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ABSTRACT
We analyse the spectrum of the Hamiltonian of a photon propagating in a strong magnetic
field B ∼ Bcr, where Bcr = m2

e
� 4.4 × 1013 G is the Schwinger critical field. We show that the

anomalous magnetic moment of a photon in the one-loop approximation is a non-decreasing
function of the magnetic field B in the range 0 ≤ B ≤ 30 Bcr. We provide a numerical
representation of the expression for the anomalous magnetic moment in terms of special
functions. We find that the anomalous magnetic moment μγ of a photon for B = 30 Bcr is
8/3 of the anomalous magnetic moment of a photon for B = 1/2Bcr. Based on the recent
observational evidence for vacuum birefringence from the neutron star RX J1856.5−3764
by Mignani et al., we suggest vacuum birefringence, the anomalous magnetic moment of
the photon and the Faraday rotation angle as key observables for future experiments and
measurements.

Key words: astroparticle physics – magnetic fields – scattering – instrumentation: polarime-
ters – stars: neutron – pulsars: general.

1 IN T RO D U C T I O N

The effective interaction that results due to the corrections from
the virtual excitations of the charged quantum fields, such as elec-
tron e− and positron e+, leads to well-known interesting effects
(Baier & Breitenlohner 1967; Dittrich & Gies 2000). More re-
cently, other interesting aspects of the quantum vacuum have been
explored by Shabad & Usov (2011), Villalba-Chávez & Shabad
(2012) and Altschul (2008) to name but a few. In the case of elec-
tromagnetic fields that vary slowly with respect to the Compton
wavelength, i.e. frequencies much less than the pair creation thresh-
old, the one-loop quantum electrodynamic effective Heisenberg–
Euler Lagrangian (HEL) describes the dominant physical effects
(Heisenberg & Euler 1936; Dunne 2005; Shabad & Usov 2011;
Villalba-Chávez & Shabad 2012). The HEL is known to all or-
ders in electromagnetic fields. It is well known that electrons ac-
quire an anomalous magnetic moment due to the radiative cor-
rections in quantum electrodynamics (QED) with the e− − e+

pairs and virtual photons in the background (Schwinger 1951).
It is also of great fundamental interest that there is an anomalous
photon magnetic moment μγ due to the interaction with the ex-
ternal magnetic field in the environment of the virtual e− − e+

� E-mail: valluri@uwo.ca. (SRV); fchishti@uwo.ca (FC)

quanta of the vacuum. The last couple of decades has seen a resur-
gence of interest in quantum vacuum physics (Mielniczuk, Lamm &
Valluri 1988; Baring 1995; Heyl & Hernquist 1997; Dunne 2009,
2012). The promise of high-intensity experimental facilities (∼1015

W) has stimulated immense interest to investigate the non-linear
quantum vacuum in practical optical experiments (Marklund &
Shukla 2006; Dunne 2009; Della Valle et al. 2013, 2014). Recently,
direct evidence of vacuum birefringence via optical polarimetry has
been reported by Mignani et al. (2017), where they have studied
the radio-quiet neutron star J1856.5−3754. This opens up exciting
possibilities, via various astrophysical sources, of further measure-
ments of observables in non-linear QED, such as the anomalous
magnetic moment of the photon as well as Faraday rotation angle,
for which we derive new results for various ranges of magnetic field
values, in this work. In Section 2, we outline and discuss the analytic
calculations on the anomalous magnetic moment of the photon. We
present and discuss the results. Section 3 presents the conclusions.

2 A N O M A L O U S M AG N E T I C MO M E N T
O F A PH OTO N

Villalba-Chávez (2010), Villalba-Chávez & Shabad (2012) and
Rojas & Querts (2006, 2007) have discussed the notion of the
anomalous magnetic moment of a photon. The photon anoma-
lous magnetic moment and its paramagnetic properties that have
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been studied by Pérez Rojas & Rodrı́guez Querts (2014) and Ro-
jas & Querts (2006, 2007) have provided values of μγ in the two
extreme limits of B � Bcr and B � Bcr. The purpose of this paper is
to provide numerical values and an analytic formula for the range
B ∼ Bcr. Our results for the photon anomalous magnetic moment
are applicable in the range 0 ≤ B ≤ 30 Bcr.

At one-loop order, the Heisenberg–Euler effective Lagrangian
in constant external electromagnetic fields (Heisenberg &
Euler 1936; Karbstein & Shaisultanov 2015), describing the ef-
fective non-linear interactions between the electromagnetic fields
mediated by electron–positron fluctuations in the vacuum, can be
represented concisely in terms of the following proper time integral
(Schwinger 1951),

L = α

2π

∫ ∞

0

ds

s
e−i m2

e s

[
ab coth(as) cot(bs) − a2 − b2

3
− 1

s2

]
(1)

with the prescription m2 → m2 − i0+, and the proper time in-
tegration contour assumed to lie slightly below the real positive
s-axis. Here, m is the electron mass, e is the elementary charge,
α = e2

4π
is the fine structure constant, and a = (

√F2 + G2 − F )1/2

and b = (
√F2 + G2 + F )1/2 are the secular invariants made

up of the gauge and Lorentz invariants of the electromagnetic
field: F = 1

4 Fμν Fμν = 1
2 (B2 − E2) and G = 1

4 F∗
μν Fμν = −E ·

B, with ∗ Fμν = 1
2 εμναβ Fαβ denoting the dual field strength tensor;

εμναβ is the totally antisymmetric tensor, fulfilling ε0123 = 1. Our
metric convention is gμν = diag(−1, +1, +1, +1), and we use the
units where c = � = 1. To keep notations compact, we moreover
employ the shorthand notations

∫
x ≡ ∫

d4x and
∫

k
≡ ∫

d4k
(2π)4)

for the
integration over the position and the momentum space, respectively.

The seminal paper of Schwinger (1951) on gauge invariance and
vacuum polarization has used the proper time parameter formula-
tion to the solution of the equation of motion of a particle. Thereby,
the effective Lagrangian (Karbstein & Shaisultanov 2015) is fi-
nite, gauge and Lorentz invariant. Equation (1) is also applicable
for slowly varying inhomogeneous fields fulfilling ν

m
� 1, or in

other words for inhomogeneities whose typical spatial (temporal)
scales of variation are much larger than the Compton wavelength
(time) ∼ 1

m
of the virtual charged particle. The electron Compton

wavelength is λc = 3.86 × 10−13 m and the Compton time is
τ c = 1.29 × 10−21 s. In turn, many electromagnetic fields available
in the laboratory, e.g. the electromagnetic field pulses generated by
optical high-intensity lasers, featuring wavelengths of O(μm) and
pulse durations of O(f s), are compatible with this requirement.

In the absence of an external electric field, the partial deriva-
tives of the effective action in the one-loop approximation are
(Lundin 2009, 2010)

γF = ∂L
∂F , γFF = ∂2L

∂F2
, γGG = ∂2L

∂G2
. (2)

Expressions such as γG , γFG are zero for zero electric field. Further,

γF = −1 − α

2π

[
1

3
+ 2h2 − 8ζ ′(−1, h) + 4h ln �(h)

− 2h ln h + 2

3
ln h − 2h ln 2π

]
(2a)

γFF = α

2πB2

[ 2

3
+ 4h2ψ(1 + h) − 2h − 4h2 − 4h ln �(h)

+ 2h ln 2π − 2h ln h
]

(2b)

γGG = α

2πB2

[
− 1

3
− 2

3
ψ(1 + h) − 2h2 + (3h)−1 + 8ζ ′(−1, h)

− 4h ln �(h) + 2h ln(2π) + 2h ln h

]
, (2c)

where ψ is the digamma function, � is the gamma function and
h = 1

2
Bcr
B

,

γGG = ∂2L
∂G2

∣∣∣∣
G=0

F= 1
2 B2

. (3)

Also

ζ ′(s, h) = ∂sζ (s, h), (4)

where ζ (s, h) is the Hurwitz zeta function, for s = −1 given by
Adamchik (2004) and h � 1 (Dittrich, Tsai & Zimmermann 1979)

ζ ′(−1, h) ∼= 1

12
− h2

4
+ ln h

2

(
h2 − h + 1

6

)

+
∫ ∞

0

e−hx

x2

(
1

1 − e−x
− 1

x
− 1

2
− x

12

)
dx,

Re(h) > 0 (5)

ζ ′(−1, h) ∼= 1

12
− h2

4
+ ln h

2
B2(h) + 1

720

1

h2
, (6)

where B2(h) = h2 − h + 1
6 is the second Bernoulli polyno-

mial (Olver et al. 2010). The integral above is convergent
(Adamchik 2004).

The refractive indices for perpendicular and parallel polarized
photons are of particular interest in this context. It is worth noting
that

4π

α
(n⊥ − 1) = 2πB2

α
γGG, (7)

where γGG has been defined in equation (2c). For the weak field case,
n⊥ in terms of h is given by the expression (Heyl & Hernquist 1997),
where h = B

Bcr
and h > 1

2 ,

n⊥ = 1 + α

4π
sin2 θ

[ 7

90h2

− 1

3

∞∑
j=2

22j (6B2(j+1) − (2j + 1)B2j )

j (2j + 1)
(2h)−2j

]

+O
[( α

2π

)2
]

, (8)

α is the fine structure constant, B2j and B2j + 1 are the Bernoulli
numbers.

In the strong-field limit h < 1, we obtain

n⊥ = 1 + α

4π
sin2 θ

⎡
⎣ 1

3h
−

(
8 ln A − 1

3
− 2

3
γ
)

− 2h
(

ln π + 1

18
π2 − 2 + ln(2h)

)
− 4h2

(
− 1

2
− 1

6
ζ (3)

)

−
∞∑

j=3

(−1)j−1

2j−2

[ j − 2

j (j − 1)
ζ (j − 1) + 1

6
ζ (j + 1)(2h)j

]
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+O
[( α

2π

)2
]

= 1 + αh2 sin2(θ )

18π

⎡
⎣ 3

h

{
1

2h

(
12 ln A + ln

(
π3

2

) )

−3 ln(2πh)

}
+ h−1

((
3h−1 − 33

)
(2h)−1 + π2 + 18

)

− 3h−2ψ(1 + h) + 9

⎤
⎦ + O

[( α

2π

)2]
, (9)

where we have derived and used the following relation,

∞∑
j=3

(−1)j−1

2j−2

[
j − 2

j (j − 1)
ζ (j − 1) + 1

6
ζ (j + 1)(2h)j

]

= 2h2

9

[
3
(
h−2(6 − 18 ln(A) + γ + 1

4

{
ln

(
4

π6

)
+ ζ (3)

} )

+ 3h−2ψ(1 + h) − π2(2h)−1
]
. (10)

For parallel polarizations, the refractive index is given by Tsai &
Erber (1975)

n‖ = 1 + α

4π
sin2 θ

[
− 1

3
− 2

3
ψ(1 + h) + 8ζ ′(−1, h) − 2h2

+ 1

3h
− 4h ln �(h) + 2h ln(2πh)

]
, (11)

which is valid for all B ≤ π
α
Bcr.

We define a quantity �n⊥, ‖ = n⊥ − n‖ by using equations (10)
and (11), and derive the expression below:

�n⊥,‖ = α sin2 θ

360πh2

[
20h2{18(ln(A) − 1) + h(27h + π2 + 18)}

+ 10h2

{
− 6 ln(h) + 18 h

(
(1 − 2 h) ln(h) − ln(4π2h)

+ 2�(h)
)

+ ln

(
π9

8

)}
− 1

]
. (12)

Here, ζ is the Riemann zeta function, ζ (3) ∼= 1.202, θ is the angle
between the magnetic field B and the vector k, γ ∼= 0.577 is the
Euler–Mascheroni constant and A ∼= 1.282 427 12... is the Glaisher–
Kinkelin constant (Olver et al. 2010).

An important physical variable related to �n⊥, ‖ is the Faraday
rotation angle, where χ = k(n⊥ − n‖)l. Here, k is the magnitude
of the photon wave vector and l can be viewed as the path distance
of the photon in the magnetic field. The Faraday rotation can, in
principle, be observable for appreciable values of k and l. As a rough
estimate, the Faraday rotation of a radiowave of a few hundred
megahertz traversing a path length of around hundred metres can
be of the order of a few radians or more for strong magnetic fields
around a neutron star.

We briefly analyse the properties of a photon propagating in
a strong magnetic field B. The quantum expectation value for
the Hamiltonian of a perpendicularly polarized photon is given
by Bialynicki-Birula & Bialynicka-Birula (2012) and Bialynicka-

Figure 1. The log–log plot of the photon anomalous magnetic moment
mμγ

α|k| sin2 θ
as a function of the magnetic field B/Bcr.

Birula & Bialynicki-Birula (2014):

〈H (B)〉 ∼= 〈H (0)〉 − 1

2
B2γGG, (13)

〈〉 denotes the quantum expectation value. From the linearity in
the term proportional to the magnetic moment μγ of the Hamilto-
nian (Villalba-Chávez & Shabad 2012; Pérez Rojas & Rodrı́guez
Querts 2014), one has

μγ = −d〈Ĥ (B)〉
dB

. (14)

Following Bialynicki-Birula & Bialynicka-Birula (2012) and
Bialynicka-Birula & Bialynicki-Birula (2014), we will call the
mode perpendicular if the magnetic field of the photon is in the
plane formed by the vectors B and k, where k is the wave vector of
the photon.

From equations (13) and (14), we derive the following expres-
sion for μγ . From the fact that μγ (0) = 0, we find that the pho-
ton magnetic moment of a perpendicularly polarized photon for
B ≤ 30Bcr is

μγ (B) = α

4π

{
2

3
+ 1

B3

[
1

3
Bψ ′

(
1 + 1

2B

)
+ ψ

(
1

2B

)

−2B ln �

(
1

2B

)
+ B ln(4πB) + B − 1)

]}(
|k|
m

)
sin2 θ,

(15)

where ψ is the digamma function and � is the Euler gamma func-
tion. From equation (15), one observes that the photon magnetic
moment contributes to both the external field strength as well as the
photon energy through its momentum. The anomalous magnetic
moment is plotted as a function of magnetic field in Fig. 1.

For B > 1
2 Bcr, we can approximate

μγ (B) ∼= α

4π

[
2

3
+

(
ln(π) + π2

18
− 1

)
B−2

− ln B

B2

] ( |k|
m

sin2 θ

)
, (16)

where k is the photon wave vector.
For 0 ≤ B ≤ 0.44Bcr

μγ (B) ∼= α

4π

28

45

(
B − 52

49
B3

) ( |k|
m

sin2 θ

)
. (17)
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For a perpendicularly polarized photon, we note that equation (17)
can be replaced by the inequality

μγ (B) ≥ α

4π

28

45

(
B − 52

49
B3

) ( |k|
m

sin2 θ

)
. (18)

We restrict equation (15) to 0 ≤ B ≤ 30Bcr. Using equation (16),
we obtain that μγ (B = 30Bcr) is only 3 per cent smaller than the
asymptotic value α/(3π) of the Bohr magneton. It is approximately
10−3 of the Bohr magneton for |k| ∼ m. μγ (B) grows from the
value of

α

4π

28

45

3

4

1

2

|k|
m

sin2 θ,

for B = 1
2 Bcr, to the value very close to

α

4π

2

3

|k|
m

sin2 θ,

for B = 30Bcr, thus the growth is only by a factor of ≈3. Formally,
our equation is applicable only when

|k|
m

� 1. (19)

Equation (16) is the generalization of equation 157 of Villalba-
Chávez & Shabad (2012), who state that

μγ (B) ∼ α

3π

(
1

2

e

m

)
, (20)

for large values of the magnetic field B. This suggests that the
one-loop approximation provides a good estimate of μγ in the low-
frequency case. Here, e denotes the electron charge and m is the
corresponding mass. At low and high photon frequency, Villalba-
Chávez & Pérez-Rojas (2006) have shown that the photon magnetic
moment shows a paramagnetic behaviour as is also true for the
vacuum embedded in a strong external magnetic field (Mielniczuk
et al. 1988). Our equation (17) is similar to equation 18 of Pérez
Rojas & Rodrı́guez Querts (2014) except that our numerical factor
28
45 is twice as large as their corresponding factor 14

45 . Equations (15)
and (16) are the main results of our paper. The paramagnetic be-
haviour is a physical effect due to the effect of the external magnetic
field on the virtual e− − e+ pairs.

3 C O N C L U S I O N S

We have shown that the anomalous magnetic moment of a photon
for B = 30Bcr is 8/3 of the anomalous magnetic moment of a
photon for B = 1

2 Bcr. At low and high photon frequencies, the
photon magnetic moment shows a paramagnetic behaviour. We find
that the one-loop Lagrangian is a good approximation in the range
of magnetic fields considered. We have shown that the anomalous
magnetic moment of a photon is a non-decreasing function of the
magnetic field B for 0 ≤ B ≤ 30Bcr.

Light propagation in the magnetized vacuum is analogous to the
dispersion of light in an anisotropic medium. The reason for the
anisotropy is due to the breaking of symmetry due to the choice of
B along a preferred direction. The magnetic moment of the photon
might have both astrophysical and cosmological consequences. In
the presence of magnetic fields around astrophysical objects such
as magnetars, magnetic lensing may be a strong observable effect.

Earlier works (Heyl & Hemquist 2005; Wang & Lai 2009) claim
that QED non-linear effects are detectable. The recent observational
evidence for vacuum birefringence by Mignani et al. (2017) by using
optical polarimetry of RX J1856.5−3754, an isolated, radio-quiet
neutron star in the ‘Magnificent Seven’ (M7) group, provides an

exciting avenue for further tests of non-linear QED. This neutron
star has an inferred magnetic field of B ≈ 1013 G, which makes
it amenable for our predictions. Hence, based on this work, we
suggest that anomalous magnetic moment of the photon and the
Faraday rotation angle as key observables for future experiments
utilizing pulsar observations. Photons that go by a strongly mag-
netized star would undergo a deflection besides the well-known
gravitational shift caused by the stellar mass (Villalba-Chávez &
Pérez-Rojas 2006). The cosmic microwave background (CMB)
spectrum shows a substantial polarization-dependent field in
the vicinity of magnetars (Bialynicka-Birula & Bialynicki-
Birula 2014). Bialynicka-Birula & Bialynicki-Birula (2014) have
estimated the polarization-dependent heating of the CMB radiation
due to strong magnetic fields. Although the large magnetic fields
around the region of magnetars are appreciable, the estimated dis-
tortion of the CMB due to the increase in temperature T cannot
be detected with the current detector sensitivity. Efforts to build an
X-ray polarimeter are on the way. Soffitta et al. (2013) have shown
the influence of magnetic vacuum birefringence on the polarization
of magnetic neutron stars. Magnetars should provide an avenue for
measurement through astroparticle physics in the large frequency
limit. It is also possible that further improvements in estimated
angular resolutions as well as in the precision of the temperature
fluctuation measurements and experimental facilities such as the
Large Hadron Collider will make such effects as well as those of
the photon anomalous magnetic moment observable.

There has been a surge of interest to investigate quantum non-
linearity in state of the art optical experimental setups (Marklund &
Shukla 2006). The QED vacuum in an external field will reveal fur-
ther interesting insights into processes such as electrogravitational
conversion (Papini & Valluri 1977). Some of the strongest mag-
netic fields in the Universe are expected to exist around magnetars
(Bassa et al. 2008; Olausen & Kaspi 2014; Olausen & Kaspi 2014).
A strong magnetic field exists around the centre of the Galaxy where
a supermassive black hole exists (Eatough et al. 2013). Recently, a
pulsar PSR J1745-2900, with an unusually large Faraday rotation,
was discovered close to the Galactic Centre (Eatough et al. 2013
and see references 9–12 therein). These objects with such strong
magnetic fields, although contained in regions small relative to the
cosmos, can still provide us with possibilities of observing non-
linear effects such as birefringence that can provide a handle to es-
timate physical quantities such as the photon anomalous magnetic
moment and Faraday rotation. Proposals have been given to search
for birefringence with the use of the time varying electromagnetic
fields and high-precision interferometry (Zavattini & Calloni 2009;
Grote 2015).

More refined ground-based experimental observations of vacuum
birefringence may facilitate a measurement of the photon anoma-
lous magnetic moment. The Polarization of the Vacuum with Laser
(PVLAS) experiment aims to measure the birefringence of the ex-
ternal magnetic field in the vacuum (Bregant et al. 2008; Cantatore
et al. 2008; Della Valle et al. 2016). The BMV experiment (Berceau
et al. 2010; Cadène et al. 2014) is also working on the vacuum
birefringence measurements. An appreciable signal of the Faraday
rotation angle χ for the magnetized vacuum would be a new signa-
ture of fundamental physics. Zavattini et al. (2008) have reported
upper limits for the vacuum dichroism that has not yet been exper-
imentally verified.

Direct measurement through other astronomical sources and
ground-based experiments such as PVLAS and BMV would indeed
be strong experimental proof of the vacuum polarization effects for
strong macroscopic electromagnetic fields.
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Pérez Rojas H., Rodrı́guez Querts E., 2014, Eur. Phys. J. C, 74, 2899
Rojas H. P., Querts E. R., 2006, in Novello M., Perez Bergliaffa S., Ruffini

R., eds, The Tenth Marcel Grossmann Meeting Part A. World Scientific
Press, Singapore, p. 2241

Rojas H. P., Querts E. R., 2007, Int. J. Mod. Phys. D, 16, 165
Schwinger J., 1951, Phys. Rev., 82, 664
Shabad A. E., Usov V. V., 2011, Phys. Rev. D, 83, 105006
Soffitta P. et al., 2013, Exp. Astron., 36, 523
Tsai W.-Y., Erber T., 1975, Phys. Rev. D, 12, 1132
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