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Abstract

Software testing plays a: critical role in the software development lifecycle. Auto­
mated unit testing strategies allow a tester to execute a large number of test cases 
to detect faulty behaviours in a piece of software. Many different automated unit 
testing strategies can be applied to test a program. In order to better understand 
the relationship between these strategies, “explorative” strategies are defined as those 
which select unit tests by exploring a large search space with a relatively simple data 
structure. This thesis focuses on comparing three particular explorative strategies: 
bounded-exhaustive, randomized, and a combined strategy. In order to precisely 
compare these three strategies, a test program is developed to provide a universal 
framework for generating and executing test cases. The test program implements the 
three strategies as well. In addition, we perform several experiments on these three 
strategies using the test program. The experimental data is collected and analyzed 
to illustrate the relationship between these strategies.

K eyw ords: Software Testing, Unit Testing, Testing Strategies, Bounded Exhaustive 
Testing, Randomized Testing
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Chapter 1

Introduction

1.1 Introduction

The software development lifecycle (SDLC) is the process of creating or modifying 

software systems and the models and methodologies which people use to develop 

software systems. The SDLC consists of the following main phases: system plan­

ning, requirements gathering and analysis, system design, implementation, testing,
V

and maintenance. The overall quality of the software system heavily depends on 

the quality of the execution of each phase in the SDLC. This thesis concentrates on 

making improvements in the testing phase. We will discuss problems that software 

testers or software quality assurance personnel encounter in the course of testing a 

piece of software. These, problems are major concerns to a type of software testing 

methodology called unit testing. We have developed solutions to these problems to 

figure out the relationship among different automated unit testing strategies. .,
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1.2 Software Testing

Software testing plays a very important role in the software development life cycle. It 

is used to evaluate and ensure correctness, completeness and quality of a piece of soft­

ware. Software testing also facilitates making any improvements which are deemed 

to be indispensable. Although it’s impossible to ensure a software program is free 

of problems which are called bugs, we can create or adopt a well developed testing 

strategy that can increase possibilities of finding a fault if one exists.

Many different approaches can be applied to software testing [10]. Depending on 

the type of the software implementation, different testing approaches have different 

objectives and yield different results. Software testing traditionally can be divided 

into two categories using the box approach: black-box testing and white-box test­

ing. Black-box testing treats the software program as a “black box” without any 

knowledge about its internal implementation. Black-box testing is to verifying the 

correctness of the functionality of the software, while white-box testing validates the 

correctness and completeness of the actual source code. System testing is a thor­

ough testing of the entire software system while regression testing tries to ensure the 

correctness of the functionality of the existing software after new features have been 

integrated or bugs have been fixed. More importantly, unit testing refers to verify the 

functionality of a specific section of code. Unit testing lays a foundation for system 

testing since it checks for correctness of each small part of the software system that 

is included in the software package, confirming that they work correctly according 

to the specification when they run separately. After that, integration* testing can be 

performed to test programs which modules are grouped together. Finally, based on
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the assumption that previous testing has eliminated all the bugs and all underlying 

modules work correctly, system testing can also be carried out to test the overall 

system. '

1.3 Unit Testing and Automated Unit Testing

Unit testing is an approach in which an individual piece of code is tested to determine 

whether it works correctly and meets the specification. Unit tests are often created 

by programmers or sometimes by testers to conduct white-box testing. A unit is the 

smallest part of a software program to test. Unit testing is used to validate the cor­

rectness and completeness of a unit. Each unit is tested separately, before integrating 

them into modules to test the interfaces between modules. As a result, it brings 

several benefits. One of them is to help software developers detect errors and defects 

as early as possible in software development life cycle.

. j . \

There are several unit testing frameworks for various programming languages. For 

example, JUnit is a unit testing framework for the Java programming language. It 

provides many features to facilitate software developers writing unit test cases. A 

unit test case is often written manually by software developers. However, this pro­

cess can be very tedious and time-consuming. In addition, it may not be effective 

in finding certain classes of problems. Therefore, test automation, especially unit 

test automation is necessary to accelerate the unit testing process. Once tests are 

automated, they can be run very quickly. This is often the most cost-effective way
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to test and maintain software products in the long run. Briefly speaking, automated 

unit testing is a unit testing process of writing a computer program to do the testing 

which otherwise needs to be done manually. There are two general approaches to 

automate tests:

• Code driven test automation. Methods, classes, packages, and modules are 

tested automatically with various input arguments to verify whether the return 

value is correct.

•  User interface driven test automation. A testing program generates user inputs 

such as keyboard input and mouse clicks to observe changes in the user interface 

and validate th a t the observed behavior of changes is correct.

This thesis focuses on code driven test automation: Different automated unit testing 

strategies can be applied to test the software program. They often yield various results 

and abilities to detect errors. In the following subsections, this thesis will provide 

brief introductions for two automated unit testing strategies: bounded exhaustive 

unit testing and randomized unit testing.

1.3.1 Bounded Exhaustive Unit Testing

One of the unit testing strategy this thesis examines is bounded exhaustive unit test­

ing. Bounded exhaustive unit testing is a unit testing technique in which software is 

automatically tested with all valid inputs until it reaches specific size bounds. Run­

ning a test case consists of executing a sequence of method calls in the subject unit 

we would like to test. For bounded exhaustive unit testing, it requires not only gen­
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erating all valid values of input arguments for a method but also testing all possible 

sequences of method calls in the subject unit.

1.3.2 Randomized Unit Testing

Another unit testing strategy this thesis examines is randomized unit testing. Ran­

domized unit testing is a unit testing technique in which software is automatically 

tested with randomly selected input arguments and method calls. Like bounded ex­

haustive unit testing, running a test case in randomized testing consists of executing 

a sequence of method calls. However, randomized unit testing requires randomiza­

tion in selecting method calls and selecting input arguments to be passed into the 

particular chosen method call. When it is utilized properly, it has been found that 

randomized unit testing is efficient and easy to perform.

1.3.3 Best of Both Worlds

The last unit testing strategy this thesis examines is best-of-both-worlds. Best-of- 

both-worlds unit testing is a combined unit testing technique in which software is au­

tomatically tested with pseudo-randomly selected input arguments and method calls 

until it exhaustively takes all valid inputs within specific size bounds. Compared with 

bounded exhaustive testing, best-of-both-worlds takes all valid inputs within specific 

bounds but in a pseudo-random order. Compared with randomized testing, best-of- 

both-worlds generates test cases in a random order but unlike randomized testing, it
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doesn’t  select the same test case twice. Generally speaking, we would predict that it 

is a better strategy than either bounded exhaustive or randomized because it com­

bines the advantages of both strategies.

1.4 Test Oracle

A test oracle is used to determine whether a piece of software behaves correctly 

after test execution. It is often used by software testers and developers to determine 

whether a test has passed or failed. For a given test input, a test oracle compares 

the output of the system under test with the output which a test" oracle expects the 

system should have. Therefore, a test oracle should always be separated from the 

system under test in order to correctly verify the system. Based on the types of 

system under test, different test oracles can be applied to test. Baresi et al. [5] have 

surveyed several approaches to test oracles:

• Embedded Assertion Languages, \

• Extrinsic Interface Contracts,

• Pure Specification Languages,

•  Trace Checking,

•  and Log File Analysis.

This thesis uses our own test oracles to verify the test output. The mechanism of our 

test oracle will be explained in detail in later chapters. • '
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1.5 Thesis Focus

Figuring out the relationship among bounded exhaustive, randomized and best-of- 

both-worlds unit testing strategies is critical to software testing research because it 

helps us to identify which testing strategy should be adopted in unit testing in order 

to find software failures more effectively. In order to compare those three unit testing 

strategies precisely, Andrews et al. [4] introduce the canonical form of unit test cases 

that is proved to be sufficiently general to encompass the three testing strategies. 

Based on the proofs and canonical forms in [4], this thesis designs and implements 

several experiments to compare those unit testing strategies. The experimental re­

sults demonstrate the correctness and some assumptions described in [4].

First of all, we will discuss the design of the test program which implements the three 

unit testing strategies and runs test cases in Java programming language. One of the 

essential parts of this thesis is design decisions, architecture and implementations of 

the test program. The test program implements bounded exhaustive, randomized, 

and best-of-both-worlds strategies using different algorithms respectively. In addition, 

the test program needs to be flexible, adaptive to change and easy to maintain. A good 

design of the program plays a vital role in fulfilling those non-functional requirements. *

*

Another essential part of the thesis is design and implementation of the experiments 

which compare the three unit testing strategies from different perspectives. The ul-
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timate goal of the experiments is to compare bounded exhaustive, randomized and 

best-of-both-worlds unit testing strategies in two facets: abilities and effectiveness to 

find failing test cases. For each experiment, preparation, goal, procedure and col­

lected data will be described in detail. Based on the data that have been collected 

during experiments, we will give several diagrams, plots and tables to illustrate the 

comparison among bounded exhaustive, randomized and best-of-both-worlds. .

Thorough analysis of the collected data and experimental results is also indispens­

able. Judging by the experimental data, we will discuss the situations in which one 

strategy outperforms the others in time to first failure. Furthermore, based on the 

theoretical analysis in [4] and experimental data, the thesis concludes that increasing 

the number of method calls of a unit test case increases the failures distributed in 

the whole search space which also increases the viability of randomized compared 

to bounded exhaustive. Our experiments have shown that increasing the length of 

a test case (number of method calls) results in more failures per method call exe­

cuted, which means making longer test cases more cost-effective, until a maximum 

cost-effectiveness is reached. Our research in this thesis demonstrates that on aver-
i

age, randomized unit testing strategy outperforms bounded exhaustive strategy in its 

effectiveness and ability to find failures in the subject units under test.
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1.6 Thesis Organization

Introduction and other relevant background information have been highlighted in 

chapter 1. We will introduce some related work that has been done concerning au­

tomated unit testing and unit testing strategies in chapter 2. In chapter 2, some 

important concepts regarding our research will be explained as well. We will talk 

about design and implementation of the test program in chapter 3. In chapter 4, we 

will focus on the design and implementation of experiments in comparing bounded 

exhaustive, randomized and best-of-both-worlds unit testing strategies. Any prob­

lems and issues that occur during the experiments will be discussed as well. We will 

analyze experimental data, illustrate experimental results and draw some conclusions 

in chapter 5. In chapter 6, we will present some future research areas.
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Chapter 2 

Related Work

In this chapter, we give some basic definitions, and then discuss related work in 

bounded exhaustive testing, randomized testing, best-of-both-worlds, mutation and 

the most relevant work -  Andrews'et al.’s approach of comparing automated unit 

testing strategies. i

2.1 Definitions

/  , ■ ' , . . . .  , ;

Here we define some terms that will be useful through the rest of this thesis.

An exp lorative te stin g  s tra teg y  is a strategy in which we define a large search 

space with a relatively simple structure, consisting of a large number of test cases, 

and explore this search space systematically [4].
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A failing te s t case is a test case which will cause the unit under test to fail. If the 

execution result of a test case is not what we expected, we can declare the tesfcase 

to be a failing test case.

A passing  te s t  case is a test case which does not cause the unit under test to fail.

2.2 Bounded Exhaustive Testing

The idea of bounded exhaustive testing is first proposed by Marinov and Khurshid 

in [12]. This is a testing strategy which exhaustively tests all valid input up to a 

specific size or bound. In [12], Marinov and Khurshid proposed-a novel framework 

named TestEra for automated specification-based testing of Java programs. Given a 

formal specification, TestEra uses the method precondition to automatically generate 

all inputs up to a given bound. It does not require user input besides a method 

specification and an integer bound with integer for input size; In [12], Marinov and 

Khurshid only analyzed test cases with small input bounds. TestEra may encounter 

performance issues when it is given large input bounds to test the program.

Many published testing strategies are variants or specializations of the bounded ex­

haustive testing strategy, and much research effort has gone into improving the strate­

gies. For example, Marinov et al. [11] developed Korat, a testing framework which 

systematically enumerates all legal inputs within a certain size. Korat performs iso­

morphism breaking to avoid executing the same test case twice. Developers can 

provide a precondition predicate, written in a standard programming language, and 

Korat identifies whether the input satisifies the required invariants. Korat then pro-
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cesses the predicate to produce a stream of structures that satisfy the property identi­

fied by the pre-condition. To test the program, Korat generates all valid inputs within 

a certain bound which satisfies the invariants. It tests the program on the generated 

inputs to verify that the execution meets the provided post-condition. Marinov et al. 

use mutation testing to measure the quality of the test suites that Korat generates. 

Concepts and approaches of mutation testing will be further explained in this thesis. 

Marinov et al. conclude that bounded exhaustive testing (or the term exhaustive test­

ing used in [11]) within some scope can be more effective than random testing with 

bigger inputs. However, the depth bound for bounded exhaustive testing that they 

used in their experiments was just large enough to kill all mutants of the data struc­

ture code, and the depth bound for randomized testing was just one greater. This 

may lead to a situation in which failures are mainly distributed m a low level of the 

whole search space so that bounded exhaustive testing is able to outperform random­

ized testing. Therefore Marinov et al.’s conclusion doesn’t necessarily mean bounded 

exhaustive testing is a better testing strategy than randomized testing. More empiri­

cal studies are indispensable to compare bounded exhaustive testing and randomized 

testing.

Coppit et al. [7] also studied bounded exhaustive testing by applying TestEra to 

the Galileo dynamic fault tree analysis tool, a complex production software system. 

Coppit et al. empirically studied the feasibility and potential utility of bounded ex­

haustive testing. The authors concluded that bounded exhaustive testing has better 

bug-detecting abilities than manual ad-hoc testing in which a suite comprises at most 

a few hundred tests. However, the reliability of bounded exhaustive testing may 

be jeopardized by two aspects. The first aspect is. errors in the test oracle and the 

second is the specification from which tests are generated. Additionally, Coppit et
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al. point out that it is always possible, in general, that a behavior just beyond the 

tested bound will be erroneous. This fundamental limitation lies behind every testing 

strategy as well as bounded exhaustive. Another significant problem with bounded 

exhaustive testing in [7] is that bounded exhaustive testing was not able to generate 

inputs to meaningful bounds without refactoring the specification. Selectively reverse 

engineering a specification from which both a characterization of well-formed inputs 

and an oracle are derived is the key element of applying bounded exhaustive testing. 

When refactoring the specification was performed, bounded exhaustive testing can 

be effective and feasible to reveal previously unknown bugs in the system under test.

2.3 Randomized Testing

Randomized testing or random testing is a simple testing strategy of generating ran­

domized input and feeding it to the software under test. It is mentioned as early as 

Myers in 1979 [14]. Myers believed that in general, the least effective methodology of 

all is random-input testing which is the process of testing a program by selecting, at 

random, some subset of all possible input values [14]. Although Myers’ book is cited 

by many research works on software testing, the judgement of randomized testing is 

biased due to lack of empirical studies.

Past research on randomized testing included that of Claessen and Hughes on QuickCheck 

[6]. QuickCheck is a testing tool that utilizes randomized testing to test Haskell 

programs. Using formal specifications, QuickCheck allows testers to define certain
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properties of the functions under test that should be expected and check whether the 

properties hold after running several test cases. The tool also is able to automatically 

generate test cases based on random inputs or based on custom defined test data 

generators.

Miller et al. [13] has also proven the effectiveness of random testing to end users and 

developers. By simply randomly generating strings of characters using a program 

called fuzz, they found that a surprisingly large number of UNIX utility programs 

either terminate abnormally, loop infinitely or terminate without a clear description 

of what has happened, totaling to more than 24% of the basic UNIX utility programs. 

Their research also pointed out several common mistakes made by programmers.

Randomized unit testing is a specific type of randomized testing which automates 

the testing by randomly selecting or generating sequences of method calls and inputs. 

Andrews [1] focused on coverage-checked random unit testing (CRUT), which applies 

randomized unit testing strategy to a unit under test, continuously testing it until 

predefined coverage criteria are achieved. Andrews concluded that CRUT is efficient 

in finding faults within the code and it can act as a complement to other types of 

structural and functional testing methodologies.

Visser et al. [18, 17] found that random testing, in terms of coverage, execution time,

and memory used is competitive with model checking which in practice performs sim-
*

ilarly to bounded exhaustive, and with variations with and without state matching, 

symbolic execution, and abstraction of states.
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In addition, many refinements can be added to improve the basic randomized testing 

strategy. Randomized testing is the basis of the lower level of the Nighthawk tool [3]. 

Andrews et al. applied genetic algorithms to generate random unit test input data. 

This research has shown that random unit testing is an effective testing approach and 

Nighthawk is able to achieve high coverage of complex Java units.

Pacheco et al.’s work on the Randoop system [16] adopts a similar idea to that used 

in Korat [11], which performs isomorphism breaking to avoid executing essentially 

the same test case twice. Randoop is a test framework which automatically generates 

Java unit testing code using a feedback-directed random test generation approach. 

The fundamental algorithm used in Randoop is one which uses execution feedback 

gathered from executing test inputs as they are created, to avoid generating redundant 

and invalid inputs. Feedback-directed random testing has shown promising results in 

quickly finding errors in widely used complex applications. The authors pointed out 

combining random and systematic approaches can result in techniques that retain the 

best of each approach. This inspires the implementation of BOBW described below, 

but Randoop’s strategy is optimized for generating short test cases, rather than the 

•long test cases that in [4] are shown to be more cost-effective. Another problem with 

Randoop’s approach is it generates new test cases and then checks whether they have 

been executed before. As the process proceeds, more and more test cases will be 

discarded.
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2.4 M utation

One problem of designing testing experiments is that real programs with appropriate 

numbers of real faults are hard to find and hard to prepare appropriately. For ex­

ample, it is hard to prepare faulty and correct versions. Even when actual programs 

with real faults are available, whether these faults are numerous enough to make the 

experimental results achieve statistical significance often becomes another problem. 

Many scholars have taken approaches of introducing faults into programs to produce 

faulty versions. We can introduce faults by hand or by automatically generating vari­

ants of the code. Generally speaking, we view an automatically-generated variant as 

the result of applying an operator to the code. The operators used in such a way are 

called mutation operators. The resulting faulty versions are so called mutants and 

the general technique is called mutation or mutant generation.

The idea of using mutants to measure test suite adequacy was originally proposed by 

DeMillo et al. [8] and Hamlet [9], and explored extensively by Offutt [15]. Andrews et 

al. [2] compare the fault detection ability of test suites on hand-seeded, automatically 

generated, and real-world faults. The experimental results have shown that mutants, 

when using carefully selected mutation operators arid after removing equivalent mu­

tants, can provide a good indication of the fault detection ability of a test suite [2]. 

Therefore, mutants can be good reflections of actual faults when assessing the behav­

ior of testing techniques.
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2.5 Andrews et al.’s Approach

In order to compare explorative strategies, Andrews et al. [4] defined canonical forms 

of unit tests and gave precise definitions of the search spaces and strategies: Those pre­

cise definitions provide a solid foundation to compare automated unit testing strate- 

gies.

2.5.1 Unit Test Canonical Forms

Andrews et al. show that every Java unit test case has a canonical form, a simplified 

form into which it can be transformed which is equivalent to the'original. The reason 

for introducing canonical forms into Java unit test cases is as long as explorative 

strategies can generate and run all canonical form test cases, they can effectively per­

form any unit test case.

A Java unit test case is defined as a sequence of Java statements which would compile 

correctly when given as the body of a method. A test case T  terminates unsuccess­

fully or fails, if it throws an uncaught exception and otherwise we say T terminates 

successfully or succeeds. Two Java unit tests Ti and T2 are u-equivalent if Ti throws 

an uncaught exception at statement s if and only if T2 does.

Figure 2.1 shows an example of a Java unit test for a hypothetical Tree data struc­

ture and some equivalent canonical forms. In this thesis, we will focus on the bottom
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F igure  2.1 Canonical forms of unit tests, (a): Original unit test, (b), (c), (d): Test 
cases in canonical forms 1, 2 and 3 that are u-equivalent to (a), for some implemen­
tation of the units under test. [4]
(a) (b) .(c)

if (t.size() < n+1 int il, i2; int il, i2;
&& ¡found) { il = t.sizeO; il = t.sizeO;
x = t.get(n+42); . i2 = n+42; 12 = 53;

} x = t.get(i2); x = t.get(i2);
assert (x != 210); b2 = (x != 210); b2 = false; l

assert b2; assert b2;(d). .
int[] intVP = new int[4]; 
intVP [0] = 53;
Tree [] treeVP = new Tree[l];

intVP[l] = treeVP[0].size(); 
intVP [2] = intVP[0]; 
intVP[3] =
treeVP[0].get(intVP [2]); '

booleanVP[l] = booleanVP[0]; 
assert booleanVP[1];

canonical form (d) which is called Canonical Form 3 [4].

In a unit test in canonical form 3, we define a value pool which stores all values in 

an array of all parameters for a method. This makes canonical form 3 particularly 

easy to generate automatically. Given initial decisions, each of its statements can be 

generated by choosing a sequence of integers. The initial decisions include how big 

the value pools are and what initial values to put into primitive type value pools.

We say that a Java unit test T  is in canonical form 3 if it consists of four parts:
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•  A first part in which an array variable which stores value pool elements is 

allocated. No more than one variable is declared of any given type. For exam­

ple, double [] doubleValuePool = new double [200] declares a value pool for 

double of size 200.

•  A second part in which constant values are assigned to elements of primitive 

type value pools; for instance,“ intValuePool [5] = 23”

C •  A third part in which all statements are array-canonical statements [4].

•  An assert statement of the form a s s e r t  x, where x  is a variable.

Here, we give formal definitions of array-canonical statements which act as a third 

part of canonical form 3. Before we define array-canonical statements, we first need 

to define array-canonical method call. An array-canonical method call is defined as 

an expression of one of the forms m (...), new m ( . ..), C .m {.. .), or e.m (...), where 

m  is a method name, C is a class name, and e and all the arguments of m  are of the 

form where £ is a variable name and i is an integer constant [4].

An array-canonical statement is defined recursively as follows. S  is an array-canonical 

statement if either: •

• It is of the form x[i] = e or e, where x  is an array variable name, i is an integer 

constant, and e is an array-canonical method call; or

• It is of the form t r y  { S } catch  (E e) {x = e;}, where S is an array- 

canonical statement.
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To conclude, we can say that every Java unit test case can be converted into a canon­

ical form which consists of a piece of code initializing value pools, and a sequence 

of method calls (including calling constructors) which use value pools as a source of 

target and parameter values, and a destination of return values. This becomes one 

basis for our implementation of the test program. Therefore, the only three factors 

that affect generating unit test cases are choosing value pool sizes, choosing initial 

values for primitive type value pools, and generating a sequence of integers.

2.5.2 Formal Definitions of Strategies

In order to precisely compare explorative strategies, we give the formal definitions of 

bounded exhaustive, randomized, and best-of-both-worlds.

2.5.2.1 Test Context

Each test strategy is relative to a test context. A test context consists of the following 

pieces of information: •

•  The set of methods to call, Mc.

• The set of types of interest, Tj. This should include both primitive types (in­

cluding the wrapper class of primitive types in Java) and classes that are targets, 

parameters and return values of the methods to be called.
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•  For each type t € Tj, the size of the value pool is defined as vps(t). This is the 

number associated with the parameter type. The numbers from 0 to vps(t) -1  

can act as parameters of a method call.

•  For each primitive type t € Tj, the initial values of value pool elements.

2.5.2.2 Method Call Tuples

Andrews et al. introduce method call tuples to encode and abstract information about 

method calls. A parameter tuple for a method or constructor m  is defined to encode 

the parameters to the call as a sequence of integers. The authors treat methods and 

constructors homogeneously, and methods homogeneously regardless of whether they 

are static or non-static, and whether their return type is void dr non-void. Here, we 

quote parameter tuple representations for different types of method calls from [4]. In 

the following, 14  represents the value pool for type i*;. •

•  If m  is a static method of class C with k parameters of types t i , . . .  ,tk and a void 

return type, a parameter tuple for m  is a tuple of integers (¿1 , . , . ,  ik), where 

each ij is between 0 and vps(tj) — 1 inclusive. The parameter tuple represents 

the call

C.m(V1[ii],..:,Vk[ik})- '

•  If m is a static method of class C with k parameters of types t i , . . . , t k  and 

a non-void return type tk+i, a parameter tuple for m  is a tuple of integers 

( i i , . . .  ,ik,ik+i), where each ij is between 0 and vps(tj) — 1 inclusive. The 

parameter tuple represents the call

Vk+i[ik+l] = C.m(Vi[ii},...,Vk[ik}).
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• If m  is a constructor of class tk+i with k parameters of types t i , , tk, a pa­

rameter tuple is a tuple of integers (¿1 ,. ..,ik,i'k+1), where each ij is between 0 

and vps(tj) — 1 inclusive. The parameter tuple represents the call 

Vk+1[ik+1]= n ew  m(V1[ii],...,V k[ik]). .

• If ra is a non-static method of class tk+\ with k parameters of types i1(. . .  ,tk, 

a target of class t^+i and a void return type, a parameter tuple for m  is a tuple 

of integers (¿1 ,...-, ik, ik+1), where each ij is between 0 and ups (ij) — 1 inclusive. 

The parameter tuple represents the call

Vfc+i [¿fc+i]-m(Vi [¿1] , . . . ,  Vk[ik]).

•  Finally, if m  is a non-static method of class tk+i with A; parameters of types 

£1 , . . . ,  tk, a target of class t^+i and a non-void return type.ifc+2, a parameter 

tuple for m  is a tuple of integers (¿1 , . . . ,  ik,ik+i,ik+2), where each ij is between 

0 and vps(tj) — 1 inclusive. The parameter tuple represents the call 

Vk+2[ik+2\ = Vk+i[ik+i]-m(Vi[ii] , . . . ,  Vk[ik])-

W hat we can conclude here is that given a test context in which value pools have been 

defined, we can represent any parameter list by a sequence of integers: one integer 

representing the method and others representing, the target, parameters and return 

value. We will treat the target and return value of a method call, if any, as “virtual 

parameters” in positions j  =  k +  1 and j  = k + 2.
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F igure  2.2 Search trees, (a): parameter value search tree, (b): method call search 
tree, (c): explorative strategy search tree. '

(a)
root

possible values 
for param 1

possible values 
for param 2

possible values 
for param k+1

(b)

search tree for search tree for 
calls to m l calls to mq

(c)
method call / \  
search tree /  \

method call /  \  
search tree /  \

method call 
search tree

2.5.2.3 Search Trees

Search tree is the essential concept that Andrews et al. use to precisely define explo­

rative strategies. Given a test context K , we can define three classes of search trees: 

the parameter value search tree for a given method, the method call search tree for 

K , and the explorative strategy search tree for K . Figure 2.2 illustrates these three 

classes of search trees.

A path from the root of this tree to any leaf of the parameter value search tree for m  

encodes one method call tuple for m. We can note that the number of leaf nodes in 

the tree is the product of the value pool sizes of all the parameters (including virtual 

parameters).

Let the method call search tree for K  be constructed as follows: the tree has a root 

node, and the root node has one child for each method m  in the given test context; 

that child is the root node of the parameter value search tree for method m. The 

number of leaf nodes in the method call search tree is the sum of the numbers of leaf
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nodes of all the search trees for calls to the methods m. In what follows, we will call 

this number j  [4]. ■

Andrews et.al. then define the explorative strategy search tree for K  for depth n  

recursively as follows.

1. The tree for depth 0 is the tree with just a single root node.

2. The tree for depth n is constructed by constructing the tree for depth n  — 1, 

and then appending to each leaf node the method call search tree.

Note that each path through the explorative strategy search tree, from root to leaf, 

records a unique sequence of n  choices of method and, for each method chosen, the 

unique choice of parameters, target and return value location for the method call. 

There are therefore j n leaf nodes in the explorative strategy search tree for depth n.

2.5.2.4 Test Strategies

Although there is a lot of previous research on how to improve bounded exhaustive 

strategy, the basic idea for bounded exhaustive testing strategy is exhaustively test­

ing all valid inputs up to a specific size or bound. Therefore, in the thesis we only 

consider the naive bounded exhaustive testing strategy. The (naive) bounded exhaus­

tive test strategy for length n, or BE(n), is defined as the strategy that traverses the 

explorative strategy search tree in a depth-first manner, executing the corresponding 

test case whenever it reaches a leaf.
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The randomized test strategy for length n and repetitions q, or R (n,q), is defined as 

the strategy that, q times, randomly selects a path from root to leaf of the explorative 

strategy search tree, and executes the corresponding test case.

Let the total number of leaf nodes in the explorative strategy search tree be We 

define the best-of-both-worlds test strategy for length n, or BOBW(n), as a strategy 

that explores the explorative strategy search tree by generating all the numbers from 

0 to 'z — 1 in a pseudorandom order. After each number x  is generated, BOBW chooses 

the test case represented by the path from the root to the xth leaf, and executes the 

corresponding test case.

In [4], Andrews et al. analyzed the uniform and non-uniform distributions of failure 

as well. According to their analysis, it is likely that failure does not distribute uni­

formly. This means in most cases, the failing test cases will not be spread evenly 

in the explorative strategy search tree. The reason is that a fault in a method will 

lead to a failure only if the method is executed, or only if it is executed after certain 

patterns of method calls. Therefore, the nodes in the search tree corresponding to 

failing test cases are likely to cluster in certain areas of the tree. Prom this analysis, 

Andrews et al. state that due to the risk of clustering of failing test cases, R is likely 

to outperform BE except at low failure densities.
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Chapter 3

Test Program

In this chapter, we go into detail about the design and implementation of the test 

program. We will describe the architecture, some important design decisions, and 

important classes and interfaces of the test program. Additionally, since the test 

program implements BE, R and BOBW, we will illustrate the algorithms for imple­

menting these three test strategies.

3.1 Background and Motivation

As mentioned in the Related Work chapter, Andrews et al. (See section 2.5) provide 

solid theoretical foundations for comparing automated unit testing strategies. The 

concepts and algorithms of their work basically motivate our test program. First 

and foremost, the test program implements BE, R and BOBW. We will describe the
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algorithms for the respective implementations. Second, the test program implements 

test context, which provides all necessary information to run test cases. Third, the 

test program abstracts information for method calls and constructors in order to treat 

them homogeneously. Fourth, the test program is able to run test cases for different 

test strategies and depths. Last but not least, we need specific test oracles to verify 

whether the test case succeeds or fails. In addition to these functional requirements, 

the test program should be flexible, easy to maintain, and adaptive to change. This 

is mainly reflected in the design of our test program.

3.2 Introduction

The test program we developed is called Universal Test or UT. UT is a Java program 

developed in Java Development Kit (JDK) 1.5.0. It is tested and compatible with all 

versions of JDK 1.5 and 1.6. UT is able to run on any Operating System that JDK 

supports. As the Java programming language organizes its source code into packages, 

UT has 4 packages with total of 17 source files.

Besides the Java program, the other part of UT is shell scripts which drive the Java 

program with different input arguments and subject units. We use shelf scripts to 

record the CPU time of the Java program execution as well. The set of shell scripts 

is written in Bash and contains 6 script files. The shell scripts should be able to run 

on any UNIX-like operating systems.
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To start running UT, you need to specify three program arguments: strategy name, 

depth (the length of test case), and the total number of test cases to run. These three 

arguments are taken into the script OORunUniversalTest. sh. For example, if you 

want to run randomized testing strategy with depth =  5 and total 1000 test cases, 

you can type:
■ !

OORunUniversalTest. sh - r  5 1000

“- r ” stands for randomized testing strategy. Other options are “-be” which stands 

for bounded exhaustive and “-bobw” which stands for best-of-both-worlds.

3.3 Architecture

We use a Unified Modeling Language (UML) package diagram to illustrate package 

organization in Figure 3.1. As shown in the figure, there are 4 packages all starting 

with c s . uwo. Package c s . uwo contains the main method in the Main class which is the 

entrance to the test program. The main method takes in the program arguments, and 

then sets up and initializes “test context” (called T estln fo  in UT) objects. When the 

initialization is finished, it invokes the corresponding test strategy with the specified 

depth and number of test cases to run, according to the program arguments. The 

package c s . uwo. u t i l  is a utility package consisting of Cl ass F inder, Debugger, 

IOHandler and LogAnalyzer classes. Those helper classes facilitate us debugging 

the program, writing output files and analyzing log files. The most important two 

packages are cs.uw o.testenvironm ent and cs.uw o.stra tegy . Briefly speaking, the 

package cs.uw o.testenvironm ent is the implementation of the test context and
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method tuples in Andrews et al.’s work. It provides all necessary information to run 

test cases. In the package cs.uw o .stra tegy  are implementations of the three test 

strategies that this thesis focuses on, bounded exhaustive, randomized and best-of- 

both-worlds. The test strategies invoke methods in cs.uw o.testenvironm ent and 

verify the output.

3.4 Design

A good design plays a critical role in software development. A good design makes 

the program flexible and easy to maintain. Since the system requirements constantly 

change, we sometimes need to refactor the code in order to better adapt to those 

changes. During the design phase, we need to consider potential requirements in our 

design decisions. In UT, we carefully design methods, classes, interfaces and packages 

to make it extendable for future research requirements. Two important packages in 

UT are cs.uw o.testenvironm ent and cs.uw o.stra tegy . In this section, we talk 

about the design of these two packages and their classes. \

3.4.1 Package cs.uwo. test environment

The package cs.uw o.testenvironm ent consists of 2 interfaces: T estln fo  and
■ . . .  ' . t ' ■ .■

ThingToCall, and 4 classes: C allD escrip tion, TestCase, Testlnfolm p, and 

ThingToCalllmp. Figure 3.2 shows the classes and interfaces, and their relation­
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ships in package cs.uw o.testenvironm ent using a UML class diagram. In Figure 

3.2, we only show important fields and methods of a class or interface. Accessor and 

auxiliary methods are not shown in the figure.

T estln fo  is the implementation of “test context” (see 2.5.2.1). Java has 8 primitive 

datatypes: by te , sh o rt, i n t ,  long, f lo a t ,  double, char, boolean. For each 

primitive data type, T estln fo  has a corresponding value pool. Note here we treat 

S tr in g  as a primitive data type as well. Therefore, there are total of 9 primitive type 

value pools in the T estln fo  class. We use a vector to represent each primitive type 

value pool. T estln fo  also provides an add method to add values to the corresponding 

primitive type value pool. In Figure 3.2, it only shows the _intValuePool vector, 

which is the value pool for primitive type in t, and the addlntV alueO  method which 

is used to add in t  values to the in t  value pool. In addition to primitive type value 

pools, the T estln fo  class uses a HashMap as a class value pool. The class value 

pool stores values for classes which are not primitive data types. Here we should 

note that the Java compiler automatically wraps the primitive to an object, if we 

use a primitive where an object is expected. The Java platform provides wrapper

classes for each of the primitive data types. Therefore, we put values of the primitive
/ ■
type wrapper classes into corresponding primitive type value pools as well. Another 

important part of the T estln fo  class is to provide necessary information to make 

method calls. The T estln fo  class uses a vector to store all methods (each method is 

wrapped in a ThingToCall class which we will talk about later in the subsection) for 

a given class. With a ThingToCall index and a vector of parameters including vir­

tual parameters (see section 2.5.2.2), the method callThingNumber is used to locate 

the corresponding ThingToCall and pass virtual parameters to make the method call.
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The ThingToCall interface is an interface abstracting a method or constructor. The 

Java reflection mechanism provides us all necessary information to abstract a method 

or a constructor. For a method, we can get an array of parameter types, the return 

type, and the declaring class of the method, which is considered as the receiver class. 

For a constructor, we can get the same information except the return type because 

a constructor doesn’t  have a return value. The getNumParameters method in the 

ThingToCall interface gets the (virtual) number of parameters of the thing to call. 

The (virtual) number of parameters should be calculated as follows:

1. Let n =  number of declared parameters of the method or constructor.

2. If the thing to call is a non-static method, then n =  n+1.

3. If the thing to call is a constructor or has a non-void return value, then n =  

n + i

The makeCall method is used to make a call to the thing to call. It has two param­

eters. The first one is a T estln fo  object which is used to locate the ThingToCall, 

get values from the appropriate value pool, and make actual method call. The other 

parameter is named valuelnd ices, an integer vector of (virtual) parameters. The 

number in v a luelnd ices indicates the index of the value from the value pool that 

is to be used as the virtual parameter. The vector of integers should consist of 

getNumParameters () integers, each one in the correct range. Let us assume that 

the thing to call has n declared parameters. The makeCall algorithm is described as 

follows:
■ : «1

•  If the thing to call is a non-static method, then choose as the receiver the 

k-th value from the appropriate value pool, where k is the n-th element of

31
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valuelnd ices.

•  For parameter i, where i is between 0 and n-1, choose as the parameter the 

&-th value from the appropriate value pool, where k is the i-th element of 

va luelnd ices.

•  Call the method or constructor using Java reflection.

•  If the call threw a Throwable, then return that Throwable; otherwise continue.

•  .If the thing to call is a method with a void return value, then return nu ll;
. . ’ ■ i

otherwise continue.

• If the thing to call is a non-static method with a non-void return value, then 

place the return value in element k of the appropriate value pool, where k  is 

the n + l-th  element of valuelndices.

•  If the thing to call is a static method with a non-void return value, then place 

the return value in element k of the appropriate value pool, where k is the n-th 

element of va luelndices.

•  If the thing to call is a constructor, then place the new object in element k of 

the appropriate value pool, where A; is the n-th element of valuelndices.

• Return n u ll.

The makeCall method returns any throwable if there is any; otherwise n u ll.

C allD escrip tion  is a class representing a method call. It wraps the correspond­

ing ThingToCall index and parameter indices. Given a T estln fo  object, we can
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call the actual method or constructor wrapped in the C allD escrip tion  object. The 

TestCase class contains a vector of call descriptions which are added when building 

the test case. Given a T estln fo  object, we can run the test case using the “execute” 

method. If there are any Throwables thrown out when executing the call description, 

the T estln fo  will store them. These Throwables will be used later to compare one 

test case execution to another.

3.4.2 Package cs.uwo.strategy

The package cs .uw o .stra tegy  contains implementations of .BE, R and BOBW. 

Figure 3.3 depicts fields, methods, classes, interfaces and their relationships using 

a UML class diagram. Here we list all classes and interfaces with only important 

methods and fields of each class. The Strategy class is an abstract class which pro­

vides fields and methods required by all sub-classes. It has three very useful methods: 

setup, compare and executeTestCase. Given a T estln fo  object and a Class object 

of the subject unit, the setup method extracts all public methods and constructors, 

add them to the T estln fo  object as ThingToCall objects, and initializes value pools. 

When the test case is built, we can call the executeTestCase method to run the test 

case.

As mentioned before, a test oracle should be used to test whether the test case fails 

or not. The compare method in the S trategy  class is used as a test oracle. We 

use two criteria to build our test oracle. The first one is to compare primitive type 

value pools between the “gold” version which is the original subject unit, and the
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“faulty” version which is the mutated version. If any value of these two value pools 

is not equal, we can assert that this is a failing test case; otherwise, this is a passing 

test case. The prim itiveValuePoolsEqual method in the T estln fo  class compares 

primitive type value pools and returns tru e  if every element in every value pool for 

every primitive type is equal to the corresponding element in other; f a ls e  otherwise. 

The second criterion is to compare the number of throwables between the “gold” 

version and “faulty” version. The T estln fo  class stores a vector of all throwables 

thrown during the test case execution. We compare the sizes of the two vectors of 

two T estln fo  objects. If they are not equal, we can assert that this is a failing test 

case; otherwise a passing test case.

The reason that we are implementing the strategies to take a “gold” and “faulty” 

version is because we are doing experiments to measure the effectiveness of the test­

ing. Therefore, this requires us to implement the strategies differently. However, for 

general purposes, what a developer would use is some implementation that just takes 

a single version.

The BobwStrategy, BoundedExhausiveStrategy, IterationRandom Strategy, and 

RecursionRandomStrategy classes all inherit from the S trategy  class. They imple­

ment the BOBW, BE and Random (iteration and recursion) strategies respectively. 

The implementations will be explained in detail in the following sections.



3.5 Implementation of Bounded Exhaustive Test 

Strategy

The BoundedExhausiveStrategy class implements the bounded exhaustive strategy. 

Briefly speaking, the algorithm used to implement BE is a mutual recursion of two 

methods, createRunAUTestCases and completeTestCase. The mutual recursion means 

that createRunAUTestCases is a recursion itself and it calls completeTestCase, and 

completeTestCase is a recursion itself and it calls createRunAUTestCases. Given 

a certain depth and an input test case, the createRunAUTestCases method gener­

ates and runs all test cases that extend the input test case. The completeTestCase 

method is similar, but it also takes a partially completed call description as input. It 

creates and runs all test cases that are extensions of the input test case plus the call 

description so far.

At the beginning of the BE strategy, it creates an empty test case and passes it to 

the method createRunAUTestCases. The createRunAUTestCases method takes 

a depth and a TestCase object containing 0 or more completed C allD escrip tions 

as inputs. It creates and runs all test cases that are extensions of the input test 

case, up to the depth bound. For example, if the depth is 3 and the input test case 

contains call descriptions A and B, createRunAUTestCases will add all possible call 

descriptions to the end of the existing but not completed test case, and run all of them.

In the createRunAUTestCases method, it first judges whether the depth of the test 

case (i.e. length of method calls) so far is equal to the depth we want to build in

35
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the test case. (We should note here methods or constructors have been wrapped 

in ThingToCall objects of the T estln fo  object.) If it’s not equal, the number of 

call descriptions added (i.e. test case length) so far is less than the number of call 

descriptions we expected. We need to create and add new call descriptions to the 

end of the test case. For all the ThingsToCall, we create new call descriptions and 

call the completeTestCase method to add a C allD escrip tion  object in the depth 

so far. If the depth so far is equal to the depth we wanted, we will run the test 

case on both the “gold” T estln fo  object and “faulty” one. Then we compare those 

two T estln fo  objects. If the comparison returns false, we can assert this is a failing 

test case. The BE strategy then writes the failing test case information to a log and 

returns. Otherwise it continues.

The second method is completeTestCase. It is used to add arguments to call de­

scriptions until the call descriptions have sufficient arguments. Once the arguments 

of a call description are completely added, the call description will be added to the 

input test case. If the arguments we add to the call description so far equal to 

the arguments wanted (including the virtual parameters), the call description will
V '

be added to the test case. Therefore, the test case depth so far will be incre­

mented and the createRunAHTestCases method will be invoked to try to create 

and run test cases. We should note the entry of the completeTestCase method 

is the createRunAHTestCases method, and here the completeTestCase method 

jumps back to the createRunAHTestCases method with depth increased. Once the 

createRunAHTestCases method returns, we will remove the last call description. If 

the arguments so far are not equal to the arguments that the call description should 

have, the algorithm will add more arguments to the call description. It first gets the 

ThingToCall index for the call description. Then, given the argument index so far



37

and the ThingToCall index, the algorithm can retrieve the value pool size from the 

T e s tln f  o object. The bounded exhaustive algorithm needs to add every value index, 

up to the value pool size, to the call description. Then, an argument is added to 

the call description and we recursively call the completeTestCase method to add 

more arguments. Finally, after the recursion returns, the algorithm removes the last 

argument.

To sum up, the BE implementation iterates all value indices in the corresponding value 

pool as the arguments, and explores every public method or constructor (wrapped in 

ThingToCall objects and C allD escrip tion  objects) of the given class.

3.6 Implementation of Randomized Test Strategy

There are two algorithms for implementing the randomized test strategy: a recursion 

algorithm and an iteration algorithm. In the randomized test strategy, we need to 

specify the number of test cases to run. The strategy uses the Random class in JDK 

to generate a random number. Our implementation of the randomized test strategy 

uses the iteration algorithm instead of the recursion algorithm.

The iteration algorithm uses a different approach rather than the recursion. Figure

3.4 shows the iteration random algorithm. It uses three loops. The outer loop is used 

to control the total number of test cases. The middle loop is used to control the depth 

of the test case. The inner loop is used to control the arguments that are expected in
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the call description. The algorithm is very straightforward, as depicted in Figure 3.4. 

Like the recursion random algorithm, the iteration algorithm first randomly selects 

the ThingToCall index and then randomly selects the argument index within the 

value pool size. After arguments and call descriptions are added to the test case, it 

executes the test case.

3.7 Implementation of Best-of-Both-W orlds Test 

Strategy

To implement BOBW, taking the index of each test case, it is necessary to generate 

all numbers from 0 to z  — 1 (see section 2.5.2.4) without repetitions. To achieve this, 

we generated the next number in the sequence by adding a large prime number to the 

previous number and taking the remainder on division by z. The test case indices are 

so large that they cannot be represented by Java primitive type numeric variables. 

The Java standard B ig ln teger class is used to represent the test case indices. The 

representation takes a number of bits proportional to log(,z), which is nlog(j).

The BobwGenerator class is used to generate the BOBW test cases. The large 

prime number that we pick is a large Mersenne prime number found by Lucas in 

1876. The BobwGenerator class has two public methods: hasMoreTestCases and 

getNextTestCase. hasMoreTestCases judges whether the current test case index is 

equal to zero and returns true; otherwise it returns false. The getTestCase method 

returns a test case generated by the BOBW algorithm mentioned above. Let n  be 

the number of method calls. The process of extracting the actual test case from its
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index takes n  steps of length proportional to log(j). Note here that the process of 

generating and running a test case for BE and R also takes time proportional to n.

The BobwStrategy class simply generates a new BobwGenerator object and repeat­

edly invokes the getNextTestCase method to generate the BOBW test case. After 

the test case is generated, it runs the test case.



F igure  3.1 Package organization of Universal Test

cs.uwo.util



F igure  3.2 Class diagram of cs.uw o.testenvironm ent package
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F igure  3.3 Class diagram of cs.uw o .stra tegy  package

«inherits»

cs invostrategy;: Sfrategy

. W :iASS^VALUEPOOL_Si2E l  int 
SttesiCaseNurri : long

. npturt) .
- [ >  +8X8ajieTestCase() ; 

^compare# ; boolean
_  A A,

'«inherits»

cs, liwa strategy; ; IkjundedExhausti veStrategy

; -cre»teRïjnAilTestCaWiQ 
-completeTestCaseO
♦boundedExhaustiveTest( ) __________

«̂Inherits».' « in to  f i t s »

t .̂u .̂strai :̂:BobwStratéffîf

-runT&stCaseO
*bobWîest(j* ; -  —p

t[ __________ <<cafl>>
C5UViDstra:egy:RecursionRandomSh-ategy \
Random':" Ramfom ’ ! ' ' :......  j
-cor̂ ieteT&stCaseO |
«cæ̂ eRtdiTestCasesO |
*randcxnTèst{) [

i->ijwasirategy;;lteratK)nRandomStrfltegy
•„random; Random

•runTestCase(i
»ranriornTestQ

;..w,,;,
cs.uwo.strategy::BobwGeneratof
-_bigPfime
‘■icurrenttndex
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F igure  3.4 Iteration random algorithm of the random test strategy
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Chapter 4 

Experim ents

In this chapter, the experimental preparation, procedure and results are explained in 

detail. We give several graphs and plots to illustrate the experimental data. In ad- 

dition, the experimental data are analyzed. Finally, we draw some conclusions based 

on the analysis.

4.1 M otivations

Andrews et al.’s work [4] provides a solid theoretical foundation for the experiments. 

In order to empirically ground the theory and analysis in [4], we design and implement 

several experiments. The experiments aim to answer the following research questions: •

•  How many mutants does R detect compared to BE? In order to compare the
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abilities to detect failures, we need to figure out the number of mutants killed 

by R and by BE. •

•  Does R detect any mutants that BE does not detect and vice versa? If there 

is some mutant that R detects but BE does not, we need to find out what 

that mutant is and give an explanation of why R is able to detect that specific 

mutant but BE cannot, and vice versa.

• How long does it take for R (BE, BOBW) to find its first failure, all in terms of 

. number of test cases and in terms of CPU or clock time? In order to compare

the effectiveness of finding failures for R, BE and BOBW, we need to record 

both the number of the first failing test case and the CPU time or clock time. 

If one of these strategies takes least time or least number of test cases to find 

the first failure, we may say this is the most effective strategy in finding the 

first failure. .

•  How does the length of the test cases affect the length of time to first failure 

and the number of test cases to first failure? In [4], it shows that not only 

do longer test cases reveal higher failure density, but often reveal more cost- 

effective testing. We want to provide an empirical study to see how the length 

of the test cases effects the length of time to first failure and the number of test 

cases to first failure.

•  Are the above numbers consistent with the theoretical analysis in [4]? The 

experimental data would reveal the consistency or inconsistency with the the­

oretical analysis in [4]. If there is any inconsistency, we will give reasonable 

explanations of it.
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F igure  4.1 Data concerning experimental subjects.

Mutants Mutants
Unit SLOC Compiled Non-Equiv.
ArrayList 150 100 47
EnumMap 239 100 0
HashMap 360 100 31
HashSet 46 41 6
Hashtable 355 100 46
IHashMap 392 100 100
LHashMap 103 74 6
LHashSet 9 o 0
LinkedList 227 100 46
PQueue 203 100 41
Properties 249 100 1
Stack 17 33 28
TreeMap 562 100 25
TreeSet 62 45 8
Vector 200 100 93
WHashMap 338 100 i 38
Total 3512 1293 516

Those research questions are motivations for doing the experiments. Experiments 

and experimental data will be explained in detail in the following sections.

4.2 Subject Units

The subject unit that I will do experiments on is a set of heavily-used Java data 

structure units. It is the 16 units in java.util version 1.5 which inherit from the 

C o llec tio n  and Map interfaces. These subjects contain a total of 3512 SLOC (lines 

of code not counting comments or whitespace). Figure 4.1 shows the data concerning
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the experimental subjects.

\

4.3 Experimental Preparation

The mutants generated act as faulty versions while the original source files act as gold 

versions. The mutants are generated using the same mutant generator as in [2], which 

generates the mutants based on four types of changes: “replace operator”, “replace 

constant” , “negate decision” and “delete statement” .

Since the j a v a .u t i l  classes often take generic type parameters, in order to sim­

plify the experimental infrastructure, we generate a “wrapper” class for each of the 

j a v a .u t i l  classes, which instantiates the generic type parameters to In teger. Each 

wrapper class contains the same set of methods as the corresponding jav a , u t i l  class, 

but with the generic type parameters and the corresponding method parameters in­

stantiated to In teger.

Each of the test strategies in the test program takes two T estln fo  objects. One of 

the T estln fo  objects refers to the original, “gold” implementation of the class and 

its methods. The other refers to a mutant implementation, the “faulty” version. The 

T estln fo  object used in the experiments is one in which each primitive type value 

pool has two elements and each class value pool has one element. Each primitive type 

value pool is intialized with two distinct constants (e.g., 0 and 100 for the In teg e r 

value pool). The selection of the value pool size and value pool elements reflects the
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design of our experiments. We want non-trivial instances of T estln fo . However, we 

still want the T estln fo  instance to be small enough that it runs efficiently and BE 

can reach large depths in a measurable amount of time. If we add many values :(e.g. 

10 values) into the primitive type value pool, this will greatly expand the width of 

the corresponding parameter value search tree (see Section 2.5.2.3). Therefore, BE 

will take a fairly large amount of time to execute test cases up to the depth that ,we 

want to compare, and it makes it infeasible to measure the effectiveness of the BE 

strategy.

As stated in section 3.4, each strategy generates and runs test cases on both the gold 

and the faulty version. Any exceptions thrown as a result of-the method calls are 

stored in a list. At the end of the run of both test cases, the size of the exception list 

and the values in the primitive-type value pools are compared directly. If the size of 

the exception list is different or any value in the value pools is different, this indicates

that we have found a test case for which the mutant behaves differently from the
/

“gold” version. Therefore, we assert that a failure has been found in the mutant unit. 

This is also referred to as “killing” the mutant.

4.4 Experimental Procedure

The experiments proceed in two phases. The first phase is to identify which mutants 

are equivalent and which mutants are non-equivalent. A mutant is non-equivalent if 

there are any failures on any test cases. If all test cases succeed, then the mutant is
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equivalent. This is an approximation, because it is possible that a mutant will behave 

differently on some test case that we have not yet run. Therefore, mutant equivalence 

is undecidable, and some approximation like this is needed. According to Andrews 

et al. [4], failure density is defined as a ratio between the number of failing test cases 

and the total number of test cases. In the second phase, we measure failure densities 

and compare the strategies on the non-equivalent mutants. For all the experimental 

procedures, we have a set of shell scripts to automate the test program and collect 

the experimental data.

An experiment is denoted as “strategy name(number of method calls per test case, 

total number of test cases)” . For example, a randomized testing experiment with 10 

method calls per test case and total 1,000 test cases is denoted as R(10,1000). For 

identifying which mutants are equivalent, we first run experiment R( 10, 1000), then 

R(100, 1000), and then R(1000,1000). The reason for running the R test strategy 

first is that we believe R would be the best way to quickly identify failing test cases. 

In order not to bias the experiments in favor of R, if R cannot detect any failing test 

cases, for each such mutant, we also run BE testing with 3, 4, and 5 method calls per 

test case, until either a failure is detected or 30 minutes of clock time has passed.

One problem here is how we know the reason that a test case is taking too much 

time (more than 30 minutes) to finish. If a test case is running too long, it is either 

because of an infinite loop in the test case or the complexity of method calls in the 

test case. To solve this problem, UT (see section 3.2) writes log files with test case 

number, beginning, end, and timestamp of a test case so that we can easily identify 

whether there is an infinite loop in the test case. If there is a test case that only has
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the beginning statement and no end statement, and the timestamp shows the test 

case begins a long time (10 minutes) ago, we can assert an infinite loop occurs in the 

test case. If an infinite loop occurs, we terminate the process immediately in order 

to move on to the next mutant.

As shown in the 4th column in Figure 4.1, there are total of 516 non-equivalent 

mutants. 82 of the 516 non-equivalent mutants failed by going into infinite loops, 

rendering them infeasible for further experiments. Therefore the rest of the experi­

ments were performed on the 434 non-equivalent mutants that did not go into infinite 

loops. For comparing strategies and measuring failure density, we first ran R(n, 

1000), starting with n =  1 and increasing by 1 until n — 8, and then doubling n until 

n = 1024. On each run, we record how long R takes to finish 1000 test cases at depth 

n (in CPU time), how long R takes to find its first failure (in clock time and number 

of test cases), and how many of the test cases fail in total. We use E(n) to denote 

the index of the earliest failure at length n.

Running BE for a complete run with the same lengths of method calls as R is infea­

sible, even for short lengths. Hence, we only run BE(n) for n =  1 to 8, stopping as 

soon as a failure is found or E(n) test cases are run. The information collected is 

whether a failure was found by BE, how many test cases were run, and how much 

total CPU time was needed.

We also ran BOBW(n, 1000), using a similar experimental procedure as R(n, 1000), 

starting with n = 1 and increasing by 1 until n — 8, and then doubling n until
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n =  1024. On each run, we record how long BOBW takes to finish 1000 test cases at 

depth n (in CPU time), how long BOBW takes to find its first failure (in clock time 

and number of test cases), and how many of the test cases fail in total.

4.5 Experimental Results

In the first phase of the experiment (identifying equivalent and non-equivalent mu­

tants), 435 mutants over all j a v a .u t i l  classes are non-equivalent. This means that 

either R or BE is able to find a failing test case for 435 of the mutants. 434 of them 

are found by runs of R; only one (a mutant ofHashtable) is found by BE but not by 

R. This mutant is one which changes the order of entries in the hash table, causing 

its to S tr in g  method to return a different string from the gold version.

In the second phase, the data collected can be used to measure the failure density. 

Figure 4.2 illustrates the failure density for the j a v a .u t i l  units, averaged over all 

non-equivalent mutants of all mutants, as computed from the data from the runs of 

R. Consistent with the analysis in [4], the failure density climbs as n increases.

Figure 4.3 is a box plot showing the failure density for the j a v a .u t i l  units, as com­

puted with the same criteria as figure 4.2. The average failure density climbs with 

the increasing test case length n. It approaches 1.0 as n  increases. This means as 

test case length increases, it becomes more and more likely that a given test case will 

cause a non-equivalent mutant to fail.
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F igure 4.2 Failure densities for j a v a .u t i l  mutants, by test case length.[4]

Andrews et al. theoretically analyzed the clustering of failing test cases (see Section 

2.5.2.4). In order to examine whether the clustering occurs in practice, the experiment 

examines the situations when R(n, 1000) could kill a mutant (i.e., find a failing test 

case for the mutant) and BE(n) could kill the mutant in fewer test cases. If failures 

are evenly distributed throughout the search space, or clustered in the low level of the 

search space that favours BE, we would expect that BE would kill 50% or more of the 

mutants more quickly (in fewer test cases) than R. BE has the natural advantage of 

not repeating test cases, which should give it the edge when failure densities are low. 

Figure 4.4 depicts the comparison discussed above. BE kills over 50% of the mutants 

in fewer test cases than R only when the lengths of test cases are short (n = 1, 2,
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F igure  4.3 Box plot for failure densities for j a v a .u t i l  mutants, by test case length.
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and 3), when lower failure densities are expected. At n — 3, BE kills close to 50% of 

the mutants in fewer test cases. From n =  4 to higher lengths, R is more effective 

than BE because of the combination of higher failure densities and the clustering of 

failures. Since we adopt different appraoches to measure the effectiveness of BE, we 

should note here that figure 4.4 does not indicate that BE kills fewer mutants than 

R. Therefore, it does not contradict the fact that a full run of BE for a given test 

case length, although it is often infeasible in practice, will find failures that R will 

not find when running the same number of test cases.
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F igure 4.4 Percentage of test cases in which BE(n) killed mutants in fewer test cases 
than R(n), for cases in which R  could kill a mutant in fewer than 1000 test cases« [4]

In addition to the comparison of BE and R, the experiments also compare the num­

ber of mutants killed by R and our implementation of BOBW. Figure 4.5 shows the 

comparison of R and BOBW in terms of the number of mutants killed by each strat­

egy. The solid line is the number of mutants overall, i.e. the maximum number of 

mutants that could be killed. Starting from test case length 1, the number of mutants 

killed by R consistently climbs until the test case length reaches 1024. However, it 

is surprising that the number of mutants killed by BOBW cannot beat the number 

killed by R at all test case lengths. The number of mutants killed by BOBW almost 

remains unchanged since the test case length 16. A possible explanation for this is 

that if the prime number used in the BOBW strategy is not large enough, the BOBW 

strategy will still select test cases that are close to each other relative to the size of
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F igure  4.5 Comparison of R and BOBW in terms of the number of mutants killed 
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the search space. The BOBW strategy tends to randomly select test cases within 

the search space without replacement. If p in our implementation of BOBW is small 

relative to the search space, our implementation of BOBW will pick up test cases in 

only a small portion of the search space.

According to the experimental data and figure 4.5, the choice of constants in the im­

plementation of BOBW has not achieved the desired properties of a pseudo-random 

number generator. The linear congruential random number generator might be able 

to be used to get the desired properties. Other ways of BOBW implementation are 

considered as our future work.
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Figure 4.6 Clock time to first failure found by R excluding mutants that were not
killed

Clock time to first failure excluding mutants that were not killed (R)

The experiments have recorded dock  time to first failure found by R and BOBW, 

excluding mutants that were not killed. Figure 4.6 illustrates the clock time to first 

failure found by R (excluding mutants that were not killed) using a box plot. For 

R, the clock time to find first failure increases significantly as the test case length 

increases, and the maximum clock time to first failure is over 3000 seconds.

Figure 4.7 shows the clock time to first failure found by BOBW (excluding mutants 

that were not killed) using a box plot. For BOBW, the clock time to find first failure 

does not significantly increase as the test case length increases,: and ;the maximum 

clock time to first failure is over 300 seconds, but this is much less than the maximum 

clock time of R. This means when a failure is found, our implementation of BOBW



Figure 4.7 Clock time to first failure found by BOBW excluding mutants that were
not killed

Clock time to first failure excluding mutants that were not killed (BOBW)

is faster than R in terms of the clock time to first failure.

Figure 4.8 depicts the comparison between R and BOBW in terms of the average 

clock time to first failure (excluding mutants that were not found) using a line graph. 

It clearly shows clock time to first failure increases more for R than for BOBW, and 

that the average clock time by BOBW is much less than the clock time by R at al­

most all times. We should note here that figure 4.8 has excluded mutants that were 

not killed. As discussed before, the number of mutants killed by our implementation 

of BOBW is less than the number of mutants killed by R, and it remains almost 

unchanged since test case length 16, so the figure is (probably) showing average clock 

time to first failure just for the mutants that can be killed at small test case lengths.
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Figure 4.8 Comparison of average clock time to first failure found by R and BOBW
excluding mutants that were not killed _______________

Another aspect studied in the experiment is the total amount of CPU time taken by 

runs in the phase 2. One of our interests is the number of failures found per CPU 

second. BE achieves its highest number of failures per CPU second which is 0.0014 

at n — 2, and decreases consistently to as low as 0.00018 at n =  8. In compari­

son, R achieves its lowest number of failures per CPU second (3.70) at n — 1. By 

n  — 8, where the comparison with BE ends, it achieves 15.44 failures per CPU second.
j  , . :

The experiments recorded the CPU time for a complete run of each mutant. We 

have calculated the CPU time for 1000 test cases and drawn box plots for R and
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Figure 4.9 CPU time for 1000 test cases for R

\
CPU time for 1000 test cases (R)

BOBW. Figure 4.9 shows the CPU time for 1000 test cases for R using a box plot. 

The CPU time for 1000 test cases for R increases as the test case length increases. 

The maximum CPU time taken by a complete run of a mutant is over 30000 seconds 

which is equal to 500 minutes. It happens when the test case length is 1024.

Figure 4.10 shows the CPU time for 1000 test cases for BOBW using a box plot. 

Unlike R, the CPU time for 1000 test cases for BOBW does not increase as much as 

the test case length increases. The maximum CPU time taken by a complete run of a 

mutant is over 3000 seconds which is equal to 50 minutes. It happens when the test 

case length is 1024. It is about 10 times less than the maximum CPU "time of R.
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Figure 4.10 CPU time for 1000 test cases for BOBW

We also compare the average CPU time for 1000 test cases run by R and BOBW. 

Figure 4.11 illustrates the comparison between R and BOBW in terms of the average 

CPU time for 1000 test cases, using a line graph. The average CPU time of R(N,1000) 

consistently, increases as the test case length increases. On the other hand, the average 

CPU time of BOBW(N,1000) consistently increases as the test case length increases 

as well, but it is increasing slightly compared with R. In addition, the average CPU 

time of R(N,1000) is less than the average CPU time of BOBW(N,1000) only when 

the test case lengths are short (1-8, 16, and 32). For longer test case lengths, BOBW 

is much faster than R.

For BE, we use a different approach to do the experiments because it is infeasible
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Figure 4.11 CPU time for 1000 test cases comparing R and BOBW

to run a complete set of test cases of BE due to its large search space. We run BE 

testing on subject units until a failure is found or E (n ) test cases have been run. 

From test case length 1 to 8, we recorded the CPU time for a complete run of BE, 

excluding mutants that were not killed by R. Figure 4.12 illustrates the CPU time for 

complete run of BE excluding mutants that were not killed by R using a box plot. An 

interesting thing in the figure is that the maximum CPU time for complete run of BE 

happens when the test case length is 6, not 8. It may contradict our intuition that 

increasing test case length should increase the CPU time taken by a run of BE. There 

is an explanation to the contradiction. The maximum CPU time taken by a run of 

BE happens when it executes test cases on mutant 17 of the jav a . u t i l .  Vector class. 

The CPU time taken by a run of BE is calculated by multiplying the CPU time taken 

by each test case by E{ 1). Therefore, the reason that it takes the most amount of
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F igure  4.12 Box plot for CPU time for complete run of BE, excluding mutants that 
were not killed by R ^

CPU time for complete run of BE, excluding mutants not killed by R

Test case length (N )

time to finish is because the result of multiplying time taken by each test case by the 

number jE(1) of R(6,1000) for mutant 17 of ja v a .u t i l .V e c to r  class is the largest

among all subject units. The number E( 1) of R(6,1000) is 842, which means if BE' \
cannot kill the mutant 17 of ja v a .u t il .V e c to r  class at test case length 6, it needs 

to run all 842 test cases until it detects a failure. According to the calculation above, 

we can tell the maximum CPU time taken by a run of BE happens when it executes 

test cases on mutant 17 of ja v a . u t i l .  Vector class at test case length 6.

Figure 4.13 shows a line graph of the CPU time for a complete run of BE, excluding 

mutants that were not killed by R. Generally speaking, the average CPU time for 

a complete run of BE consistently increases as the test case length increases. The
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F igure  4.13 Line graph for average CPU time for complete run of BE, excluding 
mutants that were not killed by R ••• .

maximum average CPU time for a complete run of BE is about 12 seconds which 

occurs when the test case length is 6. As discussed above for figure 4.12, we can 

reasonably explain why the peak happens at test case length 6, not 8.



64

Chapter 5

Conelusion

5.1 Conclusion

This thesis has closely examined different automated unit testing strategies. It first 

introduces three automated unit testing strategies: bounded exhaustive, random­

ized, and best-of-both-worlds. Then it describes the necessity for comparing these 

three strategies. Based on Andrews et al.’s approach which provides a mechanism to 

precisely compare the strategies, a test program named Universal Test has been devel­

oped for implementing the strategies and running experiments, and the details of the 

implementation have been discussed. Several experiments have been conducted, and 

experimental data has been collected to figure out the effectiveness and efficiency of 

the strategies and how increasing test case length affects the failure density. Accord- 

ing to the experimental data, this thesis has shown that the failure density increases 

as increasing the test case length, and randomized testing strategy is more effective 

than bounded exhaustive testing strategy on average cases.
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More specifically, this thesis concludes the following points. First of all, randomized 

testing is able to find failures in less time and fewer number of test cases than (naive) 

bounded exhaustive testing, unless failure densities are low. Second, failure densi­

ties can be increased by increasing test case lengths, which partly jeopardizes the 

effectiveness of bounded exhaustive testing. Third, this thesis introduces an explo­

rative testing strategy, named “best-of-both-worlds”, which combines both bounded 

exhaustive and randomized testing strategies. The combined strategy should take 

advantages of both bounded exhaustive and randomized strategies. Although the 

best-of-both-worlds strategy has not achieved the results regarding the ability to find 

failures as we expected, the experimental data shows the best-of-both-worlds strategy 

is efficient, in terms of the CPU time used to find failures and the clock time to find 

the first failure.

This thesis only concentrates on comparing the naive bounded exhaustive strategy 

with the general randomized strategy. Therefore, the experimental results do not re­

solve the question of whether some optimized implementations of bounded exhaustive 

strategy would outperform some particular, optimized implementations of random­

ized strategy on particular subject units or even the same subject units as used in this 

thesis. However, the experimental results more precisely answer the question of how, 

when and why randomized strategies can be useful in unit testing. This conclusion 

may be helpful for people implementing model checkers and other testing tools using 

randomness or randomized testing strategies.
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This thesis also presented the test program development and discussed certain prob­

lems encountered during the design and implementation. The design of the' test 

program plays an important role because a good design provides us with flexibility 

to implement other explorative testing strategies or particular, optimized BE and R 

strategies painlessly. This thesis has also discussed the reason that BOBW could not 

beat R regarding the abilities of finding failures. Based on theoretical analysis by 

Andrews et al., BOBW is more effective and efficient than BE and R. However, our 

experiments have only shown the efficient side. The implementation of BOBW highly 

impacts the effectiveness in finding failures.

5.2 Future Work

This thesis has presented an empirical study on comparing different automated unit 

testing strategies in a formal manner. This thesis provides software testers an insight 

on the relationship among bounded exhaustive, randomized and combined strategies. 

Software testers can better understand and estimate how, when and why randomized 

strategies can be useful in unit testing. With the help of this thesis, testers can design 

their'test suites or test cases in more effective and efficient ways by increasing the 

test case length or using different testing strategies.

Several improvements can be made to the test program and experiments. Due to the 

time limitation, we have only applied three testing strategies to and run the exper­

iments on the j a v a .u t i l  classes. Since the underlying algorithms of implementing
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BE, R and BOBW are general, we can apply similar algorithms to other subject units 

in more languages. One possibility would be applying the algorithms to sg lib  hfthe 

C programming language. SGLIB is a simple generic library for the C programming 

language. It defines useful macros for manipulating common data structures. It pro­

vides generic implementation for sorting arrays and manipulating the following data 

structures:

•  linked lists

• sorted linked lists

• double linked lists

•  red-black trees

•  hashed containers

Manipulating a data structure includes insertion, deletion, search and iterator traver­

sal of elements. SGLIB provides a basic set of functions (macros) for manipulating 

each data structure. It is like the Standard Template Library for the C ++  program­

ming language.

Obviously, one drawback of the test program is the implementation of BOBW. The 

choice of constants in the current implementation of BOBW did not achieve the de­

sired properties of a pseudorandom number generator. We implemented BOBW by 

choosing a large prime number p and generating the next test case index by adding 

p  modulo z. Without factorizing a large number z, we need to carefully choose p in 

order to meet the criteria that z  is not close to a multiple of p or vice versa. The
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linear congruential random number generator would be a suitable substitution of the 

existing implementation.

Another important aspect of future work would be comparing particular and opti­

mized BE strategies with particular and optimized R strategies. This thesis has shown 

that (naive) BE performs better than R (with replacement) when failure densities are 

low, and/or when failures are spread evenly over the whole search tree. On the other 

hand, for very large search spaces, it is often not realistic to perform a complete run 

of the naive BE strategy. It would be interesting to optimize the BE strategy, such as 

dividing large search spaces and exploring, to perform complete runs of BE for longer 

test case lengths. Respectively for R, many optimization techniques can be applied as 

well. Genetic and heuristic algorithms may optimize the existing randomized testing 

strategy so that optimized R may become more effective.
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