Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

2011

COMPARING AUTOMATED UNIT TESTING STRATEGIES

Yihao Zhang

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Zhang, Yihao, "COMPARING AUTOMATED UNIT TESTING STRATEGIES" (2011). Digitized Theses. 3699.
https://ir.lib.uwo.ca/digitizedtheses/3699

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3699?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

At g

T

COMPARING AUTOMATED UNIT TESTING
STRATEGIES

| " (Spine Title: Cbmparing A‘utomya'ted U'nit Testing Strategies) N

(Thesis Format: Monograph) _
-- by.

Yihao Zhang (

Graduate Ptogram in ‘Goirnpilter Science

/
~ Submitted in partial fulfillment
of the requirements for the degree of
Master of Science

School of Graduate and Postdoctoral Studies
‘ The University of Western Ontario
London, Ontario
~ February, 2011

@ Yihao Zhang 2011

Abstract |

Software testing plays a.critical Tole in the software development lifecycle. Auto-
mated unit testing strategies allow a tester to execute a large number of test cases
to detect faulty behaviours in a piece of software. Many different’ automated unit

testing strategies can be applied to test a prograin; In order to better understand -
the relationship between these strategies, “explorative” strategies are defined as those

which select unit tests by exploring a large search space with a relatively simple data

\

structure. This thesis focuses’'on comparing three i)articular, explorative strategies:
bounded-exhaustive, randomized, and a combined strategy. In order to precisely

compare these three strategies, a test program is developed to provide a universal
framework for generating and executing test cases. The test program implements the
three strategies as well. In addition, we perform several experiments on these three
strategies using the test program. The experimental data is collected and analyzed
to illustrate the relationship between these strategies. '

Keywords: Software Testing, Unit Testing, Testing Strategies, Bounded Exhaustive
Testing, Randomized Testing - - ‘

iii

| ._ACknoWledgments

Millions of thanks go to Dr. Jamie Andrews, who gave me the precious opportunity
to perform researches with him. He is the lighthouse of my research and learning
from him is one of the most valuable experiences in my life. Jamie has offered -great

help on the thesis topic, ‘algorithms, application development and experiment setup -~ .

and analysis. It is impossible to have ‘ﬁnis‘h'ed this thesis without his help.
Sincere thanks to Dr. Eric Schost who revxewed my thesis proposal and suggested
several refinements on it.

Many thanks to my friends in Canada and other countries, Jian Zhu, Yongmin Shuai
and so forth. I cannot list all their names here but I am very grateful for their support
and help. ‘

The niost ai)preciation and gratefulness go to Jiaying Shen. Her accompanying; sup-
port and 1nsp1ratlonal words have stlmulated me to finish this the51s and obtain many
achlevements

Speéialv 'than‘ks go to my family, ,Guoshun Zhang, Fengying Du, Guoqing'Zhéng, Xi-
aping Zhang, Yujie Zhang, Guoan Zhang, Shujun Chen, Shuting Zhang. The tremen-

dous spiritual and ﬁnanmal support that they have given me has always been the
light in the darkness. ;

iv

§

(

N

Table of Contentsx" :

Certificate of Examihaﬁidn ‘

Abstract
Acknowledgement .
Table of Cdnteﬁts‘
List of Figures
1 Introduction’ - 5
1.1 Introductioh‘..;.-.‘..:"...f.‘:.........;.;....;..
1.2 Software Testing IR TR S
1.3 Unit Testing and Automated Unit Testing . e PR
1.3.1 Bounded Exhauétive Unit'Testing Ce e e
'1.3.2 Randomized Unit Testing e I
1.3.3 Best of Both Worlds e

ii
iii

iv

viii

1.4 Test Oracle RTINS 6

1.5 Thesis Focus.- G e o
1.6 Thesis Organization. R e e e i e e e SR 9
‘Related Work s L 10
21 Definitions 10
22 Bounded Exhaustive Testing . « « .+« o+ .. R i
2.3 Randémized Testing S 13
24 Mutation. TR C SR 16
2.5 Andrews et al.’s Approach PRI ‘. % L 17
2.5.1 Unit Test Canonical Formé R RN R S LT _
2.5.2 Formal Definitions of Strategiés. e e e e e ... 2
2521 Test Context . . . e e m
2.5.2.2 Method Call Tuples .. e e e e e e i cee 21
. 2.5.2.3 Search Trees T N
o 2.5(.2‘.4 Test Strategies PP .‘ 24
Tést_ Program o o) . 26
3.1 "Background and Motivation . : ‘. S S o
.t3.2 Intro'duction.‘......'.'.,....'.. ' 27
3.3 Architecture Ce e e i 28

vi

B 3.4 Design . B o e e e
3.4.1. Package cs.uwo;teétenvirénmenf .. .‘

3.4.2 Packagé csv.uwo‘.strafegy_

3.}5 v, Impleméﬁfatién of Bounded Exhaustive Test Stra£egy DR
3.6 Imvplementation of Randomized Test Strategy . . e e e
3.7 Implerﬁentatié;n of Be_st—of—Both—Wo?lds Test Strétegy IR

4 Experimentsk‘ o

4.1 Motivations S SR S o
4.2 Subject Units % e
4.3 Expérﬁentdl Pre’ﬁa-réti‘é‘n .. . RBEEE
44 E%cperimeﬁtal Pro\ceduré .\ '.; . .’ .. v.
45 .Experiﬁlehtal Resulltsj‘. R S

5 Conclusion

5.1 Conclusion v v vt e e e e
5.2 Future Work.
References |
T ‘.
Vita -

il -

38

44

44

46 -

a7
48
51
64
64
66
69

71

G s,

List of F’ig»ur‘es_i 5

2.1

2.2

3.1

3.2

3.3

3.4

41
42
4.3

4.4

4.5

Canonical forms of unit tests.. (a): Original unit test. (b), (c), (d):
Test cases in canonical forms 1, 2 and 3 that are u-equivalent to (a),

. for some implementation of the units under test M4 ... 18

Search trees. (a): parameter value search tree. (b): method call search

tree. (c) exploratlve strategy search tree Cee e e 28
Package organization of Universal Test0 40
Class diagram of cs.uwo.testenvironment package. 41
Class diagram of cs .uwo. strategy package 42
Tteration random algorithm of the random test strategy 43
Data concerning experimental subjects. oL, 46
Failure densities for java.util mutants, by test case length.[4] 52

Box plot for failure densities for java.util mutants, by test case length. 53

Percentage of test cases in which BE(n) killed mutants in fewer test
cases than R(n), for cases in which R could kill a mutant in fewer than

1000 test €aSes. [4] .« . vt e e N 54

Comparison of R and BOBW in terms of the number of mutants killed

(logscalexax1s) L B
viii

A]

46

4.7

~48

4.9

N 410

4.11

4.12

4.13

Clock time to ﬁrst failure found by R excludmg mutants that were not
killed L. N SR ~ ... 56

Clock time to first failure found by BOBW excludmg mutants that

Werenotkﬂled....,.........,...., e 57

Compaﬁson of average clock time to first failure found by R and BOBW

- excluding mutants that were not killed 58
CPU time for 1000 test cases for‘R Ca el e 59
CPU time for 1000 test cases for BOBW 60
CPU time for 1000 test cases comparing R and BOBW . . . R . 61

Box plot for CPU time for complete run of BE, excluding mutants that
werenotkilledbyR e e e e e e e e e s e e e e 62

Lme graph for average CPU time for complete run of BE, excluding
mutants that were not kllled byR.......... T U 63

ix

[~

Chapter 1 it
Introduction =

1.1 Inftvrodﬁ»c‘_ti:oh

Thé software development lifecycle (SDLQ) is the process of cree{ting or'mpdifying

softwa‘re‘ systems and the models and methodologies which‘ people use to develop ‘
software systems. The SDLC consists of the following main phases: system plan-
ning, requirements gathering and ahalysis, system design, implementation, testing,
and maintenance, The overall quaiity of the software system heavily,\ depends on
the quality of the execution of each phase in the SDLC. This thesis concentrates on
. me‘king‘improvements in the testing phase. We will discuss problems that software
testers or software qilality assurance personhel encount‘er; in the course of testing.a
piece of 's\oftwa,r‘e. These. problems are major concerns to a type of software testing
| methodology called unit testing'.b- We have developed solutions to these problems to

figure out the relationship among different automated unit testing strategies. . . -

1.2 SoftWare Testing

Software testiﬁg plays a very important role in the software development life cycle. It
is used to evaluate and ensure correctness, completeness and quality of a piece of soft-
ware. Software testing also fac111tates makmg any 1mpr0vements which are deemed
to be 1nd1spensable Although 1t s 1mpos51ble to ensure a software program is free
of problems whxch are called bugs we can create or adopt a well developed testlng

strategy that can increase poss1b1l1t1es of ﬁndmg a fault if one exists.

Many different approaches 'can‘ be applied to',software testing [10]. Depending on

the type of the software implementation, different testing approaches have different -

: obj_ectives and yield Vdifferei.lt ‘re‘sults.i Software testing traditi'onally can be divided
into two cat'egories using the box approach: black-box testing and f,white—bog test-
ing. Black-box testing treats the software progranl as a “black box_” without any
knowledge about its internal implementation' Black-box testing is to verifying the
correctness of the funct1onahty of the software, while white-box testing validates the

correctness and completeness of the actual source code. System testmg is a thor-

ough testing of the entire software system while regresslon testing tries to ensure the -

correctness of the functionality of the existing software after new features have been
integrated or bugs have been fixed. ‘More iinpoitantly, ‘unit testing refers to verify the
functionality of a specific section of code. Unit testing lays a foundation forisystem
testing since it checks for correctness of each small part of the software system that
is included in the software package, confirming that they work- correctly according

to the speeiﬁcation when they run separately. After that, integration;'testing can be

performed to test programs which modules are groupedtogether. Finally, based on

‘the assumption that previous testing has ehmmated all the bugs and all underlymg
modules work correctly, system testing can also be carrled out to test the overall

system.- -

1.3 Unft»Testing and _Automated:Unit Testing

Unit testing is an approach in whfch an individual piece of code is tested to determine
whether it works correctly and meets the speciﬁcation. U_nit tests are often created
by programmers or sometimes by___ testers to conduct _white-box.testing. A unit is the
smallest part of a software program to test Unit'testing is usedmto validate the cor-
rectness and completeness of a unlt Each umt IS tested separately before 1ntegrat1ng
them into modules to test the 1nterfaces between modules As a result it br1ngs
several beneﬁts One of them is to help software developers detect errors and defects

as early as poss1ble in software development life cycle

J s \

There are several unit testing’frameworks for various programming languages For
example JUmt Is a un1t testmg framework for the Java programming language. It
provrdes many features to facﬂltate software developers wr1t1ng unit test cases. A
unit test case is often wrrtten manually by software developers However th1s pro-
cess can be very tedlous and tlme-consumlng In addrtlon, 1t may not be effectlve
in ﬁndmg certam classes of problems Therefore test automatlon especrally unit
test automatlon is necessary to accelerate the unlt testmg process Once tests are

'automated they can be run very qulckly ThlS is often the most cost effectlve way

4
to test and ;haintain software products in the long run. Briefly speaking, automated
unit testing is a unit testing process_ of writing a computer program to do the testing

which oth‘erwise needs to be done manually. There are two general approaches to

automate tests:

"o Code driven test automation. Methods, classes, packages, and modules are
tested automatically with various‘ input arguments to verify whether the return
 value iscorrect. o R o
o User interface driven test automation. A testing progfam generates user inputs
such as keyboard input and mouse clicks to observe changes in the user interface

and validate that the obser\}ed behavior of changes is correct.

—

This thesis focuses on code driven test automatiqni Different automated unit testing
strategies can be applied to test the software program. ‘They often yield various results
and abilities to detect erTors. In the following subsections, this thesis will provide
brief intréductions for two automated unit testing strategiés: bounded exhaustive

unit testing and randomized unit testing.

1.3.1 Bounded Exhaustive Unit Testing

One Qf the unit testing strategy this thesis 5examines is bounded exhaustiﬁe ‘unit test-
ing. Bounded exhaustive uniﬁ testing is a unit festing technique in which software is
automatically tested with all valia inputsuntil it reaches specific sizeﬁbounds.: Run-
ning a test case coﬁsists of executing a sequeriée'of method- calls in the subject unit

we would like to test. ,For’ bounded exhaustive unit testing, it requires not only gen-

erating all valid values of input arguments for. a method but also testing_all possible

sequences of method calls in the subject unit. - -

1.3.2 Randomized Unit Testing'

Another unit testing strategy this thesis examines is randomized unit testing Ran-
domrzed umt testlng is a unit testmg technlque in Whlch software i is automatrcally
tested with randomly selected 1nput arguments and method calls Like bounded ex-
haustive umt testmg, runmng a test case in randomrzed testmg con31sts of executrng
a sequence of method calls. However, randomrzed unlt testmg requlres randomlza-
t1on in selectmg method calls and selectrng 1nput arguments to be passed into the
partlcular chosen method call When 1t is ut111zed properly, 1t has been found that

random1zed un1t testmg is efﬁment and easy to perform

1.3.3 Best of Both Worlds

The last unit testmg strategy this thesis examines is best- of both-worlds. Best-of-
both-worlds umt testmg isa combmed unit testing technique in which software is au-
tomatlcally tested with pseudo-randomly selected input arguments and method calls
until it exhaustively _takesall valid inputs within speciﬁc size bounds. Compared with

“bounded exhaustive testing, best-of-both-worlds takes all valid inputs within specific

bounds but in a pseudo-random order Compared wrth randomlzed testmg, best-of- _

both-worlds generates test cases in a random order but unhke randomlzed testing, it

6

doesn’t select the same test case twice. Generally speaking, we would predict that it

is a better strategy than either bounded exhaustive or randomized because it com-

bines the advantages of both strategies.‘ _

» 14 Tesﬁ Of&cle

A test oracle is used to determine whether a piece of software behaves correctly

after test execution. It is often used by software testers and developers to determine .

whether a test has passed or failed. For a given test input, a test oracle compares
~ the output of the system under test with the output which a test oracle expects the
system should have. Therefore, a test oracle should always be separated from the
system under test in order to correctly:verify the system. Base‘d”on the types of
system under test,“different test oracles can be‘applied to test. Baresi et al. [5] have

surveyed several approaches to test oracles:

Embedded Assertioﬁ Languages,

Extrinsic Interface Contracts,

Pure Sp‘eciﬁcation Languages, -

“Trbacle Chécking, o

and Log File Analysis.
This thesis iis'eS our own test oracles to verify the test output. The mechanism of our

' test oracle will be 'explained in detail in later chapters.

‘1.5‘- - Thesis Focus"f

’ Fighring out the relationship among houn_ded 'exhaustive, randomized and best-of-

both-worlds unit testing strategies is critical to software testing research because it

helps us to identify whxch testmg strategy should be adopted in unit testlng in order
to ﬁnd software fallures more effectlvely In order to compare those three unit testlng
| strategles premsely, Andrews et al [4] mtroduce the canonlcal form of unlt test cases
that is proved to be sufﬁc1ently general to encompass the three testing strateg1es
.Based on the proofs and canonlcal forms in [4], thls the51s de51gns and 1mplements
several expenments to compare those umt testmg strategxes The experlmental re-

sults demonstrate the correctness and some assumptlons descrlbed in [4]

First of éli, we will discuss the design of the test'program Wthh implements‘ the three
unit testing strategies and runs test ‘cases in Java prOgramming' language. One of tlie
“essential parts of this thesis is design decisions, architecture and implementations of

the test program. The test program implements bounded ‘exhaustive, randomized,

and best-of-both-worlds strategies using different algorithms respectively. In addition, -

the test program needs to be flexible, adaptive to change and easy to maintain. A good

design of the program plays a vital role in fulﬁiling those non-functional requirements.

\
.

Another essential part of the thesis is design and implementation of the experiments

which compare the three unit testing strategies from different perspectives. The ul-

’ - A . . .
timate goal of the experiments is to compare bounded exhaustive, randomized and

best-of-both-worlds unit testing strategies in two facets: abilities and effectiveness to
find fa1hng test cases. For each expenment preparation, goal _procedure and col-
lected data will be described i in deta1l Based on the data that have been collected
~ during expernnents, we \Wlll»glve seyeral dlagrams, plots and tables to vlllustrate the

comparison among bounded exhaustive, randomized and best-of-both-worlds. .

Thorough analysrs of the collected data and expenmental results is also 1nd1spens-
able. Judglng by the experlmental data we will d1scuss the mtuatlons in Wthh one
strategy outperforms the others in t1me to ﬁrst fallure Furthermore, based on the
theoret1cal analy51s in [4] and experlmental data, the thes1s concludes that i 1ncreasmg
~ the number of method calls of a un1t test case increases the failures distributed in
the whole search space which also increases the,vlablhty of randomized compared
to bounded exhaustive. Our experiments have shown that increasing the length of
a test case (number of method .calls) results in more failures per method call exe-
cuted, which means maklng longer test cases more cost-effective, until a maximum
cost—effectrveness is reached. Our research in thls thesis demonstrates that on aver-

1

age, randomized unit testing strategy outperforms bounded exhaustive strategy in its

effectiveness and ablhty to ﬁnd failures in the subJect units under test.

1.6 Thesis Organization
Introduction and other relevant background ‘information have been highlighted in
chapter 1. We will_ introduce some reiated work that has been done concerning au-
tomated unit fgesting' and unit testing strategies in chapter 2. In chapter 2, some
impﬂortant' cOn’Cepts regarding our research will be explained as well. We will talk
| about désign'aﬁd impleméntation of the test pfogram in chapter 3. In chapter 4, we =
will Ifocu‘s on the design and implementatibn of experiments in comparing‘bounded
exhaustive, randomized and best—of-both-‘{vorlds unit testingv strategies. Any prob-

lems and issues that occur during the experiments will be discussed as well. We will

analyze experimental data, illustrate experimental results and draw some conclusions

in chapter 5. In chapter 6, we will present some future research ‘dreas.

10

Chapter 2

‘Related Work

In this chapter, we give some basic deﬁnitions,l.and then discuss related work in
bounded exhaustive t‘eSting, randomized testing, best-of-both-worlds, mutation and
- the most relevant work — Andrews’ et al.’s approach of comparing automated unit

testing strategies.

_2.1 Definitions

s

Here we define some terms fhat will be useful through the rest of this »thesis. o

An explorative testmg strategy is a strategy in which we deﬁne a large search
space with a relatwely sxmple structure cons1st1ng of a large number of test cases,

and explore this search space systematlcally [4]

11

A failing test case is a test case which will cause"the unit under test to fail. If the
execution result of a test case is not what we expected, we can declare the test ¢ase

to be a failing test case.

A passing test case is a test case which does not cause the unit under test to fail.

2.2 Bounded Exhaustive Testing

The idea of bounded exhaustive testing is ﬁrsﬁ proposed by Marinov and Khurshid
in [12]. This is a }test‘ing strategy which exhaustively tests all valid input up to a
specific size or bound. In [12], Mé,rinov and Khufshid-proposéd~a novel frﬁmeWork
named TestEra for automated specification-based testing of Java programs. Given' a
formal specification, TestEra uses the inef_hod precondition to automatically generate
all ‘i.npu‘ts up to a given bound. ‘It does not ‘fequire‘ user input besides a method
specification and an integer bound with integer for input size: In [12], Marinov and
Khurshid only analyzed test cases with s‘mallkin\put bounds. TestEra may encounter

performance issues when it is given large input bounds to test the program.
\ . . N

; ‘
Many published testing strategies are variants or specializations of the bounded ex-
haustive testing strategy, and m_uch research effort has goné into improving the strate-
gies. “For'examplé', Marinov et al. [11] developed Korat, a testing framework which
systematically enumerates all legal inputs within a certain size. Korat performs iso-
inorphism bfeaking to avoid executing the same test case twice. Developers can
provide a precondition predicate, written in a standard programming ‘-language, and

Korat identifies whether the input satisifies the réquired invariants. Korat then pro-

12

cesses the predicate to produce a stream of structures that satisfy the property identi-
fied by the pre—condition. To test the program, Korat generates all valid inputs w?thin
a certain bound which satisﬁes the invariants.dIt tests the program on the generated
f inputs to verify that_ the execution meets the provided post-condition.' Marinov et al.
use mutation testing to mecasure the quality of the test suites that Korat generates.

Concepts and approaches of mutation testing will be further explained in this thesis.

Marinov et al. conclude that bounded exhaustive testing (or the term exhaustive test-

ing used in [1 1]) within some scope can be more effective than random testlng with
bigger inputs. However the depth bound for bounded exhaustive testing that they
used in their experiments was just large enough to kill all mutants of the data struc-
ture code, and the depth bound for randomized testing was just one greater. This

may lead to a situation in which failures are mainly distributed in a low level of the

‘whole search space so that bounded exhaustive testing is able to outperform random-

ized testing. Therefore Marinov et al.’s conclusion doesn’t necessarily mean bounded
exhaustrve testmg is’ a better testing strategy than randomlzed testrng More emprrl-
cal studles are 1ndrspensable to compare bounded exhaustlve testrng and randomrzed

testing.

Coppit et al. [7] also studied bounded‘exhausti’ve testing by appiying‘ TestEra to
» the Galileo dynamic fault tree analysis tool, ‘a‘cornplex productiOn software system.
‘ zCoppit et 'aly.‘ empirically studied the feasibility and potential utility of bounded ex-
 haustive testing. The authors concluded that bounded exhaustive testing has better
bugedetecting abilities than manual ad-hoc testing in which a suite comprises at most
a few hundredtests However the rehablllty of bounded exhaustlve testmg may
- be Jeopardlzed by two aspects. The ﬁrst aspect is. errors 1n the test oracle and the

second is the specrﬁcatron from which tests are generated. Addrtlonally, Copprt et

13

al. point out that it is always possible,' in general, that a behavior just beyond the
tested bound will be erroneous. This fundamental limitation lies behind every testing
strategy as well as bounded‘ exhaustive. Another significant problem with bounded
exhaustive testing in [7] is that bounded exhaustive testing was not able to generate
inputs to meaningful bounds without refactoring the specification. Selectively reverse
, englneermg a spec1ﬁcat10n from Whlch both a characterlzatmn of well-formed inputs
and an oracle are derived is the key element of applymg bounded exhaustive testing.
When refactorlng the spec1ﬁcat10n was performed bounded exhaustlve testlng can

be effective and fea51ble to reveal prev10usly unknown bugs in the system under test.

v

2.3 Randomized Testing |

R_andOmlzed testing or random testing is a simple testing strategy of generating ran-

domized input and feeding it to the software nnd_ep test. It is mentioned'as early as

Myers in 1979 [14]. Myers believed that in general, the least effective methodology of

all is random-input testing which is the pxjocess of testing'a program by selecting, at
random, some subset of all possible input values [14]. Although Myers’ book is cited
by many research works on softwa,re testing, the judgement of randomized testing is

biased due to lack of empirical studies.

Past research on randomized testing included _that of Claessen ven‘d Hughes on ‘QuickCheek

[6]. QuickCheck is a testing tool that utilizes randorni“zedtes‘ting ,t;o test Haskell

programs. Using formal specifications, QuickCheck allows testers to define certain

14

properties of the functions under test that should be expected and check whether the
properties hold after running several test cases. The tool also is able to autornatiéally
generate test cases based on randern‘ inputs or based on custom defined test data

generators.

Miller et al. [13] has also proven the'effeetiveness of random testing to end users and
developers. By simply' ‘randomly generating strings of characters using a program
called fuzz, they found that a surprisingly large number of UNIX utility programs
either terminate abnormally, loop inﬁniteiy'or'terniinate without a clear description
" of what has happened, totaling to more than 24% of the basic UNIX utility programs.

Their research also pointed out several common mistakes made by programmers.

| Randomized unit te‘sting is a speciﬁc type of randomized testing which automates
the testing by randomly selecting or generating sequences of method calls and inpnts.
Andrews [1] focused on covera'ge-checked randoin unit testing (CRUT), which applies
randomized nnit=teSting'strategy to a unit under test, continuously testing it until
predefined coverage criteria are achieved. Andrews concluded that CRUT is efficient
in finding faults within the code and it can act as a complement to other types of

structural and functional testing methodologies.

Visser et al. [18, 17] found that random testing, in terms of coverage, execution time,
and memory used is competitive with model checking which in practice performs sim-
ilarly to bounded exhaustive, and with variations with and without state matching,

symbolic execution, and abstraction of states.

15

In addltlon, many reﬁnements can be added to 1mpr0ve the basic randomlzed testmg
strategy. Randomrzed testlng is the bas1s of the lower level of the nghthawk tool [3]
Andrews et al. applied genetlc algorlthms to generate random unrt test mput data
Thls research has shown that random unlt testmg is an effectrve testlng approach and

nghthawk is able to achleve hlgh coverage of complex .] ava unrts

Pacheco et al.’s work on the Rand‘oop"sys‘tem [16] ‘adopts a similar idea to that used
in Korat [11] Wthh performs 1somorph1sm breakmg to avoid executing essentrally
the same test case twice. Randoop is a test framework which automatlcally generates
Java unit testing code us1ng a feedback- dlrected random test gEneratlon approach.
The fundamental algorlthm used in Randoop is one which uses execution feedback

gathered from executrng test 1nputs as they are created, to avord generatlng redundant

, and 1nvahd 1nputs Feedback-dlrected random testmg has shown promrsmg results in |

qurckly ﬁndmg errors in w1dely used complex apphcatrons The authors pomted out
comblmng random and systematlc approaches can result in technlques that retam the
best of each approach ThlS 1nsp1res the 1mplementat10n of BOBW descrlbed below,
but R,andoop s strategy is optrmrzed for generatmg short test cases, rather than the
‘long test cases that in [4] are shown to be more cost—effectrve Another problem w1th
Randoop S approach is it generates new test cases and then checks whether they have

been executed before As the process proceeds, more and more test cases will be

drscarded

16
2.4 Mutation
One_p’roblem of designing testing experiments is that real programs with appropriate

numbers of real faults are hard to find and hard to prepare appropriately. For ex-

* ample, it is hard to prepare faulty and_ correct versions. Even when actual programs

with real faults are available, whether these faults are numerous enough to make the

experimental results achieve statistical significance often becomes another problem.

Many scholars have taken approaches of introducing faults into programs to produce
faulty versions. We can introduce faults by hand’or“ by automatically generating vari-
ahts of the coch‘e‘. Ceneraily spealéing; wé view an automatically-generated variant as
the result of applying an operator to the code. The operators used in such a way are
called mutation operators. '»"The“résulting faulty v'éfsibns’a.re s6 Called mutants and

the general téchﬁique is called fﬂdtation or mutant generation. =

The idea of using mutants to measure test suite adequacy was originally proposed by
DeMillo et al. (8] and Hamlet [9], and explored extensively by Offutt [15]. Andrews et
al. [2] comparé the .faultvdétection ability of test suites on hand-seeded, automatically
generated, and real-world faults. The experimental results have shown tﬁat mutants,
when' using ’careflilly selected ’inixtation*dpera.tbrs and after re:nioving equivalent mu-
tants, can provide a good indication of the fault detection ability of a test suite [2].
Therefofé,‘ mutants can be gbbd réﬁection_sbf actual faults when aséessing'thé behav-

ior of testing techniques.

17

2.5 . Andrews et al;»’S“’Appi'()'achf:

In order to compare explorative strategies, Andrews et al. [4] deﬁned canonical forms
of unit tests and gave precise deﬁmtlons of the search spaces and strategles Those pre-
cise deﬁmtlons provide a sohd foundation to compare automated un1t testmg strate—

gies.

251 AUnit Test C'a'n’ohical Forms

Andrews et al. show that every Java unit test ease has a canohieal» form, a simplified
form into which 1t can Betretn;sformed which is equivalent to theoriginal. The reason
for introducing canenicai forms into J ai(a unit test eases‘) is as long as explorative
» strategies can generate and run all canonical form test eases, they can effectively per-

form any unit test case.

A Java'unit test‘case is‘de‘ﬁned‘a’s a sequence of J atza statements which weﬁld compile
' correctly when glven as the body of a method A test case T termmates unsuccess-
fully or fazls, if it throws an uncaught exceptlon and otherw1se we say T termmates
successfully or succeeds Two Java unit tests 7 and T2 are u- equwalent 1f T1 throws

an uncaught exceptlon at statement s if and only if Tg does

Figufe 2.1 shows an eXample of a Java unit test for aAhyp'otl’ietical Tree data struc-

ture and some equivalent canonical forms. In this thesis, we will focus on the bottom

18

Figure 2.1 Canonical forms of unit tests. (a): Original unit test. (b), (c), (d): Test
cases in canonical forms 1, 2 and 3 that are u-equwalent to (a), for some 1mp1emen—
tation of the units under test. [4]

@ o @

if (t.size() < n+1 int i1, i2; ' int i1, i2;

g% 1found) { i © i1 = t.size(); i1 = t.size()*

= t.get(n+42); . . i2 =n+2; - i2: = 53;
} _ o X = t.get(i2); = t. get(12)
assert (x !=210); = b2= (x!=210); b2 false;
’ assert b2; ' assert b2; :

@ IR T S o

int[] intVP = new int[4];

intVP[0] = '

- Tree[] treeVP = new Treetij , A

intVP[1] = treeVP[0].size(): <
intVP[2] = -intVP [0l; 4
intVP[3] = T

‘treeVP[0]. get(lntVP[Q])
booleanVP[1] = booleanVP[0];
assert-booleanVP[1];

canonical form (d) which is called Oanonical, Form 3 [4].-

¢
In a unit test in canonical form 3, we define a value pool which stores all values in
-an array of all parameters for a method. This makes canonical form 3 particularly
easy to generate automatically. Given initial decisions, each of its statements can be

- generated by choosing a sequence of integers.‘ The initial decisions include how big

the value pools are and ‘what initial values to put into primitive type valué pools.

We say that a Java unit test T'is in canonical form 3 if it consists of four parts:

19

™~

A ﬁrst(part in which an' array \}ariable Which stores value pool elements is
-allocated. No more than one variable is declared of any given type. Fot exam-
- ple, double[] doubleValuePool = new &ouble [2'00] declares'a value pool for

double of size 2()0. ' .

type value pools; for mstance, “1ntVa1uePool [5] 3”

A third part in which all statements are array-canonical statements [4].

An assert statement of the form assert z, where z is a variable.

Here, we give formel definitions of array-canonical statements which act as a third
part of canonical form 3. Before we define array-canomcal statements we first need
to define array- canomcal method call An army—canomcal method call is defined as
an expression of one of the forms m(...), new m(...), C’.m(. ..), or em(...), where

m is a method name, C is a class name, and e and all the arguments of m are of the

form z[i], where z is a variable name and i is an integer constant {4].

N

- An array-canonical statement is defined recursively as follows. S is an array-canonical

statement if either:

"o It is of the form z[i] = € or e, where z is an array variable name, i is an integer

constant, and e is an array-canonical method call; or

oIt is of the form try { S } catch (E e) {x.= e;}, where S is an ,array-:

canonical statement.

A second part in whlch constant values are ass1gned to elements of pr1m1t1ve

20

= To conclude, we can say that every:rl ava'unit‘test case can be converted into a canon-
ical form which consists of a piece of code initializing value pools, and a seqr“ﬁance
of method calls (including callin‘g constructdrs) which use value pools as a source of
target and parameter values, and a destlnatlon of return values Thls becomes one
basis for our 1mplementat10n of the test program. Therefore the only three factors
that aﬁ'ect generatmg unlt test cases are choosmg value pool smes, choosing 1n1t1al

' values for pr1m1t1ve type value pools, and generatmg a sequence of mtegers

2.5.2 Formal Definitions of Strategies
In order to precisely compare explorative strategies, we give the_formaldeﬁnitions of

- bounded exhaustive,’randomized,'and bestfof-both~worlds_. L

2.5.2.1 : Test Context

Each test strategy is relative to a test context. A test contezt consists of the fOllowing

pieces of information:

e The set of methods to call, M.

. The set of types of 1nterest ‘Ty. This should 1nclude both pr1m1t1ve types (m—
‘ cludmg the Wrapper class of prlrmtlve types inJ ava) and classes that are targets

parameters and return values of the methods to be called.

21

e For each type t € Ty, the size of the value pool is defined as vps(t).. This is the
number associated with the parameter type. The numbers from 0 to ebs(t) -1

can act as parameters of a method'call; o

o Fof each primitive type te Tf,)theimtial values of value pool elements.

2.5.2.2 Method Call Tuples

Andrews et al. introduce methOd call tuples to encode and abstract information about

method calls A pammeter tuple for a method or constructor m is defined to encode

: the parameters to the call as a sequence of mtegers The authors treat methods and

constructors homogeneously, and methods homogeneously regardless of whether they
are static or non—statlc and whether their return type is void or non-void. Here, we

quote parameter tuple representatlons for dlfferent types of method calls from [4]. In

: the following, Vi represents the value pool for type ti.

o Ifm is a static method of class C with k parameters of types t1,. ..t and a void

return type; a parameter tuple for m is a tuple'of integers (i1, . ,.,’ik) where

' each 4 is between 0 and vps(t,) - 1 inclusive. The parameter tuple represents

ke the call -
o :‘ C.m(V.l[il],.‘..f,-Vk[ik]).

e Ifmisa ﬂat_i_e method of class C with k parameters of types tl,;. .,tx and
a non-void return type tk;j, a parameter tuple ‘for m is a tliple of integers
v(il,‘...', i}c,ikﬂ), where each i; is between 0 aod vps(t;) — 1 inclusive. The
parameter tuple represents the call i |

Virliks] = C(Vilisl, ., Klin)-

22

e Ifmis a constructor of class tk+1 w1th k parameters of types t1, yte, a paQ‘

' -rameter tuple isa tuple of 1ntegers (zl, oy Ok zk+1) where each 4; is betwéen 0
and vps(t;) - 1 inclusive. The parameter tuple represents the call

Vi [Zk+1l = new m(VI[lll Vk[zk])'

¢ If m is a non-static method of class tk+1 with k parameters of types tl, R

- a target of class tk+1 and a void return type, a parameter tuple for m isa tuple

~ of integers (i1, .. ., i, ik+1), where each i; is between 0 and vps(t;) — 1 inclusive.

. 'The parameter tuple represents the call -

Vislter1]-m(Vilia, . . -, Vi[ix])-

:0_ Finally, if m is a'nen-static'm‘ethod of class tp41 with k& parameters of types
t1,.. ;‘,tk, a target of class t,;+1 anda non-void return type.tk+'2; a parameter

. tuple for m is a tuple of integers (il,*. 25 ik;ik;l, if12), where each i; is between

0 and vps(t;) —1 inclusive. The parameter tuple represents the call
Visalisa] = Veslinsslm(Vilia, .., ilia).

’ What we can conclude here is that g1ven a test context in Wthh value pools have been

deﬁned we can represent any parameter hst by a sequence of mtegers one 1nteger

representmg the method and others representing, the target, parameters and return

‘ value We w1ll treat the target and return value of a method call, if any, as v1rtual

parameters in pos1t10ns j= k: + 1 and j =k+2.

23

Figure 2.2 Search trees. (a): parameter value search tree. (b): method-call search

tree. (c): explorative strategy search tree.. = : ' T~
o @ CHE ©
root ‘ ‘ » : method call 1
‘ - search tree
possible values : ’
for param 1 Co _ . ‘

. : N\ RN ; . methc})ld call .
?ssﬂale values ' S sy # : - :search tree n
orparam2 & e ’) —=

. R ' g . search tree for - search tree f method call

possible values . “callstoml calls to mq search tree
- for param k+1 s S _

2.5.2.3 Search Trees

Search tree is the essential concept that Andrews et al use to precisely define explo-

rative strategies. Given a test context K, we can define three classes of search treeS'

the parameter value search tree for a glven method the method call search tree for '

K, and the exploratlve strategy search tree for K Figure 2.2 illustrates these three

classes of search trees

A path from the root of this tree to any leaf of the parameter value search tree for m
encodes one method call tuple for m. We can note that the number of leaf nodes in
the tree is the product of the value pool s1zes of all the parameters (mcludmg v1rtua1

parameters)

| Let the method call search tree for K be constructed as follows: the tree has a root‘

, node and the root node has one ch11d for each method m in the glven test context

that child is the root node of the parameter value search tree for method m. The

number of leaf nodes in the method ycall search tree is the sum of the numhers of leaf

24

nodes of all the search trees for calls to the methods m. In What follows, we w1ll call

this number j [4]

Andrews et al. then define the exﬁloMtibe strdtegy search tree for K for depth n

recursively as follows.

1. The tree for depth 0 is the tree with just a single root node.

| 2 The tree for depth n is constructed by constructmg the tree for depth n— 1

and then appendmg to each leaf node the method call search tree.

Note that each path through the explorative strategy search tree: from root to leaf,
records a unique sequence of n choices of method and, for each method chosen, the ‘
unique ‘choice of parameters, target and return value location for the method call.

There are therefore J™ leaf nodes in the explorative 'strategy search tree for depth n.

2.5.2.4 Test Stretegies' Lo

Although there is a lot of prev1ous research on how to 1mprove bounded exhaustlve
strategy, the basrc 1dea for bounded exhaustlve testmg strategy is exhaustlvely test-
'1ng all valid 1nputs up to a spemﬁc size or bound Therefore in the thesis we only
consider the naive bounded exhaustive testing strategy. The (naive) bounded exhaus-
- tive te’st‘stmtegy' for length n, or BE(n) is deﬁned as the strategy that traverses the
explorative strategy search tree in a depth ﬁrst manner, executing the correspondmg

test case whenever it reaches a leaf
, /

25

The randomized test strategy for length n and repetitions q, or R(n, q), is defined as

" the strategy that, ¢ times, randomly selects a path from root to leaf of the explore\tive

strategy search tree, and executes the correspo_nding test case.

‘ Let the total number of leaf nodes in the explorative strategy search tree be z. We
‘ define the best-of- both worlds test strategy for length n, or BOBW(n), as a strategy
that explores the exploratlve strategy search tree by generating all the numbers from
Otoz— 1 in a pseudorandom order. After each number z is generated, BOBW chooses
the test case represented by the path from the root to the zth leaf, and executes the

corresponding test case.

{
In [4] Andrews et al. ‘a‘halyz(ed 'theﬁuhiforrr’l“‘ahd non¥hr1iform; distributions lof failure
as well. Accordmg to thelr analys1s, 1t is hkely that fallure does not d1str1bute uni-
_formly Thls means in most cases, the falhng test cases w111 not be spread evenly
in the exploratlve strategy search tree. The reason is that a fault in a method will
lead to a failure only if the method is executed or only if it is executed after certain
patterns of method calls. Therefore the nodes in the search tree corresponding to

falhng test cases are likely to cluster in certain areas of the tree. From this analysis,

Andrews et al. state that due to the risk of clusterlng of failing test cases, R is 11kely _

-~ to outperform BE except at low failure densitiés.

26

‘Chap'ter 3

Test Program

.

In this chaptAevr, we gé into detail about the'desigri and impleﬁleﬁtation of the test
program. We ‘will‘ describe. the architecture, some ,.impiorta.n:t‘ design decisions, and
inipoftant classes and interfaces of the\tes_t program. ‘A‘ddi‘tionally, since the test
program implemenfs BE, R and B}OBW,"Wé will illus'trate‘the algorithms for imple-

men'ting‘these three test strategies.

3.1 Background and Motivation
As mentioned in the Related Work ‘ch'aptver,‘ Andrews et al. (Sée section 2.5) provide

solid theoretical foundationé for comparing automated unit testing strategies. The

co’ncéptbé‘ and élgbrithihs'of their work basically motivate our test program. First

and foremost, the test program impl.en.ients BE, R and BOBW. We will describe the

27

algorithms for the vrespectiveimplementations. Second,‘the test program implements
test context, which provides all necessary in_fdrmation to run test cases. Third?th‘e

test program abstracts 'in'for_mation for method calls and constructors in order to treat
: them homogeneously. Fourth, the test program is able to run test cases for different
t.est strategies and depths Last ‘but not Ieast we need speciﬁc test oracles to verify
whether the test case succeeds or falls In addrtlon to these functional requirements,
the test program should be ﬂexrble easy to mamtam and adaptive to change. This

‘ 1s mamly reflected in the de31gn of our test program

3.2 Introduction < e

~ The test. program we developed is called‘ Unieersal Test or UT. UT is a Java program
developed in Java Development Klt (JDK) 1 5. 0 It is tested and compatlble Wrth all
vers1ons of JDK 1. 5 and 1 6. UT is able to run on any Operatlng System that JDK
supports As the J ava programmmg language orgamzes its source code mto packages,

‘ ‘UT has 4 packages W1th total of 17 source files.

Bes1des the Java program the other part of UT is shell scrlpts whlch dr1ve the Java
program wrth drfferent 1nput arguments and subJect units. We use shell scrlpts to
record the CPU tlme of the Java program execution as well. The set of shell scrlpts
is written in Bash and contalns 6 scrlpt files. The shell scnpts should be able to run

&

on any UNIX-hke operatmg systems '

- 28

To start runnmg UT, you need to spemfy three program arguments: strategy name,
depth (the length of test case) and the total number of test cases to run. These three
‘ arguments- are taken 1nto the script OORunUnlyersalTest.sh., For example, if you
~want to run randomized t'esting:strategy With ‘depth — 5 and total 1000 test cases,

you can type::
OORunUniversalTest.sh '—r 5 1000

“-r” stands for randomized testing strategy. Other options are “~be” which stands

~ for bounded eXhauStive and:“—bobw"’ which stands for best-df—both-worlds.

‘3.3 Architecture

We use a Umﬁed Modellng Language (UML) package dlagram to 1llustrate package
organlzation in Figure 3. 1 As shown in the ﬁgure there are 4 packages all startlng
Wlth CS.uwo. Package cs.uwo contams the main method in the Main class which is the
entrance to the test program. The main method takes in the program arguments and
then sets up and initializes “test context” (called TestInfo in UT) ob jects. When the
initialization is 'ﬁnished, it invokes the corresponding test strategy with the specified
depth and number of test cases to run, according to the program arguments The
' package CS.uwo. ut11 is a utlhty package cons1st1ng of ClassFinder, Debugger,
‘IOHandler'_and LogAnalyzer classes. Those helper-classes facilitate us debugging
the program Writing output files and analyzing log files. The most important two
' packages are cs.uwo. testenv1ronment and cs.uvo. strategy Briefly speakmg, the

package cs. uwo. testenv1ronment is the 1mp1ementat10n of the test context and

29
method tuples;in Andrews et al.’s work. It provides all ne‘cessary information to run
test cases. In the package cs.uwo.strategy are implementations of the threé test
strategies that this thesis focuses on, bounded exhaustive, randomized and best-of-
both-worlds. The_ test strategies invoke.'metho;ds‘ in cs.uwo.testenvironment and

verify the output.

3.4 Design

A good des1gn plays a cr1t1ca1 role in software development A good desxgn makes
the program ﬂex1ble and easy to mamtam Smce the system requ1rements constantly
change we sometlmes need to refactor the code in order to better adapt to those
changes. Durmg the des1gn phase we need to cons1der potentlal requlrements in our
de51gn de01s1ons In UT, we carefully design methods classes 1nterfaces and packages

to make it extendable for future research requlrements Two 1mportant packages in

UT are Cs.uwo. testenv1ronment and Ccs.uwo. strategy In this section, we talk ,

v about the des1gn of these two packages and thelr classes. N

3.4.1 Package cs.uwo.testenvironment

The package cs. uwo testenv1ronment conSISts of 2 mterfaces TestInfo and

ThmgToCall and 4 classes CallDescrlptlon TestCase, TestInfoImp, and

ThlngToCallImp F1gure 3. 2 shows the classes and 1nterfaces and thelr relatlon-

30

ships in package CS.uwo. testenvironment using a UML class diagram:-In ‘Figure
3.2, we only show 1mp0rtant fields and methods of a class or mterface ‘Accessor and

auxzhary methods are not shown i in the ﬁgure

TestInfo is the implementation of ;“test context” (see 2.5.2.1). Java has 8 primitive
‘ data types: byte, short, int, lcug,i float, double, char, boolean. For each

- primitive data type, TestInfo has a /copre:spohding;value pooll» Nofe here we treat

Stringas a pl‘imitive data type as well. 'Therefore, there are total of 9 primitive type -

value pools in the TestInfo class We use a veetor to represent each primitive type
: Value pool TestInfo also provides an add method to add values to the corresponding
pr1m1t1ve type value pool In Figure 3 2, 1t only shows the _1ntVa1uePool vector,
- which is the value pool for primitive type 1nt, and the addIntValue() method which
“is used to add int values to the int value pccl.~ In addition to primitive type value
pools, the TestInfo class uses a HashMap as a class 'value pool; The class value
| pool stores values for »lclasses which are not p‘rvimitive;datatypes; Here we should
note that the Java compiler automatically uffaps the pfilhitive to an object, if we
use a:primitive. where au object is expecﬁed. Tlle Java platform provides wrapper
classes for each of the pfimitive data types. Thefefcre, we put Values of the primitive
/type wrapper classes into corresponding ‘primitive type value pools as uvell. Another
importrant‘part of .‘the TestInfo class is to provide necessary information to make
. method calls,. ‘,The Testlnfvo class uses a vector to store all methods (each method is
wrapped in a ThingToCall class which we will talk about' later in the subsection) for
a given class With a ThingToCall index and a vector of parameters including vir-

tual parameters (see section 2 5.2.2), the method callThingNumber is used to locate

the correspondmg Th1ngToCall and pass v1rtual parameters to make the method call

RS

31

The ThlngToCall interface is an interface abstractmg a method or constructor. The
Java reﬁectlon mechamsm prov1des us all necessary mformatlon to abstract a method‘
or a constructor For a method we can get an array of parameter types the return
type, and the declarmg class of the method wh1ch is consrdered as the receiver class
For a constructor, we can get the same 1nformat10n except the return type because
" a constructor doesn’t have a return value. The getNumParameters method in the
| ThingToCall interface gets the (virtual) number of parameters of the thing to call.
The (virtual) number of parameters Shoulrl be calculated as follows: |

1. Let n = number of declared vpa’rameters of the method or constructor.

9. If the thing to call is a non-static method, then n = n+1.
3. If the thing to call is a”cohstructor or has a non-void return value, then n =

n+1

‘ The makeCall method is used to make a call to the thmg to call It has two param—
| eters The first one is a TestInfo object which is used to locate the ThingToCall,
-get values from the approprlate value pool and make actual method call The other
parameter is named valueIndlces, an integer vector of (v1rtual) parameters The
" number in valueIndices indicates the index of the value from the value pool that
vis to be 'used ;as the virtual parameter. :T‘he vector of integers should consist of
' getNumParameters() mtegers, each one in the correct range. Let us assume that
the thmg to call has n declared parameters The makeCall algonthm is described as
follows -

. If the thmg to call is a non—statxc method then choose as the receiver the

k-th value from the approprlate value pool Where k is the n-th element of

‘valueIndices.

' o“ For parameter i, where z is between 0 and n—l choose as the parameter the
i k—th value from the approprlate value pool where k 1s the i- th element of

- valueIndlces
° Call' the method or.constructor using Java reflection. -
o If the call threw a Thro'wabvlye, then return‘ that Throwable; otherwise c_ontinue. P

o If the thing to call is a method with a void return value, then return null;

otherwise continue.

o If the thing to call is a non—static method with a non-void return value, then
place the return value in element k of the approprlate vaIue pool where kis

’k the n+1 th element of valueInd1ces
. If the thing to call is a ’static‘method with a non-void return value, then place
. the return value in element £ of the apprepriate'_ value pool, where k is the n-th
_‘ element of valueIndices. |
o If the thing to call is a eonstruCtor,’ then place the new object in element & of

' vthe’appropriate value pool, where k is the n-th element of valueIndices.

e Return null.
The makeCall method Teturns any throwable if there is any; otherwise null.

&

CallDescription 1s a class representing a fmethodvcall.tlt,mapsv the correspond-

-ing ThingToCall index and parameter indices. Given a .TestInfo object, we can

33

call the actual method or constructor'wrepped in the CallDescription object. The
‘TestCase class contains a vector of call descriptions which are added“Wheh\building
the test.case. Given a TestInf o object, We'cah run the test case using the “execute”
method. If there are any Th’ro'wavble’s thrown out ﬁvhen executing the call description,
the TestInfo w111 store them These Throwables w1ll be used later to compare one

test case executlon to another

3.4.2 Package cs.uwo.s_t_rategy o

The package cs.uwo.strategy corits_ins -iihplementations- of.,EE,' R ahd BOBW.
Figure 3.3 depicts fields, methods,«classes, ihterfaces and their relationships using
~a UML class diagram. Here we list all class’essand intelffaces with' only important
methods and fields of each class. The Strategy class is an abstract 'class Whichipfo-'
vides fields and methods requlred by all sub—classes It has three very useful methods:
setup, compare and executeTestCase. Given a TestInfo obJect and a Class object
of the subject unit, the setup method extracts all pubhc methods and constructors,
‘ add them to the TestInfo object as ThlngToCall ob Jects and initializes value pools
: then the test case is built, we can call the executeTestCase method to run the test

case,

As mentloned before a test oracle should be used to test whether the test case fails
or not. The compare method in the Strategy class is used as a test oracle. We
use two criteria to build our test oracle. The first one is to compare primitive type

value pools between the “gold” bversion.which is the original sﬁbject unit, and the

34

“fau_lty” version which is the mutated version. If aﬁy value of these two value pools
is not equal, we fcan assert that this is a failing test case; otherwise, this is a passing
test case. The primitiveValuePoolsEqual method in the TestInfo class compares

primitive type value pools and réturns true if evéry element in every value pool for

evéry primitive type is equal to‘the correSpbnding elemént_ in other; false othérwisé._

The second criterion is to compare the number of thr‘o'wables’ between the “gold”

_ version and “faulty” version. The TestInfo class stores a vector of all throwables

thrown during the test case execution. We compare the sizes of the two vectors of

VtWO'-TestI‘nf o objects. If they are not équal;_ we can assert that this is a failing test

case; otherwise a passing test case.

The reason that we are implementing the ‘strategieé to take a “gold” and “faulty”
‘version is b'e'cause we are doing experiments to measure the effectiveness of the test-
ing. Th(_‘arefore., this requiies us to implement the strategies differéntly. However, for
general purposes; what a developer wbuld ﬁse is some implementation that just takes

a single version.

 The Bowatrategy, BoﬁndedExhausiveStratégy, IterationRandomStrategy, and
RecursionRandomStrategy classes all inherit from the Strategy class. They imple-
"~ ment the BOBW, BE and Random (iteration and recursion) strategies respectively.

The implemertations will be explained in detail in the foliowing sections.

35

35 TImplementation of Bo\unded Exhaustii(e Test

.

| Sti'_ate‘gy" |

' The BoundedExhausweStrategy class 1mplements the bounded exhaustlve strategy

Briefly speaking, the algorlthm used to 1mplement BE is a mutual recursmn of two

methods, ‘createRunAllTestCases and completeTestCase. The mutual recurs1on means

that creat eRunAllTes‘tCases_is arecursion iteelf .a’nd it calls completeTestCase, and
' CompleteTeetCase is a rvecurs.iyon;itself and it calls cieateRunAllTeetCeses. Given
a certein depthv and an input test ees_e, the ereateRunAllTestCases method gener-
ates and runs all tes’u cases that extend fhe inputv’test c.ase.vv The completeTestCase
method is similar, but it also takes apartially c:dmpleted' call desgription as input. It
creates and runs all test cases that are extensiensdof the .input test case plus the ‘cal_l

“description so far.

- At the beginning of the BE strategy, it creates an empty test case and passes it to
the method createRunAllTestCases The createRunAllTestCases method takes
a depth and a TestCase object containing 0 or more completed CallDescnptlons
as 1nput‘s.’ It create_s and runs all test cases that are extensions of the input test
case, up to the depth bound. For example, if the depﬁh isv_3 and the inpu‘p test case
contains call descriptions A and B, createRunA'l‘lTes"tCas‘ es will add all possible call

~ descriptions to the end of the existing but not completed test case, and run all of them.

In the createRunAllTestCases method 1t ﬁrst Judges Whet;her the depth of the test

case (1 e. length of method calIs) so far is equal to the depth we want to build in |

36

the test case. (We: should note ‘here methods or constructors have been Wrapped

in Th1ngToCa11 obJects of the TestInfo object.) If it’s not equal, the number of

_ call descrlptlons added (i.e. ‘test case length) _sosfar is less than the number of call

descriptions we expected. We :need toereaterand add new call descriptions to the
end of the test case.- For. all thev'vI‘hingsTo(_v:alsl, we create new call descriptions and
- call the completeTestCase method t_o add a CallDescription object in the depth
| so far. If the depth so far is equal to the depth we wanted, we will run the test
case on ‘iboth the “gold” TestInfo object and ;‘faulty” one.‘ Then vre compare those
two Test'Inf.o objects. If the comparison returns fai'se,'we can assert this is a failing
test case. The BE strategy then wrrtes the falllng test case information to a log and

returns Otherwise it contlnues

The second method is conpleteTestCase,' It is used to add arguments to call de-
scriptions until the call descriptions have sufficient arguments. 'Once the arguments
/ ~of a call description are completely added, .the call description will be added to the

- input test case. If the arguments we add to the call descrlptlon so far equal to
the arguments Wanted (mcludmg the v1rtual parameters) the call descrlptlon will
' be added/to the test case. Therefore, the test case depth so far w1ll be incre-
mented and the .createRunAllTestCases‘method will be invoked to try to cre_ate
and run tes_t‘ cases. 1We shonld note the‘entry of the co’mple‘teTestCase method

is the createRunAllTestCases method, and here the completeTestCase method

jumps back to the createRunAllTestCases method with depth increased. Once the

createRunAllTestCases method returns, we will remove the last call description. If
- the arguments so far are not equal to the arguments that the call description should
have, the algorlthm will add more arguments to the call description. It first gets the

ThlngToCall 1ndex for the call descnptlon Then g1ven the argument index so far

- 37

and the ThingToCall index, the 'algofithm can retrieve the valuefpool size from the
* TestInfo object. The bounded exhaustive algorithm needs to add every vahie index,
up to the value pool size, to the call description. Then, an argument is added to

the call description and we recursively call the completeTestCase method to add

more arguments. Finally, after the recursion returns, the algorithm removes the last

argument.

To sum up; the BE implementatiqh iterates all value indices in the Correéponding value

pool as the arguments; and expleres every public method or constructor (wrapped in

* ThingToCall objects and CallDescription objects) of the given class.

3.6 ‘Implementation of Randomized Test Strategy

There are tw‘ob algorithms for implemehtirig the ’ra'ndo‘mized‘ test strategy: a recursion
algerithm and an iteration algorithm. In the randomized teststrateg):, we need to
specify the ‘number of test cases to run. The sttategy uses the Random class in JDK
to generate a random number Our 1mplementatlon of the randomlzed test strategy

g uses the 1terat10n algorlthm instead of the recursion algorlthm

The iteration algorithm uses a different approach rether than the recursion. Figure
3.4 shows the iterétion random algorithm. It uses three loops.. ‘The outer Vloop‘ is used
to control the total number of test cases. The middle loop is used to control the depth

. Of the test case. The inner loop is used to control the arguments that are expected in

38

~ the call desc_ription. The algorithm is very straightforward, as depicted in Figure 3.4.

Like the recursion random algorithm, the iteration algorithm first randomly selects

the Th1ngToCa11 index and then randomly selects the argument 1ndex w1th1n the
value pool size. After arguments and call descrlptlons are added to the test case, 1t

' executes the test case.

3.7 Implernentat'ibnirbf Bekst-orf-Both-W_orlds Test

g Strategy

To implement BOBW, taking the index of each test ease, it is necessary to generate

all numbers from 0 to z— 1 (see section 2.5.2. 4) Without repetitions. To achieve this,

we generated the next number in the sequence by addlng a large prlme number to the

: prevrous number and taklng the remainder on d1v1s1on by 2. The test case indices are

so large that they cannot be represented by Java prlmltlve type numeric variables.
The Java standard BigInteger class is used to represent the test case indices. The

representation takes a number of bits proportional to log(z), which is nlog(5).

' The BobwGenerator class is used to generate the BOBW test cases. The large
prrme number that we pick is a large Mersenne prnne number found by Lucas in
1876. The BobwGenerator class has two public methods: hasMoreTestCases and
g’etNextTestCase' hashoreTestCases judges Whether the current test case index is
equal to Zero and returns true; otherw1se it returns false. The getTestCase method
. returns a test case generated by the BOBW algorlthm mentioned above. Let n be

the number of method calls. The process of extracting the actual test case from its

39

" index takes n steps of length proportional to log(j). Note here that the process of

~ generating and running a test case for BE and R also takes time proportional ﬁB‘nz

The Bowatrategy class simply generates a new BobwGenerator ob ject and repeat-
- edly invokes the ygetNextTestCas_e' method t‘ohgenerate the BOBW test case. After

“the test case is generated, it runs the test case.

40

Figure 3.1 Package organization of Universal Test

41

-_caliDescriptions : Vector
L_testinfo : Testinfo
+addCalDescrphont} :
+removelasiCallDescription() -

cs.uwo.testenvironment: TestCase] -

Figure 3.2 Class diagram of cs.uwo.testenvironment package

os i testervironment:: CaliDescription

- _args ! Vector -
L_thingToCallindex : int

+CaliDescription(}
+removelasiArg()

+removeCaliDescription()
Haxeciite() i
toStiing() : Sirlng
+setTestinfof)
+TestCase{}

cs.uwo.testenvironment: Testinfolmp

- _map ! HashMap
._throwables : Vector
- teVec ; Vector
-_IntValuePoot : Vector

- JraddArgl)

getArgsi) : Vector
Hexecule() | Throwable
+setThingToCallindex()

HgetThingToCallindex() © int

s uwo.testervironment: ThingToCalllmp

+Testinfolmp()

+addClass() -
HgetNumClasses() :int
+getValuePooiSize() ! int

- paddThingToCall() . .
HthingToCalllterator() ; kerator

- prgeiNumThingsToCall() s int 7
H+primitiveValuePoolsEqual() : boolean
HeallThingNumben() : Throwable
+getThingToCallindex() : int
HgetThingToCall() : ThingToCall
HgeiNumPossParameterValues() : int
+addiniValue() -

© k.returnClass : Class

L method 1 Method
-_consiructor ; Construgtor
- dParams ¢ Vector

- receiverClass : Class

i)

+ ThingToCallmp(}
+geiNumParameters() : int
*gethumDeclarecParan‘oetets{) int

FmakeCall() : Throwable

42

Figure 3.3 Class diagram of c¢s.uwo.strategy package
: | T cs.uwo sirategy Stratagy
i FCLASS - VALUEPOOL “SIZE 1int:
: tCaseNum * long
=<nherits>> N) : a o 7
{DlraxecuteTesiCase() S : o
"' [tcompare(} . boolean . : .
* VAR |
! =<ifherits>>
cs.uwn_;sztétagy:;Emnded‘éxhausﬂ%&tr&wgy .
pereateRunAllTesiCases() - - , T I tsUwa.sirategy BobwStrategy -
LcompleteTestCase() : : o ER R
hboundedExhaustive Test() : , il mn‘;';t 0
" p ST . £ l§ S 5 CESG 2
' siphedisR T | +bowTest() s
i
. r<<p‘aﬂ_>>
' cswwostrategy' RecumonﬁmdomSﬁMegy : T
- [_randoat: Rardom : -
- leompleteTestCasel) }
createRunTesiCases() 2]
+random1’e~xt{) ‘ 1
l
cs.uwo.siaategy BerationRandomStrategy v S - jes.uwo sirategy.: BobwGenerator
-_random : Random : RN -_bigPrime
-runTesiCase() - ; , ' o - currentindex |
+randomTest() v . Ce *g&%Nex!T&stCaw()
- : ' . |+hasMoraTestCasast)
Jealculatelimits(y
,mnmieteTesiCase{) ‘
%xtractCaﬂDescription{)
#emmctpazametars{)

43

Figure 3.4 Iteration random algorithm of the random test strategy

T o
Randor test ER
3
Tésicasés numﬁﬂé R . :
Randmiy select & Randorrﬂyseiec: an
ThingToCall index ‘argumentindex.
from tha Testinfo within the Value pool
N " object size'
sst cases >ENN
number of test cases
NG reqmnad? o :
i B ‘,‘ NQ\ ; ¥
' Cmateanewwﬂ L
‘No : Addtmargumamm i
. SR description and ge{ e
; No the value pcm! size; e can mmwkm _
'Create an empty | - e o
wstcase BE o :
L
[N SRR : vk
“’9“’“”‘1“"’“" Arguments sofar +1
A . .
Dephsofar=1 | | S o | -
"‘fVArgumentssoiarM i
~ argumentsraqusmd
m__I
DA EA . “Add the calt
- Deapth so far+1- le description ta the
TR : tesir.asa .
~#| Run the fest case N

44

Experiments

- In this 'chaAptér,‘.‘ the'experiméntal préparatiOh, pro¢édure and results are explained in
' detail. We give several graphs and plots to illustrate the experimental data. In ad-
SN } : : : : :

dition, the experimental data are analyzed. Finally, we draw some conclusions based

on the analysis.

4.1 Motivations ST T
Andrews et al.’s work [4] provides a solid thebretical foundation for the e:)(}pveryim_ents‘f
In order to empifically ground the theory‘ 'an»d analysis in [4], we design and implement

several experiments. The experiments aim to answer the following research questions:

‘o How many mutants does R detect cox‘npared‘to BE? In order to compare the

45

ablhtles to detect fallures, we need to ﬁgure out the number of mutants kllled

by R and by BE.

‘ Does R detect any mutants that BE does not detect .and vice versa? If there

is some mutant that R detects but BE does not we need to find out what

that mutant is and give an explanatlon of why R is'able to detect that specific

mutant but BE cannot, and v1ce versa

| ' ‘HOW long does it take for R (BE BOBW) to ﬁnd its first fallure all in terms of

- number of test cases and in terms of CPU or clock time? In order to compare

' the effectlveness of ﬁndmg fallures for R, BE and BOBW we need to record
both the number of the ﬁrst falhng test case and the CPU time or clock tlme

If one of these strategles takes least tlme or Ieast number of test cases to find

- the ﬁrst fallure we may say thls is the most effectlve strategy in ﬁndmg the

i ﬁrst fallure

How does the length of the test cases affect the length of time to first faﬂure
and the number of test cases to ﬁrst fallure‘? In (4], it shows that not only
‘ do longer test cases reveal hlgher fallure density, but often reveal more cost-
effective testmg We want to prov1de an empmcal study to see how the length
kof the test cases eﬁects the length of time to first failure and the number of test

cases to first fallure

Are the above numbers‘ consistent with the theoretical analysis in [4]? The

B expenmental data would reveal the conswtency or inconsistency with the the-

~ oretical analys1s in [4] If there is any 1ncons1stency, we w1ll glve reasonable

h explanatlonsoflt e SR Y

46

Figure 4.1 Data concerning experimental subjects.

Mutants

Mutants

Unit SLOC Complled Non-Equiv.

[ArrayList 150 | 100 47
EnumMap | 239 100 - 0
HashMap 360 | . 100 31
HashSet 46 41 6
Hashtable 355 100 46
IHashMap 392 |.© 100 - 100
LHashMap | 103 T4 -6
LHashSet -9 0 0
LinkedList 227 100 46

| PQueue 203 - 100 - 41
Properties 1249 100 1
Stack 17 33 28
TreeMap 562 100 - 25
TreeSet 62 45 8
Vector 200 100 93
WHashMap | 338 | 100 - | ;38
| Total 1293 516.

T 3512 |

Those research questions are motivations for doing the experiments. Experiments

and experimental data will be explained in detail in the following sections.

4.2 Subject Units

The subject unit'that I will do ekperimehts on is a set of heaVily—used Java data '

structure units

It 1s the 16 umts in]ava utzl versmn 15 whlch 1nher1t from the

Collectlon and Map 1nterfaces These subJects contam a total of 3512 SLOC (lines

of code not countlng comments or whltespace) Flgure 4 1 shows the data concernmg

47

the experimental subjects.

4.3 ExperirnentalpPreparation |

The mutants generated act as faulty versions while the original source files act as gold ——
: :versions. The mutants are generated using the same mutant generator as in [2], which
generates the mutants based on four types of changes: “replace operator”, “replace

constant”, “negate decision” and “delete statement” . , , S e

Since the java. ut11 classes often take generlc type parameters in order to sim-
phfy the experlmental mfrastructure, we generate a wrapper class for each of the

| Java util classes which instantiates the generrc type parameters to Integer Each _
Wrapper class contalns the same set of methods as ‘the correspondmg Java utll class |
but with the generic type parameters and the correspondmg method parameters in-

stantlated to Integer

1

Each of the test“strategies in the test program takes two',,Te‘stInfo objectsb. One of
. the Te‘stI‘nfo objects refers to the origina “gold” implementation of the class and
its methods The other refers to a mutant 1mplementat10n the “faulty version. The
TestInfo obJect used in the experlments is one in which each primitive type value
pool has two elements and each class value pool has one element Each primitive type
value pool is intialized with two distinct constants (e g., 0 and 100 for the Integer

value pool). The selectlon of the value pool size and value pool elements reflects the N

48

design ef our experiments.. We want non-trivial instances of TestInfo. However, we
| still went the TestInfo instance to be small enough that it runs efficiently and BE
can reach large depths ina measureble amount of time. If we add many Values:‘(e.g.
10 ValueS) into the primitive type value peol,' this will greatly expand the width of
the'corres‘pondi‘ng'.parameter‘value search tr'eec(see Section 2;5.2.3). Therefore, BE
will take ‘a fairly» large amount of time to execute test céses' up to the depth that we
~ want to compare, and it makes it infeasihie' to measure ‘th"e»effectiveness of the BE

strategy. .

and the faulty version_; Any exceptions'_thrbwn,-as a result of the method calls are
stoted in a list. At the end of the run of bcth test cases, the size of the exception list
' and the values in the primitive-type value pools are compared directly. If the size of
the exceptton list is different or any value in the value pools is different, this indicates
that we have found a test case \"for ‘which the mutant hehaVeé*diﬁerently from the
“gold” version. Therefore_,i we assert that a failure has been found in the /r_nutant unit.

This is also referred to as “killing” the mutant. -

4.4 Experimental Prc‘:)"'cedlju"e";'i -

The experlments proceed in two phases ‘The ﬁrst phase Is to 1dent1fy Wthh mutants
are equlvalent and whlch mutants are non-equlvalent A mutant 1s non-equwalent if

there are any fallures on any test cases If all test cases succeed then the mutant is

i

—

As stated in section 3.4, each str‘ategyv generates and runs test cases on both the gold ~

——

49

equivalent. This is an approxi_rrration, because it is possible that a mutant will behave
differently on some test case that we have not yet run. Therefore, mutant equivalence

is undecidable, and some approximation like this is needed. According to Andrews

; et al.[4], failure density is defined as a ratio between the nrlmber_ of failing test cases

and the total number of test cases. In the ‘seCOnd phasé, we measure failure densities

and compare the strategles on the non-equlvalent mutants. For all the experimental
procedures we have a set of shell scrlpts to automate the test program and collect

the experlmental data.

~ An experiment is denoted as “strategy name(number of method calls per test case,

total number of test cases)”. For example, a randomized testing experiment with 10
method calls per test case and total 1,000 test cases is denoted as R(10,1000). For
identifying which mutants are equivalent, 'w_e'ﬁrst' run experiment R(10, 1000), then

R(100, 1000), and then R(iOOO,lOOO).I The reason for running the R test strategy

first is that we believe R would be the best way to quickly identify failing test cases.

In order not to bias the experiments in favor of R, if R cannot detect any failing test

- cases, for each stich mutant ‘we also run BE testmg with 3, 4, ‘and 5 method calls per

test case, untll either a fallure is detected or 30 minutes of clock tlme has passed

One problem here is how we know the reason that a test case is taking too much

time (more than 30 minutes) to finish. If a test case is running too long, it is either
becalise of an infinite loop in the test case or the complexity of method calls in the
test caee_. To solve this problem', UT (see section 3.2) Writesdlogrﬁles with test case

number, beginning, end, and timestamp of a test case so that we can easily identify

- whether there is an infinite loop in the test, case. If there is a test case that only has

50

the beglnnlng statement and no end statement and the t1mestamp shows the test -

case begms a long time (10 minutes) ago, we can assert an infinite loop occurs in n the
test case. If an 1nﬁn1te loop occurs, we terminate the process immediately in order

" to move on to the next mutant

As shown in the 4th column in Figure 4.1, there are total of 516 non-equivalent
mutants. | 82 of the 5l6 non—equivalentmut‘ants failed_ by going into infinite loops;
rendering them infeasible for further experiments Therefore the rest of the experi—
ments were performed on the 434 non—equ1va1ent mutants that d1d not go into 1nﬁn1te
loops For comparmg strateg1es and measurlng fallure den51ty, we first ran R(n,

1000), startmg w1th n=1 and lncreasmg by 1 unt11 n= 8 and- then doublmg n unt1l

n = 1024. On each run, we record how long R takes to ﬁmsh 1000 test cases at depth»

(m CPU t1me) how long R takes to ﬁnd 1ts ﬁrst failure (1n clock time and number
of test cases) and how many of the test cases fail | 1n total. We use E(1) to denote

the 1ndex of the earliest failure at length n.

k Runmng BE for a complete run w1th the same lengths of method calls as R is mfea—
srble even for short lengths. Hence we only run BE(n) forn=1 to 8, stoppmg as
soon as a failure is found or E() test cases are run. The information collected is
whether a fallure was found by BE, how many test cases were run, and how much

total CPU t1me was needed

-

We also ran BOBW(n 1000) us1ng a s1m11ar experlmental procedure as R(n 1000) ,

startmg w1th n=1 and mcreasmg by 1 untll n = 8 and then doubhng n until

51

n= 1024 On each run -we. recor»d hc')w' long‘BOBW' takes to“ﬁnish 1000 test cases at

depth n (in CPU time), how long BOBW takes to find its ﬁrst failure (in clock time

and number of test cases) and how many of the test cases fall in total

| 4.5 Experimental Results |

In the ﬁrst phase of the experlment (1dent1fy1ng equivalent and non-equivalent mu-

tants) 435 mutants over all java.util classes are non-equivalent.’ Thls means that

either R or BE i 1s able to ﬁnd a falhng test case for 435 of the mutants 434 of them

are found by runs of R only one (a mutant of Hashtable) is found by BE but not by
R. This mutant is one whlch‘ changes the order of entries in the hash table, causing

its toString method to return a different'stfing from the gold version.

In the second phase, the data collected can be used to measure the failure density

Figure 4.2 1llustrates the failure densxty for the Java util units, averaged over all

, non-equlvalent mutants of all mutants as computed from the data from the runs of

R. Cons1stent with the analysis in [4], the failure density climbs as n increases.

Flgure 4 3 isa box plot showmg the fallure dens1ty for the Java., ut11 umts as com-
puted w1th the same cnterla as ﬁgure 4.2. The average fallure densxty chmbs w1th
the mcreasmg test case length n. It approaches 1. 0 as n 1ncreases ThlS means as
test case length 1ncreases 1t becomes more and more hkely that a given test case W111

cause a non—equlvalent mutant to fail.

- 52

Figure 4.2 Failure densities for java.util mutants, by test case length.[4]

: 078 ‘ T - - T - |

}\verage failure dlensity —

0T . ‘ . N , -

06 \ : ‘ . a

04 1/ - ‘ SR R

i Average failure density .

03 | PRI I ‘ 4

0.1 EERRSR o ‘ o]

0 - 1 . | : R I : " ‘ >| '
0 200 i 400 . 600 - 800 . 1000 1200
Test case length (N) :

Andréws et al. theoretically analyzed the clustering of failing test cases (see Section’

2.5.2.4). In order to examine whether the clustering occurs in practice,‘ the experiment

~ examines the situations when R(n, 1000). could kill a mutant (i.e., find a failing test

case for the mutant) and BE(n) could kill the mutant in fewer test cases. If failures

are evenly distributed throughout the search space or clustered in the low level of the

search space that favours BE, we would expect that BE would kill 50% or more of the

mutants more qulckly (in fewer test cases) than R BE has the natural advantage of

not repeatlng test cases, which should give 1t the edge when fallure densities are low.

“

Figure 4.4 depicts the comparison discussed above. BE kills over 50% of the mutants

in fewer test_cases than R only ‘,when the lengths‘of test cases are short (n=1,2,

53

. Figure 4.3 Box plot for failure densities for java.util mutants, by test case length.

 Failure density distribution

e - 0o g T T =S
. ;) [})
T o o } s
o -0 E R -
o e v
© oo
A = ' 0 ~O‘ ' :
. ' -
0 g
‘ e 3 8 §‘:
o | e o "9 VL
£ o ° v o 8 ° S :
s astle L o !
o o .0) H B | .
o o 8'0 08 . '
= , ~ o g :
g“t_ o o] g g . 1
e o 8 8 o § —
rE g ‘ g g
\ 8 N RS
Q o g N) : 1
o~ ‘o 8 8 ’ : — At)
e oa o , i L;i-‘”: '
: R
\ R o o
g =4 SococooadlLl T LoD b
T T T T T T T T T T T
.21 2..3 . 4:5.6.7.-°8..16:832.64.... 256

Teét case length (N)

1024

\.‘k

NSSINRS ay

and 3), When lower failure densities are expected; Atn= 3, BE Kills close to 50% of

~ the mutants in fewer test cases. From n = 4 to higher lengths, R is more effective

than BE because of the"comb'ination of higher failure densities and the clustering of

failures. Since we adopt different appraoches to measure the effectiveness of BE, we

'shoUld'nete'here that ﬁgnre 4.4 does not indicate that BE kills fewer inutants than

R. Therefore it does not contradict the fact that a full run of BE for a glven test

case length although it is often infeasible in practlce, W1ll ﬁnd fallures that R will

~ not ﬁnd when runnmg the same number of test cases

54

Figure 4.4 Percentage of test cases in which BE(n) killed mutants in fewer test cases
than R(n), for cases in which R could kill a mutant in fewer than 1000 test cases.- [4]

» ‘ - Percent of Mutants Killed Faster by BE than by R ——
100 ‘ : Lo -

. 60 F

40 -

- Percent of Mulzntsv i

20F

i Test case length (N) -

In addition to the comparison of BE and R, the‘experimentsalso compare the num-
ber of mutants killed by R and our implementation of BOBW. Figure 4.5 shows the

comparison of R and BOBW: in terms of the number of mutants killed by each strat-

égy., The solid line is the number of mutants overall, i.e. the.ma_ximum number of

~ mutants that could be killed. Starting from test case length 1, the number of mutants

kllled by R consrstently climbs until the test case length reaches 1024. However, it

is surpnsmg that the number of mutants killed by BOBW cannot beat the number
k1lled by R at all test case lengths. The number of mutants k1lled by BOBW almost
remains unchanged since the test case length 16 A possrble explanatron for this is
that if the prime number used in the BOBW strategy is not large enough the BOBW

strategy W111 still select test cases that are close to each other relat1ve to the size of

55

Figure 4.5 Comparlson of R and BOBW i in terms of the number of mutants killed
(log scale x a.x1s) - -

I - Total Number of Non-Equivalent Mutants '
’ : - Number Killed by RSN,moo P
500 F S Number Killed by BOBW(N,1000) ------
i peammme F——— pr—
400 - e ‘ N
. = R HevorereenX X x R
g 300 |) . T : :]
2 N ’ 0 }
L E o
s ¥ ox
2 VAR
E 200} : ':;?(, : , , |
;*""
O
e
v 400 /‘(-"" RIS : . . .
v100 o /,;,x- o D : : : i
L i | | .
0 1 . L) ,)
- 1 . ®

; 10 - =100 o s o 1000
- Test case length (N) (log scale) : R

the search‘ space. The BOBW strategy tends to randomly select fest cases within
the ‘s‘eareh space without replacement If 'p‘inuour implementation of BOBW is small
' relatlve to the search space, our 1mplementat10n of BOBW will plck up test cases in

; only a small portion of the search space

A‘c‘co‘rding» to‘ the experimentel data and ﬁgure‘4.5, the choice of constants in the im-
‘ f)lvenientatiori of BOBW has not achieved the desired properties of a pseudo-random
number genefetOr The linear congxruential(faudem nuruber generator‘ might be able
B to be used to get the desued propertles Other ways of BOBW 1mplementat10n are

considered as our future work.

56

Figure 4.6 Clock time to first failure found by R excluding mutants that were not

killed
- - Clock time to first failure excluding mutants that were not killed (R)
°
o
(=3
§ "
)
§ ’ o °
g S 8
&
8. PR
[- Q
£ o8
?§ .
S 8- e e E
= [
° g 8 [} .
o g E)
§ 8 i o -
. : o . 3 Q I, o
T T

i i T I { T T 1 ') T T

128 "4 5 6. 7. 8 .18

.32

64

128

256 -

512

1024
Test case length (N)

Therexperiments have recorded clock time ‘\t'o first failure found by R and BOBW,
excluding mutants that were not killed. Figure 4.6 illustrates the clock time to first
failure fouﬁd by R (excluding mutants that were nOt killéd) using a box plot. For
R, the clock time to find first failure increéées siéniﬁéantly as the test case length

'i‘ncréa‘s'es," and the maximum clock time to first failure is over 3000 seconds. o

Figure 4.7 shows the clock time to first faﬂure found by BOBW (excluding mutants |

that were ndt killed) using a box plot. For BOBW, the clock time to find first failure
does not‘signiﬁcantly'incréase as the test case length increases, and j:he maximum

~ clock time to first failure is over 300 seconds, but this is much less than the maximum

clock time of R. This means when a failure is found, our implementation of BOBW

57

Figure 4.7 Clock time to first fallure found by BOBW excludmg mutants that were |
not killed - - L - o

Clock time to first failure excluding mutants that were not killed (BOBW)

Clock time to fﬁst failure (seconds) L
100 150 200 250 300 -
1 1 1 1 1

50

1

o -
oo

v : . 3 " ; : §
1 . L S 8 | 8 e -
Jaddaiatijlliill)
o ' , (Ii ; 8 .16 32 64 - 128 25 5;2 10124 '

Test case length (N)

is faster -than R in terms of the clock time to first failure.

Fig‘ure_4.\8 depicts the compariSpn between R and'_BO‘BW in terms of the average
cldck time ,fo_ first failuré (excluding mutants that \&eré not" found) using a 1,i1‘1e graph.
- It clearly §hovq’s _cldck time to first failure iﬁcréases more for R than for BOBW, and
that t_he: a\i‘efage‘qlo‘ck’ time;by BOBW is much ule‘ss thém the clock time by R af al-
most all .times. We should note here that figure 4.8 has excluded mutants that were
- not killed. As‘ discussed before, the numbelj of mutants killed by our implexﬁ_entation
of BOBW is less ‘tha.n the hﬁmber of mutants killed by R, and it remains almost
‘ unchanggd since test case length 16, so the figure is (probably) showing average clock

‘time to first failure just for the mutants that can be killed at small test case lengths.

58

Figure 4.8 Comparison of average clock time to first failure found by R and BOBW
excluding mutants that were not kllled o

§ ' Average clock time to first failure of R N,1000
§ 100 . - Average clock time to first failure of BOBW(N, 11000 pas
@ s S s :) . : h
3
z
g
e 80 | R
‘2
k5] .
£
i) .
§ 6ot -
=
E
[=2]
£
R+l -
2
g 40 .
e
2
8
E 20
8 i . : .]
® .
£ ' :
%" ﬁ %
8- , . _ - : - - ; " . e
&} 0 1 1 1]]

0 - : 200 S40000 600 - 800 - 1000
} o Teet case length (N) '

Another aspect studled in the expenment is the total amount of CPU tlme taken by
runs in the phase 2. One of our mterests is the number of fallures found per CPU
second. BE achieves its highest number of fa;lures per CPU second which is 0.0014
at n = 2, and decreases consisten’cly to as loW' as 0.00018 at n =8 Incompari-
sod, R achieves its lowest numbef of 'failures‘per CPU second (3.70) at n = 1. By
n = 8, where the comparison with BE ends, it achieves 15.44 failures per CPU second.
The expenments recorded the CPU tlme for a complete run of each muta,nt We

have calculated the CPU tlme for 1000 test cases and drawn box plots for R and

59

Figure 4.9 CPU: time for 1000 test cases for R

" CPU time for 1000 test cases (R) :
A) L

30000
1

- 20000
1
[]

CPU time (seconds)

[

.8
. .. : . ' .) 8 H

° - —o——o—-+——o——o——o——o—~e~~—o~—o——-'—-l_i-::|:j
T T T T T T | I— T T T T T T T

1 2 3 4 5 6. 7 8 16 32) 64 128 256 512 1024

10000
1

Test case length (N)

BOBW. Figure 4.9 shows the CPU time for 1000 t_est cases for R using a box plot.
The CPU time for 1000 test cases for R increaseé as the test case length increases.
The maximum CPU time taken _by a complete run of a mutant is over 30000 seconds

- which is equal to 500 minutes. It happens when the test case length is 1024.

Figure 4.10 éhows the CPU time for 1000 ;t'es‘,t: cases for BOBW using a qu plot.
: Unli_ké ‘R:,,‘tkhe‘ CPU time for 1000 ‘tesiv; cases for BOBW does not increase as much as
- the test (‘:ase‘ leﬁgth i;icreases. The maximum CPU time takén by a complete run of a
mutant is over 3000 second§ which is equal to 50 mimites. It happens when the test

case length‘is 1024.. It is about 10 times less than the maximum CPU ‘time of R.

60

: Flgure 4.10 CPU time for 1000 test cases for BOBW .

CPU time for 1000 test cases (BOBW) -

00
o

CPU time (seconds)
1500
|

§~) 3 . ‘ L ° g
. °

o - 4.-!——8——0-—-5-—-3—-3—-3—-—8-—-&-*-:%:—.‘-;“-;%
I] i 1 1 1 1 1] T T T T T T
1 2 3. 4 5 6 7 8 16 32, 64 128 = 256 512 = 1024

Test case length (N)

We falso compare the average CPU time for 1000 test cases run by R and BOBW.
| ' Figure 4.11 illustrates At'he‘ comparison between‘ R and BOBW in terms of the avefage
CPU time for 1000:test césés, using a line grapﬁ. The average CPU time of R(N,1000)
consistently. inéreases as the test case length increases. »Ovn the other hand, the avérage
B CPU time of BOBW(N,lOOO) coﬁsistently increases asthé test, case length increases
asb well; but it is increasing slightly compared with R. In addition, the avervag‘e‘ CPU

time of R(N, 1000) is less than the average CPU fime of BOBW(N, 1000)‘ only when

the test case lengths are short (1-8, 16, and 32) For longer test case lengths, BOBW

is much faster than R.

* For BE, we use a different abpxjoach‘tb do the experiments because it is infeasible

61

Figure 4.11 CPU time for 1000 test cases comparing R and BOBW.

1200 — . o

, Average CPU time of RgN,1000 —5
Average CPU time of BOBW

N,1000) --=-

" 1000
800
600

400

CPU time for 1000 test cases (seconds)

200

0 1 1 RS ’ 1 . !
o - 200 ©. 400 ‘ . 800 . 800 . .1000 -
) : Test case length (N) L

to run a complete set of test cases of BE due to its large search speCe We run BE
testmg on subJect units untll a failure is found or E(n) test cases have been run.
' From test case length 1 to 8, we recorded the CPU time for a complete run of BE,
excludlng mutants that Were not k1lled by R. Flgure 4.12 illustrates the CPU time for

complete run of BE excludmg mutants that were not killed by R usmg a box plot. An

: mterestmg thmg in the ﬁgure is that the maximum CPU time for complete run of BE
happens when the test case length is 6 not 8. It may contradlct our intuition that
1ncreas1ng test case length should i increase the CPU time taken by a run of BE. There
1s an explanatmn to the contradmtlon The maximum CPU time taken by a run of
BE happens when it executes test cases on mutant 17 of the Java ut 11 Vector class

The CPU t1me taken by a run of BE is calculated by mult1ply1ng the CPU tlme taken

- by each test case by 'E(l).,.Therefore, the -reas_on that it takes the most amount of

62

Figure 4.12 Box plot for CPU time for complete run of BE, excludmg mutants that
were not killed by R .

CPU time for complete run of BE, excluding mutants not killed by R

o]
§_
. o
]
§_
£ ¥ :
I o
2 ,
g o %
j =] o] .0 §
o | N I
o : 1 _L L _L —l—
‘I T T T 1] B L] I 1]
1

2 3 4.0 5 : 6 7 8

Test case length (N)

tiine te finish is becaﬁse the result of niultiplying fime taken by each test eaSe by the
’ numbe.r‘E() of R(6,1000) for mutant 17 of Java util.Vector class is the largest
among all subJect um’cs The number E().of R(6 1000) is 842, which eans if BE
cannot kill the mutant 17 of java.util.Vector class at test case length 6, it needs
to run all 842 test cases until it detects a fallure Accordlng to the calculation above,
we can tell the maximum CPU time taken by a run of BE happens when it executes

test cases on mutant 17 of Java.utll .Vector class at test case length 6. -

Figure 4.13 shows a line graph of the CPU time for a (_‘:omyplete. run of BE, excluding
mutants that were not killed by R. Generally‘Speaking, the average CPU time for

a complete run of BE consistently increases asrthe test case length increases. The

63

Figure 4. 13 Line graph for average CPU tlme for complete run of BE, excludmg

mutants that were not kllled by R SR _ ; ~.
U e | T T T T - T T T
12 . CPU time for complete run of BE ~—+—
10 | 4
g °f - l
c
8 P
'8
g oof -
=]
Q. .
(33
: ‘4 i
21 - -
0 | I 1 i 1 L 1 l 1 R T : e

Test case length (N) *

maximum average CPU time for a complete run of BE is about 12 seconds which
ocpuré when the test case length is 6. As discussed above for figure 4.12, we can

reasonably explain why the peak happens at test case length 6, not 8. o

64

Chapter 5
,'Concl:l’usion | 5

5.1 COnclusion

© This thes1s has closely examined dlﬁerent automated unit testing strategles It first
introduces three automated unit testmg strategles bounded exhaustwe random-
~ ized, and best-of both-worlds Then it descr1bes the necess1ty for comparlng these
*three strategles Based on Andrews et al s approach Whlch prov1des a mechamsm to
prec1sely compare the strategles a test program named Unwersal Test has been devel— |
oped for 1mplement1ng the strategies and runmng expernnents and the detalls of the
1mplementat1on have been dlscussed Several experlments have been conducted and
‘ ‘exper1mental data has been collected to ﬁgure out the effectweness and efﬁc1ency of
the strategles and how i 1ncreas1ng test case length affects the failure den51ty Accord-
ing to the expenmental data thls the51s has shown that the failure den51ty increases
. as increasing the test case length and randomlzed testlng strategy is more effective

than bounded exhaustlve testmg strategy on average cases.

65

o More speciﬁcally, this thesis concludes the vfolloWing points First of all, randomized
testmg is. able to find failures in less txme and fewer number of test cases than (nalve)
bounded exhaustlve testing, unless failure densmles are low Second, failure densi-

ties can be increased by mcreasmg,test case lengths, which partly jeopardizes the

effectiveness of bounded _exhauStive testing. Third, this thesis introduces an explo-

rative testing strategy, named “best-’of-’both%orlds”, which combines both bounded
‘ Zexh‘austive and fandomized tesfiﬁg straiegies The combined strategy should take
advantages of both bounded exhaustlve and randomlzed strategles Although the
best-of both—worlds strategy has not achleved the results regarding the ability to ﬁnd
failures as we expected, the experimental da‘ca shows the best-oftb.oth-worlds strategy
is efficient, in terms of the CPU time used ‘Vto find failures and the clock time to find

the ﬁr_st failure.

This theSis only concentrates on comparing the naive bounded exhaustive sfrategy
with the general 'randomized strategy. Therefore, the eXpefimeﬁtal results do not re-
~ solve the question of whether some optimized’ implementatiohs of bounded exhaustive
stfafegy would outperform ‘some particdlar, optimized implementations of random-
" ized strategy on particular ’sub'ject (iiis or éven the sathé stb ject units as used in this
thesis. Howe\ier,‘the ekperimental’results mOreprecisely answer the question of how,
when and why randomized strategies'can be useful in unit testing. This conclusion
may be helpful for people 1mplement1ng model checkers and other testmg tools usmg

randomness or randomlzed testmg strategles

66

' This thesis ‘also p'resented the test program de?elop’ment and‘discussed certain prob-
lems encountered durmg the des1gn and 1mp1ementatlon The design of the "test

program plays an lmportant role because a good de81gn prov1des us Wlth flexibility

to implement other explorative testmg strategles or partlcular, optlmlzedBE and R

strategies painlessly. This thesis has also discuSsed the reason that BOBW could not
beat R regarding the abilities of ﬁnding failures. Based on the‘oret.ic'al analysis by
- Andrews et al., BOBW is more effectlve and efﬁ01ent than BE and R. However, our
experxments have only shown the efﬁment s1de The 1mplementat10n of BOBW hlghly

1mpacts the eﬁectlveness in ﬁndmg fallures

5.2 ‘EJfUre Work

This thesis has presented an empirical study on comparing different automated unit
testing etrategies‘ in a formal manner This thesis provides software testers an insight
on the relatlonshlp among bounded exhaustlve randomlzed and combined strategles
Software testers can better understand and estlmate how, when and Why randomized
strategles can be useful in unit test’mg. With the help of this thesrs, testers can design
their' test suites or test cases in more effecﬁive and eﬁicient ways by inereasing the

test case length or using different testing s_trategies.

‘Several 1mprovements can be made to the test program and experiments. Due to the

time hm1tat10n We have only apphed three testlng strategles to and run the exper—

1ments on the Java.utll classes. Since the underlying algorithms of lmplementmg B

67

BE, R and BOBW are general we can apply s1mllar algorlthms to other sub Ject units
in more languages One possibility would be applylng the algorlthms to sgllb 1n 1 'the
C programming language. SGLIB is a simple generic library for the C programming
'language It .rdeﬁnes uSeful macr(')s for manipulating common data structures. It pro-
vides genenc 1mplementat10n for sortmg arrays and mampulatmg the following data

structures

anéd lists.

sorted linked lists o

double"linl‘{ed lists

red-black trees

" ‘e hashed containers

Manipulating a data structure includes insertion, deletion, search‘and iterator traver-

sal of elements. SGLIB provides a basic set of functions (macros) for manipulating

each data structure It is hke the Standard Template lerary for the C++ program-

: mmg Ianguage

| Obviously, one drauvback of the test program is the implementation of BOBW. The
choice of constants in the current 1mplementat10n of BOBW did not achieve the de-

s1red propertles of a pseudorandom number generator. We 1mp1emented BOBW by

choosing a large prime number p and generatmg ‘the next test case index by adding -

p modulo z.. Without factorizing a largenumber 2z, we need to carefully choose pin

order to meet the criteria that z is'not close tb_a multiple of p or vice versa. The

68

linear congruential random number generator would be a suitable substitution of the

existing implementation.‘ E

Another important aspect of future work would be comparing'partieular and-'opti-

mlzed BE strategies with particular and optlmlzed R strategies. This thesrs has shown

that (narve) BE performs better than R (with replacement) when failure dens1t1es are

low, and/ or when failures are spread evenly over the whole search tree On the other
hand, for very large search spaces, it is often not reahstlc to perform a complete run

of the naive BE strategy. It would be 1nterest1ng to optimize the BE strategy, such as

dividing large search spaces and explorlng, to perform complete runs of BE for longer o

test case lengths Respectrvely for R many optlmlzatlon techmques can be apphed as
well. Genetrc and heuristic algorithms may optimize the existing randomlzed testing

. strategy so that optimized R may become inore' effective.

: w

2

69

References

James H. Andrews A case study of coverage—checked random data structure
testing. Proceedmgs of the 19th IEEE International Conference on Automated
Software Engzneemng (ASE 2004), pages 316—319 Sep 2004.

James H. Andrews Lionel C. Bnand and Yvan Labxche Is mutation an ap-

propriate tool for testing experiments? In Proceedzngs of the 27th International

- Conference on Software Engzneemng (IC’SE 2005), St LOUIS, Missouri, May 2005

3]

402-411.

James H. Andrews Fehx Chun Hang L1, and Tim Menmes nghthawk A two-
level genetic-random unit test data generator. In 22nd IEEE/ACM Intematzonal

: C’onference on Automated Software Engmeemng (ASE 2007) 2007

'James H. Andrews Ylhao Zhang, and Alex Groce. Comparmg automated unit
‘testing strategies. Technical Report 736, Department of Computer Scrence, Uni-

i versity of Western Ontarlo, December 2010.

1l

Luc1ano Baresr and Michal Young Test oracles Techmcal Report CIS-TR~01-

- 02, University of Oregon, Dept. of Computer and Informatlon Smence, Eugene
: Oregon, USA, August 2001. »

| 6]

m

18]

~ data selection: Help for the practlcmg programmer Computer 11:34-41, Aprﬂ '

Koen Claessen and John Hughes. QulckCheck a hghtwelght tool for random -
testing of Haskell programs. In ICFP ’00: Proceedings of the fifth ACM SIG-

PLAN international conference on Functional progmmmmg, pages 268—279 New
York, NY, USA, 2000. ACM Press. :

Dav1d Copplt Jinlin Yang, Sarfraz Khurshld Wei Le, and Kevin J. Sulhvan
Software assurance by bounded exhaustive testing. IEEE Transactions on Soft-
ware En'gineering, -31(4):328-339, April 2005.) N

Rlchard A DeMlllo, Richard J. Lipton, and Frederlck G. Sayward Hints on test

- 1978.

N

g
[10]
11

[12]

[13]

[14]
[15]

[16]
17

18]

_actions on Software Engmeermg, 3(4) 279—290 July 1977.

70

Richard G. Hamlet. Testmg programs w1th the aid of a compller IEEE Trans-

Edward Klt Software Testmg in the Real World: zmprovmg the process. AddlSOIl—
Wesley Publishing Company, Inc 1995

Darko Marinov, Alexandr Andom Dumltru Daniliuc, Sarfraz Khurshid, and
Martin Rinard. An evaluation of exhaustive testing for data structures. Techni-
cal Report MIT-LCS- TR-921, MIT Computer Smence and Artificial Intelhgence

‘Laboratory, September 2003

‘Darko Marinov and Sarfraz Khurshid. Testera A novel framework for automated-

testing of Java programs. In 16th IEEE International Conference on Automated
Software Engmeerzng (ASE‘), San Dlego, ‘CA, Nov 2001.

Barton P Miller, Louis Frednksen and Bryan So. An empirical study of the
rehablhty of UNIX utilities. Commun. ACM 33(12) 32-44,1990.

Glenford J. Myers The Art of Software Testzng Wlley, New York, 1979.

A. Jefferson Offutt. Investlgatlons of the software testmg couphng effect. ACM
Transactions on Software Engmeermg and - Methodology, 1(1) 5-20, January
1992. .

C. Pacheco, S. K. Labhiri, M. D Ernst and T. Ball. Feedback—dlrected Random
Test Generation. In In Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007), pages 75-84, Minneapolis, MN, May 2007.

‘Willem Vlsser Klaus Havelund, Guillaume P. Brat, Seungjoon Park and Flavio
Lerda. Model checking programs Automated Software Engmeerzng, 10(2):203-
232, 2003

Willem V1sser Corina S. Pasareanu and Radek Pelanek Test input generatlon

for Java containers using state matching. In Proceedmgs of the International

Symposium on Software Testing and Analyszs (ISSTA 2006), pages 37-48, Port-

land, Mame, July 2006.

	COMPARING AUTOMATED UNIT TESTING STRATEGIES
	Recommended Citation

	tmp.1656979714.pdf.freXN

