
PROP is the best-performing model considering the median and the interquartile range on
all the datasets considered in the experimental evaluation. Figure 3 shows the correlation
plots for the F1-score and MCC performance metrics between the predictive models and all
the datasets considered in the evaluation clustered using the performance achieved as a
clustering measure. The performance achieved is indicated using a heatmap (the warmer
the heatmap, the higher the performance achieved). We can see that the warmer colors are
associated with the PROP model. More in detail, while all the classifiers achieve high perfor-
mance on the BPI11 and BPI15 datasets, PROP shows better performance also on the other
datasets, e.g., BPI17 and BPI12, where the performance achieved by the baseline models is
normally lower.

Electronics 2022, 11, 2548 11 of 17

Figure 1. (a–g) Performance comparison between the proposed ensemble (e.g., PROP) and its base
learners across different datasets in terms of mean accuracy, AUC, AUCPR, F1, F2, and MCC scores.

Figure 2. (a–f) Boxplots (center, median; box, interquartile range (IQR); whiskers, 1.5 × IQR) illustrat-
ing the average performance distribution of classification algorithms.

Electronics 2022, 11, 2548 12 of 17

Figure 3. (a,b) Correlation plot denoting clustered solution spaces. The color represents the perfor-
mance score (e.g., low, yellow; high, red) of classifier, ranging from 0.4 to 1. For each performance
metric, the datasets are roughly grouped based on the classification algorithms.

Table 2. Percentage improvement that the proposed model offers over base classifiers.

Dataset Event Logs ClassifierM ClassifierN F1 F2 MCC Accuracy AUCPR AUC

BPIC11 bpi11.f1 PROP RF 0.056 0.041 0.275 0.089 0.002 0.005
XGB 0.121 0.099 0.597 0.193 0.001 0.002
GBM −0.014 −0.007 −0.069 −0.022 −0.001 −0.005

bpi11.f2 PROP RF 0.105 0.094 0.158 0.070 0.001 0.000
XGB 0.035 0.020 0.053 0.023 0.000 0.000
GBM 0.000 0.000 0.000 0.000 0.000 0.000

bpi11.f3 PROP RF 0.036 0.014 0.335 0.064 −0.008 −0.030
XGB 0.036 0.027 0.335 0.064 −0.006 −0.019
GBM 0.000 0.000 0.000 0.000 −0.008 −0.032

bpi11.f4 PROP RF 0.025 0.014 0.105 0.038 0.000 0.000
XGB 0.007 0.008 0.030 0.011 0.000 0.000
GBM 0.000 0.000 0.000 0.000 0.000 0.000

BPIC12 bpi12.ac PROP RF 0.813 0.398 1.570 0.697 0.361 0.308
XGB 3.890 2.822 8.186 3.620 2.158 1.903
GBM 0.575 0.399 1.149 0.505 −0.180 0.511

bpi12.cc PROP RF 0.246 0.244 0.911 0.320 0.096 0.217
XGB 2.176 1.509 8.233 3.084 1.041 2.161
GBM 0.351 0.171 2.551 0.602 0.162 0.624

bpi12.dc PROP RF 0.196 0.133 1.431 0.337 0.065 0.270
XGB 0.861 0.478 6.651 1.499 0.192 0.947
GBM 0.351 0.171 2.551 0.602 0.162 0.624

Electronics 2022, 11, 2548 13 of 17

Table 2. Cont.

Dataset Event Logs ClassifierM ClassifierN F1 F2 MCC Accuracy AUCPR AUC

BPIC13 bpi13.2 PROP RF 4.077 2.726 3.315 0.209 2.341 0.922
XGB 3.465 3.379 0.722 0.177 3.804 0.752
GBM 3.915 2.227 2.525 0.274 1.330 1.144

bpi13.3 PROP RF 5.452 3.014 6.289 0.691 5.522 1.365
XGB 3.874 0.586 4.663 0.199 1.754 0.487
GBM 0.287 2.366 1.551 0.016 1.074 0.232

bpi13.4 PROP RF 6.653 4.868 7.473 0.040 5.144 0.968
XGB 6.157 4.549 7.712 0.024 6.809 0.746
GBM 0.475 −0.326 −0.885 0.008 3.454 0.221

bpi13.5 PROP RF 4.707 2.702 3.450 −0.105 1.555 0.679
XGB 3.168 3.513 4.121 −0.065 1.379 0.248
GBM −0.324 1.980 −1.052 0.016 2.424 0.226

bpi13wup.2 PROP RF −0.494 2.428 1.012 −0.185 −4.976 0.517
XGB 6.165 6.141 8.639 0.089 3.712 0.844
GBM −1.506 1.368 −0.431 −0.024 −2.088 0.094

bpi13wup.3 PROP RF 1.943 2.728 3.542 −0.201 −1.004 0.653
XGB 6.612 5.765 8.989 0.024 5.328 0.834
GBM 0.287 2.366 1.551 0.016 1.074 0.232

bpi13wup.4 PROP RF 6.653 4.868 7.473 0.040 5.144 0.968
XGB 6.157 4.549 7.712 0.024 6.809 0.746
GBM 0.475 −0.326 −0.885 0.008 3.454 0.221

bpi13wup.5 PROP RF 4.707 2.702 3.450 −0.105 1.555 0.679
XGB 3.168 3.513 4.121 −0.065 1.379 0.248
GBM −0.324 1.980 −1.052 0.016 2.424 0.226

bpi13pp.2 PROP RF 4.136 1.087 1.315 0.075 3.654 0.498
XGB 6.713 5.204 3.569 0.108 6.804 0.249
GBM 0.459 1.010 −2.629 −0.058 −1.459 0.043

bpi13pp.3 PROP RF 1.850 1.544 1.012 −0.033 1.740 0.469
XGB 4.380 2.657 3.299 0.025 2.689 0.128
GBM 1.447 0.650 0.067 −0.058 0.697 0.320

BPIC15 bpi15.1 PROP RF 0.073 −0.005 0.271 0.107 0.003 0.007
XGB 0.039 0.009 0.119 0.053 0.007 0.015
GBM 0.050 0.058 0.179 0.071 0.004 0.011

bpi15.2 PROP RF 0.080 0.061 0.351 0.123 −0.001 −0.003
XGB −0.024 −0.006 −0.102 −0.037 0.000 −0.001
GBM 0.064 0.010 0.280 0.099 0.001 0.002

bpi15.3 PROP RF 0.070 0.041 0.285 0.105 0.002 0.006
XGB −0.011 −0.039 −0.051 −0.017 −0.001 −0.002
GBM 0.069 0.071 0.286 0.105 0.001 0.004

bpi15.4 PROP RF −0.001 −0.031 0.009 0.000 −0.021 −0.026
XGB 0.052 0.083 0.281 0.085 −0.020 −0.024
GBM 0.025 0.041 0.152 0.042 −0.017 −0.014

bpi15.5 PROP RF 0.275 0.179 0.762 0.350 0.005 0.009
XGB 0.051 0.014 0.139 0.064 0.001 0.001
GBM 0.029 0.032 0.080 0.037 0.003 0.004

BPIC17 bpi17a PROP RF 2.808 1.631 6.608 3.097 0.540 0.679
XGB 0.967 0.989 2.244 1.069 0.206 0.262
GBM 0.923 0.481 2.176 1.034 0.159 0.192

bpi17c PROP RF 2.769 1.486 6.327 2.986 0.536 0.639
XGB 0.928 0.846 1.975 0.960 0.201 0.223
GBM 0.884 0.338 1.906 0.926 0.155 0.153

bpi17r PROP RF 0.288 0.205 2.561 0.510 0.016 0.117
XGB 0.227 0.143 2.011 0.403 0.015 0.112
GBM 0.158 0.081 1.404 0.281 0.015 0.106

Finally, to assess whether the performance differences among the models considered
in this evaluation are significant, Figure 4 shows the results of the Nemenyi test for different

Electronics 2022, 11, 2548 14 of 17

performance metrics. For each performance metric, the plot first ranks the models from
best (on the left-hand side) to worst (on the right-hand side). Then, the models are grouped
together if their average ranking falls below the critical distance CD—that is, the minimum
distance in the test results indicating that the ranking differences are significant at the
chosen level α of significance. While for the performance metrics F1-score, accuracy, and
AUC the proposed model PROP is grouped with at least GBM—i.e., the ranking difference
among the models, at least GBM, is not statistically significant—the model PROP remains
alone and top-ranked for the performance metrics MCC and AUCPR. This indicates that,
when considering MCC and AUCPR, not only is the performance achieved by PROP the
highest among competing models, but also the performance difference is significant across
the datasets considered.

(a) (b) (c)

(d) (e) (f)

Figure 4. Critical difference plot using Nemenyi Test (significant level, α = 0.05) across performance
metrics: F1 score (a), F2 score (b), Matthew correlation coefficient (MCC) score (c), accuracy score (d),
area under ROC curve (AUC) score (e), and area under precision–recall curve (AUCPR) score (f).

In summary, the proposed method generally outperforms its base models. The per-
formance increase of the proposed model appears to be higher for those datasets where
predictive models normally achieve on average a lower performance. The performance
increase achieved by the proposed model, particularly with respect to GBM, which emerges
as the best-performing base model, is statistically significant when considering perfor-
mance metrics more appropriate to evaluate the performance on imbalanced classification
problems, e.g., MCC and AUCPR.

5. Conclusions

We have presented a stacked ensemble model using strong learners for addressing
the problem of outcome-based predictive monitoring. The objective of the paper is to
demonstrate that the proposed model outperforms the strong learners XGB, RF, and GBM
that we have considered as base learners. The experimental evaluation, conducted on
several publicly available event logs, demonstrated that this is the case: the proposed
stacked ensemble generally outperforms the strong learners and this effect is more evident
when performance metrics more suitable for classification using imbalanced datasets, such
as AUCPR and MCC, are considered.

The research presented in this paper has several limitations. First, in the experimental
evaluation, we considered only one specific combination of prefix encoding and bucketing.
While this has been done to maintain the number of experiments manageable, we cannot
assume that the results obtained considering different settings would suggest different
conclusions. However, Teinemaa et al. [7] demonstrated in their extensive benchmark

Electronics 2022, 11, 2548 15 of 17

that the effect on the performance of different encoding and bucketing methods is lower
in magnitude when compared to the choice of classifier. Second, in this work, we did
not analyze the results obtained by prefix length. Our objective was to conduct a large
number of experiments and to aggregate the results obtained in order to establish, with the
support of statistical tests, whether the proposed stacking ensemble had a better overall
performance than the baselines. To do so, we had to rely on standard performance measures
on aggregated observations; so, we did not consider other measures of performance in
outcome-based predictive monitoring, such as earliness or stability of the predictions.

The work presented here can be extended in several ways. First, event log datasets
are typically imbalanced. Due to the fact that this might alter the effectiveness of the
classification algorithm, it would be interesting to employ undersampling or oversampling
approaches in order to better understand the pattern behavior of classification algorithms
in those two distinct circumstances. Second, there has been significant progress in applying
deep learning models for tabular data, with research often claiming that the models outper-
form the ensemble model—i.e., XGB—in some cases [30,31]. Additional research is very
certainly necessary in this regard, especially to determine if deep learning models perform
statistically better on tabular event log data.

Author Contributions: Conceptualization, B.A.T. and M.C.; methodology, B.A.T.; validation, M.C.;
investigation, B.A.T.; writing—original draft preparation, B.A.T. and M.C.; writing—review and
editing, B.A.T. and M.C.; visualization, B.A.T.; supervision, M.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the NRF Korea project n. 2022R1F1A072843 and the 0000 Project
Fund (Project Number 1.220047.01) of UNIST (Ulsan National Institute of Science & Technology).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

We specify the space of hyperparameter tuning of RF, GBM, and XGB as follows.
We kept the ntrees to 100 for all classifiers, while other hyperparameters were tuned
as follows. The max_depth was searched within the range of 1 to 29; the range for
sample_rate and col_sample_rate_tree are 0.2 to 1 with an interval of 0.01. The parame-
ter of col_sample_rate_level usually can be a value > 0.0 and ≤ 2.0; thus, we searched this
value from 0.9 to 1.1. We searched the value of min_rows as a function of 2[0,γ], where γ is
defined as log2(number of rows of the training set)-1. Next, the hyperparameter searches for
nbins and nbins_cats were specified as 2[4,10] and 2[4,12], respectively. It is required to tune
min_split_imprv as it can help reduce overfitting. In this study, we tuned this parameter
by four possible values, i.e., 0, 1 × 10−8, 1 × 10−6, and 1 × 10−4. Lastly, histogram_type
was searched by three possible types, i.e., uniform adaptive, quantiles global, and round
robin. On each dataset, the optimal settings for each classifier are shown below.

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 2 24 256 - 2048 na 0.59 - 0.31 1.00 × 10−6 Quantiles global
GBM 2 25 128 0.05 2048 0.54 0.72 1.07 0.58 1.00 × 10−4 Uniform adaptive
XGB 2 27 - 0.05 - 0.73 0.8 - 0.52 1.00 × 10−8 -

Electronics 2022, 11, 2548 16 of 17

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 2 26 256 - 16 - 0.85 1.06 0.34 1.00 × 10−8 Uniform adaptive
GBM 4 24 32 0.05 64 0.95 0.7 1.03 0.29 1.00 × 10−4 Uniform adaptive
XGB 2 27 - 0.05 - 0.58 0.78 - 0.52 1.00 × 10−4 -

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 4 26 1024 - 128 - 0.36 1.08 0.72 1.00 × 10−8 Quantiles global
GBM 1 21 512 0.05 512 0.5 0.64 1.02 0.65 1.00 × 10−8 Round robin
XGB 2 12 - 0.05 - 0.71 0.92 - 0.71 1.00 × 10−8 -

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 4 26 1024 - 64 - 0.7 1.04 0.62 1.00 × 10−4 Quantiles global
GBM 4 16 1024 0.05 512 0.75 0.5 0.99 0.8 1.00 × 10−6 Uniform adaptive
XGB 2 25 - 0.05 - 0.82 0.42 - 0.39 1.00 × 10−6 -

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 4 26 1024 - 64 - 0.7 1.04 0.62 1.00 × 10−4 Quantiles global
GBM 8 28 16 0.05 128 0.6 0.64 - 0.89 0 Uniform adaptive
XGB 8 12 - 0.05 - 0.83 0.87 - 0.75 1.00 × 10−6 -

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 2 26 256 - 16 - 0.85 1.06 0.34 1.00 × 10−8 Uniform adaptive
GBM 1 21 512 0.05 32 0.72 0.54 1.08 0.32 0 Uniform adaptive
XGB 1 17 - 0.05 - 0.7 0.92 - 0.55 1.00 × 10−4 -

BPIC 2011

Classifier min_rows max_depth nbins learn_rate nbins_cats col_sample_rate sample_rate col_sample_rate_level col_sample_rate_tree min_split_imprv histogram_type

RF 8 27 512 - 256 - 0.95 1.07 0.73 1.00 × 10−6 Quantiles global
GBM 2 24 32 0.05 64 0.95 0.7 1.03 0.29 1.00 × 10−4 Uniform adaptive
XGB 2 26 - 0.05 - 0.71 0.92 - 0.71 1.00 × 10−8 -

References
1. Van der Aalst, W.M. Process Mining: Data Science in Action; Springer: Berlin/Heidelberg, Germany, 2016.
2. Márquez-Chamorro, A.E.; Resinas, M.; Ruiz-Cortés, A. Predictive monitoring of business processes: A survey. IEEE Trans. Serv.

Comput. 2017, 11, 962–977. [CrossRef]
3. Verenich, I.; Dumas, M.; Rosa, M.L.; Maggi, F.M.; Teinemaa, I. Survey and cross-benchmark comparison of remaining time

prediction methods in business process monitoring. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–34. [CrossRef]
4. Evermann, J.; Rehse, J.R.; Fettke, P. Predicting process behaviour using deep learning. Decis. Support Syst. 2017, 100, 129–140.

[CrossRef]
5. Tama, B.A.; Comuzzi, M. An empirical comparison of classification techniques for next event prediction using business process

event logs. Exp. Syst. Appl. 2019, 129, 233–245. [CrossRef]
6. Tama, B.A.; Comuzzi, M.; Ko, J. An Empirical Investigation of Different Classifiers, Encoding, and Ensemble Schemes for Next

Event Prediction Using Business Process Event Logs. ACM Trans. Intell. Syst. Technol. 2020, 11, 1–34. [CrossRef]
7. Teinemaa, I.; Dumas, M.; Rosa, M.L.; Maggi, F.M. Outcome-oriented predictive process monitoring: Review and benchmark.

ACM Trans. Knowl. Discov. Data 2019, 13, 17. [CrossRef]
8. Senderovich, A.; Di Francescomarino, C.; Maggi, F.M. From knowledge-driven to data-driven inter-case feature encoding in

predictive process monitoring. Inf. Syst. 2019, 84, 255–264. [CrossRef]
9. Kim, J.; Comuzzi, M.; Dumas, M.; Maggi, F.M.; Teinemaa, I. Encoding resource experience for predictive process monitoring.

Decis. Support Syst. 2022, 153, 113669. [CrossRef]
10. Van der Laan, M.J.; Polley, E.C.; Hubbard, A.E. Super learner. Stat. Appl. Genet. Mol. Biol. 2007, 6. [CrossRef] [PubMed]
11. Di Francescomarino, C.; Ghidini, C.; Maggi, F.M.; Milani, F. Predictive Process Monitoring Methods: Which One Suits Me Best? In

Proceedings of the International Conference on Business Process Management, Sydney, Australia, 9–14 September 2018; Springer:
Cham, Switzerland, 2018; pp. 462–479.

12. Santoso, A. Specification-driven multi-perspective predictive business process monitoring. In Enterprise, Business-Process and
Information Systems Modeling; Springer: Cham, Switzerland, 2018; pp. 97–113.

13. Verenich, I.; Dumas, M.; La Rosa, M.; Nguyen, H. Predicting process performance: A white-box approach based on process
models. J. Softw. Evol. Process 2019, 31, e2170. [CrossRef]

http://doi.org/10.1109/TSC.2017.2772256
http://dx.doi.org/10.1145/3331449
http://dx.doi.org/10.1016/j.dss.2017.04.003
http://dx.doi.org/10.1016/j.eswa.2019.04.016
http://dx.doi.org/10.1145/3406541
http://dx.doi.org/10.1145/3301300
http://dx.doi.org/10.1016/j.is.2019.01.007
http://dx.doi.org/10.1016/j.dss.2021.113669
http://dx.doi.org/10.2202/1544-6115.1309
http://www.ncbi.nlm.nih.gov/pubmed/17910531
http://dx.doi.org/10.1002/smr.2170

Electronics 2022, 11, 2548 17 of 17

14. Galanti, R.; Coma-Puig, B.; de Leoni, M.; Carmona, J.; Navarin, N. Explainable predictive process monitoring. In Proceedings of
the 2020 2nd International Conference on Process Mining (ICPM), Padua, Italy, 5–8 October 2020, pp. 1–8.

15. Rama-Maneiro, E.; Vidal, J.C.; Lama, M. Deep learning for predictive business process monitoring: Review and benchmark. arXiv
2020, arXiv:2009.13251.

16. Neu, D.A.; Lahann, J.; Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction.
Artif. Intell. Rev. 2021, 55, 801–827. [CrossRef]

17. Kratsch, W.; Manderscheid, J.; Röglinger, M.; Seyfried, J. Machine learning in business process monitoring: A comparison of deep
learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 2020, 63 , 261–276. [CrossRef]

18. Metzger, A.; Neubauer, A.; Bohn, P.; Pohl, K. Proactive Process Adaptation Using Deep Learning Ensembles. In Proceedings of the
International Conference on Advanced Information Systems Engineering, Rome, Italy, 3–7 June 2019 ; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 547–562.

19. Wang, J.; Yu, D.; Liu, C.; Sun, X. Outcome-oriented predictive process monitoring with attention-based bidirectional LSTM
neural networks. In Proceedings of the 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy, 8–13 June 2019;
pp. 360–367.

20. Folino, F.; Folino, G.; Guarascio, M.; Pontieri, L. Learning effective neural nets for outcome prediction from partially labelled log
data. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR,
USA, 4–6 November 2019, pp. 1396–1400.

21. Pasquadibisceglie, V.; Appice, A.; Castellano, G.; Malerba, D.; Modugno, G. ORANGE: Outcome-oriented predictive process
monitoring based on image encoding and cnns. IEEE Access 2020, 8, 184073–184086. [CrossRef]

22. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
23. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
24. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
25. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
26. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.; pp. 785–794.
27. Di Francescomarino, C.; Dumas, M.; Maggi, F.M.; Teinemaa, I. Clustering-based predictive process monitoring. IEEE Trans. Serv.

Comput. 2016, 12, 896–909. [CrossRef]
28. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on

imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]
29. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
30. Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [CrossRef]
31. Borisov, V.; Leemann, T.; Seßler, K.; Haug, J.; Pawelczyk, M.; Kasneci, G. Deep neural networks and tabular data: A survey. arXiv

2021, arXiv:2110.01889.

http://dx.doi.org/10.1007/s10462-021-09960-8
http://dx.doi.org/10.1007/s12599-020-00645-0
http://dx.doi.org/10.1109/ACCESS.2020.3029323
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/pubmed/25738806
http://dx.doi.org/10.1186/s12864-019-6413-7
http://dx.doi.org/10.1016/j.inffus.2021.11.011

	Introduction
	Related Work
	Problem Definition and Method
	Problem Definition
	Proposed Prediction Model

	Evaluation
	Datasets
	Experimental Settings and Performance Metrics
	Results

	Conclusions
	Appendix A
	References

