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A B S T R A C T   

Numerous techniques have been developed for the non-destructive evaluation (NDE) of impact damage in fiber 
reinforced plastics (FRPs), following the increasing demands for their safety and maintenance. Considering the 
large-scale detection and the vast amount of data involved, machine learning (ML) can be utilized in NDE for 
damage type analysis and impact damage localization. Furthermore, self-sensing using carbon fiber in FRPs is an 
emerging technique for NDE that can be combined with ML. In this study, ML was used to design smart FRPs by 
selecting the fiber type and electrode distance considering the cost and electromechanical sensitivity. Further
more, a novel algorithm for structural health self-sensing was suggested using an artificial neural network. The 
developed ML algorithms are advantageous since they do not require a theoretical model when all the factors and 
the variables of FRPs, such as the maximum absorbed impact energy, maximum impact force, initial electrical 
resistance, number of electrodes, fiber types, and electrode distance, are to be considered. The algorithm was 
trained using given input data and the target, and the output could be successfully obtained when new input data 
were provided. Therefore, the proposed ML algorithms hold great potential and applicability to FRP design and 
for NDE methods.   

1. Introduction 

Structural health monitoring (SHM) of fiber reinforced plastics 
(FRPs) has been analyzed in several studies for both the safety [1-3] and 
the maintenance cost [4-6] owing to the increase in the structural scale 
of the FRPs. There has been a particularly high demand for 
non-destructive evaluation (NDE), because internal failure such as ma
trix cracking and delamination can be observed without structural 
decomposition. Furthermore, condition-based NDE techniques such as 
FBG sensing [7, 8], strain gage sensing [9], and PZT sensing [10] are 
preferred over schedule-based inspection because they allow for the 
real-time monitoring of large-scale structures. In addition, self-sensing 
of FRP has been widely investigated based on the electrical resistance 
of conductive fibers [11-15]. 

FRPs are composed of various types of fibers such as carbon, aramid, 
and hybrid fibers. The hybrid fibers themselves are made of different 
types of fibers. Carbon fiber has superior mechanical properties in terms 
of the static load such as elastic modulus and strength to weight ratio 
[16-18]. Aramid fiber has superior properties under dynamic loading 

such as impact with a comparable density [19, 20]. These two types of 
fibers, that is, the carbon and aramid fibers, can be fused together to 
form the carbon-aramid hybrid fiber, to combine the advantages of both 
the fibers [21, 22]. Therefore, the complexity of the carbon–aramid 
hybrid fiber increases due to the numerous characteristics of the two 
different fibers, which are mixed. 

Machine learning (ML) is widely applied in various fields, as it can 
efficiently process enormous amounts of data [23]. ML enables 
decision-making based on training using vast amounts of inputs without 
the need for theoretical modeling. Furthermore, the performance of ML 
can be improved by tuning the training parameters, especially when an 
artificial neural network (ANN) is used. ANNs can be trained by using 
several sets of input data and the corresponding target, and the output 
can be generated without any theoretical intervention [24, 25]. For 
example, O. R. Aboudeh et al. [26] investigated ANN to design rein
forced concrete bonded with FRP sheets. H. Naderpour and S. A. Alavi 
[27] also used ANN to analyze the shear contribution of FRP in rein
forced concrete beams. The main novelty of their research is the 
simplicity of using ANN without separate modeling. ANN extracted the 
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required output based on the training, which correlates the input and 
target data, and considered the parameters without the use of theoretical 
models. Therefore, machine learning is often utilized by SHM to enhance 
the capabilities of the monitoring systems. 

In this paper, an ML aided real-time NDE and a FRP design using 
principal component analysis (PCA) and ANN are proposed to handle 
the uncountable variables of carbon–aramid hybrid fibers, as shown in 
Fig. 1. The fiber type and distance between the electrodes are considered 
in the design of self-sensing FRP, to provide an optimal material cost and 
sensing performance, respectively. Therefore, PCA is utilized to distin
guish which given information is effective for selecting the appropriate 
fiber. PCA is used to highlight the distinctive features of unsorted in
formation [28, 29]. It also identifies discriminative variables and clas
sifies the information. Essentially, the input variables of the given data 
are re-identified by PCA and are classified using the determined 
variables. 

Additionally, ANN was utilized to set the electromechanical sensi
tivity through training, based on the accumulated data. Damage local
ization is used in the ANN to localize the damaged locations in the 
coordinates based on the training. Various studies have verified the 
engineering approaches by comparing theoretical analysis and ANN 
outputs [30-32]. The ANN algorithm can easily draw the required 
output by using iterated weights and bias for correlating the input and 
target during training. Therefore, no additional modeling and algorithm 
for FRP design and NDE was required, but only accumulated data sets for 
training. The simplicity and precision of both composite design and NDE 
were comparatively investigated using conventional methods in this 
study. In particular, conventional damage localization using multiple 
sets of electrical resistance changes were analyzed as a control strategy. 

2. Experimental and machine learning methodologies 

2.1. Materials 

The fiber used in this study was the 3K plain woven carbon fiber 
(Mitsubishi, Japan), and it was purchased from Jet Korea Corp. 
(Changwon, Korea). This fiber had a yarn type of T300SC, weight of 195 
g/m2, and thickness of 0.2 mm. Plain-woven carbon–aramid hybrid fi
bers supplied from JMC Corp. (Gyeongju, Korea) had carbon fibers in 
warp or weft, and the aramid fiber had a thickness of 0.25 mm. The 
plain-woven aramid fiber with a density of 165 g/m2 and thickness of 
0.25 mm and was purchased from Keun Young Industry (Seoul, Korea). 

Polymer matrix used was vinylester, and its composition was 55 % 
epoxy acrylate and 45 % styrene (RF-1001MV, CCP Composites, Korea). 
The corresponding curing agent was methyl ethyl ketone peroxide 
(Arkema, France) crosslinker, and the mixing ratio of was 1.0 wt.% of 
the vinylester. Both the matrix and the curing agent were supplied from 
Jet Korea Corp. (Changwon, Korea). Electrode was installed using a 30 
AWG copper wire and the silver paste (P-100, Elcoat, USA) to minimize 
contact resistance between the carbon fiber and the wire. 

2.2. FRP manufacturing 

All the FRPs were manufactured by vacuum assisted resin transfer 
molding. Before vacuum bagging, copper wires were embedded into 
electrically conductive carbon fibers to measure the electrical resistance. 
The specification of the copper wire used is 30 AWG: it has a diameter of 
0.255 mm and an electrical resistance of 0.339 Ohm/m. The copper wire 
was embedded into the carbon fiber bundle to measure the changes in 
the electrical resistance. The contact length between the copper wire 
and the carbon fiber at the point of contact was more than 4 mm in order 
to secure the electrical contact and also minimize the electrical noise. 
Silver paste was applied at the conjunction, and it was dried for 2 mi
nutes using a heating gun. The fibers containing the embedded 

Fig. 1. Flow chart representing the methodologies applied in this study.  

Fig. 2. Schematic of a FRP sample for electrode distance analysis.  
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electrodes were placed on the top plies. The peel ply was laid on these 
fibers, and the resin flow medium was laid on the top. The vacuum bag 
was used to seal the fibers with the help of sealant tape. The resin was 
infused into the vacuum bag through the pressure difference between 
the atmosphere and the vacuum inside the bag. The curing time was 24 
hours at room temperature. 

FRP samples for electrode distance analysis was manufactured as 
described in Fig. 2. Fiber stacking configurations for these samples 
consisted of six plies of either carbon fiber or carbon–aramid hybrid 
fiber, yielding carbon fiber reinforced plastic (CFRPs) and carbon
–aramid hybrid fiber reinforced plastics (HFRPs). The distances between 
electrode sets (such as set 1-5 in Fig. 2) were 20, 50, 100, 150, and 200 
mm. 

The samples for damage localization were made in a 150-mm-square 
with six plies of either carbon fiber or carbon–aramid hybrid fiber, as 
depicted in Fig. 3, and four electrodes. To obtain variety in sample 
thickness, CFRPs consisting of 12 plies of carbon fiber were additionally 
manufactured with the same electrode setting. The distance between 
adjacent electrodes was optimized to 60 mm. 

2.3. Electromechanical characterization 

Drop weight impact testing was performed using a drop weight 
impact testing tower (CEAST 9350, USA). A standard weight tup holder 
(#7520.021, CEAST, USA) was used in the drop weight impact testing 
tower. A hemispherical striker, with a diameter of 12.7 mm which obeys 
ASTM D3763, D7192, and D5628, was used in conjunction with the tup 
holder. The input impact energy was 50 J to allow all the FRP samples to 
penetrate. The clamping force applied to the samples was 40 N with 
circular clamps whose inner diameter was 40 mm. Figs. 2 and 3 depict 
the locations of the impact damages, i.e., at the center of the sample for 
the electrode distance effect and at the center of Channel 1 for the 
damage localization, respectively. Electrical resistances of the FRP 
samples were measured based on the 2-probe method using a multi
meter (Fluke 189, USA). 

The probes of the multimeter were connected to the electrodes 
embedded in the FRP samples. The analysis of the electrode distance 
determines the electrical resistance of the electrode pairs. Four electrode 
pairs, in which the puncture was located at the center, were used to 
determine the change in the electrical resistance before and after the 
impact test, as shown in Fig. 2. 

Four different pairs were analyzed for the damage localization, 
which are represented as Channel 1 ~ 4 in Fig. 3. Similar to the analysis 
for the electrode distance, the electrical resistance changes were moni
tored before and after the drop weight impact test. 

For repeatability, all the FRP samples had seven specimens each, and 
the mechanical impact properties of CFRPs and HFRPs were investigated 
using mean values and their standard deviations. 

2.4. PCA for fiber type selection 

PCA allows for the analysis of discriminative features for clustering 
the inputs and then re-enumerating these inputs based on the analyzed 
clusters. Hence, PCA can aid in designing self-sensing FRPs, in which 
several variables such as the fiber type, initial resistance, maximum 
absorbed energy, maximum impact force, and material cost, are 
involved. In PCA, orthogonal linear transformation of data is performed 
to form a new coordinate having the highest variance, via scalar pro
jection. The transformation re-enumerates the inputs based on the 
identified clusters. 

Representative mathematical equation of PCA vector tk(i) Image 
deleted. Please check.Image deleted. Please check.Image deleted. Please 
check.Image deleted. Please check.Image deleted. Please check.is as 
follows: 

tk(i) = x(i) ⋅ wk (1)  

where x(i) is a row vector of n by p matrix, wk is a weight of coefficient, 
which is (w1, …, wl)(k), i=1,…n, and k=1,…l. In addition, to maximize 
variance, the first weight vector w1 should be 

wk = argmax
‖w‖=1

{
∑

i
t2
1(i)

}

(w1, …, wl)(k) (2) 

Furthermore, the k th component can be calculated as follows: 

X̂k = X −
∑k− 1

s=1
X w(s)wT

(s) (3) 

In this study, the accumulated data were sorted by the fiber type. 
Therefore, based on the given requirements, the fiber type can be 
determined by identifying the clusters in which all the requirements are 

Fig. 3. Schematic of a square FRP sample for damage localization.  

Fig. 4. Flow chart of selecting fiber type using PCA.  

Table 1 
Theoretical models and parameters applied to FRPs.  

Theoretical models Effects applied to Selection by PCA 

Fiber type 
(Carbon fiber, aramid 
fiber, glass fiber, …) 

Cost and mechanical 
behavior 

Meet customers’ 
requirements (variables) 
based on data clustering 
without theoretical models Rule of mixture 

(Physical properties 
in terms of fiber 
volume fraction) 

Physical properties in 
terms of energy, 
deformation, and load 

Fiber volume fraction 
(Volume fraction of 
fiber among the FRP) 

Material cost, thickness, 
and physical properties 

Laminate plate theory 
(Mechanical 
properties of tensile, 
shear, and bending) 

Quasi-static mechanical 
properties  
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met, as presented in Fig. 4. Particularly, PCA categorizes several data 
elements corresponding to their distinguishable parameters. Therefore, 
the error analysis for the PCA was omitted in this study. MATLAB, which 
is a commercialized software, was used for PCA. Ultimately, PCA is 
applied to the fiber selection to simplify various factors, parameters, and 
theoretical models. The traditional models used as examples for the fiber 
selection are listed in Table 1. 

2.5. ANN for electrode distance analysis 

ANN analyzes the inputs and the correlated targets using hidden 
layers, and this process is known as training. A trained ANN is therefore 
capable of determining the outputs even when the input data given is not 
known to the ANN. In training and decision making, no theoretical 
intervention is required. Therefore, ANN can be utilized to set the 
electromechanical sensitivity of self-sensing FRPs, because the sensi
tivity can be influenced by as many parameters as respective modeling 
or predicting is inefficient and laborious. 

The training algorithm of ANN consists of input data and the cost 
function, which is dependent on the task and any a priori assumptions. 
For example, if there is a model as shown below, 

f (x) = a (4)  

where a is a constant and the cost C is 

C = E
[
(x − f (x))2]

, (5)  

then the key function of ANN is to minimize the cost and let the value of 
a be equal to the mean of the data. Using these principles, electrome
chanical sensitivity can be estimated as an output considering several 
inputs. Otherwise, numerous electromechanical parameters should be 
considered, such as the electrical properties of fibers, electrical contact 
between adjacent fibers, orthotropic behavior of FRPs, electrode loca
tion, and distance between electrodes. 

The overall procedure for determining the electromechanical sensi
tivity and other variables is shown in Fig. 5 as a closed loop; this loop 
remains closed until the required sensitivity can be satisfied. The ANN 
can be trained using several inputs and targets, and the new output can 
be extracted from the new inputs with the trained ANN. The training 

function used was trainlm, which applied the Levenberg–Marquardt 
algorithm. Levenberg–Marquardt approaches second-order training 
speed without computing the Hessian matrix, which is 

H= JT J (6)  

and the gradient can be computed as 

g = JT e, (7)  

where J is the Jacobian matrix, which contains first derivatives of the 
network errors with respect to the weight and biases, and e is a vector of 
network errors. Eqns. (6) and (7) were utilized in the Lev
enberg–Marquardt algorithm as a Newton-like update, where μ is a 
scalar, as shown below: 

xk+1 = xk −
[
JT J + μI

]− 1JT e (8) 

As the number of successful trainings increases, μ decreases. When μ 
becomes zero, Eqn. (8) becomes Newton’s method. All of the procedures 
containing Eqns. (4)–(8) are included in the commercialized software, 
MATLAB. 

The ANN is primarily trained on the basis of the pre-obtained data
sets of the input and target; the precision of the ANN is validated based 
on the error between the estimated output and the empirical target data. 
The weights and bias of the ANN, which are its inherent network pa
rameters, were acquired through the iterations of Eqns. (4)–(8) in the 
training stage, which is described as a hidden layer in Fig. 5. These 
equations are used for the iterations of weights and bias required to 
minimize the errors. These parameters remain unchanged after the 
training because the aforementioned error proves the validity of the 
ANN algorithm. 

The input parameters are fiber type, electrode distance, maximum 
absorbed energy, maximum impact force, and initial resistance. The 
target or output is the corresponding electromechanical sensitivity. If 
the output does not meet the requirement, new inputs can be tuned and 
inserted into the ANN for the repetitive iteration of the procedure with 
the fixed parameters through the training. 

Fig. 5. Flow chart of electromechanical sensitivity using ANN.  
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2.6. ANN for impact damage localization 

The ANN algorithm can be built using correlating inputs and target, 
and the output can be extracted with respect based on the newly 
collected inputs in MATLAB. Similarly, non-destructive damage local
izing algorithm can be realized with the ANN with several training sets 
of damage localization. As shown in Fig. 6, ANN can be trained by 
several inputs and targets based on Eqns. (4) and (5). The inputs given 
are the fiber type, and the electrical resistances of the electrode sets 
before and after the impact. The targets are the actual locations of 
impact damage in the x and y coordinates. The trained ANN localizes the 
impact location in terms of the coordinates with the new input data. 
Similar to the ANN that was used for determining the sensitivity, the 
damage localizing ANN can omit modeling and decision-making 

Fig. 6. Algorithm for damage localization using ANN.  

Table 2 
Impact mechanical properties of CFRPs and HFRPs in mean values and their 
standard deviations in brackets.  

Samples Maximum absorbed 
impact energy [J] 

Maximum impact 
force [N] 

Sample thickness 
[mm] 

6-Ply- 
CFRP 

9.40 (1.39) 2167 (507) 1.37 (0.03) 

6-Ply- 
HFRP 

8.43 (0.20) 1986 (323) 1.20 (0.02) 

12-Ply- 
CFRP 

29.69 (0.05) 7776 (242) 2.41 (0.02)  

Fig. 7. Plots of (a) cost-energy, (b) force-energy, and (c) PCA results, (d) identifying PCA results based on given input data, (e) clustering PCA results, and (f) 
boundary of clustering boundaries. 
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parameters of the respective FRP samples. 
The control method used for impact damage localization was also 

developed using MATLAB. The geometries of the FRP samples, the lo
cations of electrodes, and the mid-points of electrical channels were all 
set as 2D coordinates in x–y planes. In the MATLAB code, the mid-point 
of the channel, which showed the largest electrical resistance change 
ratio, was identified, and the resistance change ratio was multiplied. 
From that coordinate, the mid-points of other channels and each resis
tance change ratio were multiplied with xweight and yweight into the x and y 
coordinates, respectively. The weights xweight and yweight were optimized 
to produce the minimum localizing error. 

3. Results and discussion 

3.1. Fiber type selection 

FRP involves several variables and parameters, which renders the 
designing of FRPs complicated. The impact mechanical properties of 
CFRPs and HFRPs are listed in Table 2. This table also contains the mean 
values of impact energy, impact force, and sample thickness, with their 
standard deviations written in brackets. 

In the design process, fiber selection must consider users’ needs; cost, 
maximum impact energy, and maximum impact force. The appropriate 
FRP fibers can be selected considering the cost and energy, as shown in 
Fig. 7(a); however, they do not sufficiently represent the data separa
bility, as shown in Fig. 7(b), which illustrates the maximum impact force 
and the absorbed maximum impact energy of FRPs. Similarly, the 
identification of useful data is difficult as some parameters lack 
discernment, as shown Fig. 7(b). Therefore, PCA was performed, and the 
inputs introduced in section 2.4 were redistributed on the x-y plane, as 
shown in Fig. 7(c) and following Eqns. (1)–(3). The algorithm of PCA 
transforms either the axis or the data projection to maximize the sepa
rability, which attributes for the larger distance represented by the data 
in Fig. 7(c) between the clusters when compared to that of Fig. 7(b). 

The actual classes of the FRPs are depicted in Fig. 7(d); these classes 
were re-enumerated in the x-y plane. Clustering results from the PCA 
with the centroids of the clusters are shown in Fig. 7(e). The clustering 
procedure is one of inherent algorithms of the PCA and can be used as a 
further process of data identification. As can be seen, clustering was 
successful as compared to that shown in Fig. 7(d). The boundaries of 
each cluster are represented in the x-y plane, as shown in Fig. 7(f). New 
input sets can be identified and enumerated in the x-y plane to classify 
the fields of the FRPs’ requirements. Therefore, the requirements of the 
FRP can be analyzed using PCA to identify the associated clusters, and 
hence, appropriate fibers can be selected. Furthermore, the fibers are not 
limited to plain-woven fibers, as shown in Fig. 7, but contained as uni- 
directional, satin, and twill fibers, among others. Fiber selection 
should be considerately investigated to design appropriate FRPs in terms 
of the mechanical properties and manufacturing cost. 

3.2. Electrode distance analysis 

CFRPs and HFRPs showed fiber failure at the impact spots as shown 
in Fig. 8(a), (b), (d), and (e). Even though the input impact energy was 
large enough to penetrate the FRP samples, the fibers absorbed the en
ergy so that the puncture sizes of the samples were similar to the 
diameter of the impact striker, which was ∅12.7 mm. Compared to 
isotropic materials such as acrylic plate, the mechanical damage due to 
the impact was only limited to the struck area. 

Electrical resistance change ratios of the CFRPs and HFRPs are shown 
in Fig. 8(c) and 8(f), respectively. Changes in the electrical network via 
electrically conductive carbon fiber due to punctures caused the elec
trical resistance increase; this is because the effective electrical network 
was detoured around the puncture. This result concurs with those of 
other studies in that mechanical deformation and corresponding elec
trical property change can be utilized as structural health monitoring 
[33-36]. The electrical resistance is calculated by the length, resistivity, 
and the cross-sectional area of the lowest option as electrons choose the 

Fig. 8. Photos of the penetrated 6-ply-CFRP sample in (a) top view and (b) side view of the puncture. (c) Electrical resistance change ratio of the CFRP after the 
impact in terms of electrode distance. Photos of the penetrated 6-ply-HFRP sample in (d) top view and (e) side view of the puncture. (f) Electrical resistance change 
ratio of the HFRP after the impact in terms of electrode distance. 
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easiest path. The change in the resistance can be obtained by using the 
following equation: 

ΔR = ρ Δl
A

(9)  

where ΔR represents the change in the electrical resistance, ρ is the 
electrical resistivity of a material, Δl is change in length, and A repre
sents the cross-sectional area. The detour increases the length ensuring 
the feasibility of electromechanical self-sensing. 

Electromechanical sensitivity of a CFRP was smaller than that of a 
HFRP regardless of the electrode distance, because the CFRP secured 
more electrical networks than the HFRP after the impact. Essentially, the 
electrical detour in the CFRP was not as critical as the network change in 
the HFRP after the impact. 

Additionally, the global deformation of a CFRP can also indicate the 
availability of electromechanical self-sensing [37]. The electrical re
sistances changed in different ways in various directions corresponding 
to the loading directions. Similar to classic laminate plate theory, the 
global elongation can be modelled by utilizing the gauge factor and 
electrical resistance. However, this study only addresses the impact 
puncture, which was relevant to the electrical detour. 

Electrode pairings with distances of 20, 50, and 100 mm represented 
a distinctive resistance change ratio, but the change ratio decreased as 

the distance between the electrodes increased as shown in Fig. 8(c) and 8 
(f). Both the CFRPs and HFRPs showed slight changes in the electrical 
network when the distance between the electrodes was larger than 100 
mm. The change ratio of the electrical resistance indicates the change in 
the electrical network. In other words, the larger electrode distance, the 
smaller was the change in the network. 

Consider that the puncture diameter is 12.7 mm, the distance be
tween electrodes is l, the width of the electrical network is w, and the 
thickness of the sample is t. Subsequently, the reduced volume ratio due 
to the puncture in the composite sample is as shown below: 

Puncture area ratio = 12.72π
/

4 × t
/
(l w t) (10) 

The width and the thickness are out of interest when we analyze the 
effect of electrode distance in one sample. Then, the decisive variable of 
the reduced mechanical volume and electrical network is l, the distance 
between electrodes. Therefore, the electrode distance should be thor
oughly investigated and optimized considering its self-sensing 
sensitivity. 

Seven specimens per sample showed similar behavior to those pre
sented in Figs. 8(c) and 8(f), in order to ensure both the reproducibility 
and the performance of ANN [38]. Neither the deviation nor variation of 
anisotropic and heterogeneous FRP materials was effective for the 
electromechanical sensitivity in terms of the electrode distance. Even 

Fig. 9. Progress of ANN for electrode distance analysis minimizing the errors: (a) ANN structure, (b) MSE analysis, (c) Error analysis, (d) Output-target analysis (e) 
Error in terms of inputs, and (f) Error histogram 
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the mechanical changes, such as the shape of the impact punctures, were 
all similar among the various specimens. 

This study was designed to analyze the electrical detour caused by 
impact punctures, and hence, the input impact energy was large enough 
for penetration. If the impact energy had been lesser than the amount 
required for the puncture, the damage size might be proportional to the 
input energy [39]. When the input energy was large enough for pene
tration, the absorbed impact energy of a material became saturated [40]. 
The changed magnitude of electrical resistance might be proportional to 
the crack size from the perspective of the electrical signal. Essentially, 
the change in the resistance might be proportional to the input impact 
energy [41, 42]. However, when the absorbed impact energy is satu
rated, both the crack size and the electrical resistance change also 
become saturated. Therefore, this study intentionally provided a large 
impact energy for the sample to be penetrated, following which, the 
changes in the electrical resistance were analyzed corresponding to the 
electrical detour along the puncture. 

ANN described in Fig. 9(a) trained the correlation between the FRP 
information and the sensitivity, and its progress in minimizing the errors 
is shown in Fig. 9(b)-(f). The training data are marked in the graphs and 
the corresponding information can be acquired from the labels in the 
graph. The performance score of the ANN measured from the MATLAB 
software was 0.0080979. The performance score is a mean square error 
(MSE) calculated as shown below: 

MSE =
1
n

∑T

t=1

[

ŷt − yt

]2

(11)  

where T is the number of predictions, t is time as an integer, ŷt is the 
predicted value, and yt is a dependent variable. Notably, a lower score 
indicates a better training performance as the lower MSE was observed. 
The training was as successful as the comparable score acquired at epoch 
2. Moreover, the error histogram obtained, as shown in Fig. 9(f), was 
reasonable in that it showed a normal distribution. The number of data 
elements used in this ANN was 32, and hence, 32 instances are repre
sented in the error histogram, Fig. 9(f). 

The expected sensitivity induced from the random input was 12.71 
%, which was calculated by the trained ANN. The sensitivity was 

analyzed using the mean absolute percentage error (MAPE) as shown 
below: 

MAPE =
100
T

∑T

t=1

ŷt − yt

yt
(12) 

It presented a MAPE of 3.17% when compared to the empirical data. 
The process calculating the desired sensitivity contains the tuning of 
both the electromechanical sensitivity, which is the output, and the 
mechanical properties, which are the inputs. This algorithm can also be 
adapted to the nanomaterial reinforced composites which exhibit su
perior mechanical properties and electromechanical sensitivities [43, 
44]. The dynamic-load-self-sensing of nanomaterial-composites using 
ANN can be developed in terms of both the mechanical reinforcement 
and material functionalization in a future study. 

Using the developed ANN, the electromechanical sensitivity of the 
self-sensing aspect can be estimated, and it can be considered in com
posite design as represented in Fig. 5. In contrast, conventional studies 
obtained the sensitivity through empirical methods after the composite 
structures were completely manufactured [11-15]. Therefore, the pro
posed ANN model for a sensitivity analysis of the self-sensing composite 
can potentially save cost, time, and labor for composite manufacturing. 

Furthermore, V. Kushvaha et al. [45-47] employed ANN for the 
analysis of impact properties. They successfully trained the ANN algo
rithms to estimate the stress intensity factors (SIFs) and fracture 
toughness of composites in terms of the shapes and contents of the 
nano-fillers. They also developed algorithms for the predictive model
ling of the fracture behavior of silica-filled polymer composites 
providing SIFs and fracture toughness. 

3.3. Impact damage localization 

Impacted spots are observed, as shown in Fig. 10(a), (b), (d) (e), (g), 
and (h), similar to Fig. 8(a), (b), (d) and (e). The overall geometry of the 
FRP samples were irrelevant to the shape of the impacted area, and as 
such, the fibers that the impact striker hit were broken. 

Electrical resistance change ratios of the 6-ply-CFRP and the 6-ply- 
HFRP of the four channels are shown in Fig. 10(c) and 10(f), respec
tively. The impacted area, which is channel 1, showed the largest 

Fig. 10. Photos of the penetrated 6-ply-CFRP sample in (a) top view 
and (b) side view of the puncture. (c) Electrical resistance change 
ratio of the 6-ply-CFRP after the impact in terms of electrode dis
tance. Photos of the penetrated 6-ply-HFRP sample in (d) top view 
and (e) side view of the puncture. (f) Electrical resistance change 
ratio of the 6-ply-HFRP after the impact in terms of electrode dis
tance. Photos of the penetrated additional CFRP sample with 12 plies 
of carbon fibers in (g) the top view and (h) the side view of the 
puncture. (i) Electrical resistance change ratio of the 12-ply-CFRP 
after the impact in terms of electrode distance.   
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electrical resistance change. Electromechanical results of the12-ply- 
CFRP were similar to those of the 6-ply-CFRP as shown in Fig. 10(i). 
Neither the thickness nor the number of carbon fiber plies affected the 
electromechanical self-sensing mechanism. Even though all the channels 
of the HFRP showed an increase in the electrical resistance, it showed a 
larger electromechanical sensitivity at channel 1 compared to that of the 
CFRP. Likewise, damage localization can be performed by the four 
sections between the electrodes with different electromechanical sen
sitivities in terms of the fiber types. 

Advanced conventional damage localizations of the CFRP and HFRP 
were performed as shown in Figs. 11(a) and 11(b), respectively. 
Damaged coordinates were calculated by a combination of multiple 
electrode sets instead of four larger and broader sections, which were 
introduced in Fig. 10. The channel that showed the largest electrical 
resistance was detected, and then other coordinates of the channels were 
multiplied with the resistance change ratio and weight. Essentially, the 
coordinate of the midpoint of the channel was multiplied by the change 
in the electrical resistance. Four different channels repeated the multi
plication for the localization using the weight, and the summation of the 
multiplied values were divided by the number of channels. This process 
was performed in 2D using the x and y coordinates. In Figs. 11(a) and 11 
(b), xweight and yweight of the CFRP and HFRP were both 0.2, which was 
optimized by repetitive trials. 

The optimization for the weights was investigated as shown in 
Figs. 11(c) and 11(d). The localizing errors of the FRPs were analyzed by 
controlling the weights. Although the optimized weights in this study 
were extracted as shown in Figs. 11(c) and 11(d), users should avoid a 
yweight value of zero because it artificially limits the y-directional sensing. 

To improve the sensing unit from the empirical data, ANN for impact 
damage localization was executed as shown in Fig. 12(a). The size of the 
hidden layer was modified to be the average of the inputs and outputs. 
The training score was 20.768 at epoch 2, as shown in Fig. 12(b). The 
training data are marked in the graphs, and the corresponding infor
mation can be acquired from the labels in the graph. MSE is also shown 
in Fig. 12(b) and was calculated as shown in Eqn. (11). The score was 
therefore higher than that acquired at section 3.2. As shown in Fig. 12 
(c), the error rate of the training was as small as the coefficient of 
determination was 0.9474. The error histogram represents 26 normally 
distributed instances, as shown in Fig. 12(f). 

The output of the damage localization derived from the ANN, as 

shown in Fig. 12(a), is demonstrated in Fig. 13, by comparing the actual 
impact location and the estimated one. Both the CFRP and HFRP showed 
reliable damage localization results. While damage localization based on 
the empirical data analysis (as shown in Fig. 10) was limited to four 
wider sensing units, the ANN was able to extract the damage location in 
the x and y coordinates. Regardless of the electrical resistance variation, 
the trained ANN made a decision through the hidden layers. The un
derlying decision-making process is based on the similarity analysis 
between the trained sets and the new input, but not the analysis with 
electrical resistance changes before and after the impact as introduced in 
Fig. 10(c) and 10(f). The ANN was trained with multiple sets of input 
and target values. Subsequently, new inputs were analyzed with the 
trained ANN to acquire the output required by the users. In this study, 
the output includes the x and the y coordinates for the damage locali
zation. In addition, the fiber type does not limit the sensing capability so 
self-sensing using electrical resistance and ANN is applicable to any 
carbon-material-based FRPs which holds electrical conductivity. 

The errors of the expected localizations of a CFRP and an HFRP were 
2.31 mm and 1.15 mm, respectively, compared to the actual location. 
These errors in distance scale are considered as types of MSE because the 
coordinates in the x and y directions were analyzed in Eqn. (11). 

Compared to the conventional localization, whose minimum error 
was 6.50 mm, the self-sensing performance of the developed ANN was 
improved. Moreover, the ANN does not distinguish between fiber type or 
fiber stacking configuration because it correlates input and output 
numerically as introduced in Eqns. (4)–(8) with the minimum MSE 
following Eqn. (11). Therefore, impact damage localization with the 
ANN was successful with a higher sensing performance without any 
modeling than previous localization, which was introduced in Figs. 10 
(c), 10(f), 11(a), and 11(b). Furthermore, self-sensing performance can 
be enhanced as more empirical data are accumulated [38]. 

4. Conclusion 

We designed and analyzed smart self-sensing FRP using electrical 
resistance aided by ML methodologies such as the PCA and ANN. PCA 
was used to identify the discriminative features of FRPs to choose the 
appropriate materials. In addition, it helped classify the clusters in the 
given information. ANNs were utilized to set the electromechanical 
sensitivity and localize impact spots in x and y coordinates with 

Fig. 11. Damage localization of (a) the CFRP and (b) the HFRP. Optimizing results for the weight factor of damage localization of (c) the CFRP and (d) the HFRP.  
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improved sensing performance. The use of ANNs can help avoid time- 
consuming and laborious empirical optimization. 

Considering the numerous variables of an FRP, the ANNs could make 
accurate decisions in terms of sensitivity and localization. The primary 
advantage of the ANN-based algorithms developed in this study lies in 
that no electromechanical model was required for the smart FRPs. The 
trained algorithm could easily extract the output based on the given 

input. This shows the great potential of ML methodologies for NDE 
techniques that involve several variables. Specifically, the number of 
electrodes can be reduced to enhance the performance of large-scale 
FRPs in terms of accuracy and sensing performance. 

The underlying novelty of this research is the ML aided designing to 
make a self-sensing CFRP. As future work, user-experience design or 
user-interface requirements can be analyzed to realize a smart factory 

Fig. 12. Progress of ANN for impact damage localization minimizing the errors: (a) ANN structure, (b) MSE analysis, (c) Error analysis, (d) Output-target analysis (e) 
Error in terms of inputs, and (f) Error histogram 
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producing customized and smart FRPs, in line with Industry 4.0. 
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