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a b s t r a c t

Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statis-
tics. Mathematical simulation models for transmission have implications in solving public and personal
health challenges. The SIR model uses a compartmental approach including dynamic and nonlinear
behavior of transmission through three factors: susceptible, infected, and removed (recovered and
deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of
the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread
of a real-world disease. Different models of disease including the SIR, SIRmp and SEIRqqr model are com-
pared with respect to their ability to predict disease spread. Physical distancing impacts and personal
protection equipment use are discussed with relevance to the COVID-19 spread.
� 2021 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ences & Exhibition on Nanotechnologies, Organic Electronics & Nanomedicine – NANOTEXNOLOGY
2020. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The First World War ravaged the world with death and destruc-
tion. A key contributor to the enormous death toll was not war, but
a product of its chaotic environment; the 1918 ‘‘Spanish” Influenza.
This H1N1 virus of avian origin spread throughout 1918–1919,
infecting over 500 million individuals, and killing at least 40 mil-
lion people worldwide [31,21]. Lack of sanitation and resources
during wartime, and no progress in the development of a vaccine,
limited worldwide control efforts to non-pharmaceutical interven-
tions such as isolation and use of informal disinfectants [14]. Due
to the immense, rapid spread of disease, countries were unable
to suitably prepare themselves to prevent or control the influenza.

Now, almost a century later, the world is rocked again by the
emergence of the new strand of coronavirus disease (COVID-19).
This novel virus was first reported in December 2019 in Wuhan,
China and has since spread to pandemic proportions [28]. As this
virus can be transmitted person to person [28], many protective
measures such as masking, social distancing, and most recently

vaccines have been put in place to reduce the danger of human
interactions.

COVID-19 targets the human respiratory system, resulting in
clinical findings such as high fever, dyspnea and invasive multi-
lobed lesions as seen in chest radiographs [18,27]. It has been
reported that the symptoms of this virus start about 5 days after
contracting it [28]. These symptoms tend to get progressively
worse as time goes on, some cases leading to death, while others
successfully recover [18]. This is a major public threat since thou-
sands of Canadians have been hospitalized due to respiratory
issues along with other flu-like symptoms after being diagnosed
with COVID-19 [28]. Significant effort has been made in the last
year to develop new and effective vaccines [41,42].

While the world now has the advantage of more accessible
resources and a better understanding of pandemics compared to
1918, there are still the problems of disease prevention and con-
trol. A way to combat this is to model the disease over time, to bet-
ter understand the gravity of the situation [5]. Epidemics play a
major role in understanding disease transmission by studying dis-
ease distribution, sources of diseases, causes of diseases, and meth-
ods of disease control [16]. Using data of epidemic curves, one can
use mathematical models to extrapolate disease data and trends to
prepare for potential disease burden and determine public policies
to mitigate risks of spread. Calvetti et al. have used meta-
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population network models for understanding, predicting, and
managing the COVID-19 epidemic [3,5].

The Susceptible-Infected-Removed (SIR) model and its deriva-
tives is one way to understand the transmission of diseases and
predict future outcomes regarding COVID-19 cases. This study uses
the SIR model, and variations of it such as the SIRmp model,
Susceptible-Exposed-Infected-Removed (SEIR) model, and the
SEIRqqr to illustrate COVID-19 spread. This study also uses the
Lambert W function to analyze the SIR and SEIR models to better
understand disease spread.

Section 2 of this paper discusses data and methods used to illus-
trate COVID-19 trends through different models such as the SIR,
SIRmp, SEIR and the SEIRqqr models. By using Canadian data to
model the current trend of COVID-19, it is possible to create graphs
that depict where the individuals stand with respect to time during
the spread of disease. Using a mixing factor m, it is possible to
introduce a human-behaviour or social distancing factor into the
situation. Section 3 presents the results of our work and simula-
tions of Canadian COVID-19 data in context of the afore-
mentioned models. In Section 4, the results obtained from our
analysis are discussed. Finally, Section 5 of this paper presents
our conclusions.

2. Methods

In this study, open-source COVID-19 datasets provided by Pub-
lic Health Agency of Canada’s Public Health Infobase is used [4].
The data ranges from January 22, 2020 to September 6, 2021, with
each time series tracking an epidemiology statistic. The three-time
series of focus are count of confirmed cases, deaths, and recovered
cases nation-wide in Canada.

2.1. SIR model

The SIR model is a representation that divides a population with
respect to a disease’s impact on an individual over time. An indi-
vidual can be categorized as susceptible (S(t)), infected (I(t)), or
removed (R(t), dead or cured), denoted by S, I and R respectively,
along an independent variable, time [29]. One of the most common
SIR models is the classic Kermack–McKendrick Model for conta-
gious diseases in a closed population over time, which illustrates
rapid changes in the number of infected patients during epidemics.
It is assumed that there is a fixed homogeneous population size,
random population mixing, instantaneous incubation period, and
acute onset of disease [15,34,35]. The model variables can be rep-
resented as fractions:

s ¼ S
N

ð1Þ

where s is a fractional representation of the number of susceptible
individuals (S) over a selected population (N) over time.

i ¼ I
N

ð2Þ

where i is a fractional representation of the number of infected indi-
viduals (I) over a selected population (N) over time.

r ¼ R
N

ð3Þ

and r is a fractional representation of the number of removed indi-
viduals (R) which include the recovered and deceased individuals
over a selected population (N) over time.

Overall, these equations must add to 1:

sþ iþ r ¼ 1 ð4Þ

Using these equations, it is possible to extract three nonlinear dif-
ferential equations that aid in tracking the illness progression. We
present these equations below.

The Susceptible Equation:

ds
dt

¼ �bsi ð5Þ

where b represents the infection rate, the probability per day
that an I-person can infect a S-person, assuming the absence of
social distancing. The Infected Equation:

di
dt

¼ bsi� ci ð6Þ

The Removed Equation:

dr
dt

¼ ci ð7Þ

where the effective c represents the removal rate (encompassing
both the recovered and deceased individuals), the probability per
day that an I-person transitions into an R-person (becoming non-
infectious permanently) [6].

The ratio of S-persons transitioning into I-persons is the ratio of
b to c, referred to as the Reproduction Number; k.

k ¼ b
c

ð8Þ

The higher the value of k, the more transmittable the disease is; the
infection rate eclipses the removal rate.

While R0 usually denotes the reproduction number, this paper
uses R0 to denote the initial value of the removed variable at time
t = t0.

There is always some natural immunity, so it is reasonable to
assume that r0 is greater than 0. If the population has been partly
vaccinated, the value of r0 might even be 0.40 or more. Similarly,
even without vaccination, a prior asymptomatic spread of the dis-
ease in the population may have resulted in r0 being perhaps 15 or
20 percent of the population [12].

Some other variables can be introduced for the SIR model for
convenience of comparison with information reported about the
course of the epidemic. The total number of cases since the begin-
ning of the epidemic is C. The initial value of the total number of
cases, prior to time t = t0, is C0. The fraction of the number of
new cases per day is j. The variable j is defined by:

j ¼ dC
dt

ð9aÞ

Therefore, considering a closed population (N � 1) this equation
becomes:

j ¼ bsi ð9bÞ
where j is the number of cases per day in a closed population.

There is a possibility that some individuals may have been
included in the R-group due to natural immunity or vaccination
immunity, rather than as recovered cases. Therefore, by tracking
the decline in S-persons, it is possible to track the increase in total
cases, c, while excluding the individuals with immunity [12]. This
indicates that s can be used as an independent variable to find i as a
function of s:

i sð Þ ¼ 1� s� r sð Þ ð10aÞ

where r(s) can be written as r0 � 1
k ln

s
s0

� �
.

i sð Þ ¼ 1� s� r0 þ 1
k
ln

s
s0

� �
ð10bÞ

Dividing Eq. (6) by Eq. (5) results in:
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di
ds

¼ c� bs
bs

ð11Þ

The solution of this equation for i gives a Lambert W Function as
implicitly seen in the expression given in Eq. (10b). This remarkable
function has created a renaissance in the solution of diverse prob-
lems in innumerable fields of knowledge [9]. The solution is as
follows:

s ¼ �1
k
Wð�kc exp kið ÞÞ ð11aÞ

where c ¼ i0 þ s0 � 1
k lnðs0Þ is the constant of integration to be deter-

mined from initial conditions by solving Eq. (11) with initial condi-
tion i s0ð Þ ¼ i0. Since Eq. (11a) has a Lambert W function with an
exponential argument, this can also be expressed as an Omega
Wright function [37].

To continue, it is possible to use r as an independent variable as
well. The expressions of s can be found with respect to r:

s rð Þ ¼ s0exp½�k r � r0ð Þ� ð12aÞ
If an R-curve graph shows a continued increase, it would indicate an
increase in number of removed individuals [3].

Eq. (12a) can then be substituted into the equation:

di
dr

¼ bs� c
c

¼ ks� 1 ð12bÞ

to give:

di
dr

¼ ks0exp �k r � r0ð Þ½ � � 1 ð12cÞ

This Eq. (12c) can be integrated to provide an equation that
illustrates i as a function of r:

i rð Þ ¼ i0 þ s0 1� exp �k r � r0ð Þ½ �f g � r � r0ð Þ ð13aÞ

i rð Þ ¼ 1� r � s0exp �k r � r0ð Þ½ � ð13bÞ
If there are very few infectious people, the I-group becomes a very
small fraction of the population, therefore s + r� 1. In addition, peak
infections occur when di/dt = 0, the time when the I-group is the
largest, assuming t = t1 at Imax, it is possible to rework the Infection
Equation as:

bs t1ð Þi t1ð Þ ¼ c t1ð Þiðt1Þ ð14aÞ

bs t1ð Þ ¼ c ð14bÞ

s t1ð Þ ¼ c
b
¼ 1

k
ð14cÞ

Therefore, the lower the value of k, the larger the number of
people entering the R-group. This is as the removal rate will over-
power the rate of individuals entering the I-group.

When k < 1; c > b. This indicates that the s(t) curve will decrease
past r(t) curve, which will increase. When k = 1, the ratios of s(t)
and r(t) are equal and will inverse after the point of equivalence.
When k < 1, the ratio of s(t) was greater than r(t). This demon-
strates that the i(t) value was increasing as the infection rate, b,
is greater than the removal rate, c. A point of inflection occurs in
the i(t) curve at Imax = t1 which illustrates that as the ratios inverse
between the s(t) and r(t) curves. The k value decreases, indicating a
lower b value; implying a decrease in members in the I-group and
a descending i(t) curve.

The value of the inflection points can be found using the second
derivative of s with respects to t:

d2s
dt2

¼ �b
d
dt

si½ � ð15Þ

As the epidemic dies out, the number of infectious people
approaches zero, so an asymptotic limit is formed; t ?1, and
therefore, s + r = 1. Inflection points will be discussed in greater
detail in Section 4.2. It is interesting to observe that studies in
the context of the inverse SIR model have been made by many
researchers [6,8,38,40] who derive an analytic solution for the
more general case of a time-dependent infection rate that is not
limited to a certain range of parameter values. Kröger and Schlick-
eiser were able to relate all parameters of the SIR model to the
cumulated number of infected population and its first and second
derivatives at an initial time t = 0, where data is assumed to be
available [38,40]. They could relate by a suitable dimensionless
time variable tau to the natural logarithm of the susceptibility
function S(s) and thereby obtain an analytic solution for arbitrary
time dependence of the infection rate. They derived expressions in
terms of the Lambert-W function for S(s) and also j(s).

2.1.1. SIRmp model
The SIRmpmodel, as derived from the SIR model, focuses on the

relationship between disease transmission and the effect of public
health measures. Consider a situation in which public health
guidelines are introduced to slow the frequency, duration and con-
tact distance between S-people and I-people. This can be repre-
sented by making the value of the parameter b and c vary with
time with m and p as logistic equations as listed above Table 2
and are used as scaling coefficients of b and c. However, a concep-
tually simpler way to describe such public health measures is to
keep b constant and multiply it by a time-varying mixing factor
m to reflect changes in social distancing. In the present section,
we assume that b is constant, and develop the equations and
approximations for the standard SIR model by setting all m values
to 1.

As such, the differential equations in population fraction nota-
tion are:

ds
dt

¼ �bmsi ð16Þ

di
dt

¼ bmsi� ci ð17Þ

dr
dt

¼ ci ð18Þ

sþ iþ r ¼ 1 ð19Þ
Dividing Eq. (17) by Eq. (16) results in:

di
ds

¼ �bmsþ c
bms

ð20aÞ

The solution of equation of (20a) is given as:

s ¼ � 1
km

Wð�ckm exp kmið ÞÞ ð20bÞ

where c ¼ i0 þ s0 � 1
km lnðs0Þ is the constant of integration to be

determined from initial conditions by solving Eq. (20a), with initial
condition i s0ð Þ ¼ i0.

This equation is in terms of the Lambert W function, which is
defined after Eq. (27) below.

The equations for the fraction of total cases per day, j and the
total cumulative cases, C are [33]:

j ¼ dC
dt

ð21aÞ

or

j ¼ bmsi ð21bÞ
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and

C ¼ C0 þ
Z t

0
jðsÞds ð22aÞ

or

C ¼ C0 þ b
Z t

0
m sð Þs sð ÞiðsÞds ð22bÞ

2.2. SEIR model

The SIR model can be extended using the Susceptible-Exposed-
Infected-Removed (SEIR) variant. This model also considers the
susceptible, infected and removed populations but unlike the SIR
model it also considers the exposed population; those who are
incubating the virus but are not infectious or infected [22]. The
SEIR model adds another layer of complexity to the SIR model,
by allowing the analysis of conditions of susceptible and infected
populations during an epidemic outbreak [11].

The SEIR model’s governing equations are:

ds
dt

¼ �qbsi ð23Þ

de
dt

¼ qbsi� ae ð24Þ

di
dt

¼ ae� ci ð25Þ

dr
dt

¼ ci ð26Þ

where the parameters are defined as [5,25]:
a: incubation rate from the exposed group to the infected

group,
b: infection rate,
c: removal rate from the infected group to removed group,
q: the reduced spread rate factor (0 � q < 1).
The equations have been modified to properly reflect a closed

population.
This study examines the use of the Lambert W function in con-

junction with the SIR and SEIR models, the multivalued inverse of
the function w ? wew [9]. In the 18th century, scientist Johann
Lambert gave a solution to a trinomial equation, upon which fur-
ther work by Euler and Sir Edward Wright led to the now modern
definition of Lambert’s original work [32]. Their function, named to
honour Lambert, is as follows:

W zð ÞeW zð Þ ¼ z ð27Þ
The Lambert W function is implicitly elementary in that it is

defined by an equation composed of only elementary functions
but is not an elementary function itself. It has applications in a
variety of fields ranging from quantum physics, black holes to even
the spread of disease [13].

Corless et al.’s article regarding the Lambert W function further
studied the function’s applicability in epidemics. Let us assume in a
population of n people, everyone has the same contact with a ran-
dom others [9]. If c is the weak connectivity of this random net,
and disease spreads through transitivity to those in close contact
with the infected individual, the total infected population is
approximated as cn for large n, where:

c ¼ 1� e�ac ð28Þ
This formula can also be applied for conditions where a is a

fixed integer, as well as when a is an expected value in that it is

not fixed for all individuals and may not be an integer [17,30].
Re-writing the above formula we obtain the following:

aea ¼ a 1� cð Þea c�1ð Þ ð29aÞ
One can determine:

c ¼ 1� T
ae�að Þ
a

¼ 1�W
�ae�að Þ
a

ð29bÞ

where a � 1, using the principal branch of T (of the Tree func-
tion) and W (of the Lambert W function) [9].

This epidemic problem is closely tied to a phenomenon
described by Erdös and Rényi in which the epidemic problem is
related to the size of the ‘giant component’ in a random graph
[10]. Essentially, when a graph on n vertices with m = 1/2 an edges
is randomly chosen, it is almost certain it has a connected compo-
nent with approximately cn vertices (for c given by Eq. (29b))
when a � 1 [9].

2.2.1. SEIRqqr model
The SEIRm model is a modification of the SEIR model, to intro-

duce a mixing coefficient. The SEIRmmodel trials demonstrate var-
ious stabilities of the COVID-19 virus situation, based on an
unpublished report and private communications by Ken Roberts
[26]. By observing the value of m, the effect of social distancing
policies and other public health measures can be estimated. An
m value of 1.0 represents normal (pre-pandemic) social mixing
practices, and an m value lower than 1 (say 0.6 or 0.8) represents
the introduction of social distancing and other measures to reduce
infectivity. Very low m values are unrealistic, because of the eco-
nomic impact. The ideas of a mixing factor are consistent with
more recent work, involving mobility data and masking behavior.
The paper of Comunian, et al(2020) , is relevant to the SEIRm
model. We further generalized the SEIRm model and modelled a
SEIRqqr model with q, q, r being mixing coefficients represented
by logistic equations as listed above Table 3 and are used as scaling
coefficients for a, b and c.

2.2.2. The Planck-like black body distribution
While analyzing several SIR models of disease, it was observed

that some of the infection curves looked like Planck’s blackbody
distribution curves due to the realistic asymmetry of the infection
data curves [23]. Keeping this in perspective, it was decided this
study would simulate infection curves using an asymmetric func-
tion rather than a purely symmetric one. Max Planck theorized that
mode energies of the blackbody are not continuously distributed
but are quantized. He devised a law for blackbody radiation as fol-
lows [2]:

Bv Tð Þ ¼ A
2hma=c2
� �
ehm=kT � 1

; a ¼ 3 ð30Þ

where the parameters are defined as:
Bv : spectral radiance,
h: Planck’s constant,
c: speed of light in a vacuum,
k: Boltzmann constant,
m: frequency of the electromagnetic radiation,
T: absolute temperature of the body,
a: any value other than 3 to run Planck-like simulations in other

situations.
Therefore, this formula represents the spectral-energy distribu-

tion of radiation emitted by a blackbody.
The similarity of the SIR model infection curve suggests that it

may be reasonable to model the infection curve for a few different
values of a like in a Planck Blackbody Distribution function with an
appropriate definition of the constants C1 and C2 [32].
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In this paper, two adjusted formulas inspired from the Planck-
like Blackbody Distribution are proposed to model infection as a
function of time.

I tð Þ ¼ C2 tað Þ
eC1 t � 1

ð31Þ

where a can be any positive integer.

3. Results

The figures below display the results of the all models (SIR,
SIRmp, SEIRqqr) fitted onto the given Canadian COVID-19 dataset
by parametrically solving the system numerically using Paramet-
ricNDSolve from Wolfram Mathematica (version 12.2.0.0). The
respective model parameters were derived by using Nonlin-
earModelFit to fit the data to b and c for the first 320 days. For
the sake of conciseness, the authors have focused on the first wave
(subdivided into two time regions: 50–100 and 101–177 days) and
the second wave (200–320 days). There is also a plot of the overall
COVID removed and infected case counts (see Fig. 1) from where
these days for each wave was taken from. In Figs. 2–9, solid print
lines refer to predicted trends, while the dotted lines refer to the Cana-
dian data.

During this study, it was found that none of the models were
able to fully capture disease spread using one general approach –
as such, it was found that parameters for the first wave had to be
fitted separately for two separate time windows for the SIR and
SEIR models as recommended in [7] and varied for SIRmp model
in order to best capture disease spread. The ParametricNDSolve
function in Mathematica 12.2.0.0 was used to solve the parame-
ters. This is a proprietary Mathematica function that finds a
numerical solution to a system of ordinary differential equations
for a function with parameters. It solves the differential equations
by going through several different stages, depending on the type of
equations. Each stage is handled by a method. The actual stages
used and their order are determined by the Mathematica function
NDSolve based on the problem to be solved using boundary value
problem methods. These functions and methods are proprietary
within the Mathematica software [25]. The primary function of
ParametricNDSolve and ParametricNDSolveValue is to process
the input differential equations along with the parameters and
return a ParametricFunction. When a specific set of parameters
are provided, the ParametricFunction internally calls NDSolve to

solve the problem. The implementation details of how NDSolve
solves a particular problem is outlined in https://reference.wol-
fram.com/language/tutorial/NDSolveOverview.html.

In the tables, the P-value signifies the probability of finding the
modeled results least extreme to the observations under the
assumption of the null hypothesis. Hence, the smaller the p-
value is, the less likely it is to violate the null hypothesis and the
result is deemed significant. The t-statistic is the ratio of the depar-
ture of the estimated value of a parameter from observations to its
standard error. It is generally the case that when these values are
greater than 2 or less than �2, the model fit is better.

3.1. SIR model

For the SIR model, b is estimated to be 0.18, 0.030 and 0.13 for
the respective time intervals while c is estimated to be 0.070,
0.029, and 0.089 (refer to Table 1). The population (N) considered
is 3,759,000, and initial infection, i0 ¼ 1 /N. The SIR model pre-
dicted the infected and removed case counts accurately for the first
55 days. After which, the predicted trends fail to capture the rise of
infected and removed case counts as fast as they had occurred.
Until day 94 in the infected curve and day 96 in the removed curve,
the predicted trend was underestimated compared to the actual
trend (Fig. 2). From days 101–177, the predicted trends linearly
trace the infected and removed case counts (Fig. 3). In the removed
curve from day 200–310 the predicted trend is severely underesti-
mated compared to the actual trend. After day 310, the predicted
trend is overestimated compared to the actual trend. The infected
curve is accurately predicated until day 255. Day 256 onwards, the
predicted trend is overestimated compared to the actual trend
(Fig. 4).

3.1.1. SIRmp model
For the SIRmp model, b is estimated to be 0.18, 0.030 and 0.13

for the respective time intervals while c is estimated to be 0.070,
0.029, and 0.089 (refer to Table 2). The m value used is 1.05 to
modify b and pðtÞ ¼ 1� 0:004t as a variation in c (refer to Table 1).
The variation of the SIR model parameters as a function of time
was recently recommended in [38,40] as well. For the infected
curve from days 56–94 the predicted curve underestimates the
actual trend. From day 95 onward, the predicted trend overesti-
mates the actual trend. In the removed curve, from days 70–100
the predicted trend is underestimated compared to the actual

Fig. 1. The total number of infected (blue) and removed (orange) individuals in Canada. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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trend (Fig. 5). In the removed curve, from days 200–309 the pre-
dicted trend is underestimated compared to the actual trend. After
day 310, the predicted trend is overestimated compared to the
actual trend. For the infected curve, the trend is followed from days
200–255. From day 256 and onward, the predicted trend is overes-
timated compared to the actual trend (Fig. 6).

Using the following logistic equations modifies the values of m
and p to improve the overall SIRmp model performance:

m ¼ 1
½1þ e �tð Þ� ð32aÞ

p ¼ 0:7
½1þ e �tð Þ� ð32bÞ

3.2. SEIRqqr model

For the SEIRqqr model, it is assumed that q = 1, q = 1 and r = 1 to
produce the classic SEIR model results. In this model, a is esti-
mated to be 0.030, and 0.19, b is estimated to be 0.28, and 0.14

and c is estimated to be 0.0045, and 0.15 (refer to Table 3). Note
that q = 0 implies everyone in the society is quarantined, while
q = 1 implies no social distancing. The SEIRqqr model is able to fol-
low the general trend of the actual case counts for days 50–100 of
the first wave. In the infected curve, it is important to note that
from days 69–92 the actual trend overestimates the predicted
trend. From day 93 onwards the actual trend underestimates the
predicted trend. The predicted trend for removed cases is slightly
overestimated until day 80 (Fig. 7). In the second wave, from days
200–320, the predicted trends for both infected and removed fol-
low the general linear trends. However, in the removed curve, it
is important to note that from days 200–255 the predicted trend
underestimates the actual trend. Also, in the infected curve, from
day 285 onwards the actual trend overestimates the predicted
trend (Fig. 8).

Using the following logistic equations modifies the parameters
below and improves the SEIR qqr model performance:

q ¼ 1
½1þ e �tð Þ� ð33aÞ

Fig. 2. SIR model prediction of infected and removed cases with respect to data for Canada for days 50–100.

Fig. 3. SIR model prediction of infected and removed cases with respect to data for Canada for days 101–177.
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r ¼ 0:8
½1þ e �tð Þ� ð33bÞ

q ¼ 1
½1þ e �tð Þ� ð33cÞ

3.3. Planck-Like blackbody function

Fig. 9 displays the results of the predicted infected curves after
conducting a non-linear fit of the parameters C1 and C2. The param-
eters C1 and C2 were estimated to be 0.070 and 2.78 � 10-11 respec-
tively (see Table 4). Several trials of different a values were run,
and it was determined that an a value of 9 yielded the best fit
for modelling COVID-19 data (Fig. 9) getting a good estimation of
the peak number of infected cases.

4. Discussion

4.1. Model interpretations

Social distancing is the practice of reducing physical contact to
reduce opportunity for spread of transmissible diseases [7]. Com-
mon practices include social isolation, self-quarantine and cancel-
lation of mass gatherings. Matrajt and Leung used a mathematical
model to illustrate how implementing social distancing measures
earlier in an epidemic will delay the epidemic curve while inter-
ventions started later will flatten the curve. The model also illus-
trated that the epidemic would rebound when interventions are
suspended, indicating the importance of maintaining social dis-
tancing practices for the safety of the population [20].

In this study, the SIR and SIRmp models demonstrate that while
initially a good fit for modelling disease spread, it veers away from
actual data as time passes since it fails to account for several
anthropological factors such as adherence to prevention methods.
The implication that b and c values vary in the model to best fit the

Fig. 4. SIR model prediction of infected and removed cases with respect to data for Canada for days 200–320.

Fig. 5. SIRmp model prediction of infected and removed cases with respect to data for Canada for days 50–100.

R. Jayatilaka, R. Patel, M. Brar et al. Materials Today: Proceedings 54 (2022) 101–112

107



results suggest that models that vary these parameters would bet-
ter fit the actual data, and therefore be able to better predict the
disease spread. Overall, the SEIRqqr model was able to predict dis-
ease trends better, but it also fails to fully capture the impact of
anthropological factors. These mathematical models offer predic-
tions of disease trends in controlled situations that do not consider
the impact of anthropological factors such as social distancing [8].
Comunian et al. (2020) have done a thorough study about the
application of an inversion of the SIR model to the COVID-19 pan-
demic [8]. They have emphasized the importance of calibration of a
SIR model with official international data for the COVID-19 pan-
demic. They discuss the inherent difficulties in the solution of
inverse problems. The role and relevance of reliable data to provide
proper calibration of the parameters is essential for successful
model predictions. Calvetti et al. (2020) have used modified SEIR
models that include infectious and asymptomatic individuals [3].
The network model uses easily interpretable parameters estimated
from the available community data. They estimate their parame-
ters using Bayesian techniques [3]. One way to combat this prob-

lem would be to focus on models that incorporate the addition of
other factors such as public compliance and mixing factor. In
recent work, the SEIRm model results displayed that the mixing
factor, m, decreased rapidly to 0.2 levels over approximately the
first 150 days since April 10, 2020 [2]. The m factor then proceeds
to increase to 0.3779 by September 16, 2020 [26].

The m factor in the SEIRm model plays a crucial part in the sig-
nificance of this model. The values of the m factor indicate the
severity of the situation regarding COVID-19 case numbers. As
indicated earlier, the greater the value of m, the more severe the
situation. Regarding COVID-19, if a greater m value was seen, this
would indicate that numbers are rising which then puts greater
pressure on hospitals due to a rapid increase in patients. A higher
m value would not only affect hospitals but would also impact
equipment manufacturing companies and companies that are
working to develop a vaccine for COVID-19. Alternatively, a lower
m value would indicate a more controlled or lower number of
COVID-19 cases. This lessens the strain on hospitals, personal pro-
tection equipment manufacturers, and labs working on vaccine

Fig. 6. SIRmp model prediction of infected and removed cases with respect to data for Canada for days 200–320.

Fig. 7. SEIRqqr model prediction of infected and removed cases with respect to data for Canada for days 50–100.
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Fig.8. SEIRqqr model prediction of infected and removed cases with respect to data for Canada for days 200–320.

Fig. 9. Blackbody distribution fit of infected cases using a Planck Function (a = 9) with respect to data in Canada from days 0–177.

Table 1
SIR model parameters used in Figs. 2-4.

Days Parameter Estimate Standard Error t-Statistic P-Value

50–100 b 0.18 0.0067 27.41 2.61 �10�48

c 0.070 0.0070 10.07 6.97 �10�17

101–177 b 0.030 0.00034 86.69 2.54 �10�131

c 0.029 0.00043 68.04 9.82 �10�116

200–320 b 0.13 0.00058 220.12 6.96 �10�279

c 0.089 0.00057 156.46 1.49 �10�243

Table 2
SIRmp model parameters used in Figs. 5-6.

Days Parameter Estimate Standard Error t-Statistic P-Value

50–100 b 0.17 0.00059 292.71 1.71 �10�148

c 0.082 0.00080 102.33 4.98 �10�103

200–320 b 0.11 0.0068 15.79 5.45 �10�39

c 0.099 0.010 9.71 5.01 �10�19
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development. Moreover, the m value also allows for a hypothetical
timeline to be developed. A timeline would be a very useful aid in
creating a plan for various areas in order to properly control the
spread of COVID-19.

This study’s results on various modified disease spread models
illustrate the importance of social distancing and its effects on the
rise of infections during a pandemic. The ability of a population to
adhere to social parameters set by the government can greatly
influence and control the spread of an infection. The m factor pre-
sents a good representation of adherence to social parameters;
however, it is important to note that many other factors can be
introduced to better reflect these anthropological variables which
are subject to change.

4.2. SIR model inflection points

An important aspect of disease modelling is understanding the
peak of infection. An inflection point in the curve would suggest
the peak of infection has been reached which may not be visible
using the variable, time (t), in the earlier stages of the spread. For
this reason, it is important to be able to use the s, i, and r variables
independently to derive the inflection point without depending on
time (t) as a variable.

In this case, the condition to determine an inflection point are as
follows, recalling that Eq. (5) states ds

dt ¼ �bsi:

s} ¼ d2s
dt2

ð34aÞ

For an inflection point to occur, s’’ = 0 and si are constant

ds
dt

iþ di
dt

s ¼ 0 ð34bÞ

di
dt

¼ bsi� ci ð34cÞ

Eq. (34c) can be rewritten as:

ds
dt

i ¼ �s
di
dt

¼ �si bs� cð Þ ð34dÞ

Factoring out i, we have a simplification,

ds
s
¼ � bs� cð Þdt ð34eÞ

or

ds
s bs� cð Þ ¼ �dt !

Z
1
s
� b
bs� c

� �
ds ¼ c

Z
dt ð34fÞ

log sð Þ � log bs� cð Þ ¼ ct ! log
s

bs� c

� �
¼ ct ð34gÞ

tinflection ¼ log sð Þ � log bs� cð Þ
c

ð34hÞ

4.3. Planck–Like blackbody distribution and infectivity

When analyzing several SIR models of disease, it was observed
that the infection curve can resemble the Planck-like Blackbody
function curves. Planck’s Blackbody Distribution is known to have
two dependents: wavelength and temperature. While the SIR mod-
els illustrate singular dependence, the SIRmp model introduces a
second factor that, much like how the temperature factor in a
blackbody affects the peak of the intensity, can affect the rise of
infections according to time and change the peak’s position on
the graph.

A blackbody is a physical phenomenon that absorbs all inci-
dence of radiation while emitting a continuous spectrum depen-
dent on its thermal conditions. The higher the temperature of the
blackbody, the higher the peak of re-emission intensity at a lower
wavelength [39].

This can be compared to the infection curve in the SIRmp
model. The mixing factor, referred to as the m factor, is much like
the temperature factor of the blackbody. If the population of a
country is akin to the blackbody, a high m factor value of a popu-
lation will allow for a maximum peak of infection to occur earlier
during the pandemic. This is similar to the temperature variable in
a blackbody, which can induce a maximum peak of the intensity at
a lower wavelength. This allows the m factor to present a measure
of how much a population obeys social distancing measures pro-
vided by the government.

This comparison presents a good approach as to how the infec-
tion rate of a virus can depend on both time and compliance attri-
butes of a population.

5. Conclusions

The equations used in the SIR model were time dependent [1].
This study examined not only the time dependent equations but
also derived the different variable relationships to one another.
Specifically, this study derived the equation for the number of
infected cases depending on the number of susceptible individuals,
which in turn was found with respect to removed individuals.
These equations allow for the study of infection in relation to
transmission. That is, using these models, one can now mathemat-

Table 3
SEIRqqr model parameters used in Figs. 7-8.

Days Parameter Estimate Standard Error t-Statistic P-Value

50–100 a 0.030 0.0024 12.34 9.84 �10�22

b 0.28 0.026 10.68 3.54 �10�18

c 0.045 0.0023 19.43 1.47 �10�35

200–320 a 0.19 0.043 4.48 0.000012
b 0.14 0.012 12.05 1.87 �10�26

c 0.15 0.012 12.82 5.46 �10�29

Table 4
Parameters for Planck Blackbody.

Parameter Estimate Standard Error t-Statistic P-Value

C1 0.070 0.00024 288.63 8.17 �10�232

C2 2.78 �10�11 8.85 �10�13 31.44 5.62 �10�73
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ically study the relationship between infected, susceptible and
removed individuals in epidemic models.

With the SEIRqqr model, this study wanted to examine the
impact of protective procedures on reducing disease spread. The
equations were modelled to account for the effect of social distanc-
ing on the SEIRqqr model - particularly, the exposed and infected
groups by the variable q [36]. While the feasibility of complete
adherence is difficult, these results support ideas of protective
measures in reducing exposure - therefore, infection - of disease,
particularly with the encouraging emergence of vaccines such as
Pfizer, Moderna, and Johnson & Johnson etc. [41–43]. The models
discussed in this study have a good range of variability and appli-
cability – but they are not perfect. It is important to note that these
models assume ideal conditions so they may not truly reflect the
true situation – for example, these models do not consider the
implication of asymptomatic cases which may not be identified
[6]. The reality of rapidly changing data and the need to update
information based on the new data emphasizes the importance
of dynamic rather than static modelling [3]. Moreover, the capabil-
ity of model updating on a regular basis needs to be developed [3].
Another major consideration of using these mathematical models
is the problem of model calibration. In order to determine accurate
parameters that reflect measured data, the inverse modelling prob-
lem must be solved [3,6,8,19,38]. That is, one must devise a
method to accurately estimate the parameters of these mathemat-
ical models to reproduce measurable data reflective of the true sit-
uations [3,6,8,19,38]. As this study focused on ideal conditions, the
inverse modelling problem was not addressed.

To our knowledge, no other study has examined COVID-19
transmission with respect to the SIR model using specific variable
related derivations, the SEIRqqr model with focus on impact of
social distancing and the similarities of the infection curves to
Planck-like blackbody functions. This study presented several
mathematical approaches for the modelling of disease transmis-
sion using methodologies ranging from the SIR model to the
SEIRqqr model, and simulations by the Planck blackbody function.
Specifically, it demonstrated practical applications of these models
by comparing their results fitted onto the Canadian COVID-19
cases data. Through the predicted values from each model, mean-
ingful inferences about the behaviour and trajectory of the COVID-
19 pandemic were drawn.

The results of this study can be used to better understand - or
help confirm - the trends of COVID-19 transmission in a Canadian
context. Further studies can use this data to further investigate the
efficacy of using these mathematical models in extrapolating
COVID-19 transmission trends – including trends of new danger-
ous variants such as Delta and Omicron.
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