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Abstract

This dissertation consists of three chapters studying revealed preference theory and its applica-

tions to testing and inference. The first chapter develops a semiparametric revealed preference

methodology to analyze the effects of price search on prices paid across income groups. The

second chapter derives a novel representation of the exponential discounting model to make

inference on the discount factor. The third chapter derives an axiomatization of the exponen-

tial discounting model and uses it to propose a nonparametric test of dynamic discrete random

utility models.

The first chapter develops a novel semiparametric approach to estimate the impacts of price

search on prices paid. My methodology allows for nonparametric preferences, rich hetero-

geneity, and measurement error in prices. I derive the implications of the model and use the

resulting shape constraints to gain additional identification power. Using data on shopping ex-

penditures from the Nielsen Homescan Dataset, I show that the data are consistent with the

model and that a doubling of shopping frequency decreases prices paid by about 19%. More-

over, I find that heterogeneity in price search generates within-group consumption inequality

and mixed impacts on between-group consumption inequality.

The second chapter derives a novel representation of the exponential discounting model

that allows me set identify the discount factor while accounting for measurement error. My

approach uses a revealed preference methodology that makes no parametric assumption on

the utility function and allows for unrestricted heterogeneity. Using longitudinal data from

checkout scanners, I bound household-specific discount factors and assess their sensitivity to

measurement error. I find that unobserved heterogeneity is important as observable character-

istics fail to capture differences in discounting.

The third chapter generalizes the previous representation and provides an axiomatic charac-

terization of the exponential discounting model. This axiom is used to propose a nonparametric

test for dynamic discrete random utility models. The methodology can be used to understand

the welfare implications of price changes in demand data when there is no uncertainty for

consumers that have preferences over discrete product characteristics or quantities of products.

Keywords: Revealed preference, exponential discounting, inference, testing
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Summary for Lay Audience

Revealed preference analysis is an approach that makes minimal assumptions on the consumer

or firm behavior. It can be used to test various theories and to study the behavioral response to

various policies. This thesis consists of three chapters studying revealed preference theory and

its applications to testing and inference.

The first chapter develops a semiparametric revealed preference methodology to analyze

the effects of price search on prices paid across income groups, where price search describes

the process whereby buyers actively seek to gauge the most favorable prices. Using data on

shopping expenditures, I show that the data are consistent with the model and that a doubling

of shopping frequency decreases prices paid by about 19%. Moreover, I find that heterogeneity

in price search generates within-group consumption inequality and leads to mixed impacts on

between-group consumption inequality.

The second chapter derives a novel revealed preference representation of the exponential

discounting model to make inference on the discount factor. This endeavor is motivated by the

fact that assumptions on the consumer preferences may lead to erroneous conclusions about

his time preferences and misrepresent a decision maker’s intertemporal choices in a vast range

of applications. Using longitudinal data from checkout scanners, I bound household-specific

discount factors and assess their sensitivity to measurement error.

The third chapter derives an axiomatization of the exponential discounting model and uses

it to propose a nonparametric test of dynamic discrete random utility models. This methodol-

ogy can be used to understand the welfare implications of a change in prices and to predict the

change in the distribution of demand from a change in prices.
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Chapter 1

Introduction

In a seminal work, Samuelson (1938) proposed a different approach to consumer theory that

does not begin with the specification of the consumer preferences as captured by the utility

function. Specifically, he proposed to take the data as primitives and impose restrictions that

the data should satisfy if they were generated by a rational consumer. This approach builds on

the notion of revealed preference and has the desirable feature to be nonparametric. That is, it

does not rely on a parameterization of the consumer preferences.

The goal of this thesis is to show how the nonparametric nature of the revealed preference

analysis pioneered by Paul Samuelson may be used for testing and inference in applications

of interest. Towards that end, the first chapter develops a novel semiparametric approach to

estimate the impacts of price search on prices paid, the second chapter derives a novel rep-

resentation of the exponential discounting model that can be used to set identify the discount

factor without having to specify the consumer preferences, and the third chapter provides an

axiom for the exponential discounting model that can be used to obtain a nonparametric test of

dynamic discrete random utility models.

Chapter 2 proposes a general model where consumers can pay lower prices by shopping

more frequently. I develop a novel semiparametric approach to estimate the impacts of price

search on prices paid. My methodology allows for nonparametric preferences, rich hetero-

geneity, and measurement error in prices. I use a revealed preference approach to derive the

nonparametric implications of the model and use the resulting shape constraints to gain addi-

tional identification power. Using data on shopping expenditures from the Nielsen Homescan

1



2 Chapter 1. Introduction

Dataset, I show that the data are consistent with the model and that a doubling of shopping

frequency decreases prices paid by about 19%. My method also provides new insights about

the importance of price search for understanding consumption inequality. Specifically, I find

that heterogeneity in price search generates within-group consumption inequality and mixed

impacts on between-group consumption inequality.

Chapter 3 derives a novel representation of the exponential discounting model that allows

me set identify the discount factor while accounting for measurement error. My approach uses

a revealed preference methodology that makes no parametric assumption on the utility function

and allows for unrestricted heterogeneity. Using longitudinal data from checkout scanners, I

bound household-specific discount factors and assess their sensitivity to measurement error.

I find that unobserved heterogeneity is important as observable characteristics fail to capture

differences in discounting.

Chapter 4 provides a nonparametric test for dynamic discrete random utility models by

generalizing the previous representation of exponential discounting. The methodology can be

used to understand the effects of a change in prices on welfare or on the distribution of demand

in common settings arising in industrial organization.



Chapter 2

Price Search and Consumption

Inequality: Robust, Credible, and Valid

Inference

2.1 Introduction

Price search describes the process whereby buyers actively seek to gauge the most favorable

prices. Its importance has been recognized at least since the seminal paper of Stigler (1961)

and has gained strong empirical support over the years.1 In their influential paper, Aguiar

and Hurst (2007) show that the drop in expenditures occurring around retirement is partly due

to older households searching more intensively than younger ones. In another paper, Griffith

et al. (2009) document savings from various shopping strategies and compare how those sav-

ings vary by income group. The ability of consumers to pay lower prices by searching more

intensively and more efficiently affects their purchasing power. Thus, price search may be im-

portant for understanding consumption inequality and could be used as a mitigation mechanism

0Researcher’s own analyses calculated (or derived) based in part on data from Nielsen Consumer LLC and
marketing databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing Data Center at
The University of Chicago Booth School of Business. The conclusions drawn from the NielsenIQ and Nielsen
data are those of the researcher and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role
in, and was not involved in analyzing and preparing the results reported herein.

1See, for example, Sorensen (2000), Brown and Goolsbee (2002), and McKenzie et al. (2011). For a general
survey, see Baye et al. (2006).

3



4Chapter 2. Price Search andConsumption Inequality: Robust, Credible, andValid Inference

by policymakers.2

The first contribution of this paper is to propose an approach that allows one to statisti-

cally test structural models and achieve informative inference despite minimal assumptions on

unobservables. The second contribution of this paper is to provide a new revealed preference

methodology to characterize a parsimonious model of price search.3 The model shares key

features with the price search literature such as the concavity of the utility function and the

log-linearity of the shopping technology. However, to deal with misspecification issues I allow

for nonparametric preferences and unrestricted unobserved heterogeneity. The third contribu-

tion of this paper is to relax the common homogeneity assumptions on the shopping technology

which allows me to explore how it differs across several dimensions such as income, gender,

and geographic location.

This paper formalizes the empirical evidence documenting (i) the effects of price search on

prices paid (Aguiar and Hurst, 2007), (ii) the use of price search as a mechanism to mitigate

adverse income shocks (McKenzie et al., 2011; Nevo and Wong, 2019), and (iii) the wide

heterogeneity in prices paid (Kaplan and Menzio, 2015; Kaplan et al., 2019; Hitsch et al.,

2019). Additionally, by testing the main assumptions on which the price search literature

relies, I provide a foundation for existing models of price search (Aguiar and Hurst, 2007;

Pytka, 2017; Arslan et al., 2021) and obtain robust effects of search on prices paid.

While instrumental variable is a standard tool to estimate the causal effect of a treatment

on an outcome of interest, it requires the availability of an instrument that only affects the

outcome of interest through its impact on the treatment. Unfortunately, it is often difficult to

know a priori whether an instrument satisfy this exogeneity condition. Moreover, exogeneity

is not always testable when the endogenous variable is continuous (Gunsilius, 2020).4 Finally,

instrumental variable is not immune to potential bias from measurement error. My approach

mitigates these issues by exploiting the structure of the model to obtain testable restrictions and

by nonparametrically accounting for measurement error.

2For example, one may be interested in decreasing search costs of low-income consumers by increasing ac-
cessibility to cars. Alternatively, one could improve the shopping technology of consumers in low-income neigh-
borhoods by increasing the number of discount stores.

3From a different angle, Tipoe (2021) provides a revealed preference characterization of a model with limited
attention to prices à la Gabaix (2014).

4It is useful to note that overidentifying restrictions do not allow one to test instrument validity. See, for
example, Parente and Silva (2012).



2.1. Introduction 5

Absent exogenous variation in shopping intensity, I show that the model is set identified

in the sense that many elasticities of price with respect to shopping intensity are consistent

with the model given the data. To address this problem, I provide a nonparametric character-

ization of the model and use it to gain additional identification power.5 The implementation

takes advantage of a revealed preference approach (Afriat, 1967; Diewert, 1973; Varian, 1982;

Browning, 1989) and its extension to nonlinear budgets (Forges and Minelli, 2009). Accord-

ingly, every consumer is treated separately such that no aggregation assumptions or restrictions

on unobserved heterogeneity are imposed.

My empirical application uses the Nielsen Homescan Dataset which is a data set that tracks

U.S. households’ food purchases on each of their trips to a wide variety of retail outlets. I

measure shopping intensity by the number of shopping trips as it captures price variations

across stores and price discounts found by frequently visiting stores. The panel structure of the

data enables me to set identify the elasticity of price with respect to shopping intensity from

individual time-variation in shopping intensity. Under a mild condition on the residual errors,

I further show that the true impacts of search on prices paid are recovered. The validity of this

assumption can be jointly tested along with the model.

In a validation study of the Nielsen Homescan Dataset, Einav et al. (2010) report severe

measurement error in prices and provide information about its structure. The presence of mea-

surement error requires special attention for two reasons. First, the model could be compatible

with the true data but incompatible with the observed data, hence leading to the erroneous

rejection of the model.6 Second, measurement error can complicate empirical analyses by ob-

scuring the true behavior of variables such as expenditure.7 In turn, this can bias estimators in

unpredictable ways. For example, measurement error may be nonclassical such that bias could

arise even if it appears on the dependent variable in a standard regression setting.

The methodology developed by Schennach (2014) enables me to nonparametrically ac-

count for measurement error and statistically test the model. Furthermore, the extension of

5This strategy is similar to Blundell et al. (2012) in that it uses shape restrictions from economic theory to
improve the precision of an estimate.

6Measurement error has been shown to reverse conclusions about the validity of exponential discounting in
single-individual households (Aguiar and Kashaev, 2021).

7See Attanasio and Pistaferri (2016) for an overview of how measurement error can cloud the evolution of
consumption inequality.
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Aguiar and Kashaev (2021) allows me to impose the concavity of the utility function without

increasing the dimensionality of the problem. I extend the applicability of their framework to

allow for nonlinear budget sets and a mixture of parametric and nonparametric components in

the model. This is achieved by using a rejection sampling algorithm in the implementation of

the methodology.8 This method has the advantage to be applicable in a broader set of models

while remaining computationally tractable.

I find support for price search behavior in the Nielsen Homescan Dataset as the statistical

test fails to reject the hypothesis that the model generated the data. Furthermore, I show that

heterogeneity in price search explains part of the difference in average price paid between

income groups. Nevertheless, my results suggest that the difference in average price paid

is mainly driven by other factors such as a difference in average good quality. This finding is

consistent with Broda et al. (2009) who document that low-income consumers pay lower prices

mainly through the purchase of less expensive goods within product categories.

I document that, on average, low-income consumers shop slightly more frequently than

high-income consumers. Additionally, I show that low-income consumers have a slightly better

average shopping technology compared to high-income consumers. That is, I find that low-

income consumers are better at transforming search intensity into lower prices paid. Since

average food consumption levels are comparable between income groups in my data, my results

suggest that differences in price search and good quality are successful in reducing average food

intake inequality.

Pulling all consumers together, the 95% confidence set on the average elasticity of average

price with respect to shopping intensity states that doubling shopping intensity decreases the

average price paid by about 19.1% to 19.5%. This effect is well-above the preferred estimate

of 7.4% obtained by Aguiar and Hurst (2007) using income as an instrument. Instead, I find

support for their estimate of 18.9% obtained using age as an instrument. Thus, my results

show that the effects of shopping intensity on prices paid are almost three times larger than

previously thought. Moreover, they rationalize the calibration of Arslan et al. (2021) used in a

different model of price search.

In a counterfactual exercise, I show that a consumer in the lowest quintile of the shopping

8The rejection sampling algorithm exploits GPU parallel computing when applicable.
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frequency distribution pays close to 15% more for a good than a consumer in the largest quin-

tile. Assuming that savings from search are spent on the same good, this difference yields

within-group consumption inequality of the same order. Furthermore, I show that price search

has mixed impacts on between-group consumption inequality: I find that price search mit-

igates consumption inequality between low-income consumers with high shopping intensity

and high-income consumers with low shopping intensity, while exacerbating it for low-income

consumers with low shopping intensity and high-income consumers with high shopping inten-

sity.

The rest of the paper is organized as follows. Section 2.2 introduces the model and derives

its testable restrictions. Section 2.3 describes the data set. Section 2.4 discusses the envi-

ronment. Section 2.5 presents the statistical framework. Section 2.6 presents the empirical

application. Section 2.7 concludes. The main proofs can be found in Appendix A.

2.2 Description of the Model

This section introduces the notation, presents the model, characterizes the testable implications,

and provides the procedure for recovering the identified set.

2.2.1 Notation

The scenario under consideration is that of households making purchases over a certain time

window. Let N := {1, . . . ,N}, L := {1, . . . , L}, and T := {1, . . . ,T } denote the sets of house-

holds, commodities, and periods for which data are observable. For any household i ∈ N , good

l ∈ L and time period t ∈ T , denote prices by pi,l,t, consumption by ci,l,t, shopping intensity

by ai,l,t, and search productivity by ωi,l,t. I assume that P, C, A ⊆ RL
++ and Ω ⊆ RL, where P,

C, A and Ω correspond to the price, consumption, shopping intensity, and search productivity

spaces, respectively. An observation on a given household i ∈ N at time t ∈ T is a triple

(pi,t, ci,t, ai,t) ∈ P ×C × A.9 Accordingly, a data set is written as
{
(pi,t, ci,t, ai,t)

}
t∈T .

9I use bold font to denote vectors and follow the convention that vectors are vector columns.



8Chapter 2. Price Search andConsumption Inequality: Robust, Credible, andValid Inference

2.2.2 The Consumer Problem

In every time period, the consumer is assumed to know her realization of search productivity

and to choose consumption and shopping intensity accordingly. Formally, a consumer i ∈ N

behaves as if maximizing her lifetime utility subject to satisfying her budget constraints:

max
(ci,ai)∈CT×AT

T∑
t=1

δt−1
i ui(ci,t, ai,t) (2.1)

subject to

pi(ai,t,ωi,t)′ci,t + si,t+1 = yi,t + si,t,

where ui : C × A → R is the instantaneous utility function which is continuous, concave,

strictly increasing in consumption, and decreasing in shopping intensity; δi ∈ [δ, 1] is the

discount factor, where δ ∈ (0, 1]; si,t+1 is savings in a risk-free asset; pi(a,ωi,t) is the vector

of continuously differentiable good-specific price functions pi,l : A × Ω → P; yi,t > 0 is

income; and pi,t := pi(ai,t,ωi,t). The econometrician is assumed to only observe the data set

xi :=
{
(pi,t, ci,t, ai,t)

}
t∈T . As explained in the definition below, a data set that can be thought of

as stemming from the model (2.1) is said to be rationalized by the model.

Definition 2.1. A data set xi is rationalized by the model if there exist a utility function ui(·, ·),

a vector of price functions pi(·, ·), an income stream (yi,t)t∈T , a savings stream (si,t+1)t∈T , and a

discount factor δi ∈ [δ, 1] such that (ci,t, ai,t)t∈T solves the model (2.1).

The model has two distinctive features. First, the consumer gets utility from consumption

and disutility from shopping intensity. The latter captures the opportunity cost of time such

as foregone earnings and leisure. Second, the consumer can pay lower prices by shopping

more frequently. The extent by which shopping intensity reduces prices paid depends on the

consumer’s ability to take advantage of sales and other deals such as coupons. The consumer

problem boils down to finding the optimal trade-off between utility from consumption and

disutility from shopping intensity.

This trade-off is illustrated in Figure 2.1 in the case where there is one good L = {1} and

one time period T = {1}. The consumer has to choose a bundle that lies within her budget

set Bi := {(c, a) ∈ C × A : pi(a,ωi)′c ≤ yi + si}. This set is represented by the shaded area in
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Figure 2.1. The affordable bundle that maximizes the consumer utility is (ci, ai). At this point,

the indifference curve ICi is tangent to the budget line, hence corresponding to the unique

maximizer.10

−3
O

1

2

a

c

Indifference Curve

Budget Set

Search (a)

Consumption (c)

Figure 2.1: Optimal Choice with Price Search

In the remaining of the paper, I follow the price search literature and assume that the price

functions are log-linear in shopping intensity.11

Assumption 2.1. For all l ∈ L, the log price function is given by

log
(
pi,l(ai,l,t, ωi,l,t)

)
= α0

i,l + α
1
i,l log

(
ai,l,t

)
− ωi,l,t,

where α0
i,l ∈ R denotes the intercept and α1

i,l ≤ 0 denotes the elasticity of price with respect to

shopping intensity.

Assumption 2.1 implies that prices paid decrease at a decreasing rate as shopping intensity

or search productivity increases. This requirement captures decreasing marginal returns that

10In Appendix A.1, I show that my model can be extended to home production and relates it to that of Aguiar
and Hurst (2007).

11See, for example, Aguiar and Hurst (2007) and Arslan et al. (2021).
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arise due to the increasing difficulty of finding discounts surpassing the current best discount.12

An example of budget set generated by a convex decreasing price function is illustrated in

Figure 2.1 in the case of a single good. The figure shows that, while increasing shopping

intensity allows a greater consumption level, the marginal benefit is decreasing in shopping

intensity.

2.2.3 Identified Set

Given a data set xi, I am interested in what can be learned about the elasticity α1
i,l. For any good

l ∈ L, the first-order conditions with respect to consumption and shopping intensity are

δt∇cui(ci,t, ai,t)l = λi,t pi,l,t (2.2)

δt∇aui(ci,t, ai,t)l = λi,tα
1
i,la
α1

i,l−1
i,l,t e−(ωi,l,t−α

0
i,l)ci,l,t.

13 (2.3)

Solving for the exponential function in equation (2.3) yields

e−(ωi,l,t−α
0
i,l) =

λ−1
i,t δ

t∇aui(ci,t, ai,t)l

α1
i,la
α1

i,l−1
i,l,t ci,l,t

.

This equation can be substituted into the price function equation for good l to get rid of the

intercept and search productivity. Further substituting λ−1
i,t δ

t by its expression from equation

(2.2) then gives

α1
i,l(ui) = MRSi,l ·

ai,l,t

ci,l,t
∀l ∈ L, (2.4)

where MRSi,l := ∇aui(ci,t ,ai,t)l

∇cui(ci,t ,ai,t)l
≤ 0 denotes the marginal rate of substitution and highlights that the

consumer would have to receive consumption to increase her shopping intensity.

Equation (2.4) shows that every preference that generates a distinct marginal rate of substi-

tution induces a distinct shopping technology α1
i,l. The set of all elasticities that can be sustained

by the model is captured by the identified set.

12Stigler (1961) shows that the expected value of the minimum price is convex in search, therefore providing a
theoretical motivation for this choice.

13Strictly speaking, ∇cui(ci,t, ai,t) and ∇aui(ci,t, ai,t) denote a supergradient of ui(·, ·) at (ci,t, ai,t). When the
utility function is differentiable, the supergradient corresponds to the gradient.
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Definition 2.2. Under Assumption 2.1, the identified set is defined by

I(xi) := {α1
i (ui) : xi is rationalized by the model, ui ∈ U},

whereU is the set of utility functions that are continuous, concave, strictly increasing in con-

sumption, and decreasing in shopping intensity.

In other words, the identified set contains every possible elasticity of price with respect to

shopping intensity such that data on consumption and shopping intensity can be thought of as

maximizers of the consumer problem (2.1) for some well-behaved preferences.

2.2.4 Nonparametric Analysis of the Model

This subsection characterizes the testable implications of the model and provides a feasible

procedure to recover the identified set. Let ⊙ denote the Hadamard product such that (v⊙w) j =

v jw j. The following result characterizes the empirical content of the model.

Theorem 2.1. Let xi be a given data set. The statements (i) and (ii) below are related in the

following ways: if (i) then (ii), and if the budget sets {Bi,t}t∈T are convex then (ii) implies (i).

(i) The data set is rationalized by the model, where the utility function u(ci,t, ai,t) is contin-

uous, concave, strictly increasing in ci,t, and decreasing in ai,t, and where the vector of

price functions pi(·, ·) satisfies Assumption 2.1.

(ii) There exist numbers ui,t, λi,t > 0, α0
i,l, α

1
i,l ≤ 0, ωi,l,t, and a discount factor δi ∈ [δ, 1], such

that for all s, t ∈ T , the following system of inequalities is satisfied

ui,s ≤ ui,t + λi,tδ
−t
i

[
p′i,t(ci,s − ci,t) + ρ′i,t(ai,s − ai,t)

]
0 < pi,t

0 ≥ ρi,t,

where ρi,l,t := α1
i,la
α1

i,l−1
i,l,t e−(ωi,l,t−α

0
i,l)ci,l,t.

The first set of inequalities in Theorem 2.1 (ii) represents the concavity of the utility func-

tion, where the numbers ui,t and λi,t > 0 can be thought of as utility numbers and marginal
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utilities of expenditure. The second and third sets of inequalities capture the assumptions that

the utility function is strictly increasing in consumption and decreasing in shopping intensity,

respectively. Theorem 2.1 states that any data set rationalized by the model must satisfy the

inequalities in (ii). Moreover, any data set that satisfies these inequalities is rationalized by the

model if the budget sets are convex.

Since the model is generally set identified, there may be many solutions to the inequalities

in Theorem 2.1 (ii). These solutions are observationally equivalent in the sense that the data

do not allow one to distinguish one from another. In particular, note that every solution to

Theorem 2.1 (ii) sustains an elasticity α1
i,l. As a consequence, the set of solutions in Theorem

2.1 (ii) directly relates to the identified set.

Corollary 2.1. If the inequalities in Theorem 2.1 (ii) are only necessary for the data to be

rationalized by the model, then

I(xi) ⊂
{
α1

i : xi satisfies Theorem 2.1 (ii)
}
.

If the budget sets {Bi,t}t∈T are convex, then the inequalities in Theorem 2.1 (ii) are also sufficient

for the data to be rationalized by the model and

I(xi) =
{
α1

i : xi satisfies Theorem 2.1 (ii)
}
.

Corollary 2.1 states that conservative bounds on the identified set can always be recovered

via Theorem 2.1. Moreover, these bounds are sharp whenever the budget sets are convex.

Finally, note that given some value of (λi,t)t∈T and δi, the existence of a solution can be checked

efficiently using linear programming.

Remark Conditional on numbers (λi,t)t∈T ∈ RL
++ and a discount factor δi ∈ [δ, 1], the set of

solutions α1
i in Theorem 2.1 is convex. As such, the identified set can be recovered by finding

the smallest and largest value of α1
i for which a solution exists. If the budget sets are not

convex, then the procedure returns conservative bounds on the identified set.



2.3. Data 13

2.3 Data

This section presents the data set used in my empirical application and discusses its main source

of measurement error.

2.3.1 Sample Construction

For my empirical application, I use the Nielsen Homescan Dataset 2011 (henceforth referred

to as the Homescan). This data set contains information on purchases made by a panel of U.S.

households in a large variety of retail outlets. The data set is designed to be representative of

the U.S. population based on a wide range of annually updated demographic characteristics

including age, sex, race, education, and income.

Participating households are provided with a scanner device and instructed to record all

of their purchases after each shopping trip. The scanner device first requires participants to

specify the date and store associated with each trip. Then, they are prompted to enter the

number of units bought. When an item is purchased at a store with point-of-sale data, the

average weighted price of the item in that week and store is directly given to Nielsen and

recorded as the price paid prior to any coupon. Otherwise, panelists enter the price paid prior

to any deal or coupon using the scanner device. In either case, panelists record the amount

saved from coupons and the final price paid is the recorded price paid minus coupon discounts.

The Homescan contains information on Universal Product Codes (UPC) belonging to one

of 10 departments. In order to mitigate issues associated with stockpiling, I restrict my attention

to the following four food departments: dry grocery, frozen foods, dairy, and packaged meat.14

This selection leaves over a million distinct UPCs representing about 40% of all products in the

Homescan. For each household, I also aggregate the data to monthly observations to further

reduce stockpiling issues. The resulting UPC prices are calculated as the average UPC prices

weighted by quantities purchased.

To obtain regular observations on each good, I aggregate UPCs to their department cate-

gories, yielding a total of four “goods”. The resulting aggregated prices are calculated as the

14This choice implicitly assumes that food is weakly separable from other categories of goods. This assumption
is empirically plausible (Cherchye et al., 2015), especially when the presence of measurement error is recognized
(Fleissig and Whitney, 2008; Elger and Jones, 2008).
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average UPC prices weighted by quantities purchased. Even with this layer of aggregation,

some households do not have purchases from each category of goods in every month. Since

the model requires price observations in every time period, I discard those households from the

analysis.

In addition to the above restriction, I only consider single households. This is motivated by

recent evidence that exponential discounting may be rejected because of preference aggregation

within a household.15 Thus, including couple households could lead to the artificial rejection

of the model.16 Finally, I consider consumers that are at least 50 years old to exclude potential

online shoppers. The inclusion of younger consumers has no significant impact on the results.

The data set focuses on households that satisfy the above criteria and who participated in

the Homescan from April to September of the panel year 2011. The final sample contains

1645 consumers, 4 aggregated goods, and 6 monthly time periods. Additional details about the

construction of the data set are provided in Appendix A.2.

2.3.2 Sample Description

To assess whether my constructed sample is in line with the Homescan 2011, Table 2.1 com-

pares demographics between the two samples.

Table 2.1: Summary Demographics

N Age White (%) Black (%) Asian (%) Other (%) Male (%) Female (%) High school or less (%)

Sample 1645 65.45 86.14 11.43 0.55 1.88 34.04 65.96 27.90

Homescan 2011 62 092 57.45 83.77 9.38 3.17 3.99 74.99 90.41 46.21

Notes: N is the sample size. Age is calculated using the year of birth of the head household member.
Since households may have many members in the Homescan 2011, I let the head household refer to the
male in that case. The percentage of males and females includes both the head male and head female
members in the household.

Table 2.1 shows that the average age, proportion of females, and education level are slightly

15As Adams et al. (2014) point out, inconsistencies may arise due to negotiation within a couple house-
hold. Jackson and Yariv (2015) further show that time inconsistent behavior will appear if individuals in a non-
dictatorial household have different discount factors. By accounting for measurement error in survey data, Aguiar
and Kashaev (2021) show that single households behave consistently with exponential discounting while couple
households do not.

16This prediction is confirmed in my empirical application where I find that the model is rejected for couple
households.
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higher in my sample than in the Homescan. The difference in age is natural given that my sam-

ple is restricted to consumers that are at least 50 years old. Despite the higher proportion of

females and higher education level in my sample, the demographics are still fairly representa-

tive overall.

The fundamental assumption of the model is that consumers can decrease their prices paid

by searching more intensively. To provide evidence that price search is an empirical feature of

the data, Figure 2.2 displays how log prices vary with log number of shopping trips.
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Figure 2.2: Average Log Price by Log Number of Shopping Trips

Note: The vertical axis reports the average log price, where the average is taken across consumers.

Consistent with the main hypothesis of the model, Figure 2.2 shows a negative relationship

between prices paid and shopping intensity. That said, the true effect of shopping intensity on

prices paid may be quite different from the one displayed in Figure 2.2. Consumers that go

on many trips may do so because they do not find satisfactory discounts. This could explain

the uptick in prices paid for larger values of shopping trips on frozen foods and packaged

meat. Alternatively, those upticks could reflect the purchase of higher quality goods on those

shopping trips.

Next, Figure 2.3 compares differences in log prices paid between high- and low-income

consumers for each category of goods.
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Figure 2.3: Difference in Average Log Price between Income Groups

Notes: The vertical axis reports the difference in average log price between high- and low-income consumers.
The average is taken across consumers belonging to the same income group. High-income consumers are defined
as those with an income greater than $50, 000. Low-income consumers are defined as those with an income lower
than $25, 000.

The overwhelming trend shown in Figure 2.3 is that, conditional on shopping trips, high-

income consumers pay higher prices relative to low-income consumers. Since this feature

holds for almost every number of shopping trips, differences in prices paid cannot be attributed

to differences in shopping intensity. A plausible reason for the difference could be that high-

income consumers purchase goods of higher quality. Yet, a complementary explanation is that

low-income consumers have a greater incentive to take advantage of sales and discounts to

increase their consumption level. That is, low-income consumers could have a better shopping

technology such that shopping intensity would be more effective in decreasing prices paid for

them than for high-income consumers.

A possible approach to recover the true effects of shopping intensity on prices paid is to

use instrumental variables. However, an issue with this approach is that measurement error in

prices could yield inconsistent estimates if measurement error is nonclassical. More generally,

instruments could also fail to be exogeneous. In my empirical application, I show that such

concerns about instrumental variable are justified in my data.
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2.3.3 Measurement Error

The data collection process employed by Nielsen may induce measurement error for three

reasons. First, conditional on a shopping trip, entry mistakes may arise as panelists self-report

their purchases. Second, when a consumer purchases a UPC at a store that provides Nielsen

with point-of-sale data, the price reported (before coupons) is the weighted average price during

that week in that particular store. Thus, the reported price will be different from the price paid if

the store changed the price during the week. Third, some consumers have loyalty cards whose

discounts are not incorporated into the final price paid.

In a validation study of the Homescan 2004, Einav et al. (2010) use transactions from a

large retailer in order to document the extent of measurement error. Consistent with the above

observations, they find that price is the variable most severely hit by measurement error. Specif-

ically, they find that around 50% of prices are accurately recorded. In contrast, around 90%

of UPCs are accurately recorded by panelists on average. This number increases to 99% con-

ditional on the quantity being equal to one. Accordingly, I focus exclusively on measurement

error in prices in my application.

Since prices are mismeasured, observed prices (pi,t)t∈T are different from true prices paid by

the consumer (p∗i,t)t∈T . Let the difference between their logarithms define measurement error:

mi,t := log
(
pi,t

)
− log(p∗i,t) for all t ∈ T .17 Using price data from a large retailer, Einav et al.

(2010) show that the difference between observed and true log prices is centered around zero

in the Homescan 2004. Formally, one cannot reject that the difference in sample means of log

prices is zero at the 95% confidence level.

As Nielsen’s method of data collection has not changed since their study, I take their finding

as support for mean zero measurement error in log prices in the Homescan 2011.

Assumption 2.2. For all l ∈ L and t ∈ T , the following moment condition holds:

E
[
log

(
pl,t

)]
= E

[
log(p∗l,t)

]
.

Assumption 2.2 says that expected observed log prices and true log prices are the same for

17This definition makes no assumption on the way measurement error arises. For example, measurement error
could be additive or multiplicative and be correlated across goods or time periods.
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each good and time period. Together, they yield a total of L ·T moments on measurement error.

2.4 Environment

In this section, I discuss existing assumptions and impose additional structure on the model in

preparation of the empirical application.

Conditional on the log-linear specification implied by Assumption 2.1, price functions are

otherwise free to vary across goods and consumers. This heterogeneity is important as goods

may not be subject to the same discounts and consumers may not have access to the same set

of stores.18 Furthermore, note that the price function for any good l ∈ L only depends on the

shopping intensity on that good. This precludes complementarities that may naturally arise,

for instance, if two goods are in a same aisle in a store. Since goods are aggregated to coarse

categories in the data set, this issue should be largely mitigated.

Consistent with the ability of the consumer to transfer income across time, I restrict the

marginal utility of expenditure to be constant over time.

Assumption 2.3. For all t ∈ T , the marginal utility of expenditure is constant and such that

λi,t = 1.

Assumption 2.3 requires that the marginal utility of expenditure be invariant to changes in

income. This quasilinearity assumption is justified in my empirical application as the data span

only a period of 6 months for which unexpected changes in income should be negligible.19

Moreover, food tends to be income inelastic such that changes in income should have mild

impacts on preferences.20

The next assumption imposes the average search productivity to be time-invariant and en-

sures that price search is refutable. To see why, note that Assumption 2.1 implies that the true

average price paid must decrease whenever shopping intensity increases if there is no change

18Hence, even if store chains apply a nearly-uniform pricing rule (DellaVigna and Gentzkow, 2019), the shop-
ping technology may still differ across consumers.

19Quasilinearity is also used by Echenique et al. (2011) and Allen and Rehbeck (2020a) in a similar scanner
data set on food expenditures.

20See, for example, Anderson and Blundell (1984), Erdil (2006), and Selvanathan and Selvanathan (2006).
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in the average search productivity. Therefore, inconsistencies with price search arise whenever

this relationship is violated in the data.21

Assumption 2.4. For all t ∈ T , E [ω̄t] = 0, where ω̄i,t := L−1 ∑L
l=1 ωi,l,t denotes the average

search productivity across goods.

Assumption 2.4 allows time-varying search productivity for specific goods as long as the

overall search productivity remains constant. Permitting search productivity for a particular

good to change over time is important in my application because of the coarse aggregation of

the data. Indeed, since a consumer may purchase different baskets of goods in different time

periods, prices may vary due to variations in the composition of the baskets of goods.

Aside from the above restriction, Assumption 2.4 is quite general as it does not presume

anything about the underlying stochastic process of search productivity. Conditional on the

aggregate average search productivity being time-invariant, it allows individual-specific search

productivity to vary arbitrarily with both observables and unobservables. In particular, it in-

cludes Markovian processes often assumed in the production function literature.22

Given the log-linearity of the price functions, Assumption 2.4 implies that average log

true prices should be around the mean, conditional on shopping trips. In accordance with this

prediction, Figure 2.4 shows that the distribution of observed average log prices is centered

around its mean. I report the unconditional distribution for expositional purposes; similar

shapes are obtained for the conditional ones.23

Lastly, I bound the support of the elasticity of price with respect to shopping intensity to

gain further identification power.

Assumption 2.5. For all l ∈ L, α1
i,l ∈ [−1, 0].

Assumption 2.5 constrains the elasticity of price with respect to shopping intensity to be

in [−1, 0] for every good l ∈ L. In comparison, Aguiar and Hurst (2007) obtain a point-

estimate of −0.074 for the elasticity of average price with respect to shopping intensity using

21See Appendix A.3 for analytical power results.
22See, for example, Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015), and Gandhi

et al. (2020).
23Consistent with Assumption 2.1, distributions conditioned on larger values of shopping trips tend to be cen-

tered around lower values of log prices.
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Figure 2.4: Distribution of Average Log Prices

the Homescan 1993-1995.24 As such, Assumption 2.5 should give enough flexibility for the

needs of the data.

Remark Measurement error implicitly accommodates various shocks that may occur outside

the model. For example, changes in prices induced by supply shocks would be absorbed by

the moments on measurement error provided they satisfy Assumption 2.2. Likewise, exoge-

nous shocks can be absorbed by search productivity provided they satisfy Assumption 2.4.

Accordingly, the model is robust to a variety of perturbations.

2.5 Statistical Framework

In this section, I extend the deterministic framework presented in the paper to a statistical one

susceptible to testing and inference. I then show that inference on the true expected elasticity

can be recovered in the model.

24Their estimate is obtained using an instrumental variable approach and is for a single aggregated good.
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2.5.1 Characterization of the Model via Moment Functions

From now on, consumer data sets should be viewed as independent and identically distributed

draws from some distribution. Let X := P×C × A and E|X be the support of the latent random

variables conditional onX. Moreover, let xi ∈ X denote the observed random data and ei ∈ E|X

denote the latent random variables (ui,t, δi,αi, ρi,t,ωi,t,mi,t)t∈T .

To make the model amenable to statistical testing, I first express it through a set of moments.

Therefore, for all l ∈ L and s, t ∈ T , I write the model defined by Assumptions 2.1-2.5 with

the following moment functions:

gu
i,s,t(xi, ei) := 1

(
ui,s − ui,t − δ

−t
i

[
p∗′i,t(ci,s − ci,t) − ρ′i,t(ai,s − ai,t)

]
≤ 0

)
− 1,

gp
i,l,t(xi, ei) := 1

(
log

(
p∗i,l,t

)
−

(
α0

i,l + α
1
i,l log

(
ai,l,t

)
− ωi,l,t

)
= 0

)
− 1,

gm
i,l,t(xi, ei) := log

(
pi,l,t

)
− log

(
p∗i,l,t

)
,

gωi,l,t(xi, ei) := ω̄i,t,

where the first set of functions characterizes the concavity of the utility function, the second

the log-linearity of the price functions, the third measurement error, and the last search produc-

tivity. The latent random variables satisfy their support constraints: δi ∈ [δ, 1], α1
i ∈ [−1, 0],

ρi,t ≤ 0 and p∗i,t > 0, where ρi,t further satisfies

ρi,t :=
∂pi(ai,t,ωi,t)
∂ai,t

⊙ ci,t.

This equality constraint implies that ρi,t is completely determined by the data and latent vari-

ables (ui,t, δi,αi,ωi,t,mi,t)t∈T .

Every consumer has a total of T 2+L ·T +L ·T +T moment functions, written as gi(xi, ei) :=

(gu
i (xi, ei)′, gp

i (xi, ei)′, gm
i (xi, ei)′, gωi (xi, ei)′)′ for short. Arbitrary combinations of these sets of

functions are denoted with their superscripts bundled together. For example, gm,ω
i (xi, ei) is the

set of functions on measurement error and search productivity. Note that the moment functions

gi(xi, ei) depend on unobservables. As such, the latent variables have to be drawn from some

distribution for the moment functions to be evaluated.

Since Assumptions 2.2 and 2.4 only impose centering conditions on the expected measure-
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ment error and the expected average search productivity, the latent variables are essentially

unrestricted for any particular consumer. Therefore, empirical content is gained by averaging

the moment functions gi(xi, ei) across consumers.25 The distribution of the latent variables that

satisfy individual-specific moment functions gu,p
i (xi, ei) may then only do so when the expec-

tation of gm,ω
i (xi, ei) deviates from zero.

2.5.2 Statistical Price Search Rationalizability

Let MX, ME,X, and ME|X denote the set of all probability measures defined over X, (E,X),

and E|X, respectively. Moreover, let Eµ×π[gi(xi, ei)] :=
∫
X

∫
E|X

gi(xi, ei) dµ dπ, where µ ∈ ME|X

and π ∈ MX. The moment functions previously defined allow me to define the statistical

rationalizability of a data set with respect to price search.26

Definition 2.3. Under Assumptions 2.1-2.5, a random data set x := {xi}
N
i=1 is price search

rationalizable (PS-rationalizable) if

inf
µ∈ME|X

∥Eµ×π0[gi(xi, ei)]∥ = 0,

where π0 ∈ MX is the observed distribution of x.

That is, the data are PS-rationalizable if there exists a distribution of the latent random

variables conditional on the data such that the expected moment functions are satisfied. In

practice, searching over the set of all conditional distributions represents a daunting task. For-

tunately, the following result shows that the problem can be greatly simplified without loss of

generality.27

Theorem 2.2. The following are equivalent:

(i) A random data set x is PS-rationalizable.

(ii) min
γ∈RL·T+T

∥Eπ0[h̃i(xi;γ)]∥ = 0,

25I show that the model defined by Assumptions 2.1-2.5 is refutable in Appendix A.3.
26This definition follows the notion of identified set in Schennach (2014).
27See Aguiar and Kashaev (2021) for the weak technical assumptions required for this result to hold.
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where

h̃i(xi;γ) :=

∫
ei∈E|X

gm,ω
i (xi, ei) exp

(
γ′gm,ω

i (xi, ei)
)
1(gu,p

i (xi, ei) = 0) dη(ei|xi)∫
ei∈E|X

exp
(
γ′gm,ω

i (xi, ei)
)
1(gu,p

i (xi, ei) = 0) dη(ei|xi)
,

and where η(·|xi) is an arbitrary user-specified distribution function supported on E|X such

that Eπ0[log
(
Eη[exp

(
γ′gm,ω

i (xi, ei)
)
|xi]

)
] exists and is twice continuously differentiable in γ for

all γ ∈ RL·T+T .

Proof. See Theorem 2.1 in Schennach (2014) and Theorem 4 in Aguiar and Kashaev (2021).

In words, Theorem 2.2 (ii) averages out the unobservables in gi(xi, ei) according to some

conditional distribution.28 The particularity of η(·|xi) is to preserve the set of values that the

objective function can take before the latent variables have been averaged out. As such, any

minimum achieved under µ can also be achieved under η(·|xi). The dimensionality of the

problem is then further reduced by noting that the concavity of the utility function and the log-

linearity of the price functions are only restricting the conditional support of the unobservables.

Thus, one can draw from the conditional distribution η̃(·|xi) := 1(gu,p
i (xi, ·) = 0)η(·|xi) rather

than leaving the moment functions gu,p
i (xi, ·) in the optimization problem.

In most applications, the distribution η̃(·|xi) may be taken to be proportional to a normal

distribution:

dη̃(·|xi) ∝ exp
(
−||gm,ω

i (xi, ei)||2
)
,

where the value of the mean and variance are inconsequential for the validity of the result. To

draw from this distribution, the first step is to obtain latent variables that satisfy the moment

functions gu,p
i (xi, ei) and can be achieved by rejection sampling. Then, a standard Metropolis-

Hastings algorithm can be used to draw from the distribution.29

28Schennach (2014) shows the existence of an admissible conditional distribution η(·|xi) and gives a generic
construction for it.

29Additional details about the implementation are given in Appendix A.4.



24Chapter 2. Price Search andConsumption Inequality: Robust, Credible, andValid Inference

2.5.3 Statistical Testing

The notion of PS-rationalizability together with Theorem 2.2 provides a feasible way of check-

ing whether the data are consistent with the model. To statistically test the PS-rationalizability

of a data set, let

ˆ̃h(γ) :=
1
N

N∑
i=1

h̃i(xi,γ)

and

ˆ̃Ω(γ) :=
1
N

N∑
i=1

h̃i(xi,γ)h̃i(xi,γ)′ − ˆ̃hi(γ) ˆ̃hi(γ)′

denote the sample analogues of h̃ and its variance, respectively. Furthermore, let ˆ̃Ω− denote

the generalized inverse of the matrix ˆ̃Ω. Schennach (2014) shows that the test statistic

TSN := N inf
γ∈RL·T+T

ˆ̃h(γ)′ ˆ̃Ω−(γ) ˆ̃h(γ)

is stochastically bounded by a χ2 distribution with dm := L · T + T degrees of freedom (χ2
dm

).30

As such, the PS-rationalizability of a data set can be checked by comparing the value of the

test statistic against the critical value of the chi-square distribution with dm degrees of freedom.

2.5.4 Inference

Conditional on the data being consistent with PS-rationalizability, the next step is to make

inferences on parameters of interest. First, the next result shows that inference on the true

average elasticity of average price is possible in the model.

Proposition 2.1. The average expected elasticity of average price with respect to shopping

intensity is given by
1
L

L∑
l=1

E
 ∂log

(
p∗t

)
∂ log

(
al,t

) = 1
L
E

[
ᾱ1

]
,

where log
(
p∗t

)
is the true average log price across goods and ᾱ1 is the average elasticity of

30Aguiar and Kashaev (2021) further show that the test has an asymptotic power equal to one.
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price with respect to shopping intensity.

Proposition 2.1 states that the average expected effect of an increase in shopping intensity

on the average price can be recovered from data on prices paid and search intensity. The reason

why it can be achieved in the model is that Assumption 2.4 restricts the expected average search

productivity to be time-invariant. Therefore, any variation in the expected average price must

be caused exclusively by variations in shopping intensity.

In the statistical framework previously outlined, inference can be made by adding a moment

on a parameter of interest. Proposition 2.1 suggests to choose the following moment:

L−1E[ᾱ1] = θ0,

where ᾱ1 is the average elasticity of price with respect to shopping intensity and θ0 ∈ [−0.25, 0]

is the average expected elasticity of average price with respect to shopping intensity.31 As

before, this condition can be encapsulated in a moment function:

gαi (xi, ei) := L−1ᾱ1
i − θ0.

A conservative 95% confidence set on θ0 can be obtained by inverting the test statistic:

{θ0 ∈ Θ : TSN(θ0) ≤ χ2
dm+1,0.95},

where TS N(θ0) is the test statistic at a fixed value of θ0.

2.6 Empirical Application

In this section, I check whether the data are PS-rationalizable, set estimate the shopping tech-

nology across multiple demographics, and relate price search to consumption inequality.

31The support of θ0 is given by L−1 times the support of the average elasticity of price with respect to shopping
intensity αi = [−1, 0].
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2.6.1 Price Search

In what follows, I set δ = 0.95 such that the support of the discount factor is [0.95, 1]. By

applying the above methodology to my sample, I find that PS-rationalizability is not rejected

by the data at the 95% confidence level. More precisely, I obtain a test statistic of 36.38, which

is below the chi-square critical value of 43.77. Since the model is not rejected by the data, I

can invert the statistical test to obtain a 95% confidence set on the average expected elasticity

of average price with respect to shopping intensity. The results for all consumers, low-income

consumers, and high-income consumers are reported in Figure 2.5.
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Figure 2.5: Average Expected Elasticity of Average Price with Respect to Shopping Intensity
(E[ᾱ])

Notes: The vertical axis represents the average expected elasticity of average price with respect to shopping inten-
sity. Low-income consumers are defined as those with an income lower than $25, 000. High-income consumers
are defined as those with an income greater than $50, 000. The sample size is 1645 for all, 660 for low-income
consumers, and 348 for high-income consumers.

In this figure, we see that the average expected elasticity of average price with respect to

shopping intensity is about −0.1925. That is, doubling shopping intensity decreases the average

price paid by about 19.25%. Figure 2.5 also shows that low-income consumers have a slightly

better shopping technology compared to high-income consumers. To investigate whether low-

and high-income consumers also have different shopping intensities, Figure 2.6 displays the
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distribution of log number of shopping trips by income group.
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Figure 2.6: Log Number of Shopping Trips Density by Department Category

Notes: Low-income consumers are defined as those with an income lower than $25, 000. High-income consumers
are defined as those with an income greater than $50, 000. The sample size is 660 for low-income consumers and
348 for high-income consumers.

Overall, Figure 2.6 shows that the distribution of shopping intensity is almost identical be-

tween income groups. Consumers earning less than $25, 000 a year are only making 1.65%

more shopping trips per month than consumers earning more than $50, 000 a year. Combined

with my finding that income groups have a similar shopping technology, it follows that het-

erogeneity in price search only explains a small portion of the difference in average price paid

between low- and high-income consumers.

Lastly, to investigate whether the shopping technology differs across other dimensions than

income, I set estimate the shopping technology by gender, education, geographic location, and

occupation. These categories are defined as follows: gender separates the sample between

males and females; education between consumers that did not graduate college and those that

graduated college; geographic location between consumers in rural states and those in urban

states; and occupation between workers and retirees.32

32A rural state is defined as one where the proportion of the urban population is below that of the U.S. popula-
tion, and an urban state as one where the proportion of the urban population is above that of the U.S. population.
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For every demographic, the 95% confidence set is [−0.1975,−0.19], with the exception

of workers where the confidence set is [−0.195,−0.19].33 Since the model allows for sizable

heterogeneity, the confidence sets on the average expected elasticity of average price with

respect to shopping intensity reflect inherent homogeneity in the average shopping technology

rather than induced homogeneity through ex ante restrictions.

2.6.2 Consumption Inequality

To evaluate the impacts of heterogeneity in price search on consumption inequality, I compare

how much more a consumer at the 20th quantile of the shopping intensity distribution would

pay compared to one at the 80th quantile. I shall refer to the former type of consumers as

infrequent shoppers and the latter type as frequent shoppers. The results are presented in

Figure 2.7 and are obtained by using the shopping technologies estimated in Figure 2.5 and

the observed distribution of number of shopping trips.
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Figure 2.7: Difference in Price Paid due to Heterogeneity in Price Search

Notes: The vertical axis represents how much more consumers at the 20th quantile of the distribution of number
of shopping trips pay compared to those at the 80th quantile.

33The 95% confidence set is identical across those demographics at a precision level of 0.0025. Therefore, any
difference in the confidence set must be by less than 0.005.
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Figure 2.7 shows that infrequent shoppers pay almost 15% more on the goods they pur-

chase than frequent shoppers. Assuming that expenditure is fixed and that savings from search

is spent on those same goods, the consumption level of frequent shoppers is 15% larger than

that of infrequent shoppers. Figure 2.7 also shows that consumption inequality is larger among

high-income consumers than among low-income consumers. Finally, Figure 2.7 implies that

price search has two opposite effects on between-group consumption inequality. On one hand,

it mitigates consumption inequality between low-income consumers with high shopping fre-

quency and high-income consumers with low shopping frequency. On the other hand, price

search exacerbates consumption inequality between low-income consumers with low shopping

frequency and high-income consumers with high shopping frequency.

2.6.3 Instrumental Variable

The statistical framework allows me to impose additional moments to test the validity of an

instrument within the structure of the model. For conciseness, I consider the validity of income

as it is the main instrument used in Aguiar and Hurst (2007). Income is a valid instrument

if the exogeneity assumption E[ytωl,t] = 0 holds for all l ∈ L and t ∈ T . Moreover, the

instrument would also need to satisfy E[ytml,t] = 0 for all l ∈ L and t ∈ T if measurement

error in prices is additive. I find that the model is rejected with a test statistic of 113.69 when

further imposing these moments at t = 1.34 In Appendix A.5, I assess the extent of the bias

involved with instrumental variable (IV) in a regression setting and find that the estimate is

downward biased. Given the severity of measurement error in prices and the evidence towards

nonclassical measurement error (Einav et al., 2010), the main issue likely lies in the interaction

between the instrument and measurement error.

2.6.4 Discussion

Price search allows consumers to pay lower prices by increasing their shopping intensity. This

results in heterogeneity in prices paid such that expenditure may give an erroneous account of

34Imposing these moments at additional time periods would increase the test statistic and leave the conclusion
unchanged.
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consumption and, hence, consumption inequality. In a calibrated model of price search, Ar-

slan et al. (2021) show that consumption inequality is significantly smaller than expenditure

inequality in the Homescan 2004. Consistent with their finding, Figure 2.3 and Figure ?? dis-

play disparity in prices paid despite similar consumption levels between income groups. Since

the difference in expenditures is attributable to lower prices paid by low-income consumers, an

analysis based on expenditures would overstate actual consumption inequality in the data.

The conclusion that consumption inequality is negligible between income groups appears

somewhat counterintuitive, especially given the overwhelming evidence that consumption in-

equality has increased over time such as in Aguiar and Bils (2015).35 This finding can be

reconciled by two observations. First, Aguiar and Bils (2015) measure the change in consump-

tion inequality by comparing relative expenditures on luxury versus necessity goods. Since

my data set only contains food categories (necessities), the rise in consumption inequality can

be explained by changes in expenditures on luxury goods. Second, consumption inequality is

typically measured from data on expenditures, thus ignoring differences in prices paid between

income groups. As discussed previously, this can lead to an inflated measure of consumption

inequality.

My application shows that price search has a strong impact on average prices paid. How-

ever, the set estimates in Figure 2.5 show that low-income consumers have only a slightly

better average shopping technology compared to high-income consumers. Thus, most of the

price differentials between income groups displayed in Figure 2.3 are due to differences in

good quality. Using data from the National Health and Nutrition Examination Survey, Wang

et al. (2014) document an increase in diet quality inequality between socioeconomic groups.36

To the extent that lower quality goods are also less healthy, consumption inequality between

income groups likely takes the form of diet quality inequality.

35See Attanasio and Pistaferri (2016) for a review of the literature investigating the evolution of consumption
inequality.

36Individuals with low socioeconomic status are defined as those with less than 12 years of education and an
income below 130% of the poverty line. Individuals with high socioeconomic status are defined as those with
more than 12 years of education and an income above 350% above the poverty line.
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2.7 Conclusion

This paper proposes a flexible semiparametric approach to estimate the impacts of shopping

intensity on prices paid and consumption inequality. My approach allows one to make infor-

mative inferences with minimal data requirements and minimal assumptions on unobservables.

Importantly, the econometric framework allows one to statistically test the restrictions of the

model. In that general setting, I show that the true average elasticity of average price with

respect to shopping intensity can be recovered.

I show that the model I propose is consistent with consumers in the Nielsen Homescan

Dataset. Using aggregated data on food expenditures, I find that a doubling of shopping fre-

quency decreases the average price paid by about 19%. Also, by recognizing differences in

price search behavior I show that heterogeneity in price search mitigates between-group con-

sumption inequality on average. At the same time, differences in search intensity reveal un-

equal gains from price search. Specifically, price search reduces consumption inequality be-

tween low-income consumers with high shopping frequency and high-income consumers with

low shopping frequency but exacerbates it between low-income consumers with low shopping

frequency and high-income consumers with high shopping frequency.

The methodology put forward in this paper may be useful in other settings. For example,

the shopping technology may be viewed as a function that takes shopping intensity as an input

and returns price paid as an output. In this light, the estimation of the shopping technology is

related to the estimation of production functions such as in Gandhi et al. (2020).37 In a firm

setting, my centering condition on the error term amounts to assuming that the average pro-

ductivity across firms is constant over time. This allows firm-specific productivity shocks to

follow essentially unrestricted processes. Thus, my methodology could be used to identify the

production function without appealing to Markovian processes.

37See also Levinsohn and Petrin (2003) for an earlier treatment on the estimation of gross output production
functions and Olley and Pakes (1996) and Ackerberg et al. (2015) for the related problem of estimating value-
added production functions.



Chapter 3

Robust Inference on Discount Factors

3.1 Introduction

The exponential discounting model is a predominant tool for analyzing dynamic choice in ap-

plied work. Its attractiveness rests in that time preferences are summarized by a single parame-

ter—the discount factor. This allows one to tractably analyze a decision maker’s intertemporal

choices, which is crucial in a vast range of applications. Accordingly, many studies have tried

to recover its key time parameter. However, a common feature in this literature is the speci-

fication of the consumer’s preferences.1 This constitutes a potentially important limitation as

erroneously specifying preferences may lead to spurious estimates of the discount factor.

At its core, the exponential discounting model assumes that the utility function is additively

time-separable and stationary. Under these assumptions, the transitivity of preferences can

be characterized by the well-known Generalized Axiom of Revealed Preference (GARP). In

particular, Afriat (1967) showed that for any finite data set {(ρt, ct)}t∈T of discounted prices and

demands, GARP is necessary and sufficient for the existence of a well-behaved utility function

that rationalizes the data. The distinctive feature of exponential discounting, though, is the

prediction that consumers will be time consistent. Namely, it requires consumers to commit to

their initial plan as time unfolds.2

1For an overview of this large literature, see Frederick et al. (2002).
2In experimental settings, a preference reversal occurs when the consumer chooses a sooner-smaller reward

over a later-larger one and then switches to the later-larger reward when an equal delay is added to both outcomes.
This behavior violates time consistency if the consumer deviates from his plan and chooses the sooner-smaller

32
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I show that the exponential discounting model, which is normally stated as a dynamic

maximization problem with an intertemporal budget constraint, may be expressed as a repeated

static utility maximization problem without any budget constraint. Specifically, a consumer is

an exponential discounter if and only if there exists a locally nonsatiated instantaneous utility

function u : RL
+ → R and a discount factor δ ∈ (0, 1] such that

ct ∈ arg max
c∈RL

+

u(c) + δ−t(yd
t − ρ

′
t c) ∀t ∈ T ,

where yd
t > 0 denotes discounted income in period t. Letting sd := yd

t − ρ
′
t c denote discounted

savings and Ut(c, sd) := u(c) + δ−tsd, the objective function may be seen as an additively

separable time-dependent augmented utility function Ut : RL
+ × R → R. The dynamics of

the model is captured through the incorporation of savings into the consumer’s consideration.

Indeed, the amount a consumer is willing to consume in any time period is regulated by his

desire to save for future consumption.

My methodology exploits the theory of revealed preference popularized by Afriat (1967)

and Varian (1982). This approach obtains sharp conditions that any demand data must satisfy in

order to be consistent with utility maximization, and reciprocally, any behavior stemming from

utility maximization must satisfy them.3 In the exponential discounting model, for a given set

of observations {(ρt, ct)}t∈T , these conditions yield a set of linear inequalities that are known

up to the discount factor. Since revealed preference conditions are exact, the main requirement

maintained in this study is that consumers have perfect foresight. In addition, I impose the

marginal utility of discounted expenditure to be constant across time as it is necessary for

exponential discounting to have implications beyond GARP (Browning, 1989).

A data set either satisfies or violates the revealed preference inequalities that characterize

exponential discounting. This makes the direct implementation of these inequalities of limited

applicability as they fail to handle innocuous deviations that may arise in the data. As such,

I propose a statistical test that allows for measurement error in variables as in Varian (1985).

While this statistical test can be inverted to recover nonparametric bounds on the discount

reward in the future (Halevy, 2015).
3Although it is possible to impose additional constraints on the utility function, the revealed preference frame-

work does not require it.
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factor, it has the undesirable property to be extremely conservative, thus hindering one’s ability

to make informative inference. I address this caveat by meaningfully disciplining measurement

error in terms of percentage of wasted income.

In my empirical application, I apply my methodology to the checkout scanner panel data

set on food expenditures from Echenique et al. (2011). I find that many consumers behave con-

sistently with exponential discounting when measurement error in prices is taken into account.

Moreover, I show that bounds on the discount factor get tighter as the extent of measurement

error decreases. Finally, I find that observable characteristics such as income, education and

age fail to capture heterogeneity in discounting.

The remainder of the paper is organized as follows. Section 3.2 reviews the related litera-

ture. Section 3.3 formally defines the exponential discounting model and reviews its testable

implications. Section 3.4 obtains a novel representation of the exponential discounting model,

generalizes it to a partial efficiency setting, and derives its testable implications. Section 3.5

introduces the statistical test and provides a way to obtain a confidence set on the discount fac-

tor. Section 3.6 contains the empirical application and Section 3.7 concludes. The main proofs

and supplemental material can be found in Appendix B.

3.2 Related Literature

This paper builds on the exponential discounting characterization of Browning (1989) in order

to derive a novel representation of the model in terms of a time-dependent augmented utility

function. The use of an augmented utility function has also been used by Deb et al. (2018) in a

different framework. They consider the concept of revealed price preference and obtain a con-

sistency condition called the Generalized Axiom of Price Preference (GAPP). The augmented

utility function I derive is distinct from theirs as it has the peculiarity of being time-dependent;

a notable implication is that exponential discounting can be thought of as a static model with

reference-dependent preferences.4

This new representation lends itself to a partial efficiency analysis similar to that of Afriat

4In this light, my representation relates to the literature on reference-dependent utility functions popularized
by the seminal work of Kahneman and Tversky (1979).
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(1973) which allows me to measure the severity of a violation from exponential discounting

in the data. In this respect, my result relates to existing partial efficiency results such as those

for static utility maximization (Halevy et al., 2018; De Clippel and Rozen, 2018), homothetic

rationalizability (Heufer and Hjertstrand, 2019), and expected utility maximization (Echenique

et al., 2021). I complement these papers by bringing partial efficiency to a dynamic setting. No-

tably, my extension allows one to use the statistical test of Cherchye et al. (2020) to exponential

discounting.

My endeavor is complementary to that of Adams et al. (2014) who extend the analysis of

the exponential discounting model for preference heterogeneity and renegotiations within the

household. It also relates to models of habit formation such as the one proposed in Crawford

(2010) and Demuynck and Verriest (2013) who examine the fit of richer life-cycle models.

More generally, my approach is similar to that of Blow et al. (2021) who develop a test for

the quasi-hyperbolic model. My work differs from theirs in that I focus on improving the

applicability of the standard version of exponential discounting.

My methodology is close to that of Brown and Calsamiglia (2007) who provide conditions

for quasilinear utility rationalization, and to Echenique et al. (2020) who provide an axiomatic

characterization of exponential discounting for experimental data.5 Instead, my test is aimed to

be applied to survey or scanner data where choices are made over multidimensional consump-

tion bundles.

3.3 Exponential Discounting

In this section, I introduce the notation used throughout the paper, formally define the expo-

nential discounting model, and show how to get nonparametric bounds on the discount factor.

3.3.1 Notation

The typical scenario under consideration is that of purchases made by a consumer over a certain

time window. Let L ∈ {1, ..., L} denote the number of observed commodities and T = {0, ...,T }

the periods for which data on consumers are observable. For any good l ∈ L and time period
5Their test applies to a single good, a case that more naturally occurs in experiments.
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t ∈ T , denote discounted price by ρl,t = pl,t/
∏t

i=0(1 + ri), where pl,t is the spot price and

ri is the interest rate, and denote consumption by cl,t.6 An observation is therefore a pair

(ρt, ct) ∈ RL
++ × RL

+, and accordingly, a data set is written as {(ρt, ct)}t∈T .

3.3.2 Exponential Discounting Rationalizability

The objective function faced by an exponential discounting (ED) consumer at time τ ∈ T is

given by

Uτ(cτ, ..., cT−τ) = u(cτ) +
T−τ∑
j=1

δ ju(cτ+ j),

where u(·) is the instantaneous utility function and δ ∈ (0, 1] is the discount factor. Moreover,

consumption satisfies the linear budget constraint

ρ′t ct + sd
t = yd

t + ad
t ∀t ∈ {τ, . . . ,T },

where sd
t denotes discounted savings, yd

t > 0 denotes discounted income and at is the discounted

value of assets held at period t.7 The assets evolve according to the law of motion: at =

(1 + rt)st−1. A data set is consistent with exponential discounting if it can be thought of as

stemming from the model.

Definition 3.1. A data set {(ρt, ct)}t∈T is ED-rationalizable if there exists a locally nonsatiated,

continuous, monotonic, and concave instantaneous utility function u(·), an income stream

(yd
t )t∈T ∈ R|T |++, an initial asset level a0 ≥ 0, and a discount factor δ ∈ (0, 1] such that the

consumption stream (ct)t∈T solves

max
(ct)t∈T ∈RL×|T |

+

u(c0) +
T∑

t=1

δtu(ct) s.t. ρ′0c0 +

T∑
t=1

ρ′t ct = y0 +

T∑
t=1

yd
t + a0.

The main requirement in the previous definition of exponential discounting is that con-

sumers have perfect foresight. Consistent with the permanent income hypothesis, I further im-

pose the marginal utility of discounted expenditure to be constant across time (Bewley, 1977).8

6The interest rate in the first period is set to zero, that is, r0 = 0.
7That is, sd

t = st/
∏t

i=0(1 + ri), yd
t = yt/

∏t
i=0(1 + ri) and ad

t = at/
∏t

i=0(1 + ri).
8In the current framework, this is necessary for exponential discounting to have implications beyond static
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This assumption is motivated by the fact that, if the marginal utility of discounted expenditure

at period t was higher than period s , t, then the consumer could move income from s to t such

as to increase consumption at t and be better off.

The empirical implications of exponential discounting is captured by the following result

due to Browning (1989).

Proposition 3.1. The following statements are equivalent:

(i) The data set {(ρt, ct)}t∈T is ED-rationalizable.

(ii) There exist numbers ut, t = 0, . . . ,T, and a discount factor δ ∈ (0, 1] such that

us ≤ ut + δ
−tρ′t(cs − ct) ∀s, t ∈ T .

(iii) There exists a discount factor δ ∈ (0, 1] such that for any subset of indices τ = {ti}
m
i=1 with

ti ∈ T and m ≥ 2,

0 ≤ δ−t1ρ′t1(ct2 − ct1) + . . . + δ
−tmρ′tm(ct1 − ctm). (CM)

Proposition 3.1 gives two alternative tests for the exponential discounting model. Condi-

tional on δ ∈ (0, 1], condition (ii) is a set of linear inequalities and can be solved using linear

programming. Turning to (iii), note that pairs of indices s, s + h ∈ T , where h ≥ 1, provide

bounds on the discount factor. Accordingly, I define the greatest lower bound and the least

upper bound on the discount factor as

glb := max
s,s+h∈T

{(
ρ′s+h(cs − cs+h)
ρ′s(cs − cs+h)

)1/h}
such that ρ′s(cs − cs+h) < 0

and

lub := min
s,s+h∈T

{(
ρ′s+h(cs − cs+h)
ρ′s(cs − cs+h)

)1/h}
such that ρ′s(cs − cs+h) > 0,

whenever such bounds exist, and glb = 0, lub = 1, otherwise.

utility maximization (Browning, 1989).
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To gain some intuition on these bounds, note that when ρ′s(cs − cs+h) < 0, the consumer

does not reveal a preference for the earlier bundle over the later one.9 This can only happen if

he is somewhat patient and therefore yields a lower bound on the discount factor. In the case

where ρ′s(cs − cs+h) > 0, the consumer reveals a preference for the earlier bundle over the later

one. In turn, this can only happen if he is somewhat impatient and therefore yields an upper

bound on the discount factor.

Furthermore, note that the size of ρ′s(cs − cs+h) < 0 gives an indication of how enticing cs+h

is compared to cs at time s. Likewise, ρ′s+h(cs − cs+h) < 0 gives an indication of how enticing

cs+h is compared to cs at time s + h. The more enticing cs+h becomes at time s + h relative

to time s, the more patient the consumer gets. Intuitively, when cs+h becomes an increasingly

better option at time s + h relative to time s, the consumer’s willingness to leave cs+h for

later strengthens. In other words, the lower bound takes on larger positive values. A similar

interpretation holds for upper bounds.

With these bounds in hand, condition (iii) allows me to derive necessary conditions that

yield additional intuition on the ED model and will prove useful for computational purposes.

Corollary 3.1. The data set {(ρt, ct)}t∈T is ED-rationalizable only if GARP holds and

glb ≤ lub ; glb ≤ 1 ; lub > 0. (CD)

Corollary 3.1 states that the exponential discounting model has an additional testable impli-

cation compared to static utility maximization. As for the latter, GARP captures within-period

consistency. That is, it ensures that the bundle chosen at time t is the best among all feasible

bundles in that period. In contrast, condition CD represents the dynamic of the model and guar-

antees that the intertemporal choices of the consumer are pairwise time consistent. However,

these conditions are not sufficient for ED-rationalizability, as the following example displays.

Example Consider a bivariate demand (L = {1, 2}) with three time periods (T = {0, 1, 2}).

The consumer has a data set where (ρ0, c0) = ([1, 1]′, [4, 3]′), (ρ1, c1) = ([2, 5]′, [1, 2]′) and

(ρ2, c2) = ([4, 2]′, [3, 6]′). It is easy to verify that GARP holds. Indeed, c0RDc1, c2RDc0 and

9For any t ∈ T , a bundle ct is said to be revealed preferred to a bundle c if ρ′t(c − ct) ≤ 0. See Appendix B.1
for a detailed review of revealed preference concepts.
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c2RDc1 so no cycle exists. To see that CD is also satisfied, note that

ρ′1(c0 − c1)
ρ′0(c0 − c1)

=
11
4
,

(
ρ′2(c0 − c2)
ρ′0(c0 − c2)

)1/2

=
−2
−2
= 1, and

ρ′2(c1 − c2)
ρ′1(c1 − c2)

=
−16
−24

=
2
3
.

Clearly, glb = 1 and lub = 11/4 so the conditions of CD are met. However, the data set does

not satisfy CM since when δ is equal to one10,

f (δ) := δ−2ρ′2(c1 − c2) + δ−1ρ′1(c0 − c1) + δ−0ρ′0(c2 − c0) = −16 + 11 + 2 < 0.

In practice, Corollary 3.1 only involves testing GARP and checking the set of inequalities

in CD. As highlighted by Varian (1982), one can use an efficient algorithm called the Floyd-

Warshall algorithm to get the transitive closure of the direct revealed preference relation.11

Importantly, these conditions can be parallelized, thus greatly reducing the computational bur-

den when exponential discounting has to be tested repeatedly.

3.4 Exponential Discounting under Partial Efficiency

This section shows that the exponential discounting model has a time-dependent augmented

utility function representation that can be used to account for inconsistent choices in the ob-

served data.

3.4.1 Time-dependent Augmented Utility Function

The main problem with the previous result is that, when a data set is not exactly ED-rationalizable,

it becomes impossible to recover bounds on the discount factor. This is highly prohibitive as

the observed data are often inconsistent with the model. For example, in the presence of mea-

surement error the observed data could be inconsistent with the model even if the true data are

ED-rationalizable.

To remedy this problem, I provide a novel characterization of the exponential discounting

model that will allow me to generalize the results introduced in the previous section.

10It is sufficient to check δ = 1 as the first-order condition of f (δ) is strictly positive for all δ ∈ (0, 1].
11See Floyd (1962).
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Theorem 3.1. The following statements are equivalent:

(i) The data set {(ρt, ct)}t∈T is ED-rationalizable.

(ii) There exists a locally nonsatiated, continuous, monotonic and concave instantaneous

utility function u(·) and a discount factor δ ∈ (0, 1] such that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′t ct ≥ u(c) − δ−tρ′t c.

A quick comparison of the last condition in Theorem 3.1 with the standard formulation of

exponential discounting highlights two major differences. First, there is no budget constraint

in the latter. Second, the consumer’s problem is much simpler as it only requires solving for

optimal consumption bundles rather than the whole consumption stream. To interpret condition

(ii), it is useful to rewrite it as

ct ∈ arg max
c∈RL

+

u(c) + δ−t(yd
t − ρ

′
t c) ∀t ∈ T .

This formulation emphasizes that exponential discounting can be seen as a repeated static

utility maximization problem. Letting sd := yd
t −ρ

′
t c denote savings and Ut(c, sd) := u(c)+δ−tsd,

the objective function can be interpreted as a time-dependent augmented utility function Ut :

RL
+ ×R→ R. It indicates that, in any given time period, the consumer values both current con-

sumption and savings. This compromise between current consumption and savings captures

the idea that increasing consumption today leaves a lesser amount of wealth for future periods,

thus diminishing future consumption. In the absence of a budget constraint, the mechanism by

which an interior solution is achieved therefore relies on the trade-off between the two.

3.4.2 Exponential Discounting under Partial Efficiency

In the revealed preference literature, it is standard to deal with deviations from a given model by

slightly relaxing its constraints. Following this approach, I shall adopt the novel representation

of Theorem 3.1 for exponential discounting rationalizability under partial efficiency.
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Definition 3.2. Let e ∈ (0, 1]. The e-ED model rationalizes the data {(ρt, ct)}t∈T if there exists

a locally nonsatiated, continuous, monotonic and concave utility function u(·) and a discount

factor δ ∈ (0, 1] such that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′t ct ≥ u(c) − δ−tρ′t c/e.

This definition accounts for digressions from exponential discounting by considering an

efficiency level e that rationalizes every choice of a consumer at once.12 In particular, note that

any consumption behavior may be rationalized by the e-ED model for an e arbitrarily close

to zero.13 To see the economic intuition behind e, note that for a given time period t, the

expression in the definition may be written as

δt(ũ(ct) − ũ(c)) ≥ eρ′t ct − ρ
′
t c,

where the utilities have been scaled by a factor e. That is, the efficiency level ensures that the

discounted benefit from consuming ct rather than c is greater than the additional cost incurred

from purchasing ct instead of c. The difference between the actual cost of acquiring ct and

what it should have been for it to be worthwhile therefore gives a measure of wasted income.

Namely, for some e ∈ (0, 1] and period t ∈ T , the consumer wastes an amount equal to

ρ′t ct − eρ′t ct or (1 − e)% of his income by making an inefficient choice.14 The following result

extends Proposition 3.1 to a partial efficiency setting.

Proposition 3.2. For a given e ∈ (0, 1], the following statements are equivalent:

(i) There exists a locally nonsatiated, continuous, monotonic and concave utility function

u(·) and a discount factor δ ∈ (0, 1] e-ED rationalizing the data {(ρt, ct)}t∈T .

12This choice follows the same suggestion as Afriat (1973) for static utility maximization. Alternatively, one
could have an efficiency index for each choice as in Varian (1990), and then consider some aggregator function
(Dziewulski, 2020) to determine the overall level of inefficiency. Interestingly, Dziewulski (2020) provides a
formal link between efficiency levels and the notion of just-noticeable difference.

13That is, e may capture many sources of violation occurring simultaneously, as well as consumption behavior
outside of the exponential discounting framework.

14Since I consider a common rationalizing efficiency level for all time periods, the consumer wastes up to
(1 − e)% of his lifetime income.
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(ii) There exist numbers ut, t = 0, . . . ,T, and a discount factor δ ∈ (0, 1] such that

us ≤ ut + δ
−tρ′t(cs/e − ct) ∀s, t ∈ T .

(iii) There exists a discount factor δ ∈ (0, 1] such that for any subset of indices τ = {ti}
m
i=1 with

ti ∈ T and m ≥ 2,

0 ≤ δ−t1ρ′t1(ct2/e − ct1) + . . . + δ
−tmρ′tm(ct1/e − ctm). (CM(e))

Proposition 3.2 gives a way to gauge the severity of departure from exponential discount-

ing by finding an efficiency index e ∈ (0, 1] e-ED rationalizing the data.15 Conditional on

(e, δ) ∈ (0, 1]2, the existence of a solution can be checked by solving the set of inequalities in

Proposition 3.2 (ii) using linear programming. A data set that needs a small efficiency level

to be e-ED rationalizable is farther away from exponential discounting than one with a large

efficiency level. In particular, if e = 1 then the data set is ED-rationalizable.

Remark By imposing e = δ = 1 in Proposition 3.2, I recover the conditions for quasilinear

utility maximization from Brown and Calsamiglia (2007). This observation makes clear that

quasilinear utility maximization can be viewed as a special instance of exponential discounting.

To test quasilinear utility maximization under partial efficiency, it suffices to find a solution to

the inequalities in Proposition 3.2 conditional on δ = 1.

3.5 Inference on the Discount Factor

In this section, I introduce measurement error in prices, present the statistical test of Varian

(1985) when applied to the exponential discounting model, and propose a constrained statistical

test based on e-ED rationalizability. I then show how the test can be inverted to construct a

confidence set for the discount factor.

15Appendix B.2 discusses efficiency indices of interest such as the largest e ∈ (0, 1] e-ED rationalizing the data.
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3.5.1 Statistical Test

Suppose prices are mismeasured such that observed prices ρt differ from true prices ρ∗t . Specif-

ically, suppose that

ρt = ρ
∗
t /(1 + ϵt),

where ϵt is assumed to be a random vector whose components follow independent normal

distributions with mean zero and unknown variance σ∗2 > 0.16 That is, ϵl,t ∼ N(0, σ∗2) for all

l ∈ L and all t ∈ T . It is useful to note that, under this assumption, the test statistic

T (σ∗2) :=
T∑

t=0

L∑
l=1

(ρ∗l,t/ρl,t − 1)2/σ∗2 (3.1)

follows a chi-square distribution. Since true prices are unobservable, the idea consists of ob-

taining a lower bound on T (σ∗2) by considering the following quadratic programming problem:

S (σ∗2, δ∗) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2/σ∗2, (3.2)

subject to

us − ut ≤ δ
∗−tπ′t(cs − ct) ∀s, t ∈ T ,

where δ∗ is the true discount factor. If the data set is consistent with exponential discounting

under true prices, then one can always pick πt = ρ
∗
t for all t ∈ T . Accordingly, S (σ∗2, δ∗) ≤

T (σ∗2) such that

P
[
S (σ∗2, δ∗) ≤ χ2

d,α

]
≥ P

[
T (σ∗2) ≤ χ2

d,α

]
= 1 − α,

where χ2
d,α is the critical value of the chi-square distribution with d = L · |T | degrees of freedom

and prespecified confidence level α ∈ (0, 1).

16Alternatively, one can assume an additive error: ρt = ρ
∗
t + ϵt. I consider proportional measurement error as

the scale of discounted prices changes significantly across time.
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3.5.2 Constrained Statistical Test

The main disadvantage of the previous test is that prices that solve the problem (3.2) may be

much closer to observed prices than actual true prices. That is, the test is extremely conserva-

tive. To alleviate this limitation, I propose to further restrict the set of allowable true prices to

those satisfying e-ED, therefore yielding the following constraints:

us − ut ≤ δ
∗−tπ′t(cs − ct) ≤ δ∗−tρ′t(cs/e − ct) ∀s, t ∈ T , (3.3)

where e ∈ (0, 1], (ut)t∈T are real numbers, and (πt)t∈T are candidate true prices. For a fixed

e ∈ (0, 1], the resulting constrained optimization problem is given by

S C(σ∗2, δ∗, e) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2/σ∗2, (3.4)

subject to

us − ut ≤ δ
∗−tπ′t(cs − ct) ≤ δ∗−tρ′t(cs/e − ct) ∀s, t ∈ T ,

where (ut)t∈T and (πt)t∈T may take different values than those that solve the optimization prob-

lem (3.2).

It is useful to note that the constrained optimization problem converges to the unconstrained

optimization problem when e ∈ (0, 1] approaches zero. Thus, the optimization problem (3.4)

can be viewed as a generalization of the optimization problem (3.2).

3.5.3 Inference

Let σ2 ≥ σ∗2 and e ∈ (0, 1] be fixed numbers, where σ2 may be thought of as an upper bound

on the variance. Since the true discount factor is unknown, the key to get a feasible test statistic

is to set δ ∈ (0, 1] and solve

V(δ, e) := min
(π,u)∈RL×|T |

++ ×R|T |

T∑
t=0

L∑
l=1

(πl,t/ρl,t − 1)2, (3.5)
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subject to

us − ut ≤ δ
−tπ′t(cs − ct) ≤ δ−tρ′t(cs/e − ct) ∀s, t ∈ T .

Defining S C(σ2, δ, e) := V(δ, e)/σ2, the constrained confidence set is obtained by inverting the

constrained test statistic:

CS C :=
{
δ ∈ (0, 1] : S C(σ2, δ, e) ≤ χ2

d,α

}
,

and likewise for the unconstrained confidence set:

CS :=
{
δ ∈ (0, 1] : S (σ2, δ) ≤ χ2

d,α

}
.

Noting that lim
e→0

S C(σ2, δ, e) = S (σ2, δ), we have

P
[
lim
e→0
δ∗ ∈ CS C

]
= P [δ∗ ∈ CS ] ≥ P

[
S (σ∗2, δ∗) ≤ χ2

α

]
≥ 1 − α.

In words, the constrained test statistic converges to the unconstrained test statistic when

e ∈ (0, 1] approaches zero. In that case, the probability that the constrained confidence set

covers the true discount factor becomes at least 1 − α. Conditional on (σ2, e), the constrained

confidence set can be recovered by solving (3.5) for each δ ∈ (0, 1]. The choice of these

variables should be chosen from prior knowledge of the data set. For example, it may be

possible to set σ2 = σ∗2 if validation data are available.

3.6 Empirical Application

3.6.1 Data

In my empirical analysis, I implement the methodology developed in the previous sections

using the Stanford Basket Dataset, which is a panel data set containing expenditures of 494

households between June 1991 and June 1993.17 Specifically, I use the transformed data set

17I treat households as unitary entities even though they may have many members. As such, I refer to a
household as a consumer or an individual.
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of Echenique et al. (2011). As such, goods for which prices are observed in every week are

retained and aggregated by brand for periods of four weeks. This yields a total of 375 distinct

goods belonging to one of the following 14 categories: bacon, barbecue sauce, butter, cereal,

coffee, crackers, eggs, ice cream, nuts, analgesics, pizza, snacks, sugar and yogurt.

Since none of these categories contain goods purchased for special events (e.g., turkey

for Thanksgiving) or products whose quality may change with seasons (e.g., fruits), I expect

preferences to be roughly stable over the time window considered. Additionally, due to the

focus on food items, I do not expect consumers’ purchases to vary considerably in response

to changes in income. Finally, aggregation to monthly expenditure should mitigate stockpiling

associated with sales.

The data set is prone to measurement error since it contains shelf prices instead of trans-

action prices. Thus, observed prices differ from actual prices paid whenever a consumer uses

discounts such as coupons. As the data do not contain information on interest rates, I include

interest rates on personal loans at commercial banks from the Federal Reserve Bank of St.

Louis.18 I report demographic information about households in the data set in Table 3.1. For a

comprehensive description of the scanner data set, I refer the reader to Echenique et al. (2011).

Table 3.1: Demographic Variables

18Since the data on interest rates are quarterly, I use a linear interpolation to obtain monthly observations.
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Variable Number of Households

Family size:

Midsize (3,4 members) 187

Large size (> 4 members) 65

Income:

Mid annual income (∈ [$20k, $45k]) 200

High annual income (> $45k) 141

Age:a

Middle-aged 201

Old-aged 157

Education:b

High school 197

College 255

Total households 480
a Middle-aged households are those in which the average of the spouses’ ages

is between 30 and 65; in old-aged households, this average exceeds 65.
b If both spouses are present in a household, the average education of both

spouses is reported.

3.6.2 Specification

In what follows, I restrict the range of the monthly discount factor to [0.75, 1.0] and use a step

size of 0.01. This support restriction is essentially without loss of generality as the resulting

support of the annualized discount factor becomes approximately [0.02, 1.0].19 For ease of

comparison, I report the confidence sets for the annualized discount factor.

I restrict the analysis to consumers that are e-ED rationalizable for e ≥ 0.85. This choice

is motivated by the fact that the main source of measurement error in the data is from coupons

and the broader empirical evidence suggesting that almost no consumer saves more than 15%

of their expenditures from sales such as price promotions (Griffith et al., 2009). It follows that a

conservative standard deviation of measurement error is σ = 0.15. Lastly, I set the significance

level to α = 0.05.20

19To obtain annualized rates, I raise the monthly discount factor to the power 13. The reason being that data
are aggregated to 4-week periods, hence yielding 13 time periods in a year.

20For all l ∈ L and t ∈ T , we have 0.85ρ∗l,tcl,t ≤ ρl,tcl,t ≤ 1.15ρ∗l,tcl,t ⇐⇒ 0.85ρl,t cl,t ≤ ρl,tcl,t(1 + ϵt) ≤
1.15ρl,tcl,t ⇐⇒ −0.15 ≤ ϵt ≤ 0.15. Since µ = 0, then σ ≤ 0.15.
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In what follows, a consumer is said to be consistent with the exponential discounting model

if there exists a monthly discount factor δ ∈ [0.75, 1.0] and an efficiency level e ∈ [0.85, 1.0]

such that S C(σ2, δ, e) ≤ χ2
d,0.05, where S C(σ2, δ, e) is obtained by solving the feasible con-

strained optimization problem (3.5).21

3.6.3 Results

In this subsection, I implement my methodology in the data according to the previous speci-

fication. I find that 144 out of the 494 consumers have data sets consistent with exponential

discounting. As such, the following analysis focuses on those consumers exclusively.

Figure 3.1 displays how the average constrained confidence set changes by demographic.22

The average constrained confidence set is obtained by averaging constrained confidence sets

across consumers pertaining to a same demographic. The efficiency level e is set to 0.85 such

that measurement error is allowed to cause the consumer to waste up to 15% of his expenditure

at the observed data.
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Figure 3.1: Average Constrained Confidence Set by Demographic.

21Let R be the number of goods that are never purchased by a consumer. Since changing the price of a good
never purchased has no effect on the constraint in (3.3), the number of degrees of freedom is equal to d = |T |(L−R).

22A summary of the demographic variables is given in Table 3.1.
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Overall, Figure 3.1 shows no relationship between the discount factor and demographics

in the sample. Nevertheless, there may be heterogeneity that is not captured by observable

characteristics. Accordingly, I compare the constrained confidence set at various quantiles of

the sample in Figure 3.2, where consumers were ordered by the midpoint of their constrained

confidence set.
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Figure 3.2: Constrained Confidence Set by Quantile.

Contrary to the previous analysis, Figure 3.2 reveals a fair degree of heterogeneity once

individual unobserved heterogeneity is fully acknowledged. Furthermore, Figure 3.2 shows

that informative confidence sets on the discount factor can be obtained with nonparametric

preferences and the presence of measurement error in prices.

3.7 Conclusion

My results allow one to set identify individual discount factors while avoiding the misspecifica-

tion of preferences. Inference can be made whether or not a data set contains exact information

about the variance in measurement error. Once the discount factor is elicited, one could use

the revealed preference inequalities to bound a consumer’s response to changes in prices. That
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is, one could undertake a counterfactual analysis in a similar fashion as Blundell et al. (2003,

2008). My methodology could therefore be used to do robust welfare analysis, estimate market

power in empirical industrial organization, or determine optimal pricing schemes in marketing.

The annualized discount factors displayed in my application are well below the values usu-

ally assumed in the literature. However, the average constrained confidence set is compatible

with other studies using analogous data.23 For example, Ackerberg (2003) estimates a weekly

discount factor of 0.98 with scanner data on yogurt, therefore giving an annualized discount

factor of 0.35.24 While I recognize that deviations from exponential discounting may naturally

arise due to imperfect measurement, an interesting extension would be to consider a random

utility version of exponential discounting to account for changes in preferences.25

23My results are not directly comparable to those obtained using survey data such as in Blow et al. (2021) as
the type of data differs.

24See Yao et al. (2012) for further estimates from field data. More generally, see Frederick et al. (2002) for a
comprehensive review of the literature.

25A general framework to tackle measurement error in utility maximization models is provided by Aguiar and
Kashaev (2021).



Chapter 4

Nonparametric Analysis of Dynamic

Discrete Random Utility Models

4.1 Introduction

This paper builds on the novel characterization of the exponential discounting model derived

in the previous chapter and the revealed price preference framework developed by Deb et al.

(2018).

Deb et al. (2018) developed a framework that allows one to make welfare analysis without

imposing a quasilinear structure on the consumer preferences. They noted that for a given set of

goods, lower prices allow consumers to purchase more of the other (unobserved) goods. Thus,

a consumer is better offwhen his expenditure is smaller. That is, if one observes ρ′t1 ct2 ≤ ρ
′
t2 ct2 ,

then one can infer that the consumer has a preference for prices ρt1 over prices ρt2 . For welfare

comparisons to be meaningful, the previous relation must be acyclic, a condition they dubbed

the Generalized Axiom of Price Preference (GAPP). They then show that a consumer satisfies

GAPP if and only if he can be thought of as maximizing an expenditure-augmented utility

function.

This paper shows that an exponential discounter maximizes a nonseparable augmented

utility function if and only if he satisfies a slight generalization of GAPP. I then show how these

restrictions can be cast into restrictions compatible with the statistical framework of Kitamura

51
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and Stoye (2018) developed for random utility models in cross-sectional data.1

In related work, Kashaev and Aguiar (2022) extend the approach of Kitamura and Stoye

(2018) to longitudinal data which allows them to capture a rich set of time-varying behaviors.

My characterization of exponential discounting could also be applied in their framework to

analyze dynamic discrete random utility models in panel data. Allen and Rehbeck (2020b)

provide a statistical test for a population of approximate quasilinear consumers. The current

test generalizes theirs in that exponential discounting includes quasilinearity as a special case

while differing in that it uses the distribution of demand rather than just average demand.

4.2 Deterministic Model

In an environment with a time dimension, discounting is essential to make meaningful com-

parisons. For example, the present value of $x in t periods is given by:

PV =
x

(1 + r)t ,

where r > 0 is the interest rate. Since the consumer values $x today more than a year from now,

he would choose the former if given the choice. In a similar fashion, a consumer compares

the cost of a good at different points in time by appropriately scaling its cost. In particular,

exponential discounting means that the cost of a good increases exponentially over time. Thus,

the cost of a good at time t ∈ T is given by:

ρpc
t := δ−tρt,

where δ ∈ [δ, 1] denote the discount factor and δ ∈ (0, 1]. Suppose now that the consumer

wants to purchase a bundle c. Is there a time at which the consumer would prefer to purchase

it? By comparing the cost of the bundle at various periods, the consumer would prefer to

1Im and Rehbeck (2021) show that stochastic rationalizability does not imply individual rationality. Hence,
welfare predictions may be imperfect at this level of aggregation.
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purchase c at period t1 rather than period t2 if

δ−t1ρt1 c ≤ δ−t2ρt2 c.

That is, the consumer prefers to purchase c in the period where it is cheapest. Suppose that

a consumer were to purchase ct1 in period t1 and ct2 in period t2. Further, suppose that

δ−t1ρt1 ct2 ≤ δ
−t2ρt2 ct2

δ−t2ρt2 ct1 < δ
−t1ρt1 ct1 ,

such that the consumer prefers ct2 in period t1 and strictly prefers ct1 in period t2. Then, it is

transpiring that the choices of the consumer are suboptimal. Namely, the consumer could have

switched the timing of consumption of ct1 and ct2 and be better off. Thus, a consumer that

behaves optimally cannot have cyclic preferences.

Example Suppose there are two time periods T = {1, 2} and two goods L = {1, 2}. Further,

suppose consumption is c1 = c2 = [1, 1]′ and prices are ρ1 = ρ2 = [2, 2]′. The consumer

prefers purchasing c2 at 1 rather than 2 since δ−1ρ′1c2 ≤ δ
−2ρ′2c2. In fact, the consumer would

rather get c2 in the first period only because he is impatient, i.e. δ ∈ [δ, 1]. For the same reason,

the consumer does not prefer purchasing c1 in the second period since δ−2ρ′2c1 ≥ δ
−1ρ′1c2.

Formally, ρpc
ti is said to be directly revealed preferred to ρpc

t j
if δ−tiρ′ti ct j ≤ δ

−t jρ′t j
ct j . Let RD

denote the direct revealed preference relation and let R denote its transitive closure.2 When the

inequality is strict, ρpc
ti is said to be directly revealed strictly preferred to ρpc

t j
and is denoted PD.

In the case where there is a sequence ρpc
t1 RDρpc

t2 , ρpc
t2 RDρpc

t3 , . . . , ρpc
tm−1

RDρpc
tm of directly revealed

preferences, ρpc
t1 is said to be revealed preferred to ρpc

tm . Naturally, if any of those preference

relations is strict, then ρpc
t1 is said to be revealed strictly preferred to ρpc

tm . I can now define an

axiom for exponential discounting that rules out cyclic preferences.

Definition 4.1. A data set {(ρt, ct)}t∈T satisfies GAPP(δ) if for all ti, t j ∈ T , there exists a

discount factor δ ∈ [δ, 1] such that δ−tiρiRδ−t jρt j implies not δ−t jρt j P
Dδ−tiρti .

2The transitive closure R of a relation RD is the smallest relation containing RD satisfying transitivity.
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It is useful to note that GAPP(δ) is a straightforward generalization of GAPP in which time

preferences are introduced.

Define an augmented utility function as a function U : RL
+ × R− → R that is continuous,

strictly increasing, and concave. The consumer picks ct such that for all t ∈ T and c ∈ C ⊂ RL
+

U(ct,−δ
−tρ′t ct) ≥ U(c,−δ−tρ′t c).

The interpretation is that the consumer dislikes expenditure as it removes money that could be

used for future consumption. In particular, minus expenditure may be viewed as the outside

good as the consumer always has the option to save up money and spend it in the future. Note

that this problem is a slight generalization of Definition 3.2 where consumption and expendi-

ture are nonseparable and e = 1.

The next theorem shows that this utility maximization problem is equivalent to GAPP(δ).

Theorem 4.1. For a given data set {(ρt, ct)}t∈T , the following are equivalent:

(i) The data are rationalized by a continuous, strictly increasing, and concave time-dependent

augmented utility function.

(ii) There exists δ ∈ [δ, 1] such that the data satisfy GAPP(δ).

This result states that to check whether a data set is consistent with exponential discounting,

one only has to verify that the revealed preference relation is acyclic for some δ ∈ [δ, 1].

Conditional on the discount factor, the latter is a well-known problem and existing algorithms

for computing the transitive closure can be used directly.

The methodology proposed in this paper may be applied in any finite discrete consumption

space. Some special cases are of particular interest due to their wide popularity in the empirical

industrial organization literature.

Example Suppose products have L characteristics taking value of at most x such that the

consumption space is C = {0, 1, . . . , x}L.

Example Suppose the consumer can choose at most 1 unit of at most one good such that the

consumption space is C = {0−l}
L
l=1, where 0−l is a vector of zeros with its lth element equal to 1.
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In either of the above examples, GAPP(δ) provides a necessary and sufficient condition that

the consumer choices must satisfy to be an exponential discounter.

Remark It is informative to realize that since GAPP(δ) is necessary for the maximization of

a nonseparable augmented utility function, it also is for the maximization of a separable utility

function. Theorem 1 of the previous chapter therefore implies that GAPP(δ) is necessary for a

consumer to be a standard exponential discounter as defined in Definition 3.1.

4.3 Stochastic Rationalizability

This section builds on the individual analysis of exponential discounting behavior to define

stochastic rationalizability in a population of exponential discounters.

4.3.1 Definition

Conditional on a discount factor δ ∈ [δ, 1], the consumer picks ct such that for all t ∈ T and

c ∈ C

U(ct,−δ
−tρ′t ct) ≥ U(c,−δ−tρ′t c).

Let the consumption space C ⊂ NL be finite.3 Then, there is only a finite number of options

It that the consumer can choose from in any given time period t ∈ T . As such, there is also

only finitely many choice profiles defined over the T choice situations. Let r index each such

profile and denote a choice profile by ar = (ar
1,1, a

r
1,2, . . . , a

r
T,IT

), where ar
t,i = 1 if option ci is

chosen at t and ar
t,i = 0 otherwise.4 The set of rational choice profiles R is the set of all profiles

r for which there exists a utility function Ur and a discount factor δ ∈ [δ, 1] such that for all

t ∈ T

ar
t,i = 1 if and only if ci ∈ arg max

c∈C
Ur(c,−δ−tρ′t c).

Let PR be a probability distribution over all rational choice profiles, and pr be the proba-

bility of a given profile. Define the set Rt,i as the subset of R such that r ∈ Rt,i if and only if
3One could allow for a continuous consumption space as it is always possible to transform the problem into a

discrete one (Deb et al., 2018).
4The vector ar is another way to represent a consumption stream. The distinction is superficial in this paper

but nevertheless introduced to be consistent with the literature.
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ar
t,i = 1. In other words, Rt,i is the set of rational choice profiles that choose ci at time t.

Suppose that we observe the choices made by a population of consumers and let πt,i de-

note the probability that option i is chosen at time t. Stochastic rationalizability requires that

there exists a probability distribution PR such that, summed over all rational choice types r,

the probability of choosing option ci at t equals πt,i. Letting π = (π1,1, π1,2, . . . , πT,IT ) denote

the vector of choice probabilities, the following definition formalizes the notion of stochastic

rationalizability.

Definition 4.2. The choice probabilities π are stochastically rationalizable if and only if there

exists a distribution PR over rational choice profiles such that

∑
r∈Rt,i

pr = πt,i ∀t ∈ T ,∀ci ∈ C.

That is, a population of consumers is stochastically rationalizable if choice probabilities

can be viewed as stemming from some combination of rational choice profiles.

4.3.2 Rational Choice Profiles

The previous section defined what it means for a population of consumers to be stochastically

rationalizable. Namely, one simply needs to find a distribution over rational choice profiles that

matches choice probabilities.

The main hurdle is that such endeavor assumes prior knowledge of the set of all rational

choice profiles R. Theorem 4.1 tells us that the set of all rational choice types R can be found

by finding every vector ar that satisfies GAPP(δ) for some δ ∈ [δ, 1]. Thus, recovering R in

its entirety would involve checking each choice profile for every possible value of the discount

factor. The limitation of this approach is that the discount factor is a continuous variable.

The next result solves this complication by providing a different characterization of a ratio-

nal choice profile that only involves finitely many computations. Let (cr
t )t∈T be consumption

associated with the choice profile ar.

Theorem 4.2. Let (ρt)t∈T be a given set of prices. A choice profile ar is rational if and only if
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glbr ≤ lubr and glbr ≤ 1, where

lubr := min
(ti,t j)∈T+

(ρ′t j
cr

t j

ρ′ti c
r
t j

) 1
t j−ti

; glbr := max
(ti,t j)∈T−

(ρ′t j
cr

t j

ρ′ti c
r
t j

) 1
t j−ti

,

(ti, t j) ∈ T+ if δ−tiρti Pδ
−t jρt j , (ti, t j) ∈ T− if not δ−tiρti Pδ

−t jρt j , T+ ∩ T− = ∅, and lub = 1 if

T+ = ∅.

Theorem 4.2 shows that every rational choice profile r ∈ R is characterized by simple

inequalities that can be viewed as logical restrictions on the set of discount factors. They

require the greatest lower bound on the discount factor to be smaller than the least upper bound

and the greatest lower bound to be smaller than one.

Conditional on prices and a choice profile ar, the bounds are deduced from the revealed

preferences. In particular, the revealed preferences must be acyclic (T+ ∩ T− = ∅) as any

rational choice profile satisfies GAPP(δ) for some δ ∈ [δ, 1]. Since the revealed preferences are

unknown, the inequalities cannot be checked directly. However, there are only finitely many

acyclic revealed preferences. Thus, one can identify the set of all acyclic revealed preferences,

construct the sets T+ and T−, and check that the inequalities are satisfied. This approach

therefore gives a feasible procedure to recover the set of all rational choice profiles.

Corollary 4.1. R = {ar : glbr ≤ lubr, glbr ≤ 1}.

Corollary 4.1 states that the set of all rational choice profiles R can be identified by finding

every choice profile ar that induces logically feasible bounds on the discount factor for some

acyclic revealed preferences. Importantly, the set R can be recovered in a finite number of

steps; a significant improvement compared to using Theorem 1. An efficient depth-first search

algorithm to identify R is provided in Appendix C.

4.3.3 Example

Let the consumption space be given by C = {0, 1}2. Suppose that prices are ρ1 = [2, 3]′ and

ρ2 = [3, 2]′ in period 1 and 2, respectively. Also, let δ = 0.9 such that the support of the

discount factor is [0.9, 1]. Table 4.1 displays the 16 choice profiles and identifies which ones
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are rational.5

Type Choice profile c1 c2 Rational
1 a1 (0,0) (0,0) Yes
2 a2 (0,0) (1,0) No
3 a3 (0,0) (0,1) Yes
4 a4 (0,0) (1,1) Yes
5 a5 (1,0) (0,0) Yes
6 a6 (1,0) (1,0) Yes
7 a7 (1,0) (0,1) Yes
8 a8 (1,0) (1,1) Yes
9 a9 (0,1) (0,0) No
10 a10 (0,1) (1,0) No
11 a11 (0,1) (0,1) Yes
12 a12 (0,1) (1,1) Yes
13 a13 (1,1) (0,0) Yes
14 a14 (1,1) (1,0) Yes
15 a15 (1,1) (0,1) Yes
16 a16 (1,1) (1,1) Yes

Table 4.1: Choice Profiles.

To see that Type 2 is not rational, note that prices in period 2 are weakly revealed preferred

to those in period 1 since 0 = δ−2ρ′2c1 ≤ δ
−1ρ′1c1 = 0 and prices in period 1 are strictly revealed

preferred to those in period 2 for any discount factor δ ∈ [0.9, 1] since δ−1ρ′1c2 < δ
−2ρ′2c2 ⇐⇒

δ <
ρ′2 c2

ρ′1 c2
= 3/2, which is always the case. Similar calculations can be done to derive the entire

last column of Table 4.1.

4.3.4 Statistical Test

The statistical test of this section was proposed by Kitamura and Stoye (2018) for static random

utility models. Theorem 4.1 and 4.2 of this paper allow me to directly use their methodology.

Let π̂ be an empirical estimate for the choice probabilities π. Kitamura and Stoye (2018)

5This way of labeling and summarizing deterministic types given a set of budgets follows Im and Rehbeck
(2021).
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propose to use the test statistic JN given by:

Minimize
pr , st,i

JN = N
T∑

t=1

It∑
i=1

s2
t,i (4.1)

subject to

∑
r∈Rt,i

pr + st,i = π̂t,i ∀t ∈ T ,∀ci ∈ C (4.2)

pr ≥ 0 ∀r ∈ R. (4.3)

For each period t and every choice ci, this problem finds the closest distance st,i between a

linear combination of the rational choice types and the estimated choice probability π̂t,i. In

particular, note that JN = 0 if and only if the π̂ is stochastically rationalizable.

Kitamura and Stoye (2018) propose to compute the critical value used to determine if the

test statistic is rejected via a bootstrap procedure. I refer the reader to Kitamura and Stoye

(2018) for the details and properties of this approach. I also refer the reader to Smeulders et al.

(2021) for an efficient implementation through a column generation method.

4.4 Conclusion

This note characterizes the empirical implications of nonparametric dynamic discrete random

utility models and cast them into a finite set of restrictions compatible with the statistical

methodology of Kitamura and Stoye (2018). An efficient algorithm to compute the set of

all rational choice types is provided. The approach can be used for statistical testing and robust

welfare analysis in discrete consumption spaces such as those commonly used in industrial

organization.
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Appendix A

Appendices for Chapter 2

A.1 Relationship with Models of Household Production

Although the focus of this paper is on the price function, the framework of the model is con-

sistent with one of household production similar in spirit to that of Becker (1965). As an

illustration, I extend my model to one of household production and shows that it has close ties

with that of Aguiar and Hurst (2007). For ease of comparison, I consider the static version of

my model.

Suppose that, in addition to spending time shopping, the household can spend time in home

production denoted by h ∈ R++. By using that time input along with market goods, the house-

hold can produce some homemade good K by using its (concave) home production function

f (h, c).1 The household’s problem therefore becomes

max
(c,a,K,h)∈C×A×R2

++

u(a,K, h) s.t. p(a,ωt)′c = yt

f (c, h) = K.

1One can think of market goods as comestible such as eggs, sugar and pecans. By spending h unit of time
cooking, the household can transform these “raw goods” into a pecan pie, the final good consumed by the house-
hold.
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One can get rid of the second constraint by substituting it for K in the utility function, yielding

max
(c,a,h)∈C×A×R++

u(a, f (c, h), h) s.t. p(a,ωt)′c = yt.

Assuming the opportunity cost of time is additively separable, linear, and identical for the

shopper and the home producer, the problem boils down to

max
(c,a,h)∈C×A×R++

u( f (c, h)) + µ′t a + µth s.t. p(a,ωt)′c = yt,

where µt denotes the disutility from the time spent on either activity. Since both u(·) and f (·, ·)

are unobservable concave functions, this maximization problem is observationally equivalent

to

max
(c,a,h)∈C×A×R++

f (c, h) + µ′t a + µth s.t. p(a,ωt)′c = yt,

and we have thereby recovered a model with the same implications to that of Aguiar and Hurst

(2007).2 To see why, assume the solution is interior and take the first-order conditions:

∂ f
∂c
= λt p(a,ωt)

µ = λt
∂p(a,ωt)
∂a

⊙ c

µ = −
∂ f
∂h
.

It follows that the marginal rate of transformation (MRT) between time and goods in shopping

equals the MRT in home production:

∂ f
∂h
/
∂ f
∂cl
= −

∂pl(al,ωl,t)
∂al

· cl

pl(al, ωl,t)
∀l ∈ L.

This derivation shows that the household production version of my model naturally extends

that of Aguiar and Hurst (2007). Conditional on knowing the price function, this last equation

2Despite that the two maximization problems are observationally equivalent, eliminating the utility function
changes the interpretation of the model.
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can be used to identify the home production function, a point that was cleverly exploited by

Aguiar and Hurst (2007) in a parametric setting. Finally, note that using exponential discount-

ing as defined in (2.1) would yield λtδ
−t instead of λt in the first-order conditions and leave the

MRT unchanged.

A.2 Sample Construction

The Homescan contains information on purchases made by U.S. households in a wide variety

of retail outlets. After every trip to a retail outlet, information about the trip is recorded by

the panelist via a scanner device. Each trip may have one or many UPC purchases. In total,

there are 66, 321, 848 purchases in the panel year 2011. Among them, 43, 432, 246 pertain to

the departments of dry grocery, frozen foods, dairy and packaged meat. Since some purchases

in the panel year are outside of the calendar year 2011, I remove them from the sample. This

operation drops 751, 479 purchases, leaving a total of 42, 680, 767 purchases.

For each household-month, I average UPC prices across trips. Precisely, for any household

i ∈ N and month t ∈ T , the weighted average price for a given UPC is given by

p̄i,UPC,t =

∑
tripsi∈t pi,UPC,tripsici,UPC,tripsi∑

tripsi∈t ci,UPC,tripsi

,

where tripsi denotes a trip of household i. This aggregation is only computed for UPCs that

are purchased by a given household in a given month.

The Homescan has a total of 4, 510, 908 distinct UPCs, with 1, 633, 850 that belong to the

four departments considered: dry grocery, frozen foods, dairy, and packaged meat. To keep

the analysis tractable and mitigate stockpiling issues, I aggregate UPCs to their department

categories. For each household-month, the weighted average price for a given department

l ∈ L is given by

pi,l,t =

∑
UPC∈l p̃i,UPC,tci,UPC,t∑

UPC∈l ci,UPC,t
.

Furthermore, I only keep data from April to September. The main reason for limiting the

number of goods and time periods is to control the computational burden. Since the number of

parameters to solve for in the model is given by L · T + T , the nonlinear optimization problem
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becomes quickly intractable when either L or T increases.

As the methodology requires the data to be strictly positive, I drop households that do not

meet this requirement for any aggregated good and month. These conditions bring down the

number of households from 62, 092 to 16, 025. Further limiting the sample to single households

that are at least 50 years old decreases the number of households to 1668. Finally, I drop

households that have zero prices paid, thus decreasing the sample size to 1645.3

I restrict the sample to single households to avoid the false rejection of the model. As

Adams et al. (2014) point out, inconsistencies may arise due to negotiation within a couple

household. Jackson and Yariv (2015) further show that time inconsistent behavior will appear

if individuals in a non-dictatorial household have different discount factors. By accounting for

measurement error in survey data, Aguiar and Kashaev (2021) show that single households

behave consistently with exponential discounting while couple households do not.

A.3 Power Analysis

In this section, I show that price search and utility maximization are both refutable under

Assumptions 2.1-2.5. I then provide empirical evidence that these additional restrictions are

not necessary for the model to be rejected by the data.

A.3.1 Convexity of the Log-linear Shopping Technology

Let the price function for any good l ∈ L have the log-linear shopping technology specified by

Assumption 2.1:

log
(
pl,t(al,t, ωl,t)

)
= α0

l + α
1
l log

(
al,t

)
− ωl,t.

It is easy to see that, for any l ∈ L, the Hessian of the log price function is

H(al,t, ωl,t) =

−
α1

l
a2

l,t
0

0 0

 .
3Zero prices may arise because of “free-good” promotions or if the household enters a price equal to zero and

no historical information regarding a valid price for the UPC is available.
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The principal minors are D1 = −
α1

l
a2

l,t
≥ 0, D2 = 0, and D3 = 0. Accordingly, the log price

functions are convex and, therefore, the price functions logarithmically convex.4

A.3.2 Falsifiability of Price Search

Suppose that Assumptions 2.1-2.5 are satisfied and let L = {1, 2}, T = {1, 2}. Almost surely,

let observed prices be such that p1 = [1, 2]′, p2 = [3, 4]′, shopping intensity be such that

a1 = [1, 2]′, a2 = [2, 3]′, and consumption be such that ct > 0 for t = 1, 2.

Convexity of the log price functions implies that for all l ∈ L and s, t ∈ T , we have

log
(

p(al,s, ωl,s)
p(al,t, ωl,t)

)
≥
∇a p(al,t, ωl,t)

p(al,t, ωl,t)
(al,s − al,t) +

∇ωp(al,t, ωl,t)
p(al,t, ωl,t)

(ωl,s − ωl,t).5

The above expression can be written more concisely as

log
 p∗l,s

p∗l,t

 ≥ ρl,t

p∗l,tcl,t
(al,s − al,t) − (ωl,s − ωl,t) ∀s, t ∈ T .

Summing up these inequalities for each good l ∈ L and dividing by L gives

1
L

L∑
l=1

log
 p∗l,s

p∗l,t

 ≥ 1
L

L∑
l=1

ρl,t

p∗l,tcl,t
(al,s − al,t) − (ω̄s − ω̄t) ∀s, t ∈ T ,

where ω̄t := 1
L

∑L
l=1 ωl,t for all t ∈ T . Taking the expectation for s = 1, t = 2 and using the

assumptions that E[log(pt)] = E[log
(
p∗t

)
] and E[ωt] = 0 for all t ∈ T , we get

0 >
1
L

L∑
l=1

(
E

[
log

(
pl,1

)]
− E

[
log

(
pl,2

)])
≥ −

1
L

L∑
l=1

E
 ρl,2

p∗l,2cl,2

 . (A.1)

Noting that the random variables on the right-hand side are always negative, it follows that

the negative of their expectations are positive: −E
[
ρl,2

p∗l,2cl,2

]
≥ 0 for all l ∈ L. Clearly, inequality

(A.1) yields a contradiction. In other words, the data are inconsistent with the model provided

the price functions are log-linear.

4A function f is logarithmically convex if the composition of the logarithm with f is itself a convex function.
5Note that this expression is well-defined since prices are strictly positive.



72 Chapter A. Appendices for Chapter 2

A.3.3 Falsifiability of Utility Maximization

Suppose that Assumptions 2.1-2.5 are satisfied and let L = {1, 2}, T = {1, 2}. Almost surely,

let observed prices be such that p1 = [1, 2]′, p2 = [3, 4]′, shopping intensity be such that

a1 = [2, 3]′, a2 = [1, 2]′, and consumption be such that c1 = [1, 1]′, c2 = [2, 2]′. Furthermore,

suppose that the discount factor is such that δ = 1 almost surely.

Concavity of the utility function implies that for all s, t ∈ T

u(cs, as) − u(ct, at) ≤ ∇cu(ct, at)′(cs − ct) + ∇au(ct, at)′(as − at).

Summing up these inequalities for s = 1, t = 2 and s = 2, t = 1, we can obtain

0 ≤
[
(p∗2 − p∗1)′(c1 − c2) + (ρ2 − ρ1)′(a1 − a2)

]
,

For concavity to be analytically refuted, it is clear that Assumption 2.2 needs to be changed to

E[pt] = E[p∗t ] for all t ∈ T . Taking the expectation then yields

0 ≤ (E[p2] − E[p1])′(c1 − c2) + (E[ρ2] − E[ρ1])′(a1 − a2)

= −4 +
L∑

l=1

(E[ρl,2] − E[ρl,1])

≤ −4 −
L∑

l=1

E[ρl,1]

≤ −4 +
1
2
+

2
3

< 0,

where the first equality substituted the expected value of true prices for their expected observed

values, the second inequality used the assumption that ρt ≤ 0 for all t ∈ T , and the third

inequality exploited the fact that αl ∈ [−1, 0] for all l ∈ L. Indeed, the latter allows us to

obtain the support of ρ1 since ρl,1 = αl,1 ·
pl,1cl,1

al,1
for all l ∈ L. Picking αl,1 = −1 yields the third

inequality.

Clearly, the previous inequalities yield a contradiction. As such, utility maximization can
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be rejected by the data under Assumptions 2.1-2.5 provided E[pt] = E[p∗t ] for all t ∈ T (instead

of Assumption 2.2) and δ = 1 almost surely.

A.3.4 Falsifiability of the Model: Empirical Evidence

I have shown analytically that the model defined by Assumptions 2.1-2.5 can be rejected by

the data with only two time periods if either (1) the price functions are log-linear, or (2) the

discount factor equals one almost surely and measurement error satisfies E[pt] = E[p∗t ] for all

t ∈ T .

To complement the above analysis, I now provide empirical evidence that the model can be

rejected by the data under Assumptions 2.2-2.5 if the price functions are convex decreasing.6

This corresponds to the fully nonparametric version of the model. To this end, I consider a data

set where p1 = [1, 2]′, p2 = [3, 4], a1 = [1, 2]′, a2 = [2, 3]′, and c1 = [1, 4]′, c2 = [3, 2]′. I let

the sample size be 500 where, for simplicity, every consumer is assumed to have the same data

set.

The results derived previously do not allow me to conclude that the model has any empirical

content without the log-linearity of the price functions. Nevertheless, an application of the

methodology to the constructed data set yields a test statistic of 476.98, well-above the chi-

square critical value of 12.59.

A.4 Implementation

In this section, I provide a pseudo-algorithm of the ELVIS approach proposed by Schennach

(2014) specialized to my model. Furthermore, I provide pseudo-algorithms for the construction

of the conditional distribution η̃ and the integration of the latent variables.

A.4.1 Pseudo-Code

Step 1

6Formally, a function f : RL → R is convex if and only if f (x) ≥ f (y) + ∇′y f (y)(x − y) for all x, y ∈ RL. It is
convex decreasing if it is convex and ∇ f (y) ≤ 0 for all y.
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• Fix the number of goods L and the number of time periods T .

• Fix the data set x = (xi)N
i=1, where xi = (pi,t, ci,t, ai,t)t∈T .

• Fix the moments defining the model: gu
i , gp

i , gm
i , gω.

• Fix the support of the structural parameters: δi ∈ [δ, 1] and α1
i ∈ [−1, 0].

• Fix the conditional distribution of the latent variables η̃.

Step 2

for i = 1 : N

• Integrate the latent variables under η̃(·|xi) to obtain h̃i(xi,γ).

end

• Compute ˆ̃h(γ) = 1
N

∑N
i=1 h̃i(xi,γ).

• Compute ˆ̃Ω(γ) = 1
N

∑N
i=1 h̃i(xi,γ)h̃i(xi,γ)′ − ˆ̃hi(γ) ˆ̃hi(γ)′.

• Compute the objective function: ObjFct(γ) = N ˆ̃h(γ)′ ˆ̃Ω(γ)− ˆ̃h(γ).

Step 3

• Compute TSN = minγ ObjFct(γ).

Step 1 (Construction of η̃)

The distribution η̃ can be taken to be proportional to a normal distribution:

dη̃(·|xi) ∝ exp(−||gm,ω
i (xi, ei)||2),

where gm,ω
i is the set of moments on measurement error and search productivity. The following

pseudo-code details how to construct the conditional distribution by using rejection sampling
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and applying Metropolis-Hastings on each passing draw. I draw true prices instead of mea-

surement error as it ensures true prices to be strictly positive. Let R > 0.

while r ≤ R

• Draw candidate latent variables ec
i = (δi, p∗i,t,α

1
i ,ωi,t)t∈T such that their support constraints

are satisfied.

• Given xi and ec
i , check whether the model is satisfied by using Theorem 2.1. If the model

is not satisfied, go a step back.

• Draw ζ from U[0, 1]

• If −
(
||gm,ω

i (xi, ec
i )||

2 − ||gm,ω
i (xi, er−1

i )||2
)
> log(ζ), set er

i to ec
i . Else, set er

i to er−1
i .

• Set r = r + 1

end

Step 2 (Latent Variable Integration)

• Fix xi, η̃, and γ.

• Set h̃i(xi,γ) = 0

while r ≤ R

• Draw ec
i proportional to η̃(·|xi).

• Draw ζ from U[0, 1]

• If
[
gm,ω

i (xi, ec
i ) − gm,ω

i (xi, er−1
i )

]′
γ > log(ζ), set er

i to ec
i . Else, set er

i to er−1
i .

• Compute h̃i(xi,γ) = h̃i(xi,γ) + gm,ω
i (xi, er

i )/R

• Set r = r + 1

end
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A.5 Instrumental Variable

Following Aguiar and Hurst (2007), I first compute the elasticity of price with respect to shop-

ping intensity using a log-linear regression. That is, for any good l ∈ L, let the regression

equation be given by:

log
(
pi,l,t

)
= α0

l + α
1
l log

(
ai,l,t

)
+ α2

l log
(
expi,l,t

)
+ ϵi,l,t,

where expi,l,t represents expenditure and ϵi,l,t represents the error term.7 I include expenditure in

the regression to control for shopping needs. The elasticities of price with respect to shopping

intensity estimated with income as an instrument are presented in Table A.1.

Table A.1: Elasticity of Price With Respect to Shopping Intensity

Dry Grocery Frozen foods Dairy Packaged Meat

Elasticity (α1
l ) -1.025 -1.088 -0.847 -1.407

(0.043) (0.105) (0.140) (0.101)

Instrument Income Income Income Income

Observations 9870 9870 9870 9870

Notes: The instrument set consists of three income categories. Standard errors are reported in parenthesis.

The relevance of the instrument can be checked by the first stage F-statistics which are

119.19, 15.81, 10.93, and 27.17, respectively. According to the rule of thumb suggested by

Staiger and Stock (1997), the instrument is not weak as each F-statistic is above 10.

To get the average elasticity of average price with respect to shopping intensity, Proposition

2.1 states that one has to average the elasticities estimated in Table A.1 and divide them by L,

yielding L−1α1
= −0.273. This shows that IV gives a downward-biased estimate of the average

expected elasticity of average price with respect to shopping intensity in my data.

Although this negative result could be due to a violation of the exogeneity condition, an-

other plausible problem is the presence of nonclassical measurement error in prices. Indeed,

Einav et al. (2010) show that a linear regression with the price variable on the left-hand side is

not robust to measurement error in prices in the Nielsen Homescan Dataset. This can only be
7Any variable other than shopping intensity that could enter in the regression equation is absorbed by search

ability in the model.
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the case if measurement error is nonclassical. Thus, instrumental variable may be inconsistent

even if exogenous.

A.6 Proofs

To reduce the notational burden, I remove the subscript i from the variables in the rest of this

section.

A.6.1 Proof of Theorem 2.1

(i) =⇒ (ii)

Suppose the data have been generated by (2.1) where the utility function is continuous, con-

cave, strictly increasing in consumption and decreasing in shopping intensity. Then, the first-

order conditions of the consumer’s problem are given by

∇cu(ct, at) = λtδ
−t pt,

∇au(ct, at) = λtδ
−t∂p(at,ωt)

∂at
⊙ ct.

Since the utility function is assumed strictly increasing in consumption, it must be that∇cu(c, a) =

λtδ
−t pt > 0. Accordingly, it follows that pt > 0. Likewise, the assumption that the utility func-

tion is decreasing in shopping intensity entails ∇au(ct, at) = λtδ
−t ∂p(at ,ωt)

∂at
⊙ ct ≤ 0 and, hence,

∂p(at ,ωt)
∂at

⊙ ct ≤ 0. Finally, concavity of the utility function implies

u(cs, as) − u(ct, at) ≤ ∇cu(ct, at)′(cs − ct) + ∇au(ct, at)′(as − at) ∀s, t ∈ T .

Combining the first-order conditions with concavity of the utility function and letting ut :=

u(ct, at) for all t ∈ T yields

us − ut ≤ λtδ
−t

[
p′t(cs − ct) +

(
∂p(at,ωt)
∂at

⊙ ct

)′
(as − at)

]
∀s, t ∈ T ,
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where ∂pl(al,t ,ωl,t)
∂al,t

= α1
l a
α1

l −1
l,t e−(ωl,t−α

0
l ) for all l ∈ L due to Assumption 2.1.

(ii) =⇒ (i)

Starting from the first set of inequalities in Theorem 2.1 (ii), note that

ρt =
∂p(at,ωt)
∂at

⊙ ct,

such that

us ≤ ut + λtδ
−t

[
p′t(cs − ct) +

(
∂p(at,ωt)
∂at

⊙ ct

)′
(as − at)

]
∀s, t ∈ T .

Fix some t ∈ T and let t1 := t. Consider any sequence of finite indices τ = {ti}
m
i=1, m ≥ 2,

ti ∈ T . Let I be the set of all such indices and define

u(c, a) = min
τ∈I

{
λtmδ

−tm

[
p′tm

(
c − ctm

)
+

(
∂p(atm ,ωtm)
∂atm

⊙ ctm

)′ (
a − atm

)]
+

m−1∑
i=1

λtiδ
−ti

[
p′ti

(
cti+1 − cti

)
+

(
∂p(ati ,ωti)
∂ati

⊙ cti

)′ (
ati+1 − ati

)] }
.

This function is the pointwise minimum of a collection of linear functions in (c, a). As such,

u(c, a) is concave and continuous. Moreover, the second set of inequalities in Theorem 2.1 (ii)

guarantees that the utility function is strictly increasing in consumption. Likewise, the third set

of inequalities implies that it is decreasing in shopping intensity. Finally, note that α0
l , α1

l , and

(ωl,t)t∈T directly identify the log-linear price function for good l ∈ L.

If the budget sets {Bt}
T
t=1 are convex, then the first-order conditions of the model are neces-

sary and sufficient for a maximum. Therefore, I am left to show that λtδ
−t pt ∈ ∇cu(ct, at) and

λtδ
−t ∂p(at ,ωt)

∂at
⊙ ct ∈ ∇au(ct, at) for all t ∈ T .

Let ϵ > 0, t ∈ T , and note that by definition of u(·, ·), there is some sequence of indices
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τ ∈ I such that

u(ct, at) + ϵ > λtmδ
−tm

[
p′tm

(
ct − ctm

)
+

(
∂p(atm ,ωtm)
∂atm

⊙ ctm

)′ (
at − atm

)]
+

m−1∑
i=1

λtiδ
−ti

[
p′ti

(
cti+1 − cti

)
+

(
∂p(ati ,ωti)
∂ati

⊙ cti

)′ (
ati+1 − ati

)]
≥ u(ct, at).

Add any bundle (c, a) ∈ C × A to the sequence and use the definition of u(·, ·) once again to

obtain

λtmδ
−tm

[
p′tm

(
ct − ctm

)
+

(
∂p(atm ,ωtm)
∂atm

⊙ ctm

)′ (
at − atm

)]
+

m−1∑
i=1

λtiδ
−ti

[
p′ti

(
cti+1 − cti

)
+

(
∂p(ati ,ωti)
∂ati

⊙ cti

)′ (
ati+1 − ati

)]
+ λtδ

−t

[
p′t
(
c − ct

)
+

(
∂p(at,ωt)
∂at

⊙ ct

)′ (
a − at

)]
≥ u(c, a).

Hence,

u(ct, at) + ϵ + λtδ
−t

[
p′t(c − ct) +

(
∂p(at,ωt)
∂at

⊙ ct

)′ (
a − at

)]
> u(c, a).

Since ϵ > 0, t ∈ T and (c, a) were arbitrary, we get

u(ct, at) + λtδ
−t

[
p′t(c − ct) +

(
∂p(at,ωt)
∂at

⊙ ct

)′ (
a − at

)]
≥ u(c, a).

This corresponds to the definition of concavity and, therefore, it must be that λtδ
−t pt and

λtδ
−t ∂p(at ,ωt

∂at
⊙ ct are supergradients of u(ct, at). Next, I show that we can construct a utility

function that guarantees the solution to exist.

Let Γ := maxl∈L,t∈T {al,t}. For every l ∈ L, let and hl(·) be a continuously differentiable

function satisfying hl(0) = 0, h′l(x) > 0, h′′l (x) ≥ 0 for x ∈ R+ and limx→∞ h′l(x) = ∞.8 To

see that there exists a utility function such that a solution exists, define û(c, a) := u(c, a) −

8This construction is analogous to that of Deb et al. (2018).
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∑L
l=1 hl (max {0, al − Γ}). As before, this function is concave, continuous, strictly increasing in

consumption, and decreasing in shopping intensity. Furthermore, note that û(c, a) ≤ u(c, a) for

all (c, a) ∈ C × A and û(ct, at) = u(ct, at) for all t ∈ T . Thus, (ct, at)t∈T is still a solution to the

consumer problem. Finally, note that û(c, a) → −∞ whenever a → ∞ along some dimension.

This follows from the piecewise linearity of u(·, ·) and the assumption that limx→∞ h′l(x) = ∞.

A.6.2 Proof of Proposition 2.1

Assumption 2.1 states that the price function for any good l ∈ L is given by:

log
(
p∗l,t

)
= α0

l + α
1
l log

(
al,t

)
− ωl,t.

Due to measurement error in prices, we only get to make inference from

log
(
pl,t

)
= α0

l + α
1
l log

(
al,t

)
− ωl,t.

Summing this equation across goods and dividing by L yields

log
(
pl,t

)
=

1
L

L∑
l=1

[
α0

l + α
1
l log

(
al,t

)]
− ω̄l,t,

where log
(
pl,t

)
denotes the average log price paid and ω̄l,t denotes the average search produc-

tivity. Further taking the expectation simplifies the equation to

E
[
log

(
pl,t

)]
=

1
L

L∑
l=1

(
E

[
α0

l

]
+ E

[
α1

l log
(
al,t

)])
,

where Assumption 2.4 was used to eliminate the expected average search productivity. By

Assumption 2.2, the above can be written as

E
[
log

(
p∗l,t

)]
=

1
L

L∑
l=1

(
E

[
α0

l

]
+ E

[
α1

l log
(
al,t

)])
.
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Taking the derivative with respect to log
(
al,t

)
and invoking Leibniz integration rule, one gets

E

∂log
(
p∗l,t

)
∂ log

(
al,t

)
 = 1

L
E

[
α1

l

]
.

Finally, summing this equation for each good l ∈ L and dividing by L gives

1
L

L∑
l=1

E

∂log
(
p∗l,t

)
∂ log

(
al,t

)
 = 1

L
E

[
α1

]
,

where α1 := 1
L

∑L
l=1 α

1
l is the average shopping technology across goods.
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Appendices for Chapter 3

B.1 Elementary Revealed Preference Theory

This section presents the revealed preference terminology and reviews an extension of the static

utility maximization model permitting for violations from optimal behavior.1

For e ∈ (0, 1], a consumption bundle ct is said to be directly revealed preferred to a bundle

cs if and only if ρ′t(cs/e−ct) ≤ 0, where e is designed to remove revealed preference information

generating cyclic preferences. Let RD(e) denote the direct revealed preference relation and

let R(e) denote its transitive closure.2 When the inequality is strict, ct is said to be directly

revealed strictly preferred to cs and is denoted PD(e). In the case where there is a sequence

ctRD(e)ct1 , ct1R
D(e)ct2 , . . . , ctmRD(e)cs of directly revealed preferences, where t, t1, . . . , tm, s ∈

T , ct is said to be revealed preferred to cs. Naturally, if any of those preference relations is

strict, then ct is said to be revealed strictly preferred to cs. The preceding notation allows me

to succinctly define two important concepts.

Definition B.1. Let e ∈ (0, 1]. A locally nonsatiated utility function u(·) e-rationalizes the data

{(ρt, ct)}t∈T if for every observed bundle ct ∈ RL
+, ctRD(e)c implies u(ct) ≥ u(c) and ctPD(e)c

implies u(ct) > u(c).

1As noted by Blow et al. (2021), the fact that discounting prices does not change relative prices implies that
static rationalizability is the same with either spot prices (pt)t∈T or discounted prices (ρt)t∈T . I choose to define
static utility maximization with discounted prices for notational consistency.

2The transitive closure R(e) of a relation RD(e) is the smallest relation containing RD(e) satisfying transitivity.
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Definition B.2. Let e ∈ (0, 1]. A data set {(ρt, ct)}t∈T satisfies the Generalized Axiom of Re-

vealed Preference (GARP(e)) if for all s, t ∈ T , ctR(e)cs implies not csPD(e)ct.

The generalized axiom gives an intuitive necessary condition for rationalizability by requir-

ing the consumer to have transitive preferences. In particular, note that GARP(e) is a natural

generalization of GARP(1) and simply eliminates cycles by reducing the number of revealed

preferences. The following result from Halevy et al. (2018) and Heufer and Hjertstrand (2019)

extends the influential theorem of Afriat (1967) to consumers violating the model of atemporal

utility maximization.3,4

e-Afriat’s Theorem. For a given e ∈ (0, 1], the following statements are equivalent:

(1) There exists a locally nonsatiated utility function e-rationalizing the data {(ρt, ct)}t∈T .

(2) The data {(ρt, ct)}t∈T satisfy GARP(e).

(3) There exist numbers ut, λt > 0, t = 0, . . . ,T, such that

us ≤ ut + λtρ
′
t(cs/e − ct) ∀s, t ∈ T .

(4) There exists a locally nonsatiated, continuous, monotonic and concave utility function

e-rationalizing the data {(ρt, ct)}t∈T .

For practical purposes, the second condition is the most convenient. As highlighted by

Varian (1982), one can use an efficient algorithm called Floyd-Warshall to get the transitive

closure R(e) of the direct revealed preference relation RD(e). For a given e ∈ (0, 1], one can

then directly check for a contradiction of GARP(e) in the data. Alternatively, conditional on

e ∈ (0, 1], one can use linear programming to solve the system of inequalities given in the third

condition. The goal is then to verify the existence of a pair (ut, λt)t∈T satisfying it.

From a theoretical standpoint, however, the substance of e-Afriat’s Theorem lies in the last

condition. It implies that, if the consumer’s choices can be thought of as generated by a locally

3For the case where e = 1, an accessible proof is given by Fostel et al. (2004). An alternative and insightful
proof is offered by Geanakoplos (2013).

4This theorem, as well as the proposition to follow, could all be written using the efficiency measure of Varian
(1990). For my purposes, it is sufficient to consider a common index for all observations.
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nonsatiated utility function, then it can further be assumed to be continuous, monotonic and

concave.5,6

B.2 Efficiency Indices

This section presents the exponential efficiency index, proposes an efficiency index for time-

consistency, and investigates which assumption of the exponential discounting model is the

most problematic in the data.

B.2.1 Exponential Efficiency Index

For the model of static utility maximization under partial efficiency, it is common to consider

the largest efficiency level rationalizing the data. This index is known as the CCEI and was

suggested by Afriat (1973).7 In a similar fashion, one can consider the largest efficiency level

rationalizing the data for the exponential discounting model. Formally, I define the exponential

efficiency index as

EEI := sup{e ∈ [0, 1] : {(ρt, ct)}t∈T is e-ED rationalizable}.

From the previous analysis, it is clear that the EEI can be interpreted as the smallest propor-

tion of wasted income arising from the selection of a suboptimal consumption stream. More-

over, note that the exponential efficiency index is well-defined as the inequalities in Proposition

3.2 (ii) will be trivially satisfied for an e arbitrarily close to zero.

Although the EEI provides a measure of distance between a data set and the exponen-

tial discounting model, it does not differentiate between deviations arising from within-period

consistency and time consistency. To disentangle their respective contributions to the EEI, an

efficiency measure that controls for violations of static utility maximization is needed. For con-

venience, denote such an index the time consistency efficiency index (TCEI). In what follows, I

5A mapping f : RL → RL is said to be concave if and only if f (cs) ≤ f (ct) + ∇ f (ct)′(cs − ct) for all s, t ∈ T .
6Concavity can only be assumed without loss of generality in finite data. In the case of infinite data, it has to

be substituted by the weaker assumption of quasiconcavity. I refer the reader to Reny (2015) for a more detailed
discussion.

7The critical cost efficiency index is defined as CCEI := sup{e ∈ [0, 1] : {(ρt, ct)}t∈T satisfies GARP(e)}.
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derive the TCEI based on the 2-step rationalization procedure of Heufer and Hjertstrand (2019)

for homothetic rationalizability.

The first stage consists in finding the largest efficiency level rationalizing the data with

respect to static utility maximization and yields

us ≤ ut + λtρ
′
t(cs/CCEI − ct) ∀s, t ∈ T .

Imposing the additional restriction of the exponential discounting model to the CCEI-Afriat

inequalities by setting λt = δ
−t yields

us ≤ ut + δ
−tρ′t(cs/CCEI − ct) ∀s, t ∈ T .

The TCEI then corresponds to the largest efficiency level rationalizing the previous system of

inequalities with respect to the e-ED model:

us ≤ ut + δ
−tρ′t

( cs

CCEI · TCEI
− ct

)
∀s, t ∈ T .

That is, the TCEI gives the additional adjustment required to the CCEI-adjusted data set to

satisfy the e-ED model. Since the largest efficiency level solving the e-ED model is the EEI,

it follows that EEI = CCEI · TCEI. One can therefore recover the TCEI by first obtaining the

CCEI and the EEI. Moreover, taking the natural logarithm of the previous expression yields

the following relationship when EEI < 1:

log(CCEI)
log(EEI)

+
log(TCEI)
log(EEI)

= 1.

This identity allows one to obtain the respective contribution of static utility maximization

and time consistency to the exponential efficiency index.

Definition B.3. The contribution of the CCEI to the EEI and of the TCEI to the EEI are re-

spectively given by

Cg :=
log(CCEI)
log(EEI)

and Ct :=
log(TCEI)
log(EEI)

.

In particular, the contribution of each index is always between zero and one, strictly in-

creases as its efficiency index decreases, and the combined contribution of each index always

sum up to one. Finally, note that the sum of Cg and Ct gives the contribution of the EEI to itself.
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B.2.2 Empirical Application

In what follows, I am interested in the efficiency indices for static utility maximization, time

consistency and exponential discounting, as well as their respective contributions to the EEI.

Let µi denote the mean and σi the standard deviation, where i ∈ {e,C} refers to the object over

which the operation is applied. Any object i ∈ {e,C} underlined or overlined represents its

smallest and largest value across consumers, respectively.

Using the CCEI for static utility maximization, the TCEI for time consistency and the EEI

for exponential discounting, Table B.1 presents summary statistics on the efficiency indices

and contributions of each index. These results are obtained with a grid search over δ ∈ (0, 1]

with a step size of 0.01 and a binary search algorithm for the efficiency indices that guarantees

them to be within 2−10 of their true values.

Table B.1: Rationalizability Results

Efficiency index e e µe σe C C µC σC

CCEI 0.6865 1.0000 0.9551 0.0502 0.0000 1.0000 0.2057 0.2017

TCEI 0.4758 1.0000 0.8365 0.0802 0.0000 1.0000 0.7943 0.2017

EEI 0.3878 0.9561 0.7984 0.0820 1.0000 1.0000 1.0000 0.0000

Notes: The sample size is N = 494. e denotes the lowest efficiency index, e the largest efficiency index,
µe the average efficiency index, and σe the standard deviation of the efficiency index. C denotes the
lowest contribution of the efficiency index to the EEI, C the largest contribution of the efficiency index
to the EEI, µC the average contribution of the efficiency index to the EEI, and σC the standard deviation
of the efficiency index’s contribution.

Overall, the results in Table B.1 indicate that time consistency is a more stringent assump-

tion than GARP, with an average efficiency level for the TCEI below that of the CCEI by

approximately 0.10. The significance of this difference is better grasped by looking at the av-

erage contribution of each index to the EEI. Markedly, on average, GARP is responsible for

about 20% of a violation from exponential discounting, while 80% of it can be attributed to

time consistency.
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B.3 Proofs

B.3.1 Proof of Corollary 3.1

The restrictions on the bounds of the discount factor have been derived in the main text. I

am thus left to show that CM(e) implies GARP(e), where e = 1 corresponds to the special

case of Corollary 3.1. I proceed by contraposition. Fix e ∈ (0, 1] and suppose GARP(e)

is violated. Then, for some indices t1, tm ∈ T , ct1R(e)ctm and ctm PD(e)ct1 . Thus, there is a

sequence of revealed preferences such that ct1R
D(e)ct2 , ct2R

D(e)ct3 , . . . , ctm−1R
D(e)ctm , where

t1, t2, . . . , tm ∈ T . By definition, the above implies ρ′t1(ct2/e − ct1) ≤ 0, ρ′t2(ct3/e − ct2) ≤ 0, . . . ,

ρ′tm−1
(ctm/e−ctm−1) ≤ 0 and ρ′tm(ct1/e−ctm) < 0. Given δ ∈ (0, 1], we also have δ−tiρ′ti(cti+1/e−cti) ≤

0 for all i ∈ {1, . . . ,m − 1} and δ−tmρ′tm(ct1/e − ctm) < 0. Summing up the resulting inequalities

yields

0 > δ−t1ρ′t1(ct2/e − ct1) + δ
−t2ρ′t2(ct3/e − ct2) + · · · + δ

−tmρ′tm(ct1/e − ctm),

which violates CM(e).

B.3.2 Proof of Theorem 3.1

(i) =⇒ (ii)

From the first-order condition, we have

∇u(ct) ≤ δ−tρt ∀t ∈ T ,

where ∇u(ct) is some supergradient of u(·) at ct. By continuity and concavity of the instanta-

neous utility function, we know that for all t ∈ T and c ∈ RL
+

u(c) ≤ u(ct) + ∇u(ct)′(c − ct).

Let N be a set of indices such that ∇u(ct) j = δ
−tρt, j for all j ∈ N. It follows that ∇u(ct) j ≤
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δ−tρt, j for all j < N. Thus, ct, j = 0 is a corner solution for all j < N. We therefore have

u(c) − u(ct) ≤ ∇u(ct)′(c − ct) =
∑
j∈N

∇u(ct) j(c j − ct, j) +
∑
j<N

∇u(ct) j(c j − ct, j)

=
∑
j∈N

δ−tρt, j(c j − ct, j) +
∑
j<N

∇u(ct) j(c j − ct, j)

≤
∑
j∈N

δ−tρt, j(c j − ct, j) +
∑
j<N

δ−tρt, j(c j − ct, j),

where the last inequality holds since ct, j = 0 and c j ≥ 0 for all j < N. As a result, for all t ∈ T

and c ∈ RL
+

u(c) ≤ u(ct) + δ−tρ′t(c − ct).

Rearranging gives that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′t ct ≥ u(c) − δ−tρ′t c,

where, by assumption, the instantaneous utility function is locally nonsatiated, continuous,

monotonic, and concave and δ ∈ (0, 1].

(ii) =⇒ (i)

The instantaneous utility function is locally nonsatiated, continuous, monotonic, and concave

and the discount factor satisfies δ ∈ (0, 1]. For all t ∈ T and c ∈ RL
+, we also have

u(ct) − δ−tρ′t ct ≥ u(c) − δ−tρ′t c.

Rearranging gives that for all t ∈ T and c ∈ RL
+

u(c) ≤ u(ct) + δ−tρ′t(c − ct).

This inequality corresponds to the definition of concavity and, therefore, it follows that

δ−tρt is a supergradient of u(·) at ct for all t ∈ T .
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B.3.3 Proof of Proposition 3.2

(i) =⇒ (ii)

Since the data set {(ρt, ct)}t∈T is e-ED rationalizable, it is the case that for all t ∈ T and c ∈ RL
+

u(ct) − δ−tρ′t ct ≥ u(c) − δ−tρ′t c/e

for some δ ∈ (0, 1]. By the same argument as in the proof of Theorem 3.1, we can obtain

u(cs) ≤ u(ct) + δ−tρ′t(cs/e − ct) ∀s, t ∈ T ,

where one may define ut := u(ct) for all t ∈ T .

(ii) =⇒ (iii)

Starting from the e-ED Afriat inequalities, we have

us ≤ ut + δ
−tρ′t(cs/e − ct) ∀s, t ∈ T .

Consider any sequence of indices τ = {ti}
m
i=1, ti ∈ T , m ≥ 2, and let I be the set of all such

indices. Summing up the inequalities for the resulting cycle of indices yields

0 ≤ δ−t1ρ′t1(ct2/e − ct1) + . . . + δ
−tmρ′tm(ct1/e − ctm),

which corresponds to CM(e).

(iii) =⇒ (i)

For some e ∈ (0, 1], define

u(c) = inf
τ∈I

{
δ−τ(m)ρ′τ(m)

(
c/e − cτ(m)

)
+

m−1∑
i=1

δ−τ(i)ρ′τ(i)
(
cτ(i+1)/e − cτ(i)

)}
.

This utility function is locally nonsatiated, continuous, monotonic and concave as it is the

pointwise minimum of a collection of affine functions. Moreover, the infimum defining u(c)
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has no cycle of indices. To see this, let s ∈ T and note that by CM(e) we have

0 ≤ δ−τ(1)ρ′τ(1)(cτ(2)/e − cτ(1)) + . . . + δ−τ(m)ρ′τ(m)(cs/e − cτ(m)) + δ−sρ′s(cτ(1)/e − cs)

for all τ ∈ T . Consider c ∈ RL
+ such that c , ct and let τt ∈ I be a minimizing sequence for ct.

It follows that

u(c) − δ−tρ′t c/e ≤ δ
−tρ′t

(
c/e − ct

)
+ δ−τt(mt)ρ′τt(mt)

(
ct/e − cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′τt(i)
(
cτt(i+1)/e − cτt(i)

)
− δ−tρ′t c/e

= δ−τt(mt)ρ′τt(mt)
(
ct/e − cτt(mt)

)
+

mt−1∑
i=1

δ−τt(i)ρ′τt(i)
(
cτt(i+1)/e − cτt(i)

)
− δ−tρ′t ct

= u(ct) − δ−tρ′t ct,

where the first inequality holds since u(c) uses the sequence achieving the infimum for c, the

first equality is a mere simplification, and the last equality is a consequence of τt being a min-

imizing sequence for ct. I thus have shown the existence of a locally nonsatiated, continuous,

monotonic and concave utility function and a discount factor δ ∈ (0, 1] e-ED rationalizing the

data.
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Appendices for Chapter 4

C.1 Preliminaries

Let δ ∈ [δ, 1]. For all ti, t j ∈ T , let the entry (ti, t j) of a square matrix A be given by ati,t j :=

δ−tiρ′ti ct j − δ
−t jρ′t j

ct j .

Definition C.1. A square matrix A of dimension T is cyclically consistent if for every chain

{t1, t2, . . . , tm} ⊂ {1, 2, . . . ,T }, at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤ 0, atm,t1 ≤ 0 implies that all terms

are zero.

Lemma C.1. A data set {(ρt, ct)}t∈T satisfies GAPP(δ) if and only if the square matrix A is

cyclically consistent.

Proof

Let δ ∈ [δ, 1] and assume that A is cyclically consistent with δ−t1ρt1Rδ
−tmρtm . Thus, there is

a sequence of indices {t1, t2, . . . , tm} ⊂ {1, 2, . . . ,T } such that δ−t1ρt1R
Dδ−t2ρt2 , δ

−t2ρt2R
Dδ−t3ρt3 ,

. . . , δ−tm−1ρtm−1R
Dδ−tmρtm . Therefore, this implies at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤ 0. Note that

if δ−tmρtm PDδ−t1ρt1 , then atm,t1 < 0. Cyclical consistency then requires that at1,t2 = at2,t3 = · · · =

atm,t1 = 0. However, this contradicts the assumption that atm,t1 < 0. As such, we can’t have

δ−tmρtm PDδ−t1ρt1 , i.e. GAPP(δ) holds.

Suppose now that GAPP(δ) is satisfied for some δ ∈ [δ, 1]. Construct the matrix A of

revealed preferences and note that at,t = 0 for all t ∈ T . Consider any sequence {t1, t2, . . . , tm} ⊂

{1, 2, . . . ,T } such that at1,t2 ≤ 0, at2,t3 ≤ 0, . . . , atm−1,tm ≤ 0, atm,t1 ≤ 0. For any element
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ati,t j pertaining to that chain, we have δ−tiρtiR
Dδ−t jρt j . Moreover, by going along the chain

we also obtain δ−t jρtRδ−tiρti . Since GAPP(δ) requires to not have δ−tiρti P
Dδ−t jρt j , it must be

that ati,t j = 0.

C.2 Proofs

C.2.1 Proof of Theorem 4.1

(i) =⇒ (ii)

Let δ ∈ [δ, 1] and note that δ−tiρtiRδ
−t jρt j implies δ−tiρ′ti ct j ≤ δ

−t jρ′t j
ct j . As such, we have

U(cti ,−δ
−tiρ′ti cti) ≥ U(ct j ,−δ

−tiρ′ti ct j) ≥ U(ct j ,−δ
−t jρ′t j

ct j), where the first inequality follows

from the optimality of cti and the second from the revealed preference relation. The same ar-

gument can be made for the strict relation P. Suppose now that GAPP(δ) were violated. Then,

for any δ ∈ [δ, 1] there would be t1, tm ∈ T such that δ−t1ρt1Rδ
−tmρtm and δ−tmρtm PDδ−t1ρt1 . Thus,

there are t2, t3, . . . , tm−1 ∈ T such that δ−t1ρt1R
Dδ−t2ρt2 , δ

−t2ρt2R
Dδ−t3ρt3 , . . . , δ−tm−1ρtm−1R

Dδ−tmρtm .

As a result, we would have U(ct1 ,−δ
−t1ρ′t1 ct1) ≥ U(ct2 ,−δ

−t2ρ′t2 ct2) ≥ · · · ≥ U(ctm ,−δ
−tmρ′tm ctm) >

U(ct1 ,−δ
−t1ρ′t1 ct1), an obvious contradiction.

(ii) =⇒ (iii)

In any given time period t ∈ T , denote lifetime income by y > 0 and let sd
t := yd − δ−tρ′t ct

denote discounted savings. Extending the data set for savings, one obtains {(ρt, 1), (ct, sd
t )}t∈T

with the value of money priced to 1. Since variables are discounted by interest rates, one can

also think of the price for money as evolving according to interest rates but where consumption

prices and income are in nominal terms. For all ti, t j ∈ T , note that we have

(δ−tiρti , 1)′
(
(ct j , y − δ

−t jρ′t j
ct j) − (cti , y − δ

−tiρ′ti cti)
)
≤ 0 iff δ−tiρ′ti ct j ≤ δ

−t jρ′t j
ct j ,

where the same equivalence applies with strict inequalities. Now, define ati,t j := δ−tiρ′ti ct j −

δ−t jρ′t j
ct j and let the matrix A be defined by Ati,t j := ati,t j ∀ti, t j ∈ T . Likewise, define ãti,t j :=

(δ−tiρti , 1)′
(
(ct j , y − δ

−t jρ′t j
ct j) − (cti , y − δ

−tiρ′ti cti)
)

and let the matrix Ã be defined by Ãti,t j :=

ãti,t j ∀ti, t j ∈ T . By Lemma C.1, we know that GAPP(δ) holds if and only if A is cyclically



C.2. Proofs 93

consistent and, by the previous equivalence, A is cyclically consistent if and only if Ã also is.

An application of Fostel et al. (2004) (Sections 2 and 3) on the matrix Ã then guarantees the

existence of Afriat inequalities given by

ut j − uti ≤ λti(δ
−tiρti , 1)′

(
(ct j , y − δ

−t jρ′t j
ct j) − (cti , y − δ

−tiρ′ti cti)
)
∀ti, t j ∈ T ,

where uti ∈ R and λti > 0 for all ti ∈ T . We can now construct a well-behaved augmented

utility function on {(ρt, 1), (ct, sd
t )}t∈T . To this end, consider sequences of finite indices {ti}

m
i=1,

where m ≥ 2, ti ∈ T , and let I denote the set of all such sequences. For any c ∈ RL and t ∈ T ,

define

Ũ(c, y − δ−tρ′t c) =

min
τ∈I

{
λtm

[
δ−tmρ′tm

(
c − ctm

)
+

(
y − δ−tρ′t c

)
−

(
y − δ−tmρ′tm ctm

)]
+

m−1∑
i=1

λti

[
δ−tiρ′ti

(
cti+1 − cti

)
+

(
y − δ−ti+1ρ′ti+1

cti+1

)
−

(
y − δ−tiρ′ti cti

)]}
.

Note that Ũ(·, ·) defines a continuous, strictly increasing, and concave augmented utility

function. Consider c ∈ NL such that c , ct and let {t∗i }
m
i=1 ∈ I be a minimizing sequence for ct.

It follows that

Ũ(c, y − δ−tρ′t c) ≤ λt
[
δ−tρ′t

(
c − ct

)
+

(
y − δ−tρ′t c

)
−

(
y − δ−tρ′t ct

)]
+ λt∗m

[
δ−t∗mρ′t∗m

(
ct − ct∗m

)
+

(
y − δ−tρ′t ct

)
−

(
y − δ−t∗mρ′t∗m ct∗m

)]
+

m−1∑
i=1

λt∗i

[
δ−t∗i ρ′t∗i

(
ct∗i+1
− ct∗i

)
+

(
y − δ−t∗i+1ρ′t∗i+1

ct∗i+1

)
−

(
y − δ−t∗i ρ′t∗i

ct∗i

)]
= λt∗m

[
δ−t∗mρ′t∗m

(
ct − ct∗m

)
+

(
y − δ−tρ′t ct

)
−

(
y − δ−t∗mρ′t∗m c′t∗m

)]
+

m−1∑
i=1

λt∗i

[
δ−t∗i ρ′t∗i

(
ct∗i+1
− ct∗i

)
+

(
y − δ−t∗i+1ρ′t∗i+1

ct∗i+1

)
−

(
y − δ−t∗i ρ′t∗i

ct∗i

)]
= Ũ(ct, y − δ−tρ′t ct),

where the first inequality holds since Ũ(c, y − δ−tρ′t c) uses the sequence achieving the mini-

mum for c, the first equality is a mere simplification, and the last equality is a consequence
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of {t∗i }
m
i=1 being a minimizing sequence for ct. Finally, defining U : RL

+ × R− → R by

U(c,−δ−tρ′t c) := Ũ(c, y − δ−tρ′t c) yields an augmented utility function rationalizing the data

{(ρt, ct)}t∈T . By an identical argument as in Theorem 1 of Deb et al. (2018) it is possible to

modify the aforementioned utility function in order to further guarantee the existence of a so-

lution to any set of prices ρ ∈ RL
++. Intuitively, the idea is to make the utility cost of expenditure

prohibitively large outside of the support of the data such that optimal consumption is finite.

C.2.2 Proof of Theorem 4.2

Consider any rational choice type r ∈ R and note that any rational choice type r′ ∈ R with

ar′ = ar implies r′ = r. Let α ∈ [0, 1], δa, δb ∈ (0, 1], and δα := αδa + (1 − α)δb. For any

ti, t j ∈ T , assume that δ−ti
a ρ

′
ti ct j ≤ δ

−t j
a ρ

′
t j

ct j if and only if δ−ti
b ρ

′
ti ct j ≤ δ

−t j

b ρ
′
t j

ct j . It follows that

αδ−ti
a ρ

′
ti ct j + (1 − α)δ−ti

b ρ
′
ti ct j ≤ αδ

−t j
a ρ

′
t j

ct j + (1 − α)δ−t j

b ρ
′
t j

ct j

⇐⇒

δ−ti
α ρ

′
ti ct j ≤ δ

−t j
α ρ

′
t j

ct j .

In other words, the set of discount factors that is compatible with the same choice profile ar is

convex. Let ∆r denote such set.

By Theorem 1, the choice profile ar is associated with decisions that satisfy GAPP(δ)

for any δ ∈ ∆r. Thus, any sequence t1, t2, . . . , tm must be such that δ−t1ρ′t1 ct2 ≤ δ
−t2ρ′t2 ct2 ,

. . . , δ−tm−1ρ′tm−1
ctm ≤ δ

−tmρ′tm ctm implies not δ−tmρ′tm ct1 ≤ δ
−t1ρ′t1 ct1 . Let T+ be the set of pairs

(ti, t j) ∈ T × T such that δ−tiρti Pδ
−t jρt j , and T− be the set of pairs (ti, t j) ∈ T × T such that

not δ−tiρti Pδ
−t jρt j . Note that T− , ∅ and T+ ∩ T− = ∅. Isolating the discount factor for any

(ti, t j) ∈ T+ yields

δ ≤

(ρ′t j
ct j

ρ′ti cti

) 1
t j−ti

.

In a similar fashion, isolating the discount factor for any (ti, t j) ∈ T− yields

δ ≥

(ρ′t j
ct j

ρ′ti cti

) 1
t j−ti

.
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Compute the previous bounds for every pair (ti, t j) and define the least upper bound and the

greatest lower bound as

lub := min
(ti,t j)∈T+

(ρ′t j
ct j

ρ′ti ct j

) 1
t j−ti

,

glb := max
(ti,t j)∈T−

(ρ′t j
ct j

ρ′ti ct j

) 1
t j−ti

.

Clearly, it must be that glb ≤ lub and glb ≤ 1 as otherwise no discount factor δ ∈ [δ, 1] would

be consistent with GAPP(δ). Thus, a rational choice profile ar satisfies GAPP(δ) for any δ ∈ ∆r

if and only if glb ≤ lub and glb ≤ 1.

C.3 Algorithm to Compute R

The following definitions are used in the pseudo code below.

Definition C.2. Let As denote the set of matrices of dimension s × s (1 < s ≤ T) as the set

containing every matrix A for which an element ati,t j = 1 implies at j,ti = 0 when ti , t j and

ati,t j = 0 when ti = t j.

Definition C.3. Let qs index matrices inAs such that Aqs denote the qth matrix ofAs.

Definition C.4. LetAs|qs−1 ⊂ As denote the set of matrices whose first s − 1 rows and columns

are identical to Aqs−1 . Let Aqs |qs−1 be the qth matrix ofAqs |qs−1 .

Definition C.5. Let ms index consumption bundles in period s ∈ T and denote the msth con-

sumption bundle by cs,ms .

Note that |As| = 3(s2−s)/2, |As|qs−1 | = 3s−1 and ms ∈ {1, . . . , Is}. The following pseudo code gives

a depth-first search procedure to recover R.

Pseudo Code

1. Initialize m1 = · · · = mT = 1.

2. Initialize q2 = · · · = qT = 1.

3. Initialize s = 2.

4. If s = 2, set the matrix Aq2 and continue. Else, go to step 13.
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5. Compute the transitive closure of Aq2 .

6. If a cycle is detected, go to step 11. Else, continue.

7. Set c1,m1 , . . . , cs,ms .

8. Compute lubq2 and glbq2 .

9. If (glbq2 > lubq2 or glbq2 > 1), go to step 12. Else, continue.

10. Set s = 3 and return to step 4.

11. If q2 < 3, set q2 = q2 + 1 and return to step 4. Else, terminate.

12.a If m2 < I2, set m2 = m2 + 1 and return to step 7. Else, continue.

12.b If m2 = I2 and m1 < I1, set m2 = 1, m1 = m1 + 1 and return to step 7. Else, go to step
11.

13. Set the matrix Aqs |qs−1 .

14. Compute the transitive closure of Aqs |qs−1 .

15. If a cycle is detected, move to step 21. Else, continue.

16. Set c1,m1 , . . . , cs,ms .

17. Compute lubqs and glbqs .

18. If (glbqs > lubqs or glbqs > 1), go to step 22. Else, continue.

19. If s < T , set s = s + 1, ms = 1, and return to step 13. Else, continue.

20. Extend R with (c1,m1 , . . . , cT,mT ) and go to step 22.

21.a If qs < 3(s2−s)/2, set qs = qs + 1 and return to step 13. Else, continue.

21.b Set ms = 1, qs = 1, s = s − 1.

21.c If qs < 3(s2−s)/2, set qs = qs + 1 and return to step 13. Else, continue.

21.d If s > 2, set ms = 1, qs = 1, s = s − 1, and go to step 21.c. Else, terminate.

22.a If ms < Is, set ms = ms + 1 and return to step 16. Else, continue.

22.b Set ms = 1 and go to step 21.
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97


	Revealed Preference Analysis: Theory and Applications
	Recommended Citation

	tmp.1657478708.pdf.3bMIt

