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Hierarchical structures constitute a wide array of brain areas, including the visual
system. One of the important questions regarding visual hierarchical structures is to
identify computational principles for assigning functions that represent the external
world to hierarchical structures of the visual system. Given that visual hierarchical
structures contain both bottom-up and top-down pathways, the derived principles
should encompass these bidirectional pathways. However, existing principles such
as predictive coding do not provide an effective principle for bidirectional pathways.
Therefore, we propose a novel computational principle for visual hierarchical structures
as spatio-temporally efficient coding underscored by the efficient use of given resources
in both neural activity space and processing time. This coding principle optimises
bidirectional information transmissions over hierarchical structures by simultaneously
minimising temporal differences in neural responses and maximising entropy in neural
representations. Simulations demonstrated that the proposed spatio-temporally efficient
coding was able to assign the function of appropriate neural representations of natural
visual scenes to visual hierarchical structures. Furthermore, spatio-temporally efficient
coding was able to predict well-known phenomena, including deviations in neural
responses to unlearned inputs and bias in preferred orientations. Our proposed spatio-
temporally efficient coding may facilitate deeper mechanistic understanding of the
computational processes of hierarchical brain structures.

Keywords: efficient coding, hierarchical structure, neural response, neural representation, receptive field,
selectivity, visual system

INTRODUCTION

It is well-established that a wide array of brain areas has a hierarchical structure, including the visual
system (Felleman and Van Essen, 1991; Mesulam, 1998; Harris et al., 2019; Hilgetag and Goulas,
2020). Studies have identified a link between hierarchical structures and gene expression (Burt
et al., 2018; Hansen et al., 2021), suggesting that hierarchical structures are genetically determined
a priori. Given that one of the major functions of the brain is to represent the external world
(deCharms and Zador, 2000; Kriegeskorte and Diedrichsen, 2019), an ensuing question arises:
How do a priori hierarchical brain structures attain functions to represent the external world?
This question can be addressed by identifying a fundamental neural coding principle that assigns
representational functions to hierarchical structures.
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The traditional view of the neural coding of visual hierarchical
structures is bottom-up visual information processing, whereby
simple features are processed in a lower visual hierarchy and
more complex features created by integrating simple features
are processed in a higher visual hierarchy (Hubel and Wiesel,
1962, 1968; Riesenhuber and Poggio, 1999, 2000; Serre et al.,
2007; DiCarlo et al., 2012; Yamins et al., 2014). However, this
view does not consider the role of top-down pathways that are
abundant even in the early visual system, such as the lateral
geniculate nucleus (Murphy and Sillito, 1987; Wang et al., 2006)
and primary visual cortex (Zhang et al., 2014; Muckli et al., 2015;
Huh et al., 2018).

The role of top-down visual processing is especially prominent
in predictive coding (Rao and Ballard, 1999; Spratling, 2017).
According to predictive coding, a higher hierarchy performs top-
down predictions of neural responses in a lower hierarchy. Both
inference and learning of predictive coding are based on the
minimisation of bottom-up prediction errors. Predictive coding
has been used to explain the neural responses corresponding
to prediction errors (Friston, 2005) and extends from the
explanations of perception to action (Friston, 2010; Clark, 2013).
A recent study combined predictive coding with sparse coding
(i.e., sparse deep predictive coding) and demonstrate that it could
enhance perceptual explanatory power (Boutin et al., 2021).

Nevertheless, predictive coding has several theoretical
shortcomings. Since inference in predictive coding aims to
minimise prediction errors, the hierarchical structure would
require an additional information processing subsystem
to perform this inference. In addition, because bottom-up
transmitted information contains only prediction errors,
predictive coding requires the presence of error units (biological
neurons) in the hierarchical structure to represent this prediction
error, yet such error units remain as hypothetical entities and
evidence for prediction error responses is limited in some
conditions (Solomon et al., 2021).

In a hierarchical structure in which information is exchanged
in both directions, if the information represented by the upper
and lower hierarchies at the same time is different, it is difficult
to obtain a stable neural response on time domain for an external
input. The reason is that if the information represented by the
upper and lower hierarchy are different, different information
is exchanged, and thus the information represented next time
may be also different. These inter-connected structures could
also produce chaotic dynamics (Rubinov et al., 2009; Tomov
et al., 2014). Nevertheless, neural responses in the early visual
system can be decoded as external inputs. These decodable neural
responses include both neuronal spikes (Berens et al., 2012;
Zavitz et al., 2016) and blood-oxygen-level-dependent responses
(Kamitani and Tong, 2005; Brouwer and Heeger, 2009).
Therefore, it is important to find neural coding principles that
enable decodable stable neural representations in hierarchical
structures on time domain.

Existing efficient coding (Attneave, 1954; Barlow, 1961;
Laughlin, 1981) does not require additional information
processing subsystems or virtual error units, which are
shortcomings of predictive coding. Unfortunately, however,
existing efficient coding does not consider hierarchical structures

on the time domain to deal with the above issue. Many
other ideas have been proposed for representation learning
(Bengio et al., 2013). Properties of the visual cortex have
been successfully studied using sparse coding (Olshausen and
Field, 1996). Sparse coding has been successfully implemented
using artificial neural networks such as restricted Boltzmann
machines for representation learning (Goodfellow et al., 2011).
However, these sparse coding studies have the disadvantage
that they do not take into account the passage of time, which
is an important aspect in the operation of the real brain.
The hierarchical structure of the brain, which ascends to the
upper hierarchy from the input by the bottom-up pathway and
then descends to the input by the top-down pathway again,
resembles the structure of autoencoders (Bourlard and Kamp,
1988; Hinton and Zemel, 1993) of artificial neural networks.
Many autoencoders have also been used for representation
learning (Bengio et al., 2013). Typical examples include sparse
autoencoders (Ranzato et al., 2006), denoising autoencoders
(Vincent et al., 2008), and contractive autoencoders (Rifai et al.,
2011). However, these examples do not take into account the
passage of time.

We, therefore, propose a novel computational principle
for hierarchical structures as spatio-temporally efficient coding
underscored by the efficient use of given resources in both
neural activity space and processing time (Figure 1). Spatio-
temporally efficient coding minimises temporal differences of
neural responses (temporally efficient coding), and maximises
activity space of neural responses for different external stimuli
(spatially efficient coding). We call the combination of temporally
efficient coding and spatially efficient coding as spatiotemporal
efficient coding. By spatio-temporally efficient coding, neural
responses change smoothly but dynamically. Those dynamical
changes of neural responses for the changing external world
differs from the slow feature analysis (Wiskott and Sejnowski,
2002; Berkes and Wiskott, 2005; Creutzig and Sprekeler, 2008)
which also minimises temporal differences of neural responses.
Similar to slow feature analysis, there have been studies on the
properties of cells in the visual cortex using temporal coherence
to obtain slow representations (Hurri and Hyvärinen, 2002; Zou
et al., 2011). However, such studies using temporal coherence lack
the aspect of dynamically reacting to changes in external input or
neural responses of other hierarchies.

Temporally efficient coding decreases the conditional entropy
of neural response given stimulus, H (X|S) where X indicates
neural response and S indicates stimulus. Spatially efficient
coding increases H(X). Spatio-temporally efficient coding, thus,
increases the Shannon mutual information I (X; S) = H (X)−
H(X|S) simultaneously in both terms: H (X) and −H(X|S). This
is also the definition of another existing efficient coding (Friston,
2010). In this manner, spatio-temporally efficient coding in
hierarchical structures can also be seen as an extension of existing
efficient coding into hierarchical structures on time domain.

Spatio-temporally efficient coding enables rapid stabilisation
of neural responses, smooth neural representations, and
decodable stable neural responses. Through simulations, these
properties (smooth temporal trajectory of neural responses,
smooth neural representations, decodable stable neural
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FIGURE 1 | Spatio-temporally efficient coding. (A) This illustration depicts a hierarchical structure of the brain. Open black circles indicate an ensemble of neuronal
units in each hierarchy of the brain. Open black square indicates visual input. Back arrows indicate information transmissions of bottom-up (upward arrow), recurrent
(loop arrow), and top-down (downward arrow). (B) This illustration depicts a hierarchical structure of the brain and learning objectives. The hierarchical structure
learns to represent input from the external world, which is depicted as black squares (e.g., visual input). Open black circles indicate an ensemble of neuronal units in
each hierarchy of the brain. Inference based on spatio-temporally efficient coding is made by neuronal units as bottom-up, recurrent, and top-down information
transmissions over time (black arrows). Learning in spatio-temporally efficient coding consists of two objectives: minimising the temporal differences between present
and future neural responses and maximising the informational entropy of neural responses. For example, information transmissions (purple arrows) are optimised to
minimise the temporal differences between present neural responses at the corresponding hierarchy (red filled circle) and future neural responses (circle to the right
of the red filed circle) while concurrently maximising the informational entropy of neural responses at the corresponding hierarchy (red filled circle).

responses; Figures 2–4) and predictable phenomena (deviant
neural response for unlearned inputs, orientation preference
bias; Figures 5–7) were confirmed.

MATERIALS AND METHODS

Spatio-Temporally Efficient Coding
A possible approach to overcome the shortcomings of both
bottom-up processing and predictive coding in visual
hierarchical structures is to make bottom-up information
transmissions similarly to top-down information transmissions
across hierarchies, instead of transmitting bottom-up prediction
errors. For example, context-independent bottom-up predictions
and context-dependent top-down predictions (Teufel and
Fletcher, 2020). Such bidirectional information transmissions
eliminate the necessity for hypothetical error units, while
presumably elucidating the neural responses of hierarchical
structures underlying bottom-up feature integration and top-
down predictive coding. A neural coding principle underlying
bidirectional information transmissions of hierarchical structures
can be found in the theory of efficient coding that draws
upon the efficient use of given resources (Laughlin, 2001;
Bullmore and Sporns, 2012), which crucially include limited
time resources related to processing speed (Griffiths et al.,
2015; Lieder and Griffiths, 2020). A possible solution to
promote the most efficient use of limited time resources by
the bidirectional information transmission system is to render
present neural responses similar to future ones before the
occurrence of future neural responses. This can be achieved
by minimising the temporal differences between present and
future neural responses. Accordingly, we consider this temporal
difference minimisation as our learning principle, referred to

as temporally efficient coding. Here, inference simply refers to
a bidirectional information transmission mediated by top-
down and bottom-up pathways. Unlike inference in predictive
coding, which requires further error minimisation, inference
in temporally efficient coding involves simple single-step
information transmission.

Temporally efficient coding involves a trivial solution: neural
responses do not change to changes in external events. This
trivial solution is comparable to the dark-room problem of
predictive coding or free-energy principle, where an agent
stays and is unchanged in a dark room with no surprise
or unpredicted parts (Friston et al., 2012; Clark, 2013). We
circumvent this issue by adding a complementary neural coding
(learning) principle that maximises the informational entropy of
neural responses to alter neural responses to changing external
events. It maximises the neural response space available to
represent the external world under the constraints of both the
number of neurons and maximum firing rates. Maximal entropy
coding indicates that the system uses spatial resources of neural
responses efficiently (Attneave, 1954; Barlow, 1961; Laughlin,
1981), referred to as spatially efficient coding. By combining
spatially efficient coding and temporally efficient coding, we
propose a neural coding principle termed spatio-temporally
efficient coding (Figure 1).

Spatially efficient coding has the same objective as existing
efficient coding (Barlow, 1961; Laughlin, 1981), which minimises
informational redundancy because it increases the difference
between neural responses. Temporally efficient coding, on
the other hand, can be regarded to increase informational
redundancy, as it reduces the difference between neural
responses. Two seemingly opposing coding objectives can be
reconciled by isolating mechanisms that decrease the differences
between consecutive neural responses on time domain and
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FIGURE 2 | A simulation of spatio-temporally efficient coding. (A) Architecture of the simulation model. An input image is divided into four subspaces with overlaps,
denoted by different colours. A subset of neuronal units in lower hierarchy receive corresponding parts of the image (matching colours). There is no spatial
correspondence between lower and upper hierarchies. Pink, magenta, and purple arrows indicate bottom-up, recurrent, and top-down information
transmissions,respectively. (B) Learning curves of STEC. Left panel: mean temporal difference. Right panel: mean negative entropy. As the negative entropy of the
lower and upper hierarchies decreases, it can be observed that the temporal difference increases and then stabilises or decreases again. Vertical axis has the
logarithm scale. (C) The magnitude of synaptic weights on lower hierarchy units is compared for different conditions, where STEC, the balanced condition between
temporally and spatially efficient coding objectives; TEC, temporally efficient coding alone; SEC, spatially efficient coding alone which is existing efficient coding;
Sparse, sparse coding. Each cross indicates the L2 norm of synaptic weights for each unit. Black squares indicate the mean. (D) Left: Four different original input
images and their reconstructions from the neuronal responses of lower hierarchy. Right: Representative neural responses for different conditions. The neural
response is the output of the sigmoid function and is therefore normalised to a range between 0 and 1.
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those that increase the differences between neural responses
to the apparently different external world. In the real brain,
it can be explained that different mechanisms are applied
depending on the degree of difference in neural response.
In the implementation of the present study, two coding
objectives were applied in different ways. As an implementation
of temporally efficient coding, we minimise the difference
between consecutive neural responses on the time. In spatially
efficient coding, the neural responses to the apparently different
external stimuli are implemented in a minibatch method
that simultaneously learns different images. We maximised
the difference between neural responses to different images
within each time step (see section “Implementation of Spatio-
Temporally Efficient Coding”).

Temporally efficient coding trains the present neural response
to be similar to the future neural response in order to efficiently
use a given time resource. The temporal trajectory of the
neural response is smoothed as the difference between the
present and future neural responses is minimised. It thereby
minimises the size of the space represented, when a single
stimulus (stimulus in the external world) is represented on
the time domain. In other words, it reduces neuronal noise
(also see, Figure 2D) which is defined as the uncertainty of a
neural response for given stimulus (Borst and Theunissen, 1999).
This is to decrease the conditional entropy of neural response
given stimulus, H (X|S) where X indicates neural response and
S indicates stimulus. Spatially efficient coding increases H(X).
Spatio-temporally efficient coding, thus, increases the Shannon
mutual information I (X; S) = H (X)−H(X|S) simultaneously
in both terms: H (X) and −H(X|S). This is also the definition
of another existing efficient coding (Friston, 2010). Spatio-
temporally efficient coding in hierarchical structures, therefore,
can also be seen as an extension of existing efficient coding into
hierarchical structures on time domain.

Neural system homeostasis is associated with maximisation
of mutual information between neural responses and external
stimuli (Toyoizumi et al., 2005; Sullivan and de Sa, 2006). Since
spatio-temporally efficient coding increases the Shannon mutual
information between neural responses and external stimuli, it
is related to homeostasis. In particular, temporal difference
minimisation of neural responses in temporally efficient coding
is reminiscent of homeostasis of energy metabolism. Smoothing
the temporal trajectory of a neural responses reduces the variance
of the neural response distribution so that the neural response
stays within a certain range. This is also a consequence of the
homeostatic plasticity (Turrigiano and Nelson, 2004) of the brain
(also see, Figure 8).

As mentioned earlier, smoothing the temporal trajectories of
neural responses reduces the spatial extent of neural responses
to static stimuli. This leads to a rapid stabilisation of the neural
response to the static stimulus (also see, Figures 2D, 4); decodable
stable neural representations which is the main subject of the
present study. The rapid stabilisation of neural responses shows
the characteristic of temporally efficient coding, which makes
efficient use of given time resources. Another effect of this
smoothing the temporal trajectory of neural response is to render
smooth neural representations that locally preserves the structure

of the external world. If a stimulus is static or changes smoothly,
making the temporal trajectory of the neural response smooth is
to render a similar neural response to the similar stimuli. This is
smooth neural representations that locally preserves the structure
of the external world (also see, Figure 3).

Implementation of Spatio-Temporally
Efficient Coding
In the present study, visual information processing in hierarchical
structures was established as biologically inspired temporal
processing. Specifically, visual information processing is
described as a function ft for both image Ximage and neural
responses Xh in each hierarchy h such that it maps from Ximage
and Xh at time t − 1 to those at time t:

ft : Ximage, t−1 × Xh =1, t−1 × . . . × Xh =H, t−1 → Ximage, t
×Xh =1, t × . . . × Xh =H, t

(1)
Where Xh,t−1 and Xh,t are the neural responses Xh at time
t − 1 and t, respectively, at hierarchy h. For convenience, Xh =0
denotes Ximage, in particular Xh =0, t denotes the image presented
at time t. The details of the visual information processing ft are as
follows: If h > 0, then,

ft |Xh,t =

σ
(

WT
h+1,hXh+1,t−1 +WT

h,hXh,t−1 +WT
h−1,hXh−1,t−1 + bh

)
(2)

Where Xh,t is an Xh value vector at time t, ft (·) |Xh,t indicates
restricting the range of the function value ft (·) to Xh,t, Wh+1,h
is a synaptic weight matrix from hierarchy h+ 1 to h, T is the
transpose of a matrix, bh is a bias vector at hierarchy h, and σ(·)
is a sigmoid function. The terms of WT

h+1,hXh+1,t−1, WT
h,hXh,t−1,

and WT
h−1,hXh−1,t−1 indicate top-down, recurrent, and bottom-

up information transmissions, respectively. In case of h+ 1 >
H the WT

h+1,hXh+1,t−1 term would be omitted. If h = 0, then,

ft |Xh,t = σ
(

WT
h+1,hXh+1,t−1 + bh

)
(3)

If h > 0, Xh,t = ft |Xh,t . On the other hand, when h = 0, Xh,t
is the image presented at time t, not ft |Xh,t . This function ft
makes inferences using spatio-temporally efficient coding. Unlike
inference in predictive coding (Rao and Ballard, 1999; Spratling,
2017) that requires additional processes such as minimisation of
prediction errors, inference in spatio-temporally efficient coding
is a function value ft itself.

Learning in spatio-temporally efficient coding minimises the
ensuing objectives of both temporally and spatially efficient
coding. The objective of temporally efficient coding is given by:

LTemporal =
N∑

n =1(
ft ◦ ft−1

(
xh =0,t̃,image =n

)
− ft+1 ◦ ft ◦ ft−1

(
xh =0,t̃,image =n

))2

(4)
Where ◦ is the function composition, xh =0,t̃,image =n

indicates that the image is fixed to the nth sample throughout the
temporal processing (i.e., Xh =0,t−2 = Xh =0,t−1 = Xh =0,t is
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FIGURE 3 | Smooth neural representations of visual images by spatio-temporally efficient coding. (A) Examples of relative Euclidean distances from the reference
image (Ref. left) to other images in the natural scene image space are depicted on the horizontal axis. Relative Euclidean distances from the neural representations of
the reference image at hierarchy 1 to those of corresponding other images are depicted on the vertical axis. (B) Local similarity based on correlations of distances
between overall natural scene images (N = 42 out of 4212: 1%, N = 84 out of 4212: 2%; N = 168 out of 4212: 4%) (global feature based distance) with those of
corresponding neural responses (Euclidean distance). Error bars indicate standard deviations. (C) Discriminability of neural responses for images (N = 4170 out of
4212; 99%). Three horizontal lines in each box indicates 25, 50, and 75 % levels of data, respectively.

nth image sample), squaring is operated component-wise. In
case of h = 0, ft+1 ◦ ft ◦ ft−1

(
Xh =0,t̃,image =n

)
|Xh =0 : =

Xh =0,t+1 which is the image presented at time t + 1 while
ft ◦ ft−1

(
xh =0,t̃,image =n

)
|Xh =0 is the function value as

inference. The function composition ft ◦ ft−1 of two functions
(inferences) in the LTemporal allows the simultaneous learning
of all information transmissions across all hierarchies because
the depth of hierarchy is H = 2 in the present study (bottom-
up, recurrent, and top-down information transmission across
the hierarchy of depth H = 2). The inimisation of the given
objective minimises the temporal differences between present
and future neural responses. The objective of temporally efficient
coding is to render present neural responses similar to future
neural responses that has not yet arrived. By doing so, it
uses the given time resources efficiently. This minimisation
of temporal difference creates a learning effect in which the
temporal trajectory of the neural response becomes smooth. The
expected effect of this learning effect is to quickly stabilise neural
responses when a static external stimulus is given (also see,

Figures 2D, 3). In that aspect, it is also to use the given time
resources efficiently.

The objective of spatially efficient coding is given by,

LSpatial =
N∑

n =1
log P

(
ft
(

xh =0,t̃,image =n

)
|Xh

)
(5)

Where h > 0 in Xh (so, ft
(

Xh =0,t̃,image =n

)
|Xh = Xh,t)

and P (·) is a probability. Because the term LSpatial is an estimation
of negative informational entropy, minimising the objective
maximises the informational entropy of ft. This objective
increases the entropy of each neuron, and it can be seen that
an increase in marginal entropy in each neuron will increase the
joint entropy of the entire system. Therefore, spatially efficient
coding maximises the entropy of individual neurons as in
Laughlin’s study (Laughlin, 1981) and consequently the entropy
of the entire system. The objective of spatially efficient coding is
to render different neural responses to different inputs from the
external world. We, therefore, can overcome the trivial solution
of temporally efficient coding, where there is no change in neural
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FIGURE 4 | Decodable stable neural representations via spatio-temporally efficient coding. (A) Examples of neural responses in the lower hierarchy. These were
neural responses of 3rd units in Figure 2D. Dotted vertical black lines indicate the presentations of new external input. (B) Neuronal noise that measured as shifted
conditional entropy of neural responses given stimulus. Conditional entropy was measured by collecting neural responses at every five time step. (C) Confusion
index that a measure of how much it confuses neural responses to one stimulus with neural responses to another similar stimulus. The dotted lines denote the
confusion index of 1 which indicates the confusion. Error bars indicate standard deviations. (D) Decoding accuracy via the naïve Bayes classifier. The upper dotted
line denotes the maximum decoding accuracy, 1. The lower dotted line denotes the chance level, 1/4212. Error bars indicate standard deviations.
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response despite changes in the external world. This thereby
does not conflict with the learning of temporally efficient coding,
which decreases differences in consecutive neural responses in
the time domain to inputs of one stream.

To minimise LSpatial, which is the objective of spatially efficient
coding, it is necessary to calculate the probability P (·) in LSpatial
(eq. 5). Instead of calculating the exact probabilities, we obtained
pre-normalised densities in the sense of probabilities without a
partition function. As the value of the partition function is fixed, it
does not affect the minimisation process. Note that, when h > 0,
Xh,t is the space of all possible neural responses, i.e., Xh,t =

[0, 1]dim Xh,t . Let x ∈ Xh,t be a value of ft
(

xh =0,t̃,image =n

)
|Xh .

Kernel density estimation was used to obtain P (x). Using a
Gaussian kernel with width 0.1

(
dim Xh,t

)1/2, the neural response
density Q (x) and compensation density Q′ (x) at x ∈ Xh,t were
obtained. Then, the pre-normalised density of interest is,

P (x) = Q(x)
Q′(x) (6)

The neural response density Q (x) is obtained by kernel
density estimation of neural responses on Xh,t. The compensation
density Q′ (x) is obtained using pseudo-uniformly generated
samples on Xh,t instead of the neural responses (For sparseness
constraint, i.e., sparse neural responses, Q′ (x) is obtained
using pseudo-uniformly generated samples on [−1, 1]dim Xh,t

instead of Xh,t = [0, 1]dim Xh,t , so that Q′ (x) has a fat
distribution around zero. See, Figure 5) The compensation
density is necessary to compensate for the non-uniform intrinsic
expectation of Q (·) resulting from the fact that Xh,t is bounded.
At the boundary of Xh,t, the density of neural responses, Q (x),
measured by kernel density estimation is decrease. This intrinsic
decrease corresponds to Q′ (x). We compensated for the decrease
by dividing Q (x) by Q′ (x).

Finally, the objective of spatio-temporally efficient coding is a
linear combination of those two objectives:

L = LTemporal + λLSpatial (7)

Where λ is a regularisation parameter. A smaller λ indicates a
greater emphasis on the temporally efficient coding objective,
whereas a larger λ indicates the opposite. As mentioned
previously, temporally efficient coding decreases the conditional
entropy of neural response given stimulus, H (X|S) where X
indicates neural response and S indicates stimulus. Spatially
efficient coding increases H(X). Hence, the regularisation
parameter λ can be seen as controlling the balance between H (X)
and −H(X|S). It is a modification of fixed balance of Shannon
mutual information I (X; S) = H (X)−H(X|S) of the existing
efficient coding (Friston, 2010).

Temporal trajectories of neural responses are smoothed by
temporally efficient coding, but this does not mean just slow
neural representations. By spatially efficient coding, different
neural responses to different inputs from the external world
should be exhibited. Therefore, it should show rapid changes
in neural responses to sudden changes in the external world
(fast representation). This is the difference from slow feature
analysis (Wiskott and Sejnowski, 2002; Berkes and Wiskott,

2005; Creutzig and Sprekeler, 2008) or temporal coherence
(Hurri and Hyvärinen, 2002; Zou et al., 2011), which targets
slow neural representations. On the one hand, with temporally
efficient coding, changes in neural responses should be
smoothed out quickly when the external input is not changing
(fast stabilisation).

Suppose that Gaussian noise is added to a series of temporally
correlated external inputs (e.g., static images or smoothly moved
images + Gaussian noise). If these noisy external inputs are still
temporally correlated, then smoothing the temporal trajectory
of neural responses (by temporally efficient coding objective
LTemporal) is rendering temporally similar neural responses to
temporally similar inputs. It is also smooth neural representations
that locally preserves the structure of the external world.
Moreover, if the noise is provided independently of the input,
the effect of the noise on neural representations will be dispelled
by multiple independent trials. Therefore, temporally efficient
coding objective LTemporal increases the fidelity of the neural
representation with respect to a Gaussian noise.

Smooth neural representation also means making different
neural responses to different inputs. In other words, it increases
discriminability for different inputs. This is achieved by spatially
efficient coding objective LSpatial that maximises the entropy
of neural responses. Assumed that Gaussian noise is added to
external inputs. Let Dtrue be a binary-valued random variable
for the discrimination between two actually different inputs such
that Dtrue = 1 means the discrimination that two noised inputs
differ and Dtrue = 0 means the discrimination that two noised
inputs are same. Dtrue is probabilistic because of the Gaussian
noise mentioned earlier. Let Dresponse be a binary-valued random
variable for the discrimination between two neural responses
for inputs such that Dresponse = 1 means the discrimination
that two neural responses differ and Dresponse = 0 means the
discrimination that two neural responses are same. Let Ptrue
and Presponse be the probability mass functions of Dtrue and
Dresponse, respectively. Spatially efficient coding objective LSpatial
decreases the Kullback–Leibler divergence from Presponse to Ptrue,
i.e., DKL

(
Ptrue||Presponse

)
. Hence it also decreases the binary

cross entropy H (Ptrue)+ DKL
(
Ptrue||Presponse

)
where H (·) is an

informational entropy.
In the present study, the depth H of hierarchies was set to

2, the minimum depth to realise both bottom-up and top-down
pathways in the same hierarchy. Images with 64 × 96 size were
divided into four overlapping 38 × 58 patches. Each patch
was connected to 16 of 64 lower hierarchy units. Further, 64
lower hierarchy units were fully connected to 64 upper hierarchy
units. All units in each hierarchy are fully connected to each
other (Figure 2A).

Because L = LTemporal + λLSpatial is differentiable, the
minimisation of the objective in spatio-temporally efficient
coding was performed with a gradient descent. The Adam
optimiser (Kingma and Ba, 2015) was used to perform the
stochastic gradient descent with momentum. The parameters
of the Adam optimiser used in this study were α = 0.001,
β1 = 0.9, β2 = 0.999, and = 10−8. The optimisation
lasted 104 iterations for each repetition and restarted with
five repetitions. For each iteration, the duration of temporal
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FIGURE 5 | Neural response distributions for learned and unlearned inputs. (A) Natural scene images are used as learned inputs (for learning in the visual
hierarchical structure) and handwritten digit images are used as unlearned inputs (not used in learning). (B) Examples of neural response distributions of lower
hierarchy units for each of the five time steps of bidirectional information transmissions, corresponding to images in (A). The colour scale indicates the proportion.
(C) Overall neural response distributions in response to all input images (either learned or unlearned) at lower and upper hierarchies, respectively. (D–F) Are similar to
(A–C), but handwritten digit images are used as learned inputs and natural scene images are used as unlearned inputs.

processing ft was five (i.e., t ∈ [1, 5]), and the minibatch size was
40. For a given image, the duration of temporal processing of ft
was given as five (i.e., t ∈ [1, 5]) in both learning and inference,
because four time steps are required for the image information
to reach the top hierarchy and return over H = 2 hierarchies, in
addition to one time step to obtain future neural responses. In
learning, after temporal processing of five durations was finished,
new temporal processing begins, and the initial values of neural
responses of new temporal processing were the last neural
responses values of the previous temporal processing. In our
simulations, we repeatedly exposed the hierarchical structure to
natural scene images, which enabled it to learn the bidirectional
information transmissions between top-down and bottom-up
hierarchies using spatio-temporally efficient coding with a range
of the balancing parameter λ. Successful learning was confirmed
by minimising or stabilising L during learning (see, Figure 2B).
Further, we verified that the learned hierarchical structure could
successfully reconstruct an input image, as shown in Figure 2D.

The appendix of the summary for all mathematical
formulations is available at the Supplementary Material.

Simulation codes for spatio-temporally efficient coding are
available from https://github.com/DuhoSihn/Spatio-temporally
efficient-coding (Sihn, 2021).

The flowchart of details of implementation of spatio-
temporally efficient coding (Figure 9A) and experimental
workflow in the present study (Figure 9B) were summarised in
Figure 9.

Datasets
For the simulations, van Hateren’s natural scene image dataset
(van Hateren and van der Schaaf, 1998) was used. The dataset was
downloaded from https://pirsquared.org/research/#van-hateren-
database. The images were downsized to 64 × 96 pixels. For the
comparison tests, the MNIST handwritten digit dataset (Lecun
et al., 1998) was used. The dataset was downloaded from http:
//yann.lecun.com/exdb/mnist/. The images were resized to 64 ×
96 pixels to fit the images used in the simulations. All image data
were rescaled between 0 and 1.

Computation of Receptive Fields
Images of 64 × 96 size with randomly selected 16 × 16
subregions were created to compute the receptive field. These
64 × 96 images had a value of one in the 16 × 16 subregions
and zero otherwise. Receptive fields were calculated based on the
average neural response when the visual hierarchy (Xh =1 ×

. . . × Xh =H) was exposed to these images. Specifically, the
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value of the receptive field at a pixel was defined as the average
neural response to an image with a value of one at this pixel.
This averaging method was inspired by the previous study
in case of binary neural responses (firing or not) (Ohzawa
et al., 1996). The difference is that the previous study was
for image averaging and the present study was for neural
response averaging.

RESULTS

Balancing Between Temporally and
Spatially Efficient Coding
The temporally efficient coding objective that minimises the
temporal difference between present and future neural responses
smooths the temporal trajectory of neural responses. The spatially
efficient coding objective that maximises the informational
entropy of neural responses renders different neural responses
to different inputs. We can predict that when the temporally
efficient coding objective and the spatially efficient coding
objective are properly balanced, different neural responses to
different stimuli and temporally smooth neural responses to
the same stimuli can be expected. This means that when the
external input changes, the neural response changes quickly,
and when the external input does not change, the neural
response quickly stabilises. If the temporally efficient coding
objective is overweighted, it can be predicted to arrive at
a trivial solution in which the neural response does not
change despite changes in external input. Conversely, if the
spatially efficient coding objective is overweighted, it can be
predicted that the temporal trajectory of the neural response is
not smooth, resulting in neuronal noise. Three regularisation
parameters λ ∈ {0, 10, 1000} were used to confirm these
predictions through simulations, and each λ corresponds to
each simulation condition: the temporally efficient coding
overweighted (λ = 0), the balanced condition of two coding
objectives (λ = 10), and the condition of the spatially
efficient coding overweighted (λ = 1000), respectively. The
selection of λ ∈ {0, 10, 1000} made the comparison between
spatio-temporally efficient coding and other neural codings.
Putting λ = 0 renders that L = LTemporal in the eq. (7),
consequentially making that the temporally efficient coding
objective is overweighted (TEC condition). Putting λ = 1000
renders that LTemporal lose its influence such that L ≈ LSpatial in
the eq. (7), consequentially making that the spatially efficient
coding objective is overweighted (SEC condition). Putting λ =

10 renders the appropriate balance between LTemporal and
LSpatial, representing the balanced condition of two objectives
(STEC condition). The SEC condition is a condition in which
only the spatially efficient coding objective is considered, and
represents the existing efficient coding (Barlow, 1961; Laughlin,
1981). Sparse coding (Olshausen and Field, 1996, 1997) was
chosen to compare with other neural coding principles where
temporal factors were not considered. The sparseness constraint
(see section “Implementation of Spatio-Temporally Efficient
Coding”) is applied to λ = 1000 to implement sparse coding
(Sparse condition).

Based on the simulation, we confirmed this phenomenon
by observing that, under STEC condition (λ = 10), when the
external input changes, the neural response changes rapidly,
and when the external input does not change, the neural
response quickly stabilises. In addition, we confirmed that
under TEC condition (λ = 0, control), we arrive at the trivial
solution in which the neural response does not change even
when the external input changes. We also confirmed that
under SEC condition (λ = 1000) and Sparse condition (λ =
1000 + sparseness constraint), the temporal trajectory of the
neural response is not smooth, resulting in neuronal noise
(Figure 2D). This also shows the problem of applying existing
efficient coding (Barlow, 1961; Laughlin, 1981) and sparse coding
(Olshausen and Field, 1996, 1997) directly to the hierarchical
structure on time domain.

A change in balance between the two objectives also altered
the relative strengths between bottom-up and top-down synaptic
connections. In order to find out whether the strength of the
bottom-up and top-down synaptic weights is related to the
balance between the two objectives, the synaptic weights at
various λ values were investigated. The synaptic weights were

defined as
(∑

i
w2

ij

)1/2
where wij is an ijth component of a

synaptic weight matrix W which is defined at Implantation
of spatio-temporally efficient coding section. Simulation results
demonstrated that top-down synaptic strengths from upper
to lower hierarchy were increased compared to bottom-up
synaptic strengths from images to lower hierarchy as λ increased,
with an emphasis on spatially efficient coding (Figure 2C, see
section “Materials and Methods” for details on the computation
of synaptic strength). This finding suggests that the balance
between spatially and temporally efficient coding could be related
to the balance between bottom-up and top-down synaptic
strengths in the brain.

Smooth Neural Representations of the
External World
As a major function of the brain is to represent the external world
(deCharms and Zador, 2000; Kriegeskorte and Diedrichsen,
2019), we investigated whether spatio-temporally efficient coding
creates appropriate neural representations of the external world.
Spatio-temporally efficient coding can be expected to smooth the
temporal trajectory of neural responses while having different
neural responses to different external inputs. This effect may
render smooth neural representations that locally preserves the
structure of the external world, i.e., similar neural responses
for similar external stimuli. To confirm this by simulation,
we compared similarities between natural scene images and
neural responses to those images. We quantified this by
examining the relations between a natural scene image space
and a neural response space. Specifically, we first measured the
global feature based distance (Di Gesù and Starovoitov, 1999)
from a natural scene image (i.e., reference image) to other
natural scene images in the image space and the Euclidean
distances from the neural responses for the reference image to
those for other compared images in the neural response space
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(Figure 3A). It has been proven that global feature based distance
reflects differences in images in a way that humans actually
perceive (Di Gesù and Starovoitov, 1999). When calculating
the distances between neural responses, we used the neural
responses at five time steps after receiving a given image
based on the assumption that the neural responses became
temporally steady after five steps of temporal processing (see
Figure 1B).

As a further analysis, we measured local similarity and
discriminability based on distances defined in the natural scene
image space and the neural response space. Local similarity
indicates how well the similarity among the relatively similar
images is reflected in the neural responses to those images,
representing one of measures that similar neural responses for
similar external stimuli. The local similarity was measured the
Pearson’s linear correlation between the distances in the image
space and those in the neural response space. A high correlation
indicates that neural responses tend to be similar when the visual
system perceives natural scenes close to each other (in the sense
of global feature based distance). We set each image sample as a
reference and repeated the calculations for the correlation across
all image samples. We defined local similarity as the average
correlation obtained by using the distances from one image to
its neighbouring images only (1, 2, and 4% of all images).

Discriminability is a measure complementary to local
similarity, which measures whether neural responses to
different images are different. We measured discriminability
as the proportion of dissimilar neural responses among
dissimilar images. This dissimilarity was defined as 99% of all,
based on certain distances (the global feature based distance
for images, the Euclidean distance for neural responses).
Specifically, the discriminability for an image sref was defined as∣∣{s ∈ images | dS (s, sref) > θS and dX

(
f (s) , f (sref)

)
> θX

}∣∣
divided by

∣∣{s ∈ images | dS (s, sref) > θS
}∣∣ where |{·}| is the set

size, dS (s, sref) is the distance on the natural scene image space,
dX
(
f (s) , f (sref)

)
is the distance on the neural response space,

θS is the threshold which indicates 99% of all images, and θX is
the threshold which indicates 99% of all neural responses. A high
discriminability indicates that if the image is different, the neural
response will also be different.

If the learned neural representations are smooth, i.e., locally
preserving the structure of the external world, both local
similarity and discriminability will be high. We can predict
that when the temporally efficient coding objective and spatially
efficient coding objective are balanced (STEC condition),
neural representations are smooth, so that local similarity and
discriminability are high. From the simulations, we confirmed
that local similarity and discriminability do not lower in STEC
condition than SEC or Sparse condition (Figures 3B,C).

Decodable Stable Neural
Representations
In a hierarchical structure in which information is exchanged in
both directions, if the information represented by the upper and
lower hierarchies at the same time is different, it is difficult to
obtain a stable neural response on time domain for an external

input. The reason is that if the information represented by the
upper and lower hierarchy are different, different information
is exchanged, and thus the information represented next time
may be also different. These inter-connected structures could also
produce chaotic dynamics (Rubinov et al., 2009; Tomov et al.,
2014).

The objective of temporally efficient coding is to render
present neural responses similar to future neural responses that
has not yet arrived. This minimisation of temporal difference
creates a learning effect in which the temporal trajectory of the
neural response becomes smooth. It thereby minimises the size
of the space represented, when a single stimulus is represented
on the time domain. In other words, it reduces neuronal noise
which is defined as the uncertainty of a neural response for given
stimulus (Borst and Theunissen, 1999). The expected effect of
this learning effect is to quickly stabilise neural responses when
a static external stimulus is given. The objective of spatially
efficient coding is to render different neural responses to different
stimuli. The expected effect of spatio-temporally efficient coding
is to render decodable stable neural representations which is
an appropriate function to hierarchical brain structures on
the time domain.

To confirm these expectations, we performed four simulation
experiments. The first simulation is to present multiple images
for five time step for each image and check the neural responses
for those images. When each image was given, it was checked
whether the neural response was quickly stabilised (Figure 4A).
The second simulation measures the amount of noise in the
neural responses when each image is presented during 25
time step. Neuronal noise is defined as the uncertainty of a
neural response for given stimulus (Borst and Theunissen,
1999), so we measured the conditional entropy of neural
responses during each five time step as neuronal noise. That
is, Neuronal noise = 1

|S|
∑
s∈S

H
(

ft|s, t ∈
[

t
′

+ 1, t
′

+ 5
])

for

each t
′

∈ {0, 5, 10, 15, 20} where s is an image, S is the
set of all images, H (·|·) is the conditional entropy, and ft is the
neural response at time t. Probability was estimated by kernel
density estimation without a partition function, and thus shifted
conditional entropy was measured. We checked the amount
of neuronal noise (Figure 4B). In the third simulation, we
checked whether the neural responses to each image stabilised
over time. To do this, we measured how confused the neural
response over time (9 time step) to one image was with the
neural response to a similar image. This is represented by the
confusion index. Confusion index for image s at time t =∣∣ft (s)− f10 (s)

∣∣ / ∣∣f10 (s)− f10
(
s′
)∣∣ where ft (s) is the neural

response for image s at time t and s′ is the nearest image of
s based on the global feature based distance (Di Gesù and
Starovoitov, 1999). If the confusion index is less than 1, it can
be said that the neural response is well stabilised. We checked
whether the neural response was stabilised by reducing the
confusion index to less than 1 (Figure 4C). In fourth simulation,
we checked how decodable the neural responses was. To measure
how decodable the neural response is, the neural responses of
time steps 1,..., 9 were decoded using the neural responses of
time steps 10 and 11 as a training set. The naïve Bayes classifier
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(Hastie et al., 2009) was selected as the decoder, and each of the
4212 natural scene images was defined as one class (Figure 4D).

As a result of the simulation, different neural responses to
different stimuli were shown in the STEC condition, and these
neural responses were rapidly stabilised. On the other hand,
neural responses were less stabilised under SEC and sparse
conditions (Figure 4A). The factor affecting the stabilisation
of the neural response was the amount of neuronal noise.
To quantify the amount of neural noise, conditional entropy
of neural responses given stimulus was measured. Conditional
entropy was measured by collecting neural responses at every five
time step. The STEC condition showed lower neuronal noise than
the SEC and Sparse conditions (Figure 4B).

We checked whether the neural response was well stabilised
through the confusion index. Under STEC condition, the
confusion index was kept below 1 on average for the majority
of time steps at each hierarchy (Figure 4C). This means that the
neural representations are rapidly stabilised in STEC condition.
On the other hand, the confusion index was not sufficiently
reduced in SEC and Sparse condition (Figure 4C). This means
that sufficient stabilisation of neural representations is difficult
with only existing efficient coding or sparse coding.

Finally, we checked whether the neural response is decodable.
In the STEC condition, the decoding accuracy gradually
increased over time, suggesting decodable stable neural
representations. On the other hand, the decoding accuracy was
low in SEC and Sparse conditions.

Relation to Homeostasis
Neural system homeostasis is associated with maximisation
of mutual information between neural responses and external
stimuli (Toyoizumi et al., 2005; Sullivan and de Sa, 2006). Since
spatio-temporally efficient coding increases the Shannon mutual
information between neural responses and external stimuli, it
is related to homeostasis. In particular, temporal difference
minimisation of neural responses in temporally efficient coding is
reminiscent of homeostasis of energy metabolism. Smoothing the
temporal trajectory of a neural responses reduces the variance of
the neural response distribution so that the neural response stays
within a certain range. We confirmed this through simulation.
It was checked whether the neural response had a middle value,
not an extreme value such as 0 or 1, which is homeostasis of
neural responses. In STEC condition emphasising temporally
efficient coding objective, neural responses were concentrated at
the middle value than in SEC condition (Figure 8). Figure 8B
showed specific cases corresponding to stimuli in Figure 8A.
Figure 8C showed the distribution of overall neural responses,
indicating that this is general phenomena of STEC. This is also
a consequence of the homeostatic plasticity (Turrigiano and
Nelson, 2004) of the brain.

Deviant Neural Responses to Unlearned
Inputs
The visual system often responds selectively to sensory inputs
(Margoliash, 1983; Waydo et al., 2006). Even for the type
of sensory inputs to which the visual system is responsive,

unfamiliar inputs induce larger neural responses compared to
familiar inputs (Huang et al., 2018; Issa et al., 2018). These
large neural responses to unfamiliar inputs are thought to
be due to prediction errors (Issa et al., 2018). On the one
hand, spatio-temporally efficient coding renders smooth neural
representations, i.e., locally preserving the structure of the
external world. Because unlearned inputs differ from learned
inputs, if their neural representations are smooth, their neural
representations will also differ. By STEC homeostasis, since
the neural response to the learned input has a middle value
(Figure 8), the neural responses to the unlearned input (if these
differ from the neural responses to the learned input) may be
closed to extreme values such as 0 or 1. These are deviant neural
responses to unlearned inputs. Accordingly, we can expect that
spatio-temporally efficient coding could predict the phenomenon
of deviant neural responses to unlearned inputs without the
introduction of prediction error responses mediated by error
units. We checked whether the distribution of neural responses
to unlearned input is close to extreme values such as 0 or 1, unlike
the distribution of neural responses to learned input.

In the simulations, the visual hierarchical structure learned to
be learned with natural scene images, and novel handwritten digit
images were used as unlearned visual inputs (Figure 5A). The
simulation results revealed that neural responses were distributed
over middle values for learned images and over smaller or
larger values for unlearned inputs (Figures 5B,C), suggesting that
spatio-temporally efficient coding could predict the phenomenon
of deviant neural responses to unlearned inputs. The same
conclusion could also be reached if the learned images were
handwritten digit images and the unlearned images were natural
scene images (Figures 5D–F).

Simulations in the present study demonstrated that neural
responses were distributed around smaller or larger extremes
for unlearned inputs and around intermediate values for learned
inputs (Figures 5B,C). In a separate analysis, we allowed
the neural responses to learned inputs be distributed only
around lower values (see section “Implementation of Spatio-
Temporally Efficient Coding,” λ = 5), similar to sparse coding
(Olshausen and Field, 1996, 1997), and observed that neural
responses of the lower hierarchy to unlearned inputs exhibited
higher values (Figure 6). Under this sparseness constraint,
when an external stimulus was first given, the neural response
surged from zero to a large value and then stabilised again
(Figures 6C,D).

Preferred Orientation Biases of
Receptive Fields
Neurons in the visual system prefer horizontal and vertical
orientations over oblique orientations (Furmanski and Engel,
2000; Li et al., 2003). Indeed, orientation discrimination is more
sensitive to horizontal and vertical orientations than to oblique
orientations (Girshick et al., 2011). This is a bias toward cardinals
(Girshick et al., 2011). Since smooth neural representations of
spatio-temporally efficient coding reflects the structure of the
external world well, we predicted that it would also reflect
the environmental statistics of natural scenes. We investigated
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FIGURE 6 | Neural response distributions for learned and unlearned inputs under sparseness constraint. (A) Natural scene images are used as learned inputs (for
learning in the visual hierarchical structure) and handwritten digit images are used as unlearned inputs (not used in learning). (B) Lower hierarchy neural responses for
consecutive external inputs in (A). The neural response is the output of the sigmoid function and is therefore normalised to a range between 0 and 1. (C) Examples
of neural response distributions of lower hierarchy units for each of the five time steps of bidirectional information transmissions, corresponding to images in (A).
Unlike (B), it is a neural response when images are presented separately rather than consecutively. The colour scale indicates the proportion. (D) Overall neural
response distributions in response to all input images (either learned or unlearned) at lower and upper hierarchies, respectively.

whether units in the visual hierarchical structure that learned
by spatio-temporally efficient coding of natural scene images
exhibited such biases. We checked whether the neural responses
of the units were highest to the horizontal/vertical orientation
stimuli. Units in the lower hierarchy had the Gabor-like visual

receptive fields, while units in the upper hierarchy had more
complex visual receptive fields (Figure 7A) (also see section
“Computation of Receptive Fields”). Because the units had an
oriented Gabor-like receptive field, we used oriented bar stimuli
to measure the unit’s preferred orientation. We presented a
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FIGURE 7 | Orientation preference. (A) Examples of visual receptive fields of lower and upper hierarchy units. (B) Orientation images used to test the visual
orientation preference of neuronal units at hierarchy 1 in the visual hierarchical structure that learned by the spatio-temporally efficient coding of natural scene
images. White bars in each of the eight orientations are moved in the perpendicular directions denoted by blue dotted arrows. (C) Examples of lower hierarchy neural
responses for bar stimuli. Each colour indicates each orientation. The neural responses of each orientation were obtained from the bar positions with the largest
neural responses at time step 5. These four example units correspond to 1st, 3rd, 5th, and 7th units in (A). (D) Histograms of the orientation preference at time step.
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FIGURE 8 | Neural response distributions. (A) Examples of natural scene images. (B) Examples of neural response distributions of lower hierarchy units for each of
the five time steps of bidirectional information transmissions, corresponding to images in (A). The colour scale indicates the proportion. (C) Overall neural response
distributions in response to all input images (either STEC or SEC) at lower and upper hierarchies, respectively. The colour scale indicates the proportion.

static bar oriented in one of eight angles that moved in the
direction perpendicular to the orientation angle (Figure 7B)
and defined the response of each unit to that orientation
by the largest response during presentation. We then defined
the preferred orientation of each unit as the orientation that
elicited the largest response. Example neural responses were
shown in Figure 7C. Simulation results revealed that units
clearly prefer horizontal and vertical orientations over oblique
orientations (Figure 7D), consistent with the orientation bias
of visual cortical neurons and in accordance with context-
independent bottom-up prediction (Teufel and Fletcher, 2020).
This means that smooth neural representations when well-
balanced between temporally efficient coding objective and
spatially efficient coding objective reflect the environmental
statistics of natural scenes.

DISCUSSION

The present study aimed to find computational principles that
enables visual hierarchical structures to attain the function to
represent external visual information. To address the lack of
neural coding principles to encompass both bottom-up and
top-down pathways, we propose spatio-temporally efficient
coding as a novel computational model. As a principled way
of efficiently using given resources in both neural activity
space and processing time, this coding principle optimises
bidirectional information transmissions over hierarchical
structures by simultaneously minimising temporally differences
in neural responses and maximising entropy in neural
representations. Simulation results showed that the proposed
spatio-temporally efficient coding assigned the function of
appropriate neural representations of natural scenes to a visual
hierarchical structure on time domain and that it could predict
deviations in neural responses to unlearned inputs and a bias in

preferred orientations, which are well known characteristics of
the visual system.

Appropriate neural representations in the present study were
decodable stable neural representations which is an appropriate
function to hierarchical brain structures on the time domain.
To demonstrate this, we compared spatio-temporally efficient
coding (STEC condition) with existing efficient coding (SEC
condition) and sparse coding (Sparse condition) as shown
in Figure 4. Only spatio-temporally efficient coding showed
decodable stable neural representations. Existing predictive
coding is conceptually problematic to apply to such real-
time information processing (Hogendoorn and Burkitt, 2019).
It would be interesting to compare the results with the
conceptually improved predictive coding as well. Temporal
coherence (Hurri and Hyvärinen, 2002; Zou et al., 2011) or
slow feature analysis (Wiskott and Sejnowski, 2002; Berkes and
Wiskott, 2005; Creutzig and Sprekeler, 2008) elicits smooth
changes in neural responses, similar to temporally efficient
coding in the present study. However, they were not used as
comparative models because they are not intended to elicit
different neural responses to different external inputs and are
not suitable for direct application to the bidirectional multiple
hierarchical structure of in the present study. Nevertheless, they
can be substituted to the role of temporally efficient coding in
the present study.

Since its initial proposal (Attneave, 1954; Barlow, 1961),
spatially efficient coding has been validated experimentally
(Laughlin, 1981). However, observed correlations between
neurons, which maximise entropy to a lesser extent compared
to mere spatially efficient coding assuming no inter-neuronal
correlations, have yet to be incorporated into the principle
of spatially efficient coding. Empirically observed neuronal
correlations may drive computational processes of the brain
away from strict spatially efficient coding. Recent studies
suggest that biological visual systems are intermediate between
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FIGURE 9 | Summary. (A) Flowchart of details of implementation of spatio-temporally efficient coding. (B) Experimental workflow in the present study.

strict spatially efficient coding and correlated neural responses
(Stringer et al., 2019). Therefore, to create biologically plausible
computational models, it is necessary to mitigate the spatially
efficient coding objective by combining firing-rate-dependent
correlations (de la Rocha et al., 2007). This enables more
accurate information transmissions of visual perception
mediated by visual hierarchical structures. As we focused
on integrating spatially efficient coding with temporally
efficient coding for computation in hierarchical structures,
this study did not incorporate the correlations between
neurons in spatially efficient coding, which will be pursued in
follow-up studies.

Based on our simulations, we observed that the learning
of bidirectional information transmission networks with
spatio-temporally efficient coding was hindered when the
balancing parameter λ was too small or too large (Figure 2D).
Therefore, it was necessary to confine λ within a certain range,
in which the magnitude of λ affected neural responses such

that a larger λ rendered responses more variable (Figure 2D).
Such increased variability is likely to originate from recurrent
responses via higher hierarchies. This was confirmed by the
observation that top-down synaptic weights become larger than
bottom-up synaptic weights when λ increased (Figure 2C).
Although a large λ attenuated the appropriateness of neural
representations (Figure 3), it rendered stronger top-down
synaptic connections in lower hierarchy (Figure 2C), which is
consistent with the previous finding that top-down synaptic
connections are stronger than bottom-up connections in
the lateral geniculate nucleus (Sillito et al., 2006). As to
why top-down synaptic weights increase with a larger λ

value (Figure 2C), we speculate that learning via spatio-
temporally efficient coding may increase the range of neural
responses to maximise entropy through top-down pathways.
While the bottom-up pathways originating from external
inputs are invariant during learning, the top-down pathways
originating from higher hierarchy neural responses are more
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flexible to adjustment to maximise entropy during learning.
An increase in these top-down synaptic weights predicts
impairment of eye movement tracking partially occluded visual
targets in schizophrenic patients (Adams et al., 2012). This
may be due to an increased higher hierarchy’s influence in
patients with schizophrenia. The increased higher hierarchy’s
influence in our simulations is that they do not stabilise neural
responses sufficiently to distinguish a given input from other
inputs (Figure 4C).

The deviant neural responses to unlearned inputs observed in
this study (Figure 5) arise from smooth neural representations
for learned inputs (distributed over the middle value). As
such, neural representations for learned inputs extrude neural
responses to unlearned inputs into a range of deviant neural
responses. We conjecture that the visual system may generate
deviant neural responses via a similar mechanism.

Spatio-temporally efficient coding predicted a bias in preferred
orientations (Figure 7). In this regard, spatially efficient coding
alone has been reported to predict bias in preferred orientations
(Ganguli and Simoncelli, 2014). Notably, spatio-temporally
efficient coding was able to predict this bias well, even when λ

was low, that is, when the spatially efficient coding objective was
less weighted (Figure 7D). Therefore, this bias prediction should
be viewed as a result of spatio-temporally efficient coding, not as
a result of spatially efficient coding alone.

The trial-to-trial variability of neural responses can be widely
observed in the brain (Malins et al., 2018; Daniel et al., 2019;
Nogueira et al., 2020; Li et al., 2021; Zhang et al., 2022). It
is observed as both electrophysiological signals (Daniel et al.,
2019; Li et al., 2021) and blood-oxygenation-level-dependent
signals (Malins et al., 2018; Zhang et al., 2022). These trial-
to-trial variability of neural responses are neuronal noise.
Assuming strict efficient coding, neurons must code different
information to minimise redundancy. This makes neural coding
susceptible to neuronal noise (Pryluk et al., 2019). If we
allow some redundancy, this coding can be made more robust
to neuronal noise (Pryluk et al., 2019). In the real brain,
neurons are known to perform robust coding (not strict efficient
coding) against neuronal noise by having smooth tuning curves
(Stringer et al., 2019). These smooth tuning curves are observed
from many experimental data (Chen and Hafed, 2018; Kutter
et al., 2018; Chettih and Harvey, 2019; Christensen et al.,
2019), supporting the mitigation of strict efficient coding.
Spatio-temporally efficient coding makes the neural responses
distributed around the middle value by minimising the temporal
difference of the neural responses (Figure 8). This is deviant
from strict efficient coding as it does not reach entropy
maximisation. Therefore, it may be closer to the coding principle
of the real brain.

The present study has several limitations. First, for simplicity,
our simulation model contained only two hierarchies. However,
it is necessary to explore how spatio-temporally efficient coding
operates in models with more hierarchies. We also modelled
64 neuronal units at each hierarchy, as we assumed that this
would be sufficient to represent the natural scene images used in
this study. Nevertheless, the interactions between the number of
neuronal units, levels of hierarchy, and spatio-temporally efficient

coding require further investigation. Second, we demonstrated
that the visual hierarchical structure could learn to represent
static natural scene images with spatio-temporally efficient
coding, but future follow-up studies will investigate whether the
visual hierarchical structure learns to represent moving scenes
using the same coding principle (also see, Sederberg et al., 2018).
Finally, the scope of the present study was limited to the visual
system given that its hierarchical structure is well documented,
but spatio-temporally efficient coding may be applied to other
systems (e.g., somatosensory system) or to movements and
planning. Recent efficient coding researches are expanding their
scope to perception generalisation (Sims, 2018), subjective value
(Polanía et al., 2019), and memory (McPherson and McDermott,
2020). It seems that spatio-temporally efficient coding can also
broaden its scope.

Conclusion
In the present study, we proposed spatio-temporally efficient
coding, inspired by the efficient use of given resources in
neural systems, as a neural coding mechanism to assign
representational functions to the hierarchical structures of
the visual system. Simulations demonstrated that the visual
hierarchical structure could represent the external world (i.e.,
natural scenes) appropriately using bidirectional information
transmissions (Figures 2–4). Furthermore, spatio-temporally
efficient coding predicted the well-known properties of visual
cortical neurons, including deviations in neural responses to
unlearned images (Figures 5, 6) and bias in preferred orientations
(Figure 7). Our proposed spatio-temporally efficient coding may
facilitate deeper mechanistic understanding of the computational
processes of hierarchical brain structures.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

DS: conceptualisation, methodology, software, validation, formal
analysis, investigation, resources, data curation, writing –
original draft, writing – review and editing, visualisation,
supervision, and project administration. S-PK: writing – original
draft, writing – review and editing, visualisation, supervision,
project administration, and funding acquisition. Both authors
contributed to the article and approved the submitted version.

FUNDING

This research was supported by the Brain Convergence
Research Programs of the National Research Foundation (NRF),
funded by the Korean Government (MSIT) (Nos. NRF-
2019M3E5D2A01058328 and 2021M3E5D2A01019542).

Frontiers in Computational Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 890447

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-890447 May 23, 2022 Time: 16:17 # 18

Sihn and Kim Spatio-Temporally Efficient Coding

ACKNOWLEDGMENTS

This research was previously uploaded to the preprint server
bioRxiv (Sihn and Kim, 2021). Available at: https://www.biorxiv.
org/content/10.1101/2021.08.13.456321v4.abstract.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.890447/full#supplementary-material

REFERENCES
Adams, R. A., Perrinet, L. U., and Friston, K. (2012). Smooth pursuit and visual

occlusion: active inference and oculomotor control in schizophrenia. PLoS One
7:e47502. doi: 10.1371/journal.pone.0047502

Attneave, F. (1954). Some informational aspects of visual perception. Psychol. Rev.
61, 183–193. doi: 10.1037/h0054663

Barlow, H. B. (1961). “Possible principles underlying the transformations
of sensory messages,” in Sensory Communication, ed. W. A. Rosenblith
(Cambridge, MA: MIT Press), 217–234.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intellig. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Berens, P., Ecker, A. S., Cotton, R. J., Ma, W. J., Bethge, M., and Tolias,
A. S. (2012). A fast and simple population code for orientation in
primate V1. J. Neurosci. 32, 10618–10626. doi: 10.1523/JNEUROSCI.1335-1
2.2012

Berkes, P., and Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of
complex cell properties. J. Vis. 5, 579–602. doi: 10.1167/5.6.9

Borst, A., and Theunissen, F. E. (1999). Information theory and neural coding. Nat.
Neurosci. 2, 947–957. doi: 10.1038/14731

Bourlard, H., and Kamp, Y. (1988). Auto-association by multilayer perceptrons
and singular value decomposition. Biol. Cybernet. 59, 291–294. doi: 10.1007/
BF00332918

Boutin, V., Franciosini, A., Chavane, F., Ruffier, F., and Perrinet, L. (2021).
Sparse deep predictive coding captures contour integration capabilities of the
early visual system. PLoS Comput. Biol. 17:e1008629. doi: 10.1371/journal.pcbi.
1008629

Brouwer, G. J., and Heeger, D. J. (2009). Decoding and reconstructing color from
responses in human visual cortex. J. Neurosci. 29, 13992–14003. doi: 10.1523/
JNEUROSCI.3577-09.2009

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.
Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214
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