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Abstract

In this work we study single chain polymers in shear flows and nanocomposite polymer
melts extensively through the use of large scale molecular dynamics simulations through
LAMMPS [130]. In the single polymer chain shear flow study, we use the Lattice-
Boltzmann method to simulate fluid dynamics and also include thermal noise as per
the fluctuation-dissipation theorem in the system. When simulating the nanocomposite
polymer melts, we simply use a Langevin thermostat to mimic a heat bath.

In the single polymer in shear flow study we investigated the margination of a single
chain towards solid surfaces and how strongly the shear flow influences this effect. In
particular we also tried to study the effect of the polymer’s monomer size a on its overall
tendency to marginate. To this end, we studied polymer chains of length N = 16, 32 in
flows at multiple shear rates, γ̇ and noted higher margination rates in the case of chains
with larger radii monomers in comparison to smaller radii monomer chains. We quantified
this behaviour and effect by considering various measures such as the distribution of the
chain’s maximum extent into the flow, the distribution of its centre of mass normal to the
surface as well as its radius of gyration in directions parallel and normal to the surface
i.e. Rx, Ry, Rz.

In the second work, we looked at the effects of introducing nanorods into polymeric
melts. We primarily focused on understanding the dispersion, orientation and conforma-
tional patterns exhibited by the nanorods and chains respectively. At lower concentra-
tions, rods phase separated into distinct nematic clusters, while at higher concentrations
they remained more isotropic and disordered. We noted that this behaviour is being
driven by the system finding a trade-off between the entropic forces trying to create the
isolated clusters and the enthalpic effects that work to improve mixing of the rods. We
also noted that the rigid rods induced significant local conformational changes in the
flexible chains in close proximity which in turn made the whole melt more ordered.

Keywords: Molecular dynamics, LAMMPS, Polymer, Polymer melts, nanrods
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Lay Abstract

Polymers are everywhere and their applications in our daily lives are numerous. Be
it in the healthcare field or the food industry or within the human body itself, polymers
play a very key role in our day to day lives as well as in our healthy living. Understanding
how these large molecules behave under different situations, forces and environments is
key in order for us to be able to develop novel tools and medications.

Polymers are everywhere within the human body. DNA, the most commonly known
is basically a very long polymer that encodes vital information about the human genome.
Another less known polymer in the human body is the vWF (von Williebrand Fibers)
that plays an extremely crucial role in preventing blood loss. It is well known that these
polymers are abnormally large in comparison to other proteins in humans, and from
our work we confirmed that this large size plays a major role in it performing its task of
preventing blood loss. At a very high level, in case of a cut or injury to a blood vessel, the
polymer detects the injury rushes to the damaged site and much like duct tape, stretches
out to essentially seal the injury. In this study we investigate this very property of large
polymers through the use of computer simulations.

Rigid plastics start their life as polymer melts, which is basically a fluid phase of the
same and are made up of thousands of individual polymers. Several studies have been
done in order to boost the mechanical properties of these melts by infusing them with rigid
rods such as fiber glass. These are especially useful in the manufacturing and automotive
industry due to their promising physical properties such as light weight and able to
sustain high stresses. The mixture of the melt with rigid rods has resulted in materials
with enhanced mechanical properties that prove to be quite useful in several applications.
In our work, we investigate the same via computer simulations and study how the rigid
rods affect the properties of the polymer surrounding them and also comment on potential
applications of such material in industry and research.
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Chapter 1

Introduction

1.1 Literature Review

Polymers are everywhere and have found wide spread applications and use in all aspects of
our lives. The word polymer simply means many parts and refers to molecules consisting
of many elementary units conventionally termed as monomers. Monomers are the atomic
and fundamental unit of a polymer and are connected together by covalent bonds. The
process of generating the entire structure of a polymer is known as polymerization and it
refers to the process by which the basic units i.e. monomers are covalently linked together.
The number of monomers in a polymer is termed as its degree of polymerization, N and
its molar mass M is equal to its degree of polymerization N times the molar mass of its
monomers i.e.

M = NMmonomer (1.1)

Humans have used polymers without realizing what they have been dealing with. A good
example of this is the usage of naturally occurring rubber from the rubber plant. For
centuries, humans have relied on such naturally occurring materials for their day to day
needs without having a deep understanding of the true potential of these macromolecules.
Historically, chemists have been synthesizing polymers/macromolecules since the mid
nineteenth century but the field of polymer physics and chemistry became mainstream
only in the early 20th century and since then these macromolecules have been extensively
studied, researched and used due to their novel physical, chemical, mechanical, and
biological properties. The chemical nature of the monomers is one of the principal factors
that determines the overall properties of any polymeric system. Another factor is the
polymer’s microstructure i.e. the typical organization of the monomers along its backbone
and it cannot be changed without breaking the covalent bonds linking each component
[136]. It is important to note that the degree of polymerization, N is a major factor that
determines the overall properties of several polymeric systems. Oligomers are polymers
with only a small degree of polymerization, typically of the order of N ≤ 20. Linear
polymers typically contain monomers of the order of 20 to 10 billion. As monomers are
linked to the backbone of the chains, the physical properties such as the melting and
boiling point the polymer system increases quite rapidly.

1
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Another important feature that controls the properties of the system is its archi-
tecture. The different architectures manifests into vastly different properties for the

Figure 1.1: Different polymer architectures (a) linear, (b) ring, (c) star-branched, (d)
H-branched (e) comb (f) ladder (g) dendrimer and (h) randomly branched

polymeric systems for instance the randomly branched architecture shown in figure (1.1
h) has particular industrial importance and is widely used in the manufacturing of bot-
tles and packaging films. High degree of crosslinking between constituent polymers leads
to formation of polymer networks that are useful in manufacturing of soft solids such
as erasers and tires [136]. Polymers with only a single type of chemical monomer are
commonly known as homopolymers, while chains with several different monomer types
are referred to as heteropolymers. Heteropolymers have unique properties depending on
their composition i.e. fraction of the different monomers used during polymerization as
well as the sequence with which each one appears in the chain. Many biopolymers present
in the human body are heteropolymers. For instance DNA is a heteropolymer consisting
of four different types of monomers (nucleotides) while other proteins are made up of 20
different types of amino acids.

Polymers with two or more different types of monomers are known as copolymers.
The different monomers can come in either an alternating, random, block or grafted
sequence. Polymers with two blocks are termed as diblock copolymers. Similarly, when
there are three blocks the chains are termed as triblock copolymers and chains with
several alternating blocks are known as multiblock copolymers. These various patterns
are illustrated in figure (1.2).

An important aspect that is quite unique to single polymer chains is that after poly-
merization the chains can adopt many different conformations. A chain’s conformation is
basically its spatial structure that is determined by the relative locations of its monomers
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Figure 1.2: Different type of patterns in copolymer chains (a) alternating, (b) random,
(c) graft, (d) diblock, (e) triblock and (f) Multiblock

in space and can be specified by giving the position vectors of all the monomers com-
prising the chain or equivalently by tracing a path formed by all the bond vectors along
the chain’s backbone. The conformations assumed by a single chain depend primarily
on three factors, namely its flexibility, interactions between the monomers, as well as
interactions of the monomers with the surrounding environment. The size and nature of
the monomers also have a drastic impact on properties that the chains tend to exhibit
as a whole. As we will see in subsequent sections, the size of monomers plays a crucial
role for chains in fluid flows. Depending on the interactions of the monomers amongst
themselves as well as with the surrounding, the chains can either be extremely flexible
like a thread of silk or be stiff like a piano or guitar string. The monomer interactions
can be either attractive or repulsive in nature and the relative strengths of these can
vary with ambient temperature. As we can see, even for a single chain there are many
degrees of freedom that one can in principle tune to achieve any desirable macroscopic
property/effect. Due to such vast features polymers have proven to be extremely useful
and are prevalent in numerous industrial and medical applications.

In modern times, the polymer industry has grown far beyond the industries relying on
aluminum, copper and steel. Their range of industrial applications far exceed any other
material available to humans and are widely used in the manufacturing of adhesives,
coatings, foams, films, plastics, textile, automotive parts, electronic devices, optics and
so on. For instance, polymer based devices are now being used even in the semiconductor
industry for the construction of organic field-effect transistors (OFETs) [21, 77]. Due to
the recently reported high field-effect charge mobilities [70, 88] in polymer based field
effect transistors (FETs), polymers have become an attractive alternative to silicon for
the construction of transistors. Moreover, the electrical performance of OFETs has been
reported to be either comparable or exceeding that of amorphous silicon [86]. Polymer
based semiconductors are becoming increasingly attractive since polymers can be easily



4 Chapter 1. Introduction

deposited through a solution process in comparison to the expensive ion based implanta-
tion methods in use currently. The solution based deposition process is easy to scale-up
while minimizing processing costs as demonstrated in [69]. Such properties are making
polymer based materials and processes attractive in the semiconductor industry.

Smart/responsive materials are another interesting and novel application of poly-
mers in industrial applications that is increasingly gaining popularity and driving re-
search [160]. Responsive materials as well as structural systems are widely being used
today to develop smart devices, sensors and actuators due to their ability to quickly re-
spond to environmental stimuli with a detectable action. As pointed out by Brighenti et
al. [26] responsive polymers are capable of producing observable responses under external
stimuli and when their behaviour is properly understood and quantified their molecular
scale response can be conveniently exploited in various ways to obtain desired macro-
scopic responses. Since these responses come from their molecular architectures, the
arrangement of polymer chains and the nature of embedded active molecules, stimuli-
responsive polymers can be tailored to have stimulus specific chemical, electrical, optical
and mechanical responses and moreover can be engineered into different forms. Authors
in [52, 112] study the underlying molecular mechanisms of such polymers in great detail
and look to understand their molecular structures by minimizing the free energy of the
whole system. Furthermore extensive research into such materials through molecular
dynamic simulations is also being carried out in order to understand the responsiveness
of polymers under multiple stimuli. Zhuang et al. ( [206]) have done extensive work
in understanding multi-stimuli responsive polymers. Coarse-grained molecular dynamics
(MD) and dissipative particle dynamics (DPD) simulations have also been carried out in
order to understand the large-scale behaviours of such stimuli responsive polymers ( [89])
and the challenges therein have been well pointed out.

Apart from the novel industrial applications and research being currently carried out,
polymers are also widely used in the medical/healthcare field. For instance, many bio-
materials and natural polymers are being used in heart implants, artificial joints, dental
implants and so on. Polymer based materials have become significantly more important
nowadays in comparisons to other materials since they tend to result in fewer issues
when incorporated into dental, neurological and cardiovascular gadgets and are easier
to manufacture and last longer. As pointed out in the review works ( [14, 93, 111]), the
similarities between natural tissues, proteins and synthetic polymers with their long chain
architecture make them better representations of natural tissue when compared against
metals and ceramics. Due to these similarities in structure and properties, a wide array
of materials have been developed that are being actively used in medical devices and
procedures. Examples include acrylic cements for orthopedy, facial prostheses, joint
surgeries, blood pushes, catheters, cardiac valves, pumps and so on.

Depending on their synthesis or intrinsic properties, certain polymers are biodegrad-
able in nature. Such polymers are ideal candidates for developing therapeutic devices such
as temporary prostheses, large implants such as bone screws, three-dimensional porous
structures as scaffolds for tissue regeneration/engineering and as nano/micro sized drug
delivery vehicles. For any biodegradable material to be used in biomedical applications,
it must first be considered safe such that it does not evoke a sustained inflammatory or
toxic response from the body upon implantation. Moreover, to be considered effective
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the degradation time of the material should match the healing/regeneration time and
the degradation should be non-toxic and be able to be metabolized and safely cleared
from the body. Each of these requirements necessitates that the materials with care-
fully tuned physical, chemical, biological and degradation properties in order to prove
effective. Given that many natural and synthetic polymers are capable of undergoing
degradation by hydrolytic or enzymatic processes, they are being actively researched and
considered for the last decade or more as viable materials in biomedical applications
( [40, 74,92,103,129,194]).

Apart from the importance of polymers in industrial and biomedical applications,
polymers play a key role in many vital functions within the human body itself. Pro-
teins, which are essentially amino acid polymers arranged in a three dimensional folded
structure, are the major structural components of many tissues and are one of the most
important class of bio-molecules identified to date. Another crucial protein that is present
in our circulatory system is the von Willebrand factor commonly known as VWF and
is necessary to stop bleeding under high shear stress conditions as found in small blood
vessels. In the following section we give some background on our first work involving
polymers in shear flows and the effect monomer size has on such single chains.

1.1.1 Polymer margination in shear flow

VWF fibers and blood platelets play a crucial role in initiating blood clotting in the
case of a rupture to small blood vessels ( [36, 43, 108, 132, 138, 146]). VWF is known
to mediate the adhesion of platelets to sites of vascular damage by binding to specific
platelet membrane glycoproteins and to constituents of exposed connective tissue. It has
been found that these binding activities are driven by hydrodynamic shear stresses and
activate the VWF’s binding potential. Schneider et al. [146] have studied the behaviour
of single VWF chains by using microfluidic devices as well as through hydrodynamic
computer simulations and have found evidence that an increase in hydrodynamic shear
stress in the vicinity of single VWF chains activates its binding potential which in the
presence of collagen eventually leads to the counterintuitive phenomena of enhanced chain
adsorption under strong shear flow conditions. Intuitively, one might think that at high
shear rates, as found in small blood vessels, hydrodynamic lift forces near surfaces will
inhibit adsorption of objects from the blood onto arterial walls. Blood platelets and other
vesicles might tend to roll and detach easily and most importantly remain unbounded as
shear stresses are increased further [192].

However, the experimental evidence on blood platelet adhesion in small arteries have
shown to contradict this behaviour. VWF mediated platelet adhesion is strongly en-
hanced under high shear flow conditions as pointed out by Ruggeri in [137]. This leads
to an interesting research topic on the dynamics and migration properties of polymers
in shear flows near surfaces. For instance a good understanding of the chain’s dynamics
and migration tendencies in flows is crucial for applications such as targeted drug deliv-
ery agents, shear activated polymeric systems [29,57] and self-healing smart materials to
name a few.

As mentioned earlier, VWF is one of the largest polymeric molecules with abnormally
large monomer units (≈ 70 nm long axis and ≈ 10 nm along short axis) found in the
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blood plasma and is known to migrate towards blood vessel walls under high shear
rates. Schneider et al. in ( [146]) were able to directly visualize the chain unfolding
i.e transitioning from a globular conformation to a linear stretched one in response to
increase in shear flow as seen in the figure (1.3).

Figure 1.3: Dynamic conformation change of VWF under shear flow. Upper images
are graphical illustrations of the globular-stretching transition whereas the bottom figure
shows the fluorescence images of a video sequence captured by the authors at 25 frames
per second of the VWF below and above the critical shear rate γ̇c. As time progress in
the experiment, the shear rate is dropped and it can be seen that the single VWF fiber
collapses back to its initial globular conformation. Reprinted under the PNAS Rights
and Permissions for non-commercial use from Ref. ( [146]). Copyright (2007) National
Academy of Sciences

They also reproduced such a transition by the use of computer simulations and were
able to demonstrate that beyond a critical shear rate i.e. γ̇c the chains abruptly underwent
a transformation from a globular state to a stretched conformation as seen in figure (1.4).
Other works based on hydrodynamic simulations of single chains in shear flows by Katz
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et al. ( [5–7]) and Radtke et al. [133,134] have also reproduced such transitions exhibited
by their chains. Most importantly, Schneider et al. in ( [146]) have pointed out that the
VWF’s counter-intuitive response to shear stresses can be tracked back to its extremely
large monomers. From their computer simulations and scaling analysis they also found
that the critical shear rate beyond which the polymer undergoes the transition from a
globular conformation to an elongated state was quite sensitive to the effective monomer
size a rather than the polymer length.

Figure 1.4: The top two figures are graphical representations of the different conforma-
tion of a single linear polymer (globular/elongated in shear). The bottom graph with
insets shows the experimentally determined average extension (open squares) and the
normalized rate of adhesion (filled diamonds) of the VWF multimers as a function of
shear rate. The inset shows the results obtained of the same via hydrodynamic computer
simulations of a 50-mer as a function of the dimensionless shear rate γ̇τ . Reprinted under
the PNAS Rights and Permissions for non-commercial use from Ref. ( [146]). Copyright
(2007) National Academy of Sciences

From their experimental and simulation results, Schneider et al. concluded that the
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VWF’s abnormally large monomer size and shape play an important role in its elongation
in high shear flows. In our work, as presented in subsequent sections, we show that the
large monomer sizes play an important role during a chain’s margination towards surfaces
1 at high shear rates.

Neutron scattering experiments have confirmed VWF monomers are in the shape of
a prolate ellipsoid with dimensions 70 nm and 10 nm along its major and minor axes,
respectively ( [157]). These numbers show that the monomers are indeed quite large
relative to other polymers found in the human body and as we will see from the results
of our work large monomer sizes in chains prove to be crucial for margination of chains
towards surfaces in shear flows.

Following their analysis of shear induced unfolding of the VWF multimers, the surface
adsorption/adhesion properties of the same was also studied. Schneider et al. and others
( [7,57,108,146,155,156]) also found that the VWF chains tended to adsorb onto collagen
coated surfaces at elevated shear rates. Contrary to popular belief where higher shear
rates should reduce chain adsorption onto surfaces, the adsorption of VWF multimers
increased and formed a network as more and more chains adhered on the surfaces. This
was attributed to the fact that, as the VWF chains elongated in shear flow that exposed
more binding sites thus strongly increasing their adsorption tendency. As the adsorbed
VWF network grows under shear, this provided a sticky interface for blood platelets to
adhere to, thus initiating the blood clotting cascade under normal conditions.

The shear induced elongation and adsorption has also been studied quite exten-
sively by Brownian dynamics simulation with hydrodynamic interactions included via
the Rotne-Prager (RP) tensor approximation [5, 7, 133, 134, 155, 156]. In ( [5]), the au-
thors have argued that anisotropic nature of the hydrodynamic drag force felt by a
sphere near surfaces leads to enhanced polymer chain elongation at lower shear rates. In
( [133, 156]) the authors have investigated the adsorption phenomena of polymer chains
in shear flows onto surfaces to be mediated by long lived catch-bonds2 [174,175]. In their
Brownian hydrodynamics simulations apart from the monomer-monomer interactions,
the authors described the monomer surface interaction via stochastic bonds in order to
mimic a catch bond type of interaction between the polymers and the surface. The au-
thors demonstrated that once the polymer moves towards the surface, and elongates due
to increased hydrodynamic drag forces more monomers from the chain become readily
available to form stochastic bonds with the surface and thus adsorb at higher shear rates.
Although, the authors were able to reproduce shear induced adsorption over a small range
of shear rates, the effect of monomer size on the chain’s migration towards the surface
still remained unaddressed. Sing et al. in [156] mentioned that on occasion when a vWF
molecule interacts with the surface, the pathways through which it could unbind get
suppressed. Their work showed the importance of catch bond type interactions between
the chains and the surface, but the issue of chain margination was left unaddressed.

Apart from polymers, recent works involving studying the margination tendencies of
micro/nano sized particles in blood flow at different shear rates for drug delivery purposes

1tendency to migrate towards surfaces
2A catch bond is type of a noncovalent bond whose dissociation lifetime increases with tensile force

applied to the bond
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have addressed the effect of particle size and shape on their overall migration tendency.
Lee et al [85] through capillary flow experiments observed that smaller nano/micron
sized particles appeared to be more uniformly distributed throughout the tube in com-
parison with particles of larger sizes. Furthermore Muller et al [109], through 2D & 3D
DPD (dissipative particle dynamics) and smoothed DPD (smoothed DPD) simulations
showed that larger sized particles marginated more in flow in comparison to smaller parti-
cles. They constructed the probability distributions of finding a particle within a certain
distance from the surface and found that the margination probability decreased with
particle size. The observations discussed so far highlight the importance of the role of
hydrodynamic interactions in shear flow, and the particle’s size and shape in determining
its overall margination tendency.

In light of these studies, in our work we primarily look to address the issue of chain
margination towards surfaces in shear flow as a function of the monomer size. We ad-
dress the issue of lateral migration of polymer chains in flows via hybrid LBMD (Lattice
Boltzmann-Molecular Dynamics) so that the full gamut of hydrodynamic interactions
near the surface as well as in the channel bulk are adequately captured. From our re-
sults, we were able to note that larger monomer sized chains marginated better. Despite
only a weakly attractive potential at the surface, larger monomer sized chains showed
greater margination tendencies in comparison to chains with smaller monomers. The
equilibrium behaviour of both chains were exactly the same as they both escape the
surface potential equally well. Due to this observation, we concluded that margination
is a dynamic effect in shear flows that is ultimately coupled to the size of the monomers.
In [5, 7, 133, 134, 155, 156], where Brownian dynamics with a Rotne-Prager type approx-
imation for hydrodynamic interactions between monomers was used the margination
effect could not be conclusively reproduced. Given that the RP tensor models pairwise
hydrodynamic interactions between monomers while effectively treating them as point
particles, the full gamut of hydrodynamic interactions throughout the chain as well as
between chain and the surface is not captured sufficient well. However, since we used the
LB method to effectively simulate the thermal fluid flow in a channel, the hydrodynamic
interactions between the chain and surface as well as between monomers is properly
captured.

1.1.2 Polymer melts and nanocomposites

Polymer solutions and melts are another novel area in polymer physics that has seen
enormous growth and research attention over the past decade. Given their highly viscous
and non-Newtonian flow behavior, polymer solutions and melts have become extremely
relevant in many engineering and industrial processing techniques. As pointed out in
[136], polymeric liquids are primarily of two kinds (i) polymer solutions and (ii) polymer
melts. Polymer solutions are simple in the sense that they are obtained by dissolving
a polymer into an existing solvent. Examples of a few polymer solutions include wood
surfactants (varnish) and polyurethane coatings. Polymer solutions, depending on the
mass concentration of the polymers added, can be largely categorized into two distinct
categories (i) dilute and (ii) semi-dilute. The mass concentration, c is defined to be
the ratio of the total mass of a polymer dissolved in a solution and the total volume of
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the solutions [136]. Typically however, the distinction between a dilute and semi-dilute
polymer solution is reported using the volume fraction, ϕ of the polymer. The volume
fraction ϕ of a polymer in a solution is given by the ratio of its pervaded volume to
the total volume of the solution. The pervaded volume of a polymer is simply the total
volume of the solution spanned by the chain is is proportional to a measure of the chain’s
size, R i.e.

V ≈ R3, (1.2)

where R is a suitable measure of the polymer’s size in the solvent. Now using this
measure, the overlap volume fraction, ϕ∗ is defined as the fraction of occupied volume
of polymers per unit volume of solution. If the volume fraction ϕ of a polymer solution
is equal to the overlap volume fraction, ϕ∗, then by definition this defines a solution
where the pervaded volumes of marcomolecules densely fill space. As illustrated in figure
(1.5), all solutions with volume fraction, ϕ less than the overlap volume fraction ϕ∗ i.e.,
ϕ < ϕ∗ are considered dilute since in such cases the average distance between chains is
larger than their size. Hence in dilute solutions individual polymer chains are able to
freely swim and diffuse with minimal influence from other chains. Due to this the overall
properties of the solution remain close to that of the pure solvent (no chains) with only
minor modifications.

In the other case, where the volume fraction is greater than the overlap i.e. ϕ > ϕ∗,
the solutions is considered semi-dilute. Even those the volume fraction is greater than
the overlap threshold, the actual values are still quite small i.e. ϕ << 1 and most of the
volume in the solution is still occupied by the solvent. As seen from figure (1.5 b), the
pervaded volumes are quite close together and due to the vast number of conformations
polymer chains can assume, their overlap with each other drastically influences the over-
all properties of the solution [136]. This entails that introducing even a small amount of
polymer to a semi-dilute solution can dramatically change the solvent’s intrinsic proper-
ties such as its viscosity. As the volume fraction increases further properties of polymer
solutions and melts start to overlap.

In the absence of any kind of external solvent, polymer molecules form a liquid state
referred to as a melt. Polymer melts are unique polymeric liquids that are well above
their glass transition and melting temperatures. Some novel properties of melts is that
they exhibit different properties over short and long time scales [136]. For instance,
polymer melts typically behave like purely elastic objects over short time scales, they
retain memory of their original shape and structure and quickly recover from small and
quick deformations applied to to them. However, small deformations applied over a longer
period of time cause them to behave similar to a viscous fluid and gradually flow over
surfaces. Due to the time dependent nature of the mechanical and rheological properties,
polymer melts are known to be viscoelastic. A very common example of a polymer melt
is silly putty since over short time scales or quick deformations it responds like a rubber
ball but if left under the influence of gravity it will behave like a highly viscous fluid
and gradually flow over surfaces. Corn starch is another good example of a viscoelastic
substance. For instance, if one vigorously disturbs it i.e. short time scale perturbations,
the material tends to recover quite quickly but introducing slow, gradual deformation to
it for instance moving a fork over it slowly for a minute or more, it starts to behave like
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Figure 1.5: Illustrations of the different kinds of polymer solutions (a) Dilute, ϕ < ϕ∗,
(b) Semi-dilute, ϕ > ϕ∗. The circles around each individual polymer is simply to
illustrate the pervaded volume occupied by each individual chain in the solution. In the
dilute solution, we can see that the distance between any two chains is on average larger
than the equilibrium size of the chain, whereas in the semi-dilute case the chains are
packed a lot closer to each other and the pervaded volumes of each overlap in some cases.
The polymer solvent is still referred to as semi-dilute because the solvent’s volume is still
far greater than the pervaded volumes of the individual chains

a viscous Newtonian fluid.

Other properties of melts include shear-thinning. This effect is predominantly ob-
served when polymer melts are put under large shear strains. Under such strains, the
polymers near surfaces stretch out and align themselves along the direction of the shear.
As more and more chains become aligned, slipping between different polymer layers be-
gins to occur as more and more chains become un-entangled. Due to this, the melt begins
to flow rapidly despite its originally high viscosity. At low shear strains, the relative elon-
gation of the chains in the melt is low and the entanglement between chains is still high;
viscosity of the melt remains relatively high and shear thinning does not occur. However
this effect becomes predominant under large shear stresses since the chains in the melt
give in and get aligned parallel to the direction of the applied strain. Shear thinning
can be observed when painting surfaces using brushes. Given that the paints are largely
polymer solutions, they exhibit shear thinning due to which the paint can be smoothly
applied on surfaces via brushes. The brush induces a high shear strain which causes the
paint to move smoothly over the surface. However once applied, the only predominant
force acting on it is gravity which is a weak force and does not induce any significant
shear strains on the melt, causing it to remain adhered on the surface. Another example
where this effect materializes is in the use of ball point pens. The ink is gets squeezed
through the ballpoint, and when it is moved over a surface shear thinning occurs and the
ink flows smoothly.

Given that polymer melts by themselves have such novel and useful applications
in today’s world, since the discovery of carbon nanotubes (CNTs) research on polymer
nanocomposities (PNC) has seen tremendous growth. CNTs have displayed excellent me-
chanical strength, electrical conductivity and magnetic properties, their potential to be
used in technological applications cannot be overstated. PNCs are materials comprised of
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polymers and different nanoscale fillers and have been shown to exhibit enhanced macro-
scopic properties such as improved mechanical durability and electrical conductance com-
pared to pure polymeric melts. Moreover, mixtures of anisotropic fillers, especially nanofi-
bres (NFs) and nanotubes (NTs) in polymer matrices have shown a great potential to
produce high performance materials and therefore have received a lot of attention from
scientific and engineering communities ( [2,10,62,94,106,107,123,139,167,205]). On top of
the intrinsic properties of the nanorods, their distribution and orientation in the polymer
matrix, interaction with the matrix, and aspect ratio play a crucial role in the overall per-
formance of the material ( [3,31,80,126]). Larger aspect ratio of the nanofillers are known
to increase dispersion and mechanical properties of the polymer nanocomposite [31,126]
and previous computational works have studied the effect of nanorod length [142,178].

In ( [95]), the authors have carried out extensive coarse-grained molecular dynam-
ics simulations of polymer nanocomposites with nanorods with different type of surface
functionalization (homogeneous/patchy). The authors modelled the surface chemistry
of the nanorods by using isotropic and directionally dependent interactions between the
nanorods in the system respectively. In their work, the showed how the PNC’s morphol-
ogy is impacted by the design of the nanorods and fillers. They looked at the effect of
varying nanorod aspect ratios and surface functionalization chemistry has on the overall
PNC’s morphology and found that for PNCs with 10 vol % nanorods with an aspect
ratio ≤ 5, the rods percolated with directional nanorod-nanorod attraction whereas they
phase separated under an isotropic nanorod-nanorod interaction. This implies that the
aspect ratio of the nanorods and the surface interaction potential between the rods and
the polymers play a crucial role in determining the overall equilibrium properties of the
melt. For nanorods with higher aspect ratios, the authors found that both types of at-
traction between the rods resulted in PNC morphologies where the rods were aggregated.
This was attributed to the entropic driving forces that caused the longer nanorods to form
orientationally ordered aggregates. The different morphologies are well illustrated in the
following figure (1.6) for nanorods of varying aspect ratios i.e. L = 3d, 5d, 15d where
d is the diameter of a single monomer from the nanorods. The authors also reported
that for concentration of nanorods in the melt less than 20 vol % the average matrix
polymer conformation remained unperturbed, however the interfacial polymers i.e. the
chains within the vicinity of the nanorods were on average in elongated conformations
and statistically different from the bulk chain conformations.

In our work, we also observed such similar morphologies as we worked with polymer
chains and nanorods with fixed lengths throughout the simulations and focused on disper-
sion patterns of the nanorods, their alignment, and the effect of polymer-rod attraction
strength on these such percolation patterns. One of the main barriers in enhancing prop-
erties of polymeric materials through adding NTs or NFs is the formation of aggregates
which leads to problems such as non-uniform stress distribution and slippage [32, 198].
In spite of the development of preparation and processing techniques such as in situ
polymerization and surface modification that have been successful in promoting better
dispersion of nanorods in a polymer matrix ( [3,51,56,67,96,135,139,149,183,198,204]),
there is a need for a deeper understanding of the underlying physics, that results in
the observed phase behaviour of nanorod-polymer systems. As a result, it has been
under an extensive examination both theoretically ( [20, 54, 87, 165] and computation-
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Figure 1.6: Snapshots of nanorods for PNCs with rod concentrations ϕr = 0.10 and (a)
L = 3d nanorods with isotropic nanorod-nanorod attraction and ϵisotropic = 0.5kbT (b)
L = 5d nanorods with ϵisotropic = 0.5kBT (c) L = 15d nanorods with ϵisotropic = 0.5kbT
(d) L = 3d nanorods with directional nanorod-nanorod attraction and ϵdir = 8kbT (e)
L = 5d nanorods with ϵdir = 8kbT (f) L = 15d nanorods with ϵdir = 8kbT . Reprinted
with permission from Ref. [95]. Copyright (2021) American Chemical Society

ally [45, 59, 60, 95, 104, 140, 143, 159, 178]). Savenko and Dijkstra conducted Monte Carlo
simulations of a polymer-nanorod system using an effective Hamiltonian that accounted
for the effect of the polymer matrix implicitly [143]. The polymers were assumed to be
non interacting in this study. Their results showed rod packing, and formation of nematic
aggregates. Although understanding non-absorbing systems provide a great insight into
depletion effects, they are not common in practical applications due to high number of
aggregates and poorer performance.

Surface treatments like functionalization or adding sizing agents not only results in
more uniform dispersion of nanorods but also improves the interfacial interactions be-
tween the rods and the polymer matrix which is critical for achieving good mechanical
properties [73,126,169,201,202]. Stronger interfacial adhesion facilitates the stress trans-
fer from the matrix to the nanorods thus improving the interfacial shear stress (IFSS)
strength and performance of the nanocomposite [13, 90, 125, 197, 199]. Therefore, it is
interesting and useful to investigate polymer nanocomposite (PNCs) systems with at-
tractive polymer-rod interactions. By means of Monte Carlo (MC) and MD simulations,
Toepperwein et al. studied a system of nanorods in an entangled polymer matrix where
all interactions (i.e. rod-rod, polymer-polymer, and rod-polymer) were attractive [178].
The polymer-nanorod interactions were stronger to mimic a realistic and common sys-
tem. They observed a well-dispersed mixture for shorter rods while the 16-mer rods
phase separated to aligned aggregates. Our results, for an unentangled melt, which are
discussed in section (4.0.3), manifest similar patterns of highly-ordered rod droplets. An-
other interesting observation by Toepperwein et al., which was observed in our simulation
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as well, was the presence of polymer chains between the rods within the droplets despite
their packed structure.

In a molecular dynamics study, Gao et al. investigated the effect of inter-component
interaction strength, temperature, filler concentration, cross-linking density, external
shear, aspect ratio, and nanorod grafting on the dispersion patterns and kinetics [45].
For a system in which the polymers were attracted to both rods, and with all other inter-
actions being purely repulsive i.e. polymer-polymer and rod-rod, they found that there
exists an optimum moderate polymer-rod attraction strength that promotes good dis-
persion. They categorized the source of the formation of aggregates to polymer-bridged,
and direct contact. As illustrated in the following figure 1.7, we can see the different
reported rod aggregation patterns observed by the authors at different polymer nanorod
interfacial interaction strengths. On the basis of their simulations the authors concluded

Figure 1.7: (a) Nanorod dispersion patterns observed as a function of the polymer
nanorod interfacial strength (b) Change in system’s enthalpy monitored during the dis-
persion process as the polymer-nanorod interaction strength ϵ is varied from ϵ = 12.0
to ϵ = 2.0. Reprinted with permission from [45]. Copyright (2014) Elsevier Ltd. All
quantities plotted here are dimensionless.

that at weak polymer nanorod interaction, the macroscopic phase separation between
the two can happen. Nanorod dispersion was seen to increase with increasing interaction
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strengths as good dispersion of the rods throughout the melt was observed. At strong
interaction strengths however the authors reported that the polymers aggregated via one
or two polymer bead layers and local bridging of the nanorods via polymer chains oc-
cured. These three stages are clearly marked in figure 1.7. The transition from state (i)
to (ii) in figure 1.7 can be understood on the basis of interfacial enthalpy gains i.e. given
the attractive interaction between the polymers and rods, as the interaction strength
between the two is increased, enthalpy gains increase as well. However the authors re-
ported that the state transition from (iii) to (ii) in figure 1.7 was entropy driven as the
interaction strength was changed from ϵ = 12 to ϵ = 2.0 from a suitable chosen equi-
librium bridged conformation. As seen from figure (1.7 b) in this process the system
enthalpy remained unchanged which goes to suggest that the transition back is primarily
entropy dominated. This meant that one single chain tended to adsorb several nanorods
in order to avoid too much loss of the chains entropy. Based on their observation at high
interfacial interaction strengths the nanorod aggregation is seemingly caused because of
polymer-rod bridging effects. However, in our work we will show later sections, for the
range of attractive interactions studied here, increasing attractive strength only results
in better dispersion, and smaller aggregates and polymer-bridging does not seem to be
the mechanism behind formation of clusters.

In a recent article, Lu, Wu, and Jayaraman conducted MD simulations on polymer-
rod nanocomposites with homogeneous and patchy surface to shed light on the effect of
nanorod design on final PNC morphology [95]. In this study, the polymer-polymer, and
polymer-nanorod interactions were purely repulsive while the nanorods interacted with an
attractive potential. For short nanorods, they observed percolated nanorod structure for
the system with patchy rods whereas the simple nanorods phase-separated to a cluster.
In the case of long nanorods, both designs exhibited formation of ordered aggregates,
either finite-sized or percolating. They also looked into the conformation of polymers at
the nanorod interface where they discovered that although the average radius of gyration
(Rg) of the polymers remained the same as that of a pure melt, the interfacial chains
stretched out and expanded. We touch on the interfacial behaviour of polymer chains
for a system with polymer-nanorod attractions in section (4.0.3).

The dispersion patterns of nanorods in a pool of attracting polymer chains is a less
explored field and is the focus of our work on polymer melts. Using MD, we simulated a
polymer-nanorod melt where all interactions were repulsive except for polymer-rod and
looked at the dispersion and orientation of rods as well as the conformation of polymer
chains at the rod interface. In polymer melt section (4.0.3) of this dissertation, we go over
the simulation setup and details and report our findings. We also devote certain sections
of the same to describe the dispersion patterns of the rods by means of auto-correlation
of a number density and rod-rod distances and then delve into orientational behaviour
of the nanocomposite melt.



Chapter 2

Methods

In this chapter we give an overview of the different scientific tools, techniques and sim-
ulation methodologies we used in our work on polymers in flows and melts. In section
(2.1) we give a broad overview of what MD is and how using it one can model, simulate
and study different physical systems. To this end we give an overview of the classical
equations of motion and how they are integrated along with a force field to simulate the
dynamics of a physical system. We discuss different interaction potentials and force-fields
used in MD simulations as well as the different numerical techniques used for integrating
the classical equations of motions in a stable manner. We give a simple overview of the
steps involved in numerically integrating the motion of a system of particles that can be
used to easily implement a simple program.

In section (2.2) we provide a overview of the Lattice-Boltzmann framework that is ex-
tensively used to simulate fluid flows as an easy alternative to conventional CFD methods
(i.e. solving the Navier-Stokes equations numerically). We present the various algorithm
details associated with this framework as well as how it is deeply rooted in Boltzmann’s
kinetic theory. Throughout this section we discuss how one can from this mesoscopic
framework, extract macroscopic observables such as fluid density and momentum. We
also present steps that can aid anyone in quickly writing a simple program to simulate
fluid flow using the Lattice-Boltzmann (LB) methodology. In later sections, we also
present methods and techniques used to simulate the interaction between fluids and rigid
bodies and such interactions can be modeled. The inclusion of thermal fluctuations in a
fluid is also presented along with discussions around how the fluid-rigid body interactions
can be tuned in to reproduce the correct temperature.

16
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In section 2.1 we begin by giving a broad overview of the subject at large with a quick
overview on how one studies and models physical systems, materials and objects through
the use of computer simulations. In sections 2.1.1 and 2.1.2 we present the theoretical
foundations over which the MD framework is built upon as well as explain the ergodic
hypothesis that proves to be extremely helpful when inferring observables from simu-
lations using statistical analysis. In the next several sections 2.1.4-2.1.6 we explain in
detail the different inputs needed to successfully run MD simulations. Given the goal is
to understand the physics underlying several mechanisms observed in physical systems,
accurately modelling the interactions between the system’s constituents is extremely im-
portant. In these sections we elaborate on the multitude of interaction potentials and
force fields commonly used in coarse grained and fully atomic MD simulations. Since we
are running computer simulations to model physical systems, MD is entirely reliant upon
efficient and numerically accurate integration schemes. In sections 2.1.7 we elaborate on
the different numerically integration schemes available for this purpose and provide a
short analysis on how they can be derived and the accuracy expected from each of those
methods. In the final sections i.e. 2.1.8 we address the issue of boundary conditions
in MD simulations and present details on the most commonly used periodic boundary
conditions and the minimum image convention as they are really important when model-
ing really large systems through a small, computationally feasible representative sample.
We additionally note that in presenting the material in this chapter we closely follow
the format used by Schneider et al. in [145] and cite their work suitably throughout the
chapter.

2.1 Molecular Dynamics

Molecular dynamics is the science of simulating the time evolution of a system of particles
by simply numerically integrating the system’s equations of motion whilst considering
the system’s boundary conditions. Generally speaking MD simulations treat particles as
classical atoms and generate microscopic level data such as the positions, velocities and
forces of all particles in the system. Macroscopic observables such as pressure, temper-
ature, transport coefficients are later calculated using statistical mechanics. In order to
calculate the microscopic trajectories of the particles involved, MD simulations require
one to specify the potential and force fields under which the particles/atoms interact
with each other. Once the potential/force fields have been completely specified, the time
evolution of the system is, in principle, deterministic under the laws of classical mechan-
ics. It is important to mention that the accuracy of the results of an MD simulation
is closely tied to how well the potential/force fields used truly capture all the quantum
mechanical/classical interaction effects exhibited by a true system.

MD simulations/techniques have been widely used in several branches of sciences
and engineering. For instance, determining reaction rates coefficients for polymer chem-
istry [91, 102, 163], protein folding [68, 75, 144], solid state structures [16, 168, 200] and
material science are just a few examples of where MD simulations have yielded signifi-
cant insight into real processes. A disadvantage of classical force fields/potentials is that
they typically confine the simulations to single molecule connectivity. Chemical processes
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such as bond breaking/formation are harder to model since inherently such processes are
quantum mechanical in nature. Alternatives to such limitations exists where classical
MD simulations are combined with electronic structure where the forces are computed
on the fly from an electronic structure calculation and consumed in the MD simulation
as it progresses. Such methods are commonly known as ab initio molecular dynam-
ics and specifying a potential/force field is not required. Although such methods are
quite accurate in modeling certain chemical processes, they typically incur a significant
computational overhead that increases quite quickly with the system size. [145]

2.1.1 Basic Formulation

As noted earlier, the key elements in a MD simulation are (i) the interaction poten-
tial/force fields for the particles and (ii) the equations of motion governing the dynamics
of the system. In classical MD, one simply follows Newton’s laws when considering the
time evolution. In the case of a system of N classical particles, the equation of motion
of the ith particle can simply be expressed as

Fi = miai (2.1)

Here mi is the mass of the ith atom in the system and ai is its acceleration and Fi is
the net force acting upon it due to its interactions with the other particles/atoms in the
system. Equivalently, one can also solve the system’s Hamilton equations of motion and
determine each particle’s position ri and momenta pi

ṗi = −∂H

∂ri
(2.2)

ṙi =
∂H

∂pi
, (2.3)

where H is the Hamiltonian of the system given as a function of all the particle’s position
and momenta

H(pi, ri) =
N∑
i=0

p2
i

2mi

+ V (ri), (2.4)

Given the interaction potential V (ri), the force on the ith particle can easily be expressed
as the negative gradient of V with respect to the particle’s coordinates i.e

Fi = miai = −∇iV (2.5)

Given the forces can be computed using (2.5), at each timestep forces on all atoms in
the system are first determined. From the forces, using any stable numerical integration
scheme, the position and velocities of all the particles are then updated. It is to be noted
that the forces acting on the particles are assumed to be constant over a timestep, ∆t.
These basic steps are repeatedly over and over again for the duration of the simulation.
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2.1.2 Ergodic Hypothesis & Statistical Ensembles

MD simulations generate microscopic quantities such as position, velocities and forces
acting on each particle/atom of the system. To extract macroscopic observables from
such trajectory data, statistical mechanics needs to be used. Based on the ensemble
concept, it is sufficient to average over a large number of independent microstates of
the system to obtain the macroscopic observables such as pressure, temperature, trans-
port coefficients etc. Ensembles are typically characterized, by thermodynamic variables
such as pressure (P), temperature (T), volume (V), energy (E), particle number (N) or
chemical potential (µ). Depending on which of the thermodynamic variables are held
constant during simulations, the ensembles are largely categorized under three different
frameworks.

The microcanonical ensemble is characterized by constant particle number (N), con-
stant volume (V) and constant energy (E) and is commonly referred to as the NV E
ensemble. The case where the particle number (N), volume (V) or pressure (P) and
temperature (T) are held constant is referred to as the canonical or the NV T/NPT
ensemble respectively. The grandcanonical or µV T ensemble refers to the case where the
chemical potential (µ), volume (V) and temperature (T) are held constant.

Now, let us consider a system with N particles in a region with fixed volume V evolv-
ing as per Hamilton’s equations of motion. Taking the time derivative of the Hamiltonian
of such a system we get

dH

dt
=

d

dt

N∑
i=0

p2
i

2mi

+ V (ri) (2.6)

=
N∑
i=0

[
∂H

∂pi
ṗi +

∂H

∂ri
ṙi

]
(2.7)

In (2.7) it is assumed that the masses of the individual particles do not change over time.
Now substituting (2.3) into (2.7) we get

dH

dt
=

N∑
i=0

[
∂H

∂ri

∂H

∂pi
− ∂H

∂pi

∂H

∂ri

]
= 0 (2.8)

From (2.8) we can see that for such systems the Hamiltonian, H is conserved and the
total energy (E) in the system remains constant. Now as the system evolves over time,
its 3N+1 dimensional state will generate a trajectory in phase space. Since the energy of
the system is constant i.e. H(p, r) = E, this limits all the accessible states of the system
to a constant energy hyper-surface in phase space. The assumption here is that given an
infinite amount of time, the system will sample all the points on this hyper-surface. This
is known as the ergodic hypothesis, which simply states that any system evolving under
Hamilton’s equations of motion will eventually sample all accessible microstates. Thus,
statistical averages of any observable A over a large number of independent ensembles can
safely be replaced by time averages over the system’s trajectory i.e., ⟨A⟩t = ⟨A⟩ensemble

where ⟨A⟩t is given by

⟨A⟩t = lim
τ→∞

1

τ

∫ τ

t=0

A(p(t), r(t))dt (2.9)
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and ⟨A⟩ensemble is given by

⟨A⟩ensemble =

∫ ∫
dpNdrNA (p, r) ρ (p, r) (2.10)

where ρ (p, r) is the probability distribution of the ensembles. With the ergodic hypothesis
in mind, the goal of MD simulations is to evolve the system such that the phase space is
sampled sufficiently and use time averages to compute the macroscopic observables.

2.1.3 Temperature & Pressure scaling

The equipartition theorem, states that energy is shared equally amongst all energetically
accessible (quadratic) degrees of freedom of a system and is a general statement on
how all systems evolve in order to maximize their entropy. This implies that in thermal
equilibrium all molecules have the same average energy associated with each independent
degree of freedom of their motion. For translational motion, the average kinetic energy
of each molecule can then be expressed as

⟨KE⟩ = 1

2
m(v2x + v2y + v2z) =

3

2
kBT (2.11)

where kB is the Boltzmann constant and T is the temperature. Temperature plays an im-
portant role in molecular dynamics simulations since it dictates the overall average energy
of the molecules in the system. When studying systems in the NV T/NPT ensembles,
the temperature and pressure of the system needs to be held constant. A possible way
to achieve constant temperature in simulations could be to force it to be exactly T at
every time step. In practice, this proves to be quite a severe perturbation and its side
effects are quite large in systems with small number of particles. Better methods for
thermostating/barostating systems are available and are presented in [9, 17, 58].

In [17], the Berendsen method of scaling temperature in a MD simulation is presented.
In this method, the system’s temperature is scaled directly but its effects are relaxed over
a time constant, τT . Assuming T0 is the desired temperature, ∆t is the simulation time
step, the Berendsen thermostat scales all velocities of the particles at each time step by
the following factor, λ

λ =

√
1 +

∆t

τT

(
T0

T
− 1

)
(2.12)

According to Berendsen, τT > 100∆t typically results in the system having natural
fluctuations about the desired temperature. Similarly, the pressure of a system can be
scaled to a desired target using the Berendsen barostat. Barostating is achieved by
changing the positions of all atoms and system volume during the simulation. If the
target pressure is P0 and τP is the timescale over which the system’s pressure is relaxed,
the scaling factor µ is given by [17,145]

µ =

[
1− β∆t

τP
(P0 − P )

]1/3
, (2.13)
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where β is the system’s isothermal compressibility and P is the current pressure in the
system. From the scaling factor µ, the positions of all particles and the system size can
then be scaled as

r(t+ δt) = µr(t) (2.14)

V (t+ δt) = µ3V (t), (2.15)

where V (t) is the time dependent volume of the system.

2.1.4 Interaction Potentials/Force Fields

The key input in MD simulations is defining the means through which the particles/atoms
interact with each other. One of the simplest ways to describe interactions in an MD
system is through the Lennard-Jones potential also known as the 12− 6 potential. In its
simplest form, this potential is described by the following equation

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (2.16)

Here ϵ is the energy well depth, σ is the distance scale i.e V (σ) = 0 and r is the
radial distance between two particles. The (σ/r)12 term describes the repulsive nature
of the potential and is supposed to model the repulsive forces felt by molecules due to
overlapping of their electron orbitals. The exponent 12 does not have a true physical
motivation other than that it can be calculated efficiently by simply squaring the 6
term. The (σ/r)6 term describes the attractive nature of the potential (Van der Waals)
and can be derived analytically by considering how two charged spheres induce dipole-
dipole interactions onto each other. The Lennard-Jones (LJ) potential has been used
successfully to model the properties of liquid argon as shown in [184] with the results
from the simulation being in excellent agreement with physical observables. In figure 2.1
we show a plot of the potential for ϵ = 1 and σ = 1. From this we can clearly see the
attractive and repulsive regimes introduced by the potential as well as the equilibrium
distance where potential is minimum (zero force) In figure 2.1, we mark all distances
in dimensionless units as pointed in the following section and scale everything by the
potential length scale, σ i.e. r̂ = r/σ.

2.1.4.1 Dimensionless Units

When considering numerical simulations, care must be taken to ensure that no quantity
either underflows or overflows the precision available on the machine. Such situations
become all too common when studying systems where either the length, time and energy
scales involved are too small. In MD simulations, there are two possible ways to circum-
vent such situations 1) either work in atomic scale units i.e. (picoseconds, nanometers
. . . ) 2) or make all involved length, energy and timescales dimensionless with respect to
certain characteristic scales inherently present in the system. In systems being studied
under the LJ potential, one such characteristic scale can easily be constructed by us-
ing different combinations of the potential’s energy ϵ, length scale σ and particle’s mass
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Figure 2.1: 12-6 Lennard Jones potential. Sigma, σ is the Lennard Jones interaction
length scale where V (r) = 0 and r0 is the potential minimum i.e. ∂V/∂r = 0

m. Using these values, the dimensionless energy can be described as E∗ = E/ϵ, dimen-
sionless distance r∗ = r/σ, temperature T ∗ = kBT/ϵ and time t∗ = t/

[
σ(m/ϵ)1/2

]
. In

dimensionless units, the Lennard-Jones potentials looks even simpler i.e.

V ∗ (r∗) = 4

[(
1

r∗

)12

−
(

1

r∗

)6
]
. (2.17)

We can see that none of the initial parameters appear in equation (2.17). Using such
dimensionless potentials in MD simulations is extremely useful as all values/results are
always easily comparable. Results obtained via dimensionless simulations can then be
easily transferred to different system via a straightforward scaling of the obtained simu-
lation quantities using the model parameters i.e. ϵ, σ and m.

2.1.5 Bonded potentials

So far we have discussed the Lennard-Jones potential as it is an excellent candidate to
describe non-bonded interactions between atoms and molecules in simulations. However,
to describe and model complex bonded interactions present in molecules and between
atoms, more complicated interaction potentials need to be considered. When describing
covalent bonds in molecules a lot of details need to be considered such as the angles
between the bonds, bond rotation and torsion, changes in bond length etc.

In order to describe/capture such effects a large suite of inter-atomic potentials/force
fields have been developed and are extensively used in MD simulations. In simplified
terms, the total energy of a molecule can be described as a sum of contributions from
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different interatomic potentials i.e. [145]

Etotal = Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond, (2.18)

where

• Ebond is the contribution to the total energy due to changes in bond length

• Eangle describes the contribution to Etotal due to the changes in the angle between
atoms and is considered a three body potential

• Etorison captures the contributions to Etotal due to the rotational motion of different
parts of a molecule relative to each other

• Eoop describes the out of plane contributions that happen when one part of the
molecule is out of plane with respect to the rest

• Ecross combines the effects of all cross terms from other interactions

• Enonbond describes the contributions to the total energy from all other sources that
are not associated with covalent bonds e.g. Lennard-Jones and Coulomb interac-
tions

2.1.5.1 Ebond energy

As described earlier, this reflects the contribution to the total energy of a molecule due
to the stretching/compression of bonds between atoms of a molecule. As it describes
interactions between two atoms, it is simply a pair potential and in its simplest form can
be described by a harmonic potential i.e

Ebond =
∑
bonds

1

2
kb (b− b0)

2 , (2.19)

where b0 is the desired equilibrium bond length and b is the current bond length. Ex-
pressing (2.19) in terms of the coordinates of the atoms involved in the interaction [145]

Ei =
∑
j

1

2
k (rij − r0)

2 . (2.20)

From (2.20) it can easily be seen that such a potential is approximating the bond as a
spring with a spring constant k. This approximation is quite simple and indeed does
work well in most scenarios but has a few drawbacks. For instance, the harmonic bond
potential cannot describe large displacements from the equilibrium bond length, b0 quite
well. Secondly, it cannot also describe the situations where the bonds between atoms
spontaneous break. To improve approximations for non-elastic regimes one can easily
add higher order terms in b− b0 and refine the potential as needed. Adding higher order
terms can help in describing larger displacement and strains, but effects of bond breaking
are still not covered.
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Another effective bond potential that is also widely used is the Morse Potential i.e
[145]

Ebond =
∑
bonds

Db (1− exp [−a (b− b0)])
2 (2.21)

The Morse Potential is used quite often in simulations to describe bond energies since it
tends to zero for large displacements from the equilibrium, so in principle it can describe
bond breaking. However since the potential is approximated via a decaying exponential,
the effect is never fully zero so small long range effects might still be an issue.

Another much used and useful bond potential is the FENE (Finite Extensible Non-
linear Elastic) bond potential and is used quite often when studying polymer chains and
melts. It is described by

Ebond = −1

2
KR2

0 log

[
1−

(
r

R0

)2
]

(2.22)

where R0 describes the maximum extent of the bond. In addition to (3.1), if one also
includes the repulsive part of the 12 − 6 Lennard Jones, this potential asymptotically
approaches the harmonic potential described earlier for small displacements of the bond
length near R0 whereas it diverges as the bond length approaches R0. The FENE bond
potential is quite useful when studying polymer chains as it prevents spurious bond
crossing that are not physical to begin with.

2.1.5.2 Eangle

This terms captures the contributions to the total potential energy of a molecule due to
changes in the angle formed by two different bonds. Most kinds of covalent bonds have
some angle that is most favored by them for instance for sp3 hybridized bonds, 109◦ is
most favored, for sp2120◦ is most favored [145]. Similar to the Ebond case, the simplest
way to describe the angular potential is again through a harmonic potential i.e

Eangle =
∑
θ

Hθ (θ − θ0)
2 , (2.23)

where θ0 is the equilibrium angle made by two bonds and Hθ is like a spring constant
that maps angular displacements to potential energy. For larger angles again, one can
improve the potential by adding higher order terms in θ − θ0 [145].

2.1.5.3 Torsional Energy, Etorsion

To describe energy contributions from rotational motions of different parts of a molecule
relative to each other, torsional effects need to be considered. Unlike the bond and
angular harmonic potentials, describing torsional effects is little involved and typically
involves trigonometric functions. A simple example of torsional motion exhibited by a
molecule can be provided by considering the rotation of the ethane molecule C2H6 around
its central bond axis [145].
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If one models the angle between the two different parts of a molecule by ϕ, the
potential function needs to be periodic in ϕ i.e. f(ϕ) = f(ϕ + 2π) as it is possible to
do a full rotation about a central axis and return to the initial position. Due to this
periodic requirement, the trigonometric sin and cos functions are useful in this situation.
A commonly used expression for the torsional potential energy is constructed by taking
a few terms from a Fourier series in ϕ [145]

Etorsion = V1 (1 + cos (ϕ)) + V2 (1 + cos (2ϕ))) + V3 (1 + cos (3ϕ)) (2.24)

where V1 describes the dipole-dipole interactions between the parts of the molecule in-
volved, V2 describes the bond configuration and V3 relates to the steric energy.

2.1.5.4 Out-of-Plane, Eoop

As the name illustrates, the out-of-plane terms describe the energy stored in a molecule if
certain parts of itself are mis-aligned and shifted out of plane with respect to a common
plane of axis. The functional form of such a potential is quite simple [145] and can be
written as

Eoop =
∑
χ

Hχ χ
2, (2.25)

where χ is a measure of the displacement out of the plane.

2.1.5.5 Cross/Nonbonded terms, Ecross, Enonbonded

The cross terms are simply all the functions that contain several of the above mentioned
potentials. For instance, the cross terms can describe how a stretched bond can have a
weak angular dependence than a regular bond, or they can also describe the relations
between two displacements, an angle as well as including torsional effects [145]. We
can quickly see that by mixing such effects, one can model rather complicated motions
present within molecules. Careful inclusion of cross terms in describing the total energy
of a molecule can significantly improve the accuracy of the simulations, whilst it must also
be mentioned that including higher order effects typically result in higher computational
costs.

The non-bonded terms, Enonbond amalgamates all the effects from non bonded interac-
tions a molecule may have with others. These interactions can possibly include Var der
Waals type forces, Coulomb forces for charged molecules as well as effects from hydrogen
bonds. Considering these contributions, one can write the Enonbond term simply as a sum
of the three i.e. [145]

Enonbond = EvdW + ECoulomb + EhBond (2.26)

2.1.6 Reactive Potentials

The potential functions considered so far enable one to model physical processes via
MD simulations quite accurately. However, if the system to be studies exhibits chemical
processes such as the spontaneous formation and breaking of bonds between atoms in a
molecule or between molecules themselves the potentials considered so far fail to address
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such phenomena. Although the chemical processes concerning the formation and breaking
of bonds is inherently quantum mechanical in nature, having a classical description of
such processes can yield significant benefits in terms of computational costs incurred
during MD simulations.

One such classical analogue for describing the chemical bond formation/breaking pro-
cesses is the Tersoff type potentials as described in [145,170–173]. Unlike the traditional
molecular mechanics force fields [33, 53, 65, 66, 114, 164], the Tersoff model allows for the
formation and breaking of chemical bonds during simulations. In doing so, Tersoff po-
tentials consider the many body effects arising from the local interaction environment
of each atom and uses that to modify the strength of more conventional pairwise terms.
With this approach, individual atoms are not constrained to remain attached to specific
neighbors. Models of this sort, despite being classical in nature can provide realistic de-
scriptions to the covalent bonding process which are inherently quantum mechanical in
nature. Tersoff potentials have been developed and applied successfully to study systems
involving silicon [172], carbon [171], germanium [173], oxygen or hydrogen [22].

The REBO (Reactive Empirical Bond Order) potential is one particularly useful type
of Tersoff potential developed by Brenner [23, 24]. The REBO potential uses a Tersoff-
style potential to describe covalent bonding interactions in carbon and hydrocarbon sys-
tems. This potential has also been used successfully to model different materials such as
fullerenes [24] and carbon nanotubes [63].

2.1.7 Numerical Integration

Given the typical number of particles and the nonlinearity of the potentials involved
in MD simulations, analytical solutions to the system’s equations of motion are not
possible. Due to this limitation one has to resort to numerical methods/techniques to
solve for the dynamics of the system and study its evolution through time. There are
several numerical algorithms proposed in this regard, but the (1) Verlet algorithm [184],
(2) Leap-frog algorithm, and (3) Velocity-Verlet are three widely used algorithms in MD.
The major benefits to these algorithms is that they are symplectic in nature and conserve
energy and momentum of the system for simple potentials. These algorithms are also time
reversible respecting the time symmetry present in dynamics. Moreover, these algorithms
share the properties that numerical errors made during time marching typically decay
over time resulting in long stable simulations.

2.1.7.1 Verlet Method

This algorithm is one of the most commonly used finite difference time marching algo-
rithm and was first used by Verlet in [184]. It can be easily derived by taking a Taylor
expansion of the position of a given particle one step ∆t forward and backward in time
i.e

r (t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

3!
δt3ȧ(t) +O

(
δt4
)

(2.27)

r (t− δt) = r(t)− δtv(t) +
1

2
δt2a(t)− 1

3!
δt3ȧ(t) +O

(
δt4
)

(2.28)
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Summing the two equations yields

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) (2.29)

Since the update to the positions is calculated using the position at time t as well as at
time t− δt, the Verlet algorithm is a two step method. The velocities are calculated by
averaging the position updates i.e

v(t) =
r(t+ δt)− r(t− δt)

2δt
(2.30)

The global error in computing the positions and the velocities of the particles scales as
O(δt2) due to which the Verlet algorithm is also known as a second order integrator.

2.1.7.2 Leap-Frog Method

In the Leap-Frog [19] method, the velocities of all the particles involved are calculated at
half time step i.e t+ δt/2. These velocities are then used to update the positions. In the
subsequent step, the positions then leap over velocities and the time marching continues
in this manner. An advantage of this approach is that velocities are calculated explicitly
but the drawback is that they are not calculated at the same time step as the positions.
One can approximate the velocities at time t as follows

v(t) =
1

2

[
v

(
t− 1

2
δt

)
+ v

(
t+

1

2
δt

)]
(2.31)

The main equations of the Leap-Frog algorithm are

r (t+ δt) = r (t) + v

(
1 +

1

2
δt

)
δt (2.32)

v

(
t+

1

2
δt

)
= v

(
t− 1

2
δt

)
+ a(t)δt (2.33)

2.1.7.3 Velocity Verlet Method

The Velocity-Verlet [166] method is widely used in MD simulations since unlike the Verlet
method, this algorithm is self-starting i.e one does not need to know the position at time
t− δt to start integrating. Another advantage of this method is that both the positions,
r(t) and velocities, v(t) are calculated at the same time step and explicitly without the
need of any averaging. The derivation of this method is fairly simple and can be started
by considering the Taylor expansion of the positions at time t+ δt i.e

r (t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +O

(
δt3
)
. (2.34)

Using Netwon equation of motion, we can replace the acceleration term with the forces,
F acting on the particles at time t and position r(t). With this substitution, we obtain

r (t+ δt) = r(t) + δtv(t) +
1

2
δt2

F (r(t))

m
+O

(
δt3
)
. (2.35)
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Similarly, considering the Taylor expansion of the velocities we obtain

v(t+ δt) = v(t) + δta(t) +
1

2
δt2ȧ(t) +O

(
δt3
)
. (2.36)

In (2.36), we can again replace the acceleration by the forces acting on the particles at
time t at position r(t), but we still need an expression for ȧ. To this end, one can consider
the Taylor expansion of a(t+ δt),

a (t+ δt) = a(t) + δtȧ(t) +O(δt2) (2.37)

Multiplying by δt2

2
and rearranging the terms in (2.37), we obtain

δt2

2
ȧ(t) =

δt

2
(a(t+ δt)− a(t)) +O(δt3). (2.38)

Now with this approximation for ȧ(t), and using the equations of motion we can rewrite
equation (2.36) as

v(t+ δt) = v(t) +
δt

2m
(F(r(t+ δt)) + F(r(t))) +O(δt3). (2.39)

With these simplifications, the Velocity-Verlet equations are

r (t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +O

(
δt3
)

(2.40)

v(t+ δt) = v(t) +
δt

2m
(F(r(t+ δt)) + F(r(t))) +O

(
δt3
)

(2.41)
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In practice the evaluation of these equations happens as follows

1. Initialize all the forces on the particles to zero

2. Compute the forces, F at time t using the current positions of all particles, r(t)

3. Perform a partial update of the velocities and a full update of the particles positions
as follows

v∗ = v(t) +
δt

2m
F (t) (2.42)

r(t+ δt) = r(t) + v∗(t)δt (2.43)

4. Compute the forces, F again using the updates positions i.e. r(t+ δt)

5. Update the velocities using the computed forces F(r(t+ δt)) via

v(t+ δt) = v∗(t) +
δt

2m
F (r(t+ δt)) (2.44)

2.1.8 Periodic Boundary Conditions

Rudimentary MD algorithms typically scale as N2 where N is the number of particles
involved in the simulation. This is primarily due to the fact that computing pairwise
interactions to determine the net forces acting on the particle is quite computationally
expensive. With tricks such as neighbour lists, Verlet lists and interaction cutoffs one
can get the algorithms to scale as O(N) but still the computational costs incurred can be
high. To deal with such complexities, one typically employs periodic boundary conditions
in their simulations which allow one to approximate a very large/infinite system by using
a small part commonly referred to as the unit cell. Particles that leave the unit cell
immediately enter it back from the opposite side with the same velocity and momentum.
The other copies of the unit cell are commonly referred to as images and during the
simulation only the properties of the original unit cell/simulation box need to be recorded
and carried forward in time.
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Figure 2.2: Illustration of periodic boundary conditions for a 2D system of particles.
The center cell with red particle is the unit cell and the neighbouring cells are periodic
images of the same. The offset cell marks the minimum images of the enlarged particle
within the unit cell.

2.1.8.1 Minimum image convention

Having briefly explained the usefulness of the periodic boundary conditions and how it
simplifies simulating large systems by simply considering a small unit cell from it, it is
necessary to discuss how pairwise interactions between particles are computed. Having
mentioned that if a particle passes through a periodic boundary it or its periodic image
should enter the unit cell via the opposite end. This way the number of particles within
the unit cell is always conserved as particles leaving the cell are automatically replaced by
their nearest images. Keeping this in mind, commonly in molecular dynamics simulations
the pairwise interactions between particles are computed using their nearest images, and
is commonly referred to as the minimum image convention. As per this convention, say
in order to compute the potential energy for force between two particles i and j, if the
distance between the two is larger than L/2, with L being the unit cell length, then
particle j will be disregarded as the interaction partner of i and its image located at
xj − L will be used instead.
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2.2 Lattice-Boltzmann Methods

Lattice-Boltzmann methods are a systematic framework built upon the famous Boltz-
mann equation describing the mesoscopic dynamics of particles within a fluid. The
Lattice-Boltzmann equation (LBE) is a discretized version of the Boltzmann equation
and is used heavily to simulate the dynamics of fluid flows without ever having to solve
the all encompassing Navier-Stokes equations. Via solving for the mesoscopic particle
populations/distribution function, the macroscopic fluid observables emerge as various
moments of the distribution functions. Originally being derived from lattice cellular au-
tomata [195,196], the LB framework has rapidly evolved into a rigorous and well studied
method for simulating fluid behaviour. Due to its computational simplicity and high
parallel approach, the LB framework has proven to be a vital method in simulating large
fluid flow problems and its implementations have known to scale extremely well with
problem sizes. A distinctive feature of the LB framework as a computational solver for
fluid problems is its space-time locality, and the fact that all particle information travel
in straight lines predefined within the model. This makes it relatively easy to parallelize
and easy to scale. Due to these properties, the LB approach counts today for an impres-
sive array of applications across several fields of fluid dynamics and has proven vital in
the development of many technologies.

In this section, we detail out the framework starting from the very basics of fluid
dynamics and the governing Navier-Stokes equations and work our way up to the fully
discrete LB equation. In section (2.2.1), we begin by outlining the Navier-Stokes equa-
tions and present short derivations of the mass and momentum conservation equations.
Following that, since the Boltzmann equation is deeply rooted in the kinetic theory of
particles, in section (2.2.2) we elaborate on the quantities involved in the Boltzmann
equation and how macroscopic observables are tied to the particle population distribu-
tion functions. In section (2.2.3) we present the LB equation from a broader perspective
in order to set the stage for details presented in the subsequent sections. We also mention
the role of collision operators in the LB framework and explain the widely popular BGK
(Bhatnagar-Gross-Krook) collision operator. In the subsequent section (2.2.4) we explain
in detail how the velocity space is discretized in the LB framework in order to reduce its
dimensionality to a finite number. We show how in practice the Boltzmann equation is
made dimensionless and from this how discrete velocities are derived via expressing the
particle and equilibrium particle distributions as finite series over Hermite polynomials.
In the following section, (2.2.5), the address the issue of boundary conditions within the
LB framework and work through how different types of boundary conditions under dif-
ferent geometries can be implemented for the LB equation. In section (2.2.6) we cover
the methodology through which external forces can be included in the LB equation and
how the external forcing terms are discretized over a Hermite basis.

In the final sections i.e (2.2.7 - 2.2.10), we address how thermal fluctuations can be
added into the LB equation via adding spontaneous fluctuations to the stress tensor in
such a way so that the fluctuation-dissipation theorem is satisfied. We also describe the
immersed boundary method that is used quite often in fluid simulations when external
particles/bodies are to be immersed within the fluid. In these sections we also describe
how in our framework we couple the fluid and external particles together so that on
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the fluid-particle interface, the no-slip boundary condition is upheld and discuss how the
coupling constant can be properly calibrated to ensure the same. In these sections we also
highlight the importance of proper calibration if one wishes the fluid to act as a thermal
heat bath for all the particles immersed within. Throughout this section we adopt the
approach followed by Kruger et al. in ( [79]) and cite the work suitably throughout.

2.2.1 Navier Stokes Equations

2.2.1.1 Conservation of Mass

Conventionally, the study of fluid dynamics is concerned with macroscopic phenomena
where the molecular nature of fluids is not considered. The fluid under consideration is
treated as a continuous media that evolves over time in a particular region. Under such
a treatment, macroscopic quantities such as mass and momentum are to be conserved.
To understand the conservation of these quantities and to derive the Navier-Stokes equa-
tions, we consider a small fluid element i.e. fluid enclosed within a region of volume V0.
The mass of this fluid element can be represented by

m =

∫
V0

ρ dV (2.45)

To introduce dynamics into the picture, we can consider the rate of change of the fluid
element’s mass over time. Given that the fluid can neither be created or destroyed, the
only way through which the mass of the fluid element can change is if new fluid enters
or exits the region V0. This relationship can be expressed as

∂

∂t

∫
V0

ρdV = −
∮
∂V0

ρu · dA (2.46)

where the right hand side represents a surface integral over the boundary enclosing region
V0 and u is the fluid velocity. Using the divergence theorem, equation (2.46) can be
rewritten as a volume integral

∂

∂t

∫
V0

ρdV = −
∫
V0

∇ · (ρu) dV (2.47)

where ∇ · (ρu) is the divergence of the momentum density of the fluid i.e. ρu. As (2.47)
is true for arbitrary V0, the integrand must be zero and we get the continuity equation
that implies fluid mass conservation

∂ρ

∂t
+∇ · (ρu) = 0 (2.48)

Frequently in fluid dynamics literature, equation (2.48) is also expressed as the material
derivative by expanding the divergence of the momentum density

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 (2.49)

Dρ

Dt
+ ρ∇ · u = 0 (2.50)
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where the material derivative is introduced to be

D

Dt
=

∂

∂t
+ u · ∇ (2.51)

which denotes the rate of change as the fluid element moves around in space as compared
to it being a stationary point in space [15,79]

2.2.1.2 Conservation of Momentum

The continuity equation (2.48) marks the relationship between fluid density and the
momentum density flux, ρu. Similar to the analysis carried above, we can derive the
equation describing the conservation of momentum of the fluid element with density ρ
and velocity u within the region V0 [15, 79]. Under ideal conditions for a simple fluid
(i.e. no internal viscous stresses) the net change in the fluid element’s momentum can
be attributed to (i) momentum flow into or out of the region V0 (ii) pressure gradient
across the region V0 and (iii) external body forces F acting on the the fluid element in
region V0. These relationships can be summarized as

d

dt

∫
V0

ρudV = −
∮
∂V0

ρuu · dA−
∮
∂V0

pdA+

∫
V0

FdV (2.52)

where uu is the fluid velocity outer product with element uαuβ [79] and the surface
integrals are over the boundary enclosing region V0. By converting the surface integrals
to volume integral using the divergence theorem we get [79]∫

V0

∂(ρu)

∂t
dV = −

∫
V0

∇ · (ρuu) dV −
∫
V0

∇pdV +

∫
V0

FdV (2.53)

Again, this is true for arbitrary V0 so the integrand must be zero and equation (2.53)
yields the famous Euler equation

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+ F. (2.54)

Grouping all the velocity and pressure terms on the left hand side, we can express the
Euler equation using the momentum flux density tensor for an ideal fluid i.e.

Παβ = ρuαuβ − σαβ (2.55)

and we obtain the Cauchy momentum equation [79]

∂ (ρu)

∂t
+∇ · Π = F. (2.56)

The momentum flux density tensor Π describes the momentum flux between cross veloc-
ity terms as well as the stresses involved during momentum transfer within the moving
fluid. The term σαβ is the stress tensor and for simple ideal fluids is simply σαβ = −pδαβ
and is entirely diagonal and isotropic in all directions.
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The Cauchy momentum equation as described in (2.56) provides a good description
of the momentum conservation for ideal fluids only. For real fluids, the equation needs to
be modified to include the viscous effects present in fluids due to relative motion between
different parts of the fluid element itself. Due to such internal friction, the momentum
transfer from one fluid element to another is not reversible and dissipates over space and
time [15, 79]. To formulate a closed form for such a viscous stress tensor, σ, it can be
argued that it must vanish in the case of simple fluids in uniform motion. Furthermore
it can also be noted that if the relative velocities between the different fluid elements is
small, i.e. small velocity gradients, then the momentum transfer and dissipation due to
viscous effects can entirely be represented via the first derivatives of the velocities [82].
A generic rank two tensor satisfying these requirements can be written as follows [79,82]

σαβ = η

(
∂uα

∂xβ

+
∂uβ

∂xα

)
+ ζδαβ

∂uγ

∂xγ

, (2.57)

where η and ζ are coefficients of viscosity. These coefficients are usually assumed to be
isotropic and uniform. The viscous stress tensor is typically broken down into a traceless
shear stress component and a normal stress component as follows [79]

σαβ = η

(
∂uα

∂xβ

+
∂uβ

∂xα

− 2

3
δαβ

∂uγ

∂xγ

)
+ ηBδαβ

∂uγ

∂xγ

(2.58)

where η is known as the shear viscosity of the fluid and ηB = 2η/3 + ζ is termed as the
bulk viscosity of the fluid.

Now, with having arrived at a closed form for the viscous stress tensor that describes
the dissipative and viscous effects during momentum transfer between fluid elements, the
full Navier-Stokes equations can be listed as follows [79,82]

∂ (ρuα)

∂t
+

∂ (ρuαuβ)

∂xβ

= − ∂p

∂xα

+
∂

∂xβ

[
η

(
∂uα

∂xβ

+
∂uβ

∂uα

)
+

(
ηB − 2η

3

)
∂uγ

∂xγ

δαβ

]
+ Fα

(2.59)
The Navier-Stokes equation can be simplified considerably if we assume that the fluid flow
is incompressible i.e. ρ = const. If the density of the fluid is assumed to be constant, then
via the continuity equation (2.48) we obtain ∇ · u = 0. In this case, the incompressible
Navier-Stokes equations are written as follows

ρ
Du

Dt
= −∇p+ η (∇ · ∇)u+ F. (2.60)

2.2.1.3 Equation of State

Based on the discussions so far, we have in total four equations describing the dynamics of
a fluid namely, the continuity equation (2.48) and the momentum conservation equations
(one for each component of the fluid velocity) (2.59). However, it can be noted that this
system is incomplete since we have five unknowns namely, the fluid density, ρ, pressure,
p and the three velocity components i.e. ux, uy, uz and we have only four equations
describing their evolution. As a result, the system of equations is unsolvable since we
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have more unknowns than equations at hand. One way to circumvent this issue would
be by assuming the fluid density is constant throughout, i.e. ρ = C. This fixes the
fluid density for the system effectively rendering the system to have four equations with
four unknowns. This approach is quite useful in our case, since in our work we simulate
systems with density fairly constant throughout, thus the fluid pressure can be linearly
related to its density. Any additional constants do not impact the dynamics per say since,
the pressure gradient is the quantity of interest in the Navier-Stokes equations (NSE).

In other cases, more general approaches can be used by adding another equation that
is derived from the state principle of equilibrium thermodynamics. This equation of state
is simply a relationship between the system’s thermodynamic state variable i.e. the fluid
density, ρ, pressure p, temperature, T , internal energy e and entropy s. The ideal gas
law is an example of such an equation of state and simply relates the pressure to density
and temperature through the specific gas constant, R

p = ρRT. (2.61)

2.2.2 Kinetic Theory & The Boltzmann Equation

Unlike the description of fluids provided in section (2.2.1), where all fluids are treated
as a continuous media, the kinetic theory description of the same lies somewhere in be-
tween the microscopic description of the motions of the atoms and molecules comprising
the fluid, and the macroscopic observables such as pressure, density, fluid momentum
and velocity and temperature. This mesoscopic approach deals with the distribution of
particles in fluids (gas, liquids) and derives all the macroscopic observables from such
a quantity. The distribution of particles is assumed to evolve on timescales that is, on
average, equal to the mean collision time of the fluid particles [79].

The fundamental quantity in kinetic theory of fluids is the particle distribution func-
tion, f(x, ξ, t), which represents the density of particles with velocity ξ = (ξx, ξy, ξz) at
position x at time t. Although the particle distribution function at first glance seems to
describe quantities relevant to the microscopic scales, the macroscopic observables such
as fluid density, ρ(x, t) and velocity u(x, t) can be easily obtained through the moments
of f . These moments are simply weights integrals of f over the entire velocity space.
For instance, density of the fluid can be easily recovered from the first moment of the
distribution function

ρ(x, t) =

∫
f(x, ξ, t)d3ξ. (2.62)

By integrating velocity out, we are able to recover the contribution to the density of fluid
by particles of all velocities at position x at time t.

Similarly, taking the first moment of the distribution over the entire velocity space,
i.e. ξf we recover the fluid’s momentum density at all positions x at time t,

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)d3ξ. (2.63)
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2.2.2.1 Equilibrium Distribution Function

Given that we are considering fluid/gas where the particles are free to collide, it can
be reasonably expected that over sufficiently long periods of time such a system will
tend towards an equilibrium distribution function provided no external time dependent
forces/factors are at play. Under this assumption, we can assume that the particle
distribution function f(x, ξ, t) will tend towards f eq which is isotropic in velocity space
around ξ = u in a reference frame that is moving with speed u [79].

Assuming collisions between the particles in our fluid are fully elastic, we can impose
further restrictions on the distribution function by requiring it to be separable over
velocity space

f eq(|v|2) = f eq(ξ2x + ξ2y + ξ2z ) = f eq(ξ2x)f
eq(ξ2y)f

eq(ξ2z ). (2.64)

We note that in 2.64, the equilibrium distribution appearing on the left hand side is
the full 3-D distribution whereas the f eq appearing on the right hand side are the 1-D
equivalents of the same. Holding the velocity magnitude constant i.e. |ξ|2 = C, we can
write 2.64 as

f eq(|ξ|2) = log f eq(ξ2x) + log f eq(ξ2y) + log f eq(ξ2z ) = C (2.65)

Such a relationship is only fulfilled when each of the 1-D equilibrium distribution functions
are of the form [79]

log f eq(v2i ) = a+ bξ2i , (2.66)

where i = x, y, z. With this simplification, we obtain

log f eq(ξ2x) + log f eq(ξ2y) + log f eq(ξ2z ) = 3a+ b(ξ2x + ξ2y + ξ2z ). (2.67)

From (2.67), one can easily derive the equilibrium distribution function to be

f eq(|ξ|) = e3aeb|ξ|
2

. (2.68)

The constants a and b can be fixed by demanding that collisions conserve energy and
momentum as well as f eq have the same energy and density moments as f . With this
condition, the equilibrium particle distribution function is found to be

f eq(x, |ξ|, t) = ρ

(
1

2πRT

)3/2

exp

(
− |ξ|2
2RT

)
. (2.69)

This form of the equilibrium distribution function is commonly referred to as theMaxwell-
Boltzmann distribution function. Although this derivation was a little simplistic in na-
ture, a more rigorous derivation of the same can be found in [50] where the author also
goes to show that this expression is also unique and how to derive it as a solution for
equation (2.71) in the limiting case.
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2.2.2.2 Boltzmann Equation

So far we have described f as the particle distribution function and whose moments
over velocity space yield the macroscopic observables such as fluid density, ρ, momentum
density ρu etc. The Boltzmann equation now simply describes the time evolution of
the particle distribution function under the influence of external forces and inter-particle
collisions. Considering the total derivative of f (x, ξ, t)

df

dt
=

(
∂f

∂t

)
+

(
∂f

∂xα

)
dxα

dt
+

(
∂f

∂ξα

)
dξα
dt

(2.70)

From equation (2.70), we can see that various terms arise in the processes of taking the
total derivative of f . It can be noted that dxα/dt is simply the local particle velocity, ξα
whereas dξα/dt describes an acceleration term. Using Newton’s second law of motion,
we can rewrite this term as Fα/ρ that has units of force per unit mass. With these
substitutions we get the final expression for the the Boltzmann equation

∂f

∂t
+ ξα

∂f

∂xα

+
Fα

ρ

∂f

∂ξα
= Ω(f), (2.71)

where α = x, y, z and Ω(f) acts as a source term for the equation and represents changes
to f due to local collisions between particles. The term Ω(f) is also commonly known as
the collision operator [79, 161]

In Boltzmann’s original work, the collision operator is in the form of a complicated
double integral over velocity space as it considers all the possible outcomes of two particle
collisions. However, in practice the collision operators used are quite simple in nature
and the most commonly used operator is the BGK collision operator [18]

Ω(f) = −1

τ
(f − f eq) (2.72)

This collision operator describes how the collisions deviate the distribution function f
away from is local equilibrium value f eq and how it relaxes back towards f eq over a time
period τ also known as the relaxation time. The value of τ directly determines the
fluid transport coefficients such as viscosity and heat diffusivity [79,161]

2.2.3 The Lattice Boltzmann Equation

The Lattice Boltzmann Equation, LBE for short, is basically the Boltzmann equation 2.71
fully discretized on a lattice with cell spacing ∆x, temporal resolution ∆t as well as over
a discrete set of velocities ci. The fully discretized version of the particle distribution,
fi(x, t), one for each discrete velocity ci is commonly referred to as populations. In
the LBM framework, the particle populations are the central quantity to be solved since
through it the macroscopic quantities such as fluid density, ρ(x, t) and velocity, u(x, t) are
derived. However, since everything is discretized, the moments of the particle distribution
functions get simply replaced by discrete sums of the the populations i.e. [79, 161]

ρ(x, t) =
∑
i

fi(x, t) ρu(x, t) =
∑
i

cifi(x, t). (2.73)
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The weights associated with the discrete velocities appear when computing the discrete
equilibrium particle distribution function and the discrete moments are simply computed
as the vector dot product between the discrete particle populations and velocities ci. The
rationale behind discretizing the velocity space is explained in the subsequent sections,
but for understanding the mechanics behind the LB framework it suffices to know that
the particle velocities entering in the Boltzmann equation ξ are discretized into specific
sets of velocities along with their characteristic weights, ωi. Depending on the number of
discrete velocities chosen in a given LBE implementation it is conventional to reference
that approach with a tag DdQq (velocity sets) where d is the number of spatial dimen-
sions and q is the number of discrete velocities chosen for the particular problem. Some
popular choices for the velocity sets are D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27 and
are frequently used to solve the Navier-Stokes equations using the LBM framework. In
table 2.1 the discrete D3Q15 velocity set is presented for illustration purposes. In figures

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ωi
2
9

1
9

1
9

1
9

1
9

1
9

1
9

1
72

1
72

1
72

1
72

1
72

1
72

1
72

1
72

cx 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 -1 1
cy 0 0 0 1 -1 0 0 1 -1 1 -1 -1 1 1 -1
cz 0 0 0 0 0 1 -1 1 -1 -1 1 1 -1 1 -1

Table 2.1: D3Q15 discrete velocity set, where ωi are the lattice weights and ci=x,y,z are
the corresponding lattice velocities

2.3 and 2.4 the discrete velocities emanating from a single lattice site are illustrated for
the D2Q9 and D3Q15 cases. It should be noted that D3Q15 and D3Q19 are by far the
most commonly used velocity sets in practice when simulating fluid flow according to
Navier-Stokes equations. Adopting higher velocity set approaches results in a trade off
between simulation accuracy, stability and computational costs. For most laminar flow
situations, the D3Q15 and D3Q19 models are adequate in recovering hydrodynamics
described by NSE but for turbulent flow it has been shown in [154] that under these
two velocity sets certain truncation terms, non-linear momentum advection corrections
are not rotationally invariant. Thus for simulating highly turbulent flows (a.k.a high
Reynolds number) the D3Q27 velocity set is the better choice [162,193]

c0

c1

c5c2c6

c3

c7
c4 c8

Figure 2.3: LB velocity set D2Q9 for a simple unit lattice cell
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Figure 2.4: LBM D3Q15 velocity set used when simulating Navier-Stokes equations in
3 dimensions. The empty circles are lattice velocities omitted under this constructions
based on symmetry arguments. Reprinted from [8]. Copyright 2022 by Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences

Above we pointed out that the LBM framework discretizes the Boltzmann equation
on a lattice with grid spacing ∆x and temporal spacing of ∆t. These space and time
steps, depending on the problem at hand can be specified in any units (SI, Imperial etc).
Typically though, to lower numerical and round off errors, it is conventional to scale the
units such that ∆x = 1 and ∆t = 1. In these lattice units the LBM equations are made
dimensionless as all units are scaled out by the relevant length, velocity and time scales.
This approach has the added flexibility that the actual units can be recovered by simply
scaling the dimensionless quantities back by their appropriate factors. Moreover, for each
velocity set and a choice of grid and temporal spacing, one can derive the speed of sound,
cs in the lattice to be

c2s =
1

3

∆x2

∆t2
(2.74)

With the above mentioned discretizations, the Boltzmann equation can then be formu-
lated on the lattice as follows

fi (x+ ci∆t, t+∆t) = fi (x, t) + Ωi (x, t) (2.75)

where fi (x, t) is the population of particles at the x lattice site at time t with velocity ci
and Ωi (x, t) is the discretized Boltzmann collision operator. Equation (2.75) describes
how, post a collision step, particle populations fi (x, t) stream to neighboring lattice sites
with velocity ci at x+ ci∆t at time t+∆t.

As mentioned in the earlier section, the BGK approximation to the original Boltzmann
collision operator is most widely used in practice. On the discrete lattice, the operator
simplifies to

Ωi(f) = −∆t

τ
(fi − f eq

i ) (2.76)
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which relaxes the particle populations fi at lattice site x and time t towards the equilib-
rium value f eq

i at the same location over the time period τ . The equilibrium populations
over this discrete domain simplifies to

f eq
i (x, t) = ωiρ

(
1 +

u · ci
c2s

+
(u · ci)2
2c4s

− u · u
2c2s

)
(2.77)

where ωi and ci are the weights and the discrete velocities from the chosen velocity set.
It can noted that the equilibrium populations at a particular lattice site is determined
entirely from local quantities i.e. fi and fluid velocity u at the same site. This greatly
reduces the computational cost and typically results in performance gains during simu-
lations.

Lastly, it is important to note that the link between the LBE framework and the con-
tinuum Navier-Stokes description of hydrodynamics can be obtained via the Chapman-
Enskog expansion [28]. Through this expansion, the authors were able to show that
the LBE framework results in the correct macroscopic behavior in accordance with the
Navier-Stokes equations, with a kinematic shear and bulk viscosity given by

ν = c2s

(
τ − ∆t

2

)
(2.78)

νB =
2

3
ν. (2.79)

The viscous stress tensor, σαβ can additionally be determined by the particle populations
by

σαβ = −
(
1− ∆t

2τ

)∑
i

ciαciβ (fi − f eq
i ) . (2.80)

2.2.3.1 Implementation

From the previous section, it should somewhat be apparent that the LBE equation with
the discretized BGK collision operator (commonly referred to as the LBGK equation) is
fairly straightforward to understand and implement in a numerical simulation. Substi-
tuting (2.76) into (2.75) we obtain

fi (x+ ci∆t, t+∆t) = fi (x, t)−
∆t

τ
(fi (x, t)− f eq

i (x, t)) (2.81)

While at first glance this appears to be a first order (in ∆t) scheme, in fact it can be
shown to be equivalent to an implicit trapezoidal scheme that is second order in ∆t [35].
To simplify computation and implementation, we can decompose (2.81) into two essential
parts (i) the collision step (ii) followed by a streaming step. The collision step can be
realized by looking at the right hand side of 2.81 i.e.

f c
i (x, t) = fi (x, t)−

∆t

τ
(fi(x, t)− f eq

i (x, t)) (2.82)
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where we denote the populations of particles with velocity ci at the lattice site x at time
t after collisions by f c

i . These populations are then streamed to the neighbouring lattice
sites by simply updating their populations by

fi (x+ ci∆t, t+∆t) = f c
i (x, t) (2.83)

These steps are conveniently illustrated in figure (2.5)

(a) Collision (b) Streaming

Figure 2.5: (a) Collision step where the the particle populations at the central node
(black) is updated based on the collisions with the populations from the neighboring
lattice sites (grey) (b) Streaming step, where the updated populations at the central
lattice site (black) are streamed outwards to the neighboring sites

With these simplifications in mind, to numerically solve the LBGK equation is quite
straightforward and can be broken down into the following steps after initializing the
lattice with initial values for the particle populations

1. Compute the macroscopic quantities ρ(x, t),u(x, t) at each lattice site from fi (x, t)
via (2.73)

2. Compute the equilibrium particle populations at each site from f eq
i via (2.77)

3. (Optional) Compute the viscous stress tensor, σαβ from 2.80 and save the macro-
scopic observables to disk

4. Perform the collision step i.e. evaluate f c
i via (2.82)

5. Update the populations at the neighbouring lattice sites by streaming the post
collision populations via 2.83

6. Update the time step by ∆t and repeat the above steps until convergence or the
maximum simulation time step is reached
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2.2.4 Velocity space Discretization

In the previous section we saw that in the LBM framework, the Boltzmann equation
is fully discretized over space, velocity and time dimensions. Multiple choices of dis-
crete velocity sets exists that are successfully able to reproduce the hydrodynamics at
macroscopic scales as modelled by Navier-Stokes equations. To better understand how
the velocity space discretization is carried out, we need to first consider making the
Boltzmann equation dimensionless.

2.2.4.1 Dimensionless Boltzmann Equation

Physical phenomena typically have multiple length, velocity and time scales associated
with them. For instance, when studying flow of air over the wing of an airplane the
associated length scales would be over a couple of meters, the relevant velocity scales
could potentially be hundreds of meters per second and the time scales could range from
a couple seconds to potentially several hours. At the same time, if one is studying flow in
micro channels, the associated length scales would of order 10−6 meters and the relevant
time scales could be in the range 103 seconds. It is key to note that the underlying
physics is the same regardless the physical scales involved i.e. the Boltzmann equation
remains the same in both situations.

Considering this, it is often very convenient to express the Boltzmann equation in
such a way so that the physical scales associated with the problem at hand are scaled
out and the quantities involved are completely dimensionless. Assuming that for a given
problem at hand, l is the relevant length scale, V is a representative velocity and ρ0 is the
characteristic density, we can scale all the quantities entering the Boltzmann equation
dimensionless. To this end we introduce the following dimensionless variables

t̂ =
V

l
t, ρ̂ =

ρ

ρ0
, ξ̂α =

ξα
V
. (2.84)

Moreover, since the Boltzmann distribution function, f(x, ξ, t) represents the probability
of finding a particle with velocity ξ at position x at time t, and its integral over the entire
velocity space yields the mass density, the units of f can be expressed as

[f ] =
[M ][T ]3

[L]3[V ]3
, (2.85)

where [M ], [T ], [L], [V ] represents units of the associated mass, time, length and velocity
scales respectively in 3D space. Using the dimensionless quantities from 2.84 we obtain
the dimensionless 3D distribution function, f̂ as follows

f̂ =
V 3

ρ0
f. (2.86)

The BGK collision operator, given in 2.72 that depends on f and f eq can also be made
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dimensionless by substituting 2.86 into 2.72 as follows

Ω (f) = −1

τ
(f − f eq)

= −V

l

ρ0
V 3

f̂ − f̂ eq

τ̂

=
ρ0
lV 2

Ω̂
(
f̂
)
. (2.87)

Having scaled the BGK collision operator, we can make the Boltzmann equation dimen-
sionless by scaling all the derivatives

∂

∂t
=

V

l

∂

∂t̂

∂

∂xα

=
1

l

∂

∂x̂α

∂

∂ξα
=

1

V

∂

∂ξ̂α
(2.88)

Substituting 2.88, 2.86 into the individual terms of the Boltzmann equation we get

∂f

∂t
=

ρ0
lV 2

∂f̂

∂t̂

ξα
∂f

∂xα

=
ρ0
lV 2

ξ̂α
∂f̂

∂x̂α

Fα

ρ

∂f

∂ξα
=

ρ0
lV 2

F̂α

ρ̂

∂f̂

∂ξ̂α
, (2.89)

where F̂α is the dimensionless body force acting on the fluid and is given by

F̂α =
l

ρ0V 2
Fα. (2.90)

Now, rewriting the Boltzmann equation in terms of the dimensionless expressions we get

ρ0
lV 2

(
∂f̂

∂t̂
+ ξ̂α

∂f̂

∂x̂α

+
F̂α

ρ̂

∂f̂

∂ξ̂α

)
=

ρ0
lV 2

Ω̂
(
f̂
)

∂f̂

∂t̂
+ ξ̂α

∂f̂

∂x̂α

+
F̂α

ρ̂

∂f̂

∂ξ̂α
= Ω̂(f̂), (2.91)

where the factor ρ0/(lV
2) drops out from both sides. We now use equation 2.91 as the

basis for discretizing it over velocity space. Lastly, in dimensionless units, the equilibrium
distribution function f eq becomes

f̂ eq =
ρ̂

(2πθ)3/2
exp

−
(
ξ̂ − û

)2
2θ

 (2.92)

where θ = RT/V 2 is the dimensionless temperature. From here on, all references to the
distribution function and Boltzmann equation will be to their non-dimensional counter-
parts i.e. f̂ and f̂ eq.
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2.2.4.2 Velocity discretization

In the earlier sections, when discussing the LBM framework we eluded to discretizing
the Boltzmann equation in velocity space using different velocity sets such as D3Q15,
D3Q19. We noted that several such velocity sets along with their respective weights exist
and suitably reproduce the Navier-Stokes macroscopic hydrodynamics. In this section,
we describe the discretization in greater detail and illustrate how these discrete velocity
sets arise in practice.

As we have pointed out so far, the moments of the Boltzmann distribution over
velocity space result in the macroscopic observables such as the fluid density, ρ, and
velocity, u. These moments are continuous integrals over the entire velocity space and
if one is primarily interested in recovering the correct macroscopic behavior, then to
some extent the physics right down at the microscopic/mesoscopic level is irrelevant.
The velocity moments of the distribution function are nothing more than a weighted
integral of f over the velocity space. It can be shown that a vast number of functions
can satisfy the integrals. So in order to simplify the physics and analysis, the goal is to
discretize the Boltzmann equation/distribution function over the velocity space such that
the macroscopic observable remain exactly the same. Furthermore, the velocity space
discretization reduces the continuous 3D velocity space to a finite number of discrete
velocities without compromising the moments of the distribution function. The main
idea behind this discretization is to project the Boltzmann distribution function and the
equilibrium distribution function over a Hilbert space spanned by Hermite polynomials
[79, 150].

The goal is to seek solutions of the Boltzmann equation (2.91) and the macroscopic
moments of the distribution function (dimensionless) (2.93) by projecting the dimension-
less distribution function f̂ onto a Hermite basis in the velocity space i.e. Hn (ξ). In a
monomial basis

ρ (x, t) =

∫
f̂
(
x̂, ξ̂, t̂

)
dξ̂ =

∫
f̂ eq
(
x̂, û, ξ̂, θ

)
dξ̂ (2.93a)

ρu (x, t) =

∫
ξf (x, ξ, t) dξ =

∫
ξ̂ f̂ eq

(
x̂, û, ξ̂, θ

)
dξ̂ (2.93b)

ρE(x, t) =

∫ |ξ|2
2

f̂
(
x̂, ξ̂, t̂

)
dξ̂ =

∫
f̂ eq
(
x̂,u, ξ̂, θ

) |ξ̂|2
2

dξ̂. (2.93c)

We begin by projecting the equilibrium distribution function f eq (ρ,u, θ, ξ) (2.92) onto
the Hermite basis (note we depict only the dependence on ξ). We do so primarily because
the equilibrium distribution function has the same form as the Hermite polynomials
weight function ω(ξ)

f eq (ρ,u, θ, ξ) =
ρ

2πθ3/2
exp

[
−(ξ − u)2

2θ

]
=

ρ

θ3/2
ω

(
ξ − u√

θ

)
f eq (ρ,u, θ, ξ) = ω(ξ)

∞∑
n=0

1

n!
a(n),eq(ρ,u, θ)H(n) (ξ) . (2.94)
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In (2.94), we scale the series by the weight Hermite polynomial generating function/integrating
weight factor so that the integrals determining the series coefficients simplify. As men-
tioned in appendix B, the Hermite polynomials form a orthogonal basis and the series
coefficients can easily be obtained by

a(n),eq =

∫
f eq (ρ,u, θ, ξ)H(n)(ξ)dξ, (2.95)

where the integration is carried out over the entire velocity space of ξ. Substituting the
closed form for the equilibrium distribution function into 2.94 we get

a(n),eq =
ρ

θ3/2

∫
ω

(
ξ − u√

θ

)
H(n)(ξ)dξ. (2.96)

Making a simple change of variables, ζ = (ξ − u)/
√
θ yields

a(n),eq = ρ

∫
ω(ζ)H(n)

(√
θζ + u

)
dζ (2.97)

Given that the first few Hermite polynomials are

H(0)(
√
θζ + u) = 1 (2.98a)

H(1)(
√
θζ + u) =

√
θζ + u (2.98b)

H(2)(
√
θζ + u) =

(√
θζ + u

)2
− 1 (2.98c)

we can compute the first few coefficients directly by integrating the following [79,150]

a(0),eq = ρ

∫
ω(ζ)H(0)(

√
θζ + u)dζ = ρ

∫
ω(ζ)dζ = ρ (2.99)

a(1),eq = ρ

∫
ω(ζ)H(1)(

√
θζ + u)dζ = ρ

∫
ω(ζ)

(√
θζ + u

)
dζ = ρu (2.100)

a(2),eq = ρ

∫
ω(ζ)H(2)(

√
θζ + u)dζ = ρ

∫
ω(ζ)

((√
θζ + u

)2
− 1

)
dζ = ρ

(
u2 − 1

)
(2.101)

In terms of the scalar components the coefficients can be expressed as [79,150]

a(0),eq = ρ (2.102a)

a(1),eqα = ρuα (2.102b)

a
(2),eq
αβ = ρ (uαβ + (θ − 1) δαβ) (2.102c)

From the above expansions, it can be clearly seen that the first few coefficients of the
Hermite series expansion of the equilibrium distribution function are exactly the macro-
scopic moments. This is one of the reasons why the Hermite series expansion is useful
for the discretization of the Boltzmann equation, since the series coefficients themselves
are directly connected to the macroscopic moments of the distribution function. It is to
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be noted that equations (2.99), (2.100) and (2.101) entirely hold even for the distribu-
tion function itself i.e. f (x, ξ, t) since the macroscopic moments are exactly the same
regardless the way they are evaluated.

It can be further noted that if one is primarily interested in obtaining the correct
macroscopic behaviour and satisfying the conservation laws, it is not imperative that the
full continuum distribution be considered. As seen from the equations (2.99), (2.100),
(2.101), the first three terms of the Hermite series expansion are sufficient to preserve
the macroscopic moments. This one observation results in significant reductions in com-
putational costs. Thus as an approximation to the distribution function, we truncate its
Hermite series at order N and obtain

f (x, ξ, t) ≈ fN(x, ξ, t) = ω(ξ)
N∑
i=0

1

n!
a(n)(x, t)H(n) (ξ) , (2.103)

where fN is the nth order approximation to the distribution function and is able to exactly
match its first N macroscopic moments in velocity space. Similarly, the equilibrium
distribution can also be truncated. From equations (2.99), (2.100), (2.101) we can write
a third order approximation to f eq (N = 0, 1, 2) as follows [79,150]

f eq (ρ,u, θ, ξ) =≈ ω(ξ)ρ [1 + ξ · u+ (uu+ (θ − 1) I) (ξξ − I)] , (2.104)

where uu and ξξ represents a tensor product of each respectively i.e. uu = uαuβ. This
third order approximation to the equilibrium distribution correctly produces the first
three macroscopic moments as shown in equations (2.99), (2.100), (2.101). It is also
quite crucial to realize that the N th order approximation to either the distribution or the
equilibrium distribution function, is merely a polynomial of degree at most 2N is ξ and
thus the integrands for computing the coefficients a(n) can be conveniently expressed as

f (x, ξ, t)H(n)(ξ) ≈ fN (x, ξ, t)H(n) (ξ) = ω(ξ)p(x, ξ, t) (2.105)

where p(x, ξ, t) is a polynomial in ξ of the order of at least 2N . The truncated equilibrium
distribution can also be simplified this way to make its polynomial nature more apparent.

2.2.4.3 Gauss-Hermite Quadrature

So far we have seen how the first few terms in the Hermite series expansion of the
distribution function yield the macroscopic moments, however the integration was still
carried out over the entire velocity space ξ. The other important reason as to why the
Hermite polynomial basis was chosen to project the distribution functions is because, on
this basis it is possible to evaluate integrals of certain functions by simply using a weighted
discrete sum of the function values on a small number of discrete points abscissae, Gauss-
Hermite Quadrature. For more details refer to appendix B.1. As a quick example, if we
consider a 1-D polynomial p(x) of degree N and consider its weighted integral with
respect to the Hermite weight functions ω(x) then we can evaluate it exactly as follows∫ ∞

−∞
ω(x)p (x) dx =

n∑
i=1

ωip (xi) , (2.106)
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where the n different values xi are roots of the n
th order Hermite polynomial i.e. H(n)(x)

and ωi are its associated weights. This is the Gauss-Hermite quadrature rule and it states
that in order to exactly integrate a polynomial of order N , a minimum of n = (N +1)/2
abscissae xi and weights ωi are needed. This rule can very easily be extended to higher
dimensions as follows ∫

ω(x)p (x) dx =
n∑

i=1

ωip (xi) . (2.107)

With regards to our issue at hand, we can use the Gauss-Hermite quadrature rules to
evaluate the series coefficients, a(n),eq. Using equations (2.103) and (2.105) we can write

f eq (ρ,u, θ, ξ)H(n)(xi) ≈ fN,eq (ρ,u, θ, ξ)H(n)(ξ) = ω(ξ)Q (ρ,u, θ, ξ) . (2.108)

Using equation (2.108) to compute its series coefficients we obtain

a(n),eq = ρ

∫
fN,eq (ρ,u, θ, ξ)H(n)(ξ)dξ = ρ

n∑
i=0

ωiQ (ρ,u, θ, ξi) , (2.109)

where ξi are discrete velocities that are roots of the nth order Hermite polynomial and
ωi are a set of discrete weights corresponding to those roots. Now in terms of these
discrete velocities i.e velocity abscissae the third order approximation to the equilibrium
distribution function simplifies to

f eq
i = ωiρ

[
1 + ξiαuα +

1

2
(uαuβ + (θ − 1) δαβ) (ξiαξiβ − δαβ)

]
(2.110)

We can further simplify (2.110) by assuming the fluid flow is isothermal i.e. θ = 1 and
by scaling the discrete velocities ξi by

√
3 as this factor repeatedly occurs in the roots of

the N th order Hermite polynomial.

ci =
ξi√
3
. (2.111)

For more details refer to appendix B.1.
So far we have shown with some rigor as to why the Hermite expansion is vital and

how it naturally leads to discretization of the distribution functions in velocity space.
This however, leads to the question as to which set of discrete velocities one can choose.
The answer to this question lies in balancing the numerical accuracy with which the
simulations must match up with the Navier-Stokes hydrodynamics with the numeri-
cal/computational costs to be incurred with increasing the number of discrete velocities
used in the simulations. As discussed earlier, the most commonly used velocity set when
studying fluid flows are the D3Q15 and D3Q19 velocity sets as they strike a good balance
between numerical accuracy and computational costs.

2.2.5 Boundary conditions

In solving PDEs, boundary conditions play an essential role. Given that the NSE describe
the fluid flow in general, additional details regarding the flow domain boundaries, and the
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value of the macroscopic quantities ρ, u or ∇u at those boundaries need to be specified in
order to obtain a unique solution to the problem at hand. From all the possible solutions
to the NSE, the boundary conditions allow one to single out the solution specific to the
flow domain under consideration.

Within the Lattice Boltzmann framework however, the quantity that is solved for
is the discrete particle distribution function on the lattice i.e. fi (x, t). This entails,
that the boundary conditions are rather specified on the particle populations rather than
imposing them on the macroscopic observables i.e. ρ and u. Due to this, there are
a plethora of boundary conditions schemes that one can use to restrict the values of
the particle populations at the domain boundaries in order to match the macroscopic
observables with varying degrees of numerical accuracy [8, 30,48,79,185].

x

y

Solid wall nodes

Fluid nodes Boundary nodes xb

Figure 2.6: Different types of lattice nodes in a 2D rectangular channel. The shaded
area represents solid wall where the LBE must not be solved

In the LB framework, since the Boltzmann equation is discretized in space x, the value
of the particle distribution functions is computed on a lattice. When bounded domains
are discretized in this manner, the notion of different node types arises. In this discrete
lattice, each node can be categorized as either (a) Fluid node (b) Boundary node or (c)
solid wall node. By definition a fluid node is simply the bulk where LBE applies and are
exclusively surrounded by either other fluid nodes or boundary nodes. A boundary node
has at least one link to a fluid node and a solid wall node. Lastly, a solid node is one
where LBE does not apply and is surrounded by either boundary nodes or other solid
nodes. In figure 2.6 we illustrate the different node types for a 2D rectilinear channel.
Such a classification of nodes into the three categories is important since the manner with
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which the particle populations are updated depends on the node type. Since fluid nodes
are exclusively surrounded by either other fluid nodes or boundary nodes, updating the
particle populations on them follows the standard collision/streaming update process as
described in earlier sections. The problem of boundary conditions in LB arises when one
has to update the particle distributions at the boundary nodes since the populations
streaming out of the boundary nodes to the adjacent fluid nodes are unknown. We
illustrate this problem graphically in 2.7

(a) Collision (b) Streaming

Known populations Unknown populations

Figure 2.7: The boundary condition issue in the LB framework (a) incoming particle
populations to a boundary node are known (b) whereas the populations values to be
streamed back to the fluid nodes from the boundary nodes are unknown

In short, we can state that the role of boundary conditions in the LB framework is
to prescribe means through which proper values can be assigned to the population that
ought to stream outwards from boundary nodes into the fluid region. In comparison to
traditional computational fluid dynamics (CFD) methods, prescribing boundary condi-
tions within the LB framework is more involved [48,83,113] since the boundary conditions
are set at the mesoscopic scale i.e. on the particle populations. Since there are more
degrees of freedom at this scale i.e. larger number of fi at each lattice node setting
proper boundary conditions on each becomes more involved [79]. Even the macroscopic
observables are simply the moments of the particle populations, the inverse relationship
is rather non-trivial and non-unique. Due to this non-uniqueness, there exists a plethora
of hydrodynamically consistent schemes for prescribing boundary conditions on the dis-
crete populations. Despite the large number, most of the schemes can largely be grouped
under two different approaches (a) link-wise approach where the boundary nodes lie on
lattice links and (b) wet node approach where the boundary nodes like directly on lattice
nodes.

Another aspect that needs to be addressed is the accuracy 1 and exactness 2 with

1How the error in the solution scales with discretization
2Ability of a method to resolve a fluid flow of certain order i.e. if a method is second order exact, it
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which any given LB boundary condition scheme models the true fluid flow. As per
the Chapman-Enskog expansion [28] where the distribution function is expressed as a
perturbation series in ϵ3 i.e.

fi = f eq
i + ϵf

(1)
i + ϵ2f

(2)
i +O(ϵ3) (2.112)

the LB framework is second order spatially accurate in the bulk i.e. its error scales
as O(∆x2). This means that the LB method is second order accurate and can exactly
reproduce fluid flows up to that order i.e. Couette and quadratic Poiseuille flows. To
match the Navier-stokes hydrodynamics in the bulk, the Chapman-Enskog analysis need
only to worry about the macroscopic conservation equations. Near the boundary however
one also has to recover the exact values of the macroscopic quantities from the particle
populations. This entails that in order to be able to resolve the populations fi at a
fluid boundary with second order spatial accuracy, one needs to consider the expansion
[55,113,186]

fi = f eq
i + ϵf

(1)
i +O(∆x2) (2.113)

Although this expansion matches the second order accuracy of the LBE in the bulk, it
fails to be exact for fluid flows of order O(∆x2) and higher due to the exclusion of the
ϵ2f (2) term in the expansion. This implies that parabolic flows are exactly captured in
the bulk but fail to be properly resolved near the boundaries. Similarly, in order to
be second order exact near the boundaries, one needs to consider third order accurate
schemes i.e. to resolve the populations as [47,48,101]

fi = f eq
i + ϵf

(1)
i + ϵ2f

(2)
i +O

(
∆x3

)
(2.114)

The choice of second or third order accurate scheme depends on how well we intend to
model the fluid flow versus the computational cost one is willing to incur in terms of the
spatial discretization. This trade off is also dependent on the problem at hand in the
domain involved.

2.2.5.1 Periodic Boundary Conditions

The periodic boundary conditions apply only when the underlying fluid flow i.e. the
Navier-Stokes solution of the flow is periodic to begin with. Similar to the PBC involved
in MD simulations, PBC in the LB framework mean that the fluid leaving one end
of the domain immediately enters the domain from the opposing side. As can be seen
evidently, the PBCs conserve mass and momentum of the flow by definition. The periodic
boundary conditions also entail that an external source of momentum exists, otherwise
any initial flow conditions will decay over time to a homogeneous velocity throughout
the domain [76].

Using periodic boundary conditions is often justified when one is interested in studying
a finite portion of a larger flow field which is repeated. For example, for small Reynolds

can exactly reproduce a fluid flow whose third order and higher velocity gradients vanish
3ϵ is related to the Knusden number of the flow which is given by Kn= lmfp/l, where lmfp is the

mean free path and l is the macroscopic length scale
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numbers laminar flow in a long channel can be quite well approximated by imposing
periodic boundary conditions to the LB equations. Another example is when studying
turbulence in physical systems of size L. Although turbulence is not periodic, approxi-
mating such systems with PBC introduces finite size effects, but the underlying physics
at length scales much smaller than L is still well approximated. More frequently, PBCs
help simulating 2D flow problems with existing 3D simulation code by easily adopting
periodic flow along one of the cartesian directions. Imposing periodic condition on the
macroscopic quantities in a system of size L can be easily done by requiring

ρ (x, t) = ρ (x + L, t) (2.115)

ρu(x, t) = ρu(x + L, t) (2.116)

To realize this in LB framework, we have to impose similar conditions on the discrete
populations when they are computed on the nodes residing on the boundary being treated
as periodic i.e.

fi(x, t) = fi(x + L, t). (2.117)

We illustrate this in figure 2.8 for the D2Q9 model. For computational convenience, we
add a set of virtual/ghost nodes as these facilitate updating adjacent node populations.
Before streaming, the node populations are copied over to the virtual nodes and the local
values are updated subsequently.

(a) Left boundary condition
x1 xNx0

c5

c1

c8

y1

y2

y3
c5

c1

c8

xN+1

c5

c1

c8

(b) Right boundary condition
x1 xNx0

y1

y2

y3
c6

c3

c7

xN+1

c6

c3

c7

Figure 2.8: Illustration of the periodic boundary conditions in the D2Q9 model. The
dotted circles are virtual nodes added for computational convenience at x0 = x1 − ∆x
and xN+1 = xN +∆x

In terms of implementation, following 2.8, we can update the populations, fi on the
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left boundary as

f1(x0, y2t) = f1(xN , y2, t) (2.118)

f5(x0, y2, t) = f5(xN , y2, t) (2.119)

f8(x0, y2, t) = f8(xN , y2, t). (2.120)

Similarly, we update the populations at the right boundary as

f3(xN+1, y2, t) = f3(x1, y2, t) (2.121)

f6(xN+1, y2, t) = f6(x1, y2, t) (2.122)

f7(xN+1, y2, t) = f7(x1, y2, t). (2.123)

2.2.5.2 Bounce Back Approach: Solid boundaries

The bounce-back approach is a quite commonly used scheme to implement the no-slip
boundary condition between a fluid-solid interface [42, 46, 81]. Despite its age, it is the
most commonly used boundary condition scheme in LB simulations primarily due to its
ease of implementation in software. Since the populations are bounced back to their
source of origin, this implicitly implies that there is a net zero flux of populations across
the wall. And it is important to note that the bounce back is different from reflection
where the velocities in only one direction is reversed. This way, implementing the bounce
back scheme also implies that the fluid has no tangential velocity component along the
wall, thus effectively enforcing the no-slip boundary condition. The working principle
behind this scheme is to simply reverse the populations incoming to a rigid wall back to
its source of origin. We illustrate this schematically for a wall at rest in figure 2.9

(a) Incoming velocity at t

Fluid nodes

Solid wall nodes

u(t)

(b) Bounce back velocity at t+∆t

u(t + ∆t)

Figure 2.9: Illustration of how a incoming velocity/population is bounced back to its
source of origin, both the normal and tangential components of the velocity are reversed
effectively rendering the relative fluid velocity at the wall to zero

In practice the bounce back approach can be implemented in two distinct ways i.e
(a) fullway bounce-back where particles/populations are considered to stream the
complete link path from the fluid/boundary node to the solid wall node. The veloc-
ity/population is then inverted in the subsequent collision step (b) halfway bounce-
back where the particles are considered to traverse only half the streaming distance and
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are reverted back to their source node at half time step. This way the bounce back takes
place during the streaming step itself. Both of these approaches requires specific modifi-
cations to the LB framework. In the fullway bounce back scheme solid nodes are required
in order to store the populations which are then bounced back at the next collision step
whereas in the other approach, explicit solid nodes are not needed as the bounce back
happens half way through and the populations are updated during streaming step itself.
Considering this it can be said that the fullway bounce-back modifies the collision step
in the algorithm whereas the halfway approach modifies the streaming step. Despite the
differences in the implementation the underlying assumption that the solid wall bound-
ary lies approximately midway between the solid and the fluid/boundary nodes is the
same in either case. It is important to note that the solid boundary does not reside on
the solid nodes themselves. The reason for this becomes apparent when one carries out
the Chapman-Enskog expansion of the distribution functions near the boundary. It can
be shown that placing the boundary exactly on top of the lattice nodes introduces a
first order error even for straight boundaries whereas if the boundary location is updated
to be approximately in the middle of the solid and fluid/boundary nodes, the method
becomes second order accurate near the walls.

2.2.5.3 Resting Walls

In this case the boundary walls are at rest and not in motion. In this scenario, the particle
populations leaving a boundary/fluid node xb at time t meets the surface halfway i.e. at
time t+∆t

2
upon which they are bounced back with perfect velocity reversal i.e. ci = −ci,

thus arriving back at the boundary node at time t+∆t. In implementation, this can be
expressed as show in equation (2.126) and illustrated graphically in figure 2.10 (for the
D2Q9 scheme)

f2(xb, t+∆t) = f4(xb, t) (2.124)

f5(xb, t+∆t) = f7(xb, t) (2.125)

f6(xb, t+∆t) = f6(xb, t) (2.126)

(a) Before streaming

c7
c4

c8

(b) After streaming

c6

c2

c5

Figure 2.10: Implementation of the bounce back scheme for a stationary wall in the
D2Q9 case. The shaded area is the solid wall with the solid nodes within where the LBE
does not apply. The dashed line represents the no-slip physical wall boundary
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2.2.5.4 Moving Walls

Having shown the bounce back boundary condition implementation for the no-slip bound-
ary condition in the previous section, we investigate the same in for the case where the
boundary walls are in motion. In this case, if the no-slip boundary condition has to be
enforced the fluid hitting the boundary walls either has to gain or lose certain amount of
momentum in order to satisfy Galilean invariance [81]. One way to show this would be
to transform to the rest frame of the wall, perform a standard bounce back scheme there
and then transform back to the initial frame. Doing this results in the following bounce
back scheme for a wall moving with velocity uw

fi(xb, t+∆t) = fi(xb, t)− 2ωiρw
ci · uw

c2s
, (2.127)

where the subscript w denotes the density at the location of the wall boundary which
presumably is at xw = xb +

1
2
ci∆t

Since in our study we have a sheared system, the moving wall boundary conditions
need to be implemented properly. To this end, we give a concrete example on how this
can be achieved for the D3Q15 scheme [8]. As mentioned earlier, for a sheared system in
the y direction, given the wall is located at z = 0, a no slip boundary condition implies∑

i fieiz = 0. This can be realized by requiring the following

f5 + f7 + f8 + f9 + f10 = f6 + f11 + f12 + f13 + f14 (2.128)

In order to ensure no slip along the wall in the x direction we can set
∑

i fieix = 0 by

f1 + f7 + f10 + f11 + f14 = f3 + f8 + f9 + f12 + f13 (2.129)

Now, given the wall is sheared along the y direction, to ensure no-slip the fluid velocity
at the wall needs to match the wall velocity i.e. uy. This can be established by requiring∑

i fiei,y = ρuy. This implies that certain distributions need to satisfy the following
constraint

f2 + f7 + f8 + f11 + f12 − f4 − f9 − f10 − f13 − f14 = ρuy (2.130)

Now for the wall at z = 0, there are five unknown distributions i.e. f5, f7, f8, f9, f10.
In order to determine these, two additional constraints apart from the above three are
needed. Using symmetry arguments, the following relation can be inferred

f7 − f8 = f10 − f9 (2.131)

Lastly, conservation of mass can be easily obtained by setting f5 = f6. Now using these
constraints, the five unknown populations can be easily solved to give

f5 = f6 (2.132a)

f7 =
1

4
(−f1 − f2 + f3 + f4 − f11 + f12 + 3f13 + f14 + ρuy) (2.132b)

f8 =
1

4
(f1 − f2 − f3 + f4 + f11 − f12 + f13 + 3f14 + ρuy) (2.132c)

f9 =
1

4
(f1 + f2 − f3 − f4 + 3f11 + f12 − f13 + f14 − ρuy) (2.132d)

f10 =
1

4
(−f1 + f2 + f3 − f4 + f11 + 3f12 + f13 − f14 − ρuy) (2.132e)
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Considering the simplicity of this scheme, there are a few advantages and disadvantages
to this approach. The bounce back approach is a numerical stable scheme even in the case
when the BGK relaxation parameter approaches the instability limit. Secondly, since this
scheme is based on reflections, mass conservation is guaranteed and this is an important
feature to consider in the cases when absolute mass is important and lastly it is extremely
straightforward to implement and scale to any number of spatial dimensions. One major
disadvantage of this approach is when curved boundaries are considered. The bounce
back approach is only capable of approximating curved surfaces through staircase shaped
lattice nodes around the boundary. Moreover, this approach only guarantees first/second
order accuracy when the boundary wall either aligns with the lattice nodes or is midway
between the boundary and solid nodes respectively. Both of these conditions get violated
when the geometries are curved and makes the scheme first order accurate at best [79]

2.2.6 External Forces

Forces play a central role in hydrodynamics so it is important that we discuss how ex-
ternal forces are accommodated within the LB framework and how the implementation
is modified to take the forces into account. In hydrodynamics, one deals more with force
densities rather than forces themselves since the momentum conservation equation (2.59)
is a PDE for momentum density. Net forces on surfaces are obtained by integrating sur-
face stresses/bulk force densities over the surface/volume of the object/region of interest
respectively. Equivalently one can state that a force density is a source for momentum
density within a fluid. Examples for where taking external forces into account is vital
include studying charged and magnetic particles immersed in a fluid which requires one
to consider the effects of external forces on the fluid as the particles interact with each
other as well as the surroundings. This becomes extremely important when modelling
the effects of external electric fields on charged particles immersed in electrolytes in a
confined space [190,191]. When considering incompressible flows the mechanism behind a
pressure gradient field can be considered as a divergence-free fluid body force. Moreover,
as we will see in subsequent chapters when modelling the dynamics of particles immersed
in fluid i.e. studying the fluid particle interactions via the immersed boundary method,
one tends to model the particle surfaces as a continuum of point-sized forces acting on
the fluid media. In a nutshell the LB update algorithm in the presence of external forces
can be broken down as follows [79]

1. Determine the force density F at time t

2. Compute the macroscopic observable i.e. ρ and u by

ρ =
∑
i

fi u =
1

ρ

∑
i

fici +
F∆t

2ρ
(2.133)

3. Determine the equilibrium distribution, f eq
i (ρ,u) and build the BGK collision op-

erator

Ωi = −1

τ
(fi − f eq

i ) (2.134)
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4. Optionally, compute the stress tensor resulting from the fluid velocity and external
forces

σαβ ≈ −
(
1− ∆t

2τ

)∑
i

ficiαciβ −
∆t

2

(
1− ∆t

2τ

)
(Fαuβ + uαFβ) (2.135)

5. Update the momentum source term Si due to the external force

Si =

(
1− ∆t

2τ

)
ωi

(
ciα
c2s

+
ciαciβ − c2sδαβ

c4s

)
Fα (2.136)

where the source term Si is related to Fi via

Si =

(
1− 1

2τ

)
Fi (2.137)

6. Update the post collision populations under the effect of the collision as well as the
source term, Si

fi = fi + (Ωi + Si)∆t (2.138)

7. Stream the populations to neighboring lattice nodes

8. Update time step and go back to step 1

2.2.6.1 Discretization

In section 2.2.4 we reviewed how one can reduce the continuous velocity space ξ to
finite velocity sets ci while preserving the model’s ability to properly reproduce the
hydrodynamics at the macroscopic scales. This was accomplished by approximating the
distribution function via a linear sum of Hermite polynomials in ξ and using the Gauss-
Hermite quadrature rules to convert the moment integrals over velocity space to discrete
sum. Now we discretize the continuous Boltzmann equation (2.91)

∂f

∂t
+ ξα

∂f

∂xα

+
Fα

ρ

∂f

∂ξα
= Ω(f) (2.139)

To proceed with the discretization, we focus on the external force/source term

S =
Fα

ρ

∂f

∂ξα
(2.140)

and make use of the derivative property of the Hermite polynomials i.e.

ω(ξ)H(n) = (−1)n∇n
ξω(ξ) (2.141)

Using (2.141), we begin by rewriting the Hermite expansion of the distribution function

f(x, ξ, t) ≈ ω(ξ)
N∑

n=0

1

n!
a(n)(x, t) ·H(n)(ξ) (2.142)

≈
N∑

n=0

(−1)n

n!
a(n) ·∇n

ξω. (2.143)
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Using (2.143) the expansion (2.139) can be modified as follows

F

ρ
· ∇ξf ≈ F

ρ
·

N∑
n=0

(−1)n

n!
a(n) · ∇n+1

ξ ω (2.144a)

≈ F

ρ
· ω

N∑
n=1

n

n!
an−1 ·H(n). (2.144b)

Following equation (2.144b), the discretization in velocity space can be performed directly
by replacing the continuous variable ξ by the discrete set ci. For convenience, we scale the
velocities ci = ξi/

√
3 and normalize the respective weights, ωi. With these substitutions,

we then obtain the discrete form of the external forcing term to be included in the discrete
LB equation

Wi(x, t) = − ωi

ω(ξ)

F

ρ
· ∇ξf |ξ→√

3ci
. (2.145)

With the forcing term being discretized, the discrete Boltzmann equation can be updated
to include (2.145) as follows

∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi +Wi, i = 0, . . . , q − 1 (2.146)

Lastly, the truncation of the forcing term, Wi(x, t) up to second velocity order (N = 2),
corresponding to the expansion of f eq reads

Wi = ωi

(
ciα
c2s

+
(ciαciβ − c2sδαβ)uαβ

c4s

)
Fα (2.147)

The first three velocity moments of the forcing term are∑
i

Wi = 0 (2.148a)∑
i

Wiciα = Fα (2.148b)∑
i

Wiciαciβ = Fαuβ + uαFβ (2.148c)

With the external forcing term discretized in the velocity space as described above, one
solves the following modified version of the LBE including the forcing term on a discrete
lattice

fi (x+ ci∆t, t+∆t) = fi (x, t)−
∆t

τ
(fi(x, t)− f eq

i (x, t)) +Wi (x, t) (2.149)
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2.2.7 Thermal Lattice-Boltzmann

So far, we have discussed the LB framework with the assumptions that thermal fluc-
tuations in the fluid are irrelevant at length scales involved. However, when studying
submicron dynamics of colloidal suspensions in channels and flows, thermal fluctuations
become extremely important. The idea of Brownian motion of a particle suspended in a
fluid dates back to Einstein’s original work [38]. Diffusion of lone colloids can be mod-
elled as simple Brownian motion, but involving several colloids requires one to properly
model the hydrodynamic interactions along with the individual Brownian motions [39].
To efficiently and accurately study such systems through Lattice-Boltzmann the current
formulation must be modified to include thermal effects.

Thermal fluctuations were first included in the LB framework by Ladd [81] in order
to model Brownian motion of solid particles in a fluid medium. Following Landau &
Lifschitz, Ladd applied thermal noise to the fluid stress tensor only, which gave good re-
sults for cases near thermal equilibrium. However, discretizing the Boltzmann equation
to obtain the Lattice-Boltzmann equation results in lattice-specific independent degrees
of freedom commonly referred to as ghosts [161]. These ghosts do not enter the macro-
scopic equations of mass and momentum conservation and as the moments of the LB
particle distributions corresponding to momentum and energy are coupled, noise applied
purely to the stress tensor results in poor temperature reproduction in the fluid. This
is likely because the isothermal LB model does not conserve energy. If the ghost modes
are not properly accounted for when calculating the macroscopic moments the temper-
ature reproduction is far from ideal. However Adhikari et.al. in [1] demonstrated that
proper inclusion of ghosts modes in the moment calculations, improves local temperature
reproduction in the isothermal LB model.

In our work we follow the method described in [117] and implemented by Mackay et.al
in [97] where a standard integration scheme as specified in [161] in use. A simple finite
difference scheme is employed to solve the discrete Boltzmann equation 2.149. Solving
the Boltzmann equation this way yields

η = ρ

(
τ − ∆t

2

)
v2c/3, Λ = η

(
5/3− 3a0/v

2
c

)
(2.150)

for the shear and bulk viscosity respectively and vc = ∆x/∆t. In a real fluid, finite tem-
perature results in fluctuations in the local fluid velocity. These spontaneous fluctuations
produce local stresses in the fluid and ought to be governed by the fluctuation-dissipation
theorem i.e.

⟨sαβ(x, t), sγν(x, t)⟩ = 2ηαβγνkBTδ (x− x′) δ (t− t′) (2.151)

In practice, random noise is added to the system through the discrete forcing term, Wi

(2.149). To keep analysis easier, we decompose the forcing term into two separate parts

Wi = pi + ζi. (2.152)

The pi term is chosen in order to satisfy the constraints imposed on the forcing term,
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namely

∑
i

Wi = 0 (2.153)∑
i

Wiciα = Fα (2.154)∑
i

Wiciαciβ = Fαuβ + uαFβ (2.155)

while ζi are required to satisfy

∑
i

ζi = 0 (2.156a)∑
i

ζiciα = 0 (2.156b)

in order to conserve mass and momentum globally in the system. Higher order moments
of ζi are chosen such that the fluctuating stress tensor satisfies the fluctuation dissipation
theorem (2.151). Having implemented the noise in this manner, the fluid acts as an
effective heat bath for the particles immersed within it. For complete details, see [117]
and [97].

2.2.8 Immersed Boundary Method

Immersed boundary (IB) methods were first developed by Peskin [127] in order to study
blood flows in human cardiac valves. A major advantage of this method as demonstrated
by Peskin is that method/techniques used for solving Navier-Stokes (NS) equations on
cartesian domains can now be applied to problems with immersed objects/boundaries.
Following the approach in [105], Conventional methods for studying flows past immersed
rigid bodies constituted constructing grids that conformed to the geometry of the im-
mersed rigid body [105]. First a grid covering the surface of the body, Γb enclosing a
volume Db is generated. This is then used as a boundary condition to generate a grid
covering the fluid domain i.e. Df . The NS equations are then rewritten and discretized
in some curvilinear coordinates dictated by the local geometry imposed by the immersed
rigid body.
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Γb

Db

Df

Figure 2.11: Illustration of the coupling between nodes on the particle surface with the
fluid mesh background as per the immersed boundary (IB) method. The immersed body
occupies the volume, Db enclosed by Γb and Df is the ambient volume occupied by the
fluid.

IB methods employ a completely different approach where the boundary Γb is replaced
by a field of point forces acting from a mesh of points covering the rigid body surface.
In IB methods, the rigid body surface is discretized using a mesh of points of sufficient
density so as to appropriately cover the geometry of the immersed object. The cartesian
grid covering the fluid region, Df is then constructed independently of the rigid body.
Since the rigid body mesh and the fluid cartesian grid were independently generated,
incorporating the no-slip boundary on Γb requires modifying NS equations near Γb. The
advantage of this approach is that despite the modifications to the NS equations they can
be discretized using any appropriate finite-difference scheme without having to resort to
any curvilinear coordinates respecting the local geometry imposed by the immersed rigid
body.

Imposing boundary conditions on Γb is central to any immersed boundary method.
For instance, an incompressible flow around Γb in 2.11 is fully described by the following
set of equations

∂u

∂t
+ u · ∇u+

1

ρ
∇p− µ

ρ
∇2u = 0

∇ · u = 0 inDf

u− u(Γb) = 0 onΓb, (2.157)

where u is the fluid velocity, p is the fluid pressure, ρ and µ are the fluid density and
viscosity respectively. Conventional methods generally discretize the NS equations on
a grid system which respects the rigid body geometry. This way imposing the no-slip
boundary condition becomes straightforward. However in an IB scheme, the NS equations
are discretized on a grid irrespective of the rigid body and the no-slip boundary condition
is imposed via directly modifying the NS equations via the addition of a forcing term.



2.2. Lattice-Boltzmann Methods 61

The forcing term, fb acts as a source term in the NS equations and acts to incorporate
the boundary effect imposed by the immersed body. The modified NS equations can then
be written as

∂u

∂t
+ u · ∇u+

1

ρ
∇p− µ

ρ
∇2u = fb

∇ · u = 0 inDf +Db

(2.158)

As the immersed body’s surface is discretized into a set of nodes, the no-slip boundary
condition on its surface is now enforced at each node Xk by requiring

∂Xk

∂t
= u(Xk, t) (2.159)

Since the immersed body’s surface is discretized into set of points/nodes, the force transfer
is written as

fb =
∑
k

Fk(t)δ (|x−Xk|) (2.160)

However as the surface nodes will generally not coincide with the fluid mesh/grid points
thus the effect of the nodes is generally spread out smoothly over the local grid points
via a smooth distribution function. Moreover, the fluid density ρ, velocity u and stress
σ need to be interpolated to the IB nodes. As explained in [110], an interpolation weight
ξiα = ϕi(xα)ϕi(yα)ϕi(zα) is assigned to each surface node located at (xi, yi, zi) and nearby
fluid mesh sites labelled by α located at (xα, yα, zα). The interpolation weights satisfy∑

i

ξiα = 1 (2.161)

and smoothly range over the interval [0, 1] and are computed based on the distance
between the fluid mesh sites and the surface node. These weights are then used to
perform a weighted sum of different quantities such as fluid density, velocity at the
nearby fluid mesh sites to obtain an interpolated value at the surface node. Based on
this interpolation, any force applied by the immersed object on the fluid can, using
Newton’s third law be directly applied back to the body weighted by ξiα.

Now to smoothly spread the influence of a node onto nearby lattice mesh sites, the
sharp Dirac delta function used in (2.160) is typically replaced by a smooth approxi-
mation. A 4-point approximation of the delta function providing a 64 point fluid mesh
support is typically used in simulations. The grid weights are then given by

ϕi (rα) =


1
8

(
3− 2∆r +

√
1 + 4∆r − 4∆r2

)
, 0 < ∆r < 1

1
8

(
5− 2∆r −

√
−7 + 12∆r − 4∆r2

)
, 1 < ∆r < 2

0, 2 < ∆r

(2.162)

where rα is the location of the fluid grid point and ∆r = (rα − ri) /∆x is the distance
between the ith surface node positioned at ri and the fluid mesh point at rα, scaled by the
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lattice spacing ∆x. This method is also commonly referred to as the Peskin (P) stencil
and is commonly used in immersed boundary methods.

Now, based on this description each surface node i affects the four nearest neighbour
in the respective lattice mesh, amounting to a total of n = 4d affected mesh sites in d
dimensions. In the Peskin stencil case, this implies the weight of the ith surface node on
the jth lattice site can be determined by

ξPij = ϕ
( xij

∆x

)
ϕ
( yij
∆x

)
ϕ
( zij
∆x

)
(2.163)

where (xij, yij, zij) is the displacement vector from the jth fluid mesh site to the ith surface
node on the particle. The set ξij is commonly referred to as a stencil and has the property
that for each surface node

n∑
j=1

ξij = 1 (2.164)

2.2.9 Velocity coupling

As mentioned in the earlier section, the overall idea in an immersed body scheme is
solve a modified form of the Navier-Stokes equation where the presence of an immersed
body and the fluid boundary conditions on its surface is captured via a forcing term, fb
(2.160). Given that the immersed body’s surface is discretized into a set of surface nodes,
the forcing term essentially becomes localized over the positions of the surface nodes.

As described in [110], consider the case of a sphere of radius a moving slowly through
an infinite medium with a velocity ub. Assuming no-slip boundary conditions at its
surface and the background fluid velocity is U, the fluid drag force experienced by the
sphere is given by Stokes Law as

Fd = −6πηav (2.165)

where v = U− ub and holds true as long as v = ∥v∥ is relatively small. Moreover, for a
sphere in shear flow when kept from rotating experiences a drag torque described by

TS = 4πηa3s0ŵ (2.166)

where s0 is the shear rate and ŵ is the unit normal to the shear plane. These expressions
describe the Stokes drag that immersed body experiences when moving through a fluid
and can be used to verify the accuracy of numerical implementations as described in the
subsequent method sections.

Based on this idea where the fluid drag force acting on a body is proportional to its
relative velocity to the fluid, a local force coupling between the surface nodes and the
fluid mesh can be written as [115]

F = ±λγ (v − u) (2.167)

In equation 2.167, u is the local fluid velocity near the nodes and is not the same as U
and λ is the density of the nodes covering the immersed body’s surface. Because of this
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the coupling factor γ bears no similarity to the Stokes drag i.e. 6πηa and its value must
be calibrated accordingly. The positive/negative sign indicates whether the force exerted
on the immersed body via the fluid or vice verse respectively.

As demonstrated in [115], solving Navier-Stokes equations with this sort of coupling,
(called the Brinkman equations) it is possible to show that the drag force and torque felt
by a immersed body, for large γ is

F

FS

=
2β2

2β2 + 9

F

TS

=
β2

β2 + 9
(2.168)

where β =
√

γλ
η
. From equations 2.168 it can be seen that as γ → ∞

F

FS

→ 1− 9

2

1

β2
(2.169)

This indicates that equations 2.168 approach Stokes equations as 1/γ as γ → ∞.
Now considering, that the particles immersed in the fluid are discretized using a set of

surface nodes and given the appropriate stencil used, the local forces at each fluid mesh
site j affect the ith surface node by

F ij = γξij

(
vi − u

(I)
i

)
(2.170)

where vi = v + ω x ri is the velocity of the ith surface node located at ri from the
particle’s center of mass and ω is the angular velocity of the solid. Moreover, in equation
2.170, u

(I)
i is the interpolated fluid velocity to the location of the surface node and is

obtained as follows using the stencil weights ξij and the fluid velocity at the actual mesh
site i.e. xj

u
(I)
i =

n∑
j=1

ξiju(xj) (2.171)

Using the interpolated velocity, the net force acting on the ith surface node due to the
influence of all the n = 4d Peskin stencil nodes can be calculated as

F i =
n∑

j=1

F ij =
(
vi − u

(I)
i

)
γ (2.172)

Assuming that the particle is discritized using Nv surface nodes, the total fluid force
acting on the jth fluid lattice site is them simply a sum of equation 2.172 for all the
nodes i.e.

F j =
Nv∑
i=1

F ij (2.173)

This then gives us a three dimensional mesh F j = F (xj) of local forces on the fluid
which goes equation 2.149 through 2.147. From here onwards, one can compute the local
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forces, F i and torques T i acting on each surface node of the particle by summing over
the affected fluid mesh sites i.e. over the stencil

F i =
n∑

j=1

F ij, T i = ri xF i (2.174)

and the net force and torque on the particle can be computed by simply summing equation
2.174 for all the surface nodes

F =
Nv∑
i=1

F i T =
Nv∑
i=1

T i (2.175)

2.2.10 Hydrodynamic Radius of a sphere

As discussed in the immersed boundary section, to couple rigid bodies to the fluid lattice,
the surfaces are discretized using a mesh of points. For instance, a rigid spherical particle
can be represented as a fullerene as shown in figure 2.12

Figure 2.12: Illustration of discretizing the surface of a sphere using fullerenes with
different surface node densities.

In order to reduce the surface discretization effects and to achieve sufficient surface
node density, the spacing between the surface nodes is recommended to be less than
the lattice spacing, ∆x. Using the method described above, as the rigid particles move
through the fluid, the effect of the surface nodes is smoothed out over several lattice sites
via the 4-point Dirac delta approximation as described by equation (2.162). Now given
that the influence of a surface node is spread out over multiple lattice sites, the question
of what is the hydrodynamic radius, ah of the particle become quite relevant. Since the
surface nodes of the immersed sphere interact with several neighbouring lattice sites, the
effective size of the particle as seen by the fluid is expected to different from its actual
size. Now in order to require the LB simulations to match physical results, different LB
schemes need to yield the same measure of the particle’s hydrodynamic radius.

The hydrodynamic radius of a sphere, ah can be measured via several methods such
as measuring the drag force acting on a sphere moving through a fluid, hydrodynamic
interactions between multiple particle or measure the hydrodynamic torque on the same.
In fact, any measurement that is sensitive to the particle’s size can be used as a measure
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for its hydrodynamics radius, ah. In essence, two different measures of the hydrodynamic
radius of the particle i.e. ah, a

′
h need to agree with each other within a lattice spacing

i.e. |ah − a′h| < ∆x. In this work we compute the hydrodynamic radius of the spherical
particle using two different approaches. The first one being by computing the drag
force acting on a sphere moving with velocity v through the fluid as given by equation
(2.165) and; the second being computing the net drag torque acting on a sphere in steady
shear flow which is given by equation (2.166). We refer to these two different measures
of the hydrodynamic radii as ah,F and ah,T respectively and can be easily solved from
using equations (2.165) and (2.166). The hydrodynamic radius of a sphere moving with
uniform velocity, U in the y-direction can be expressed in terms of the drag force as
ah,F = Fy/6πηU and the same can be obtained by computing the net torque on it when

it is held stationary in a uniform shear flow at rate s0 via ah,T =
[

Tz

4πηs0

]1/3
.

2.2.10.1 Calibration

In methods where frictional type coupling between the surface nodes and the fluid lattice
sites is used to implement the fluid particle interactions as shown in equation (2.160),
the coupling constant, γ needs to be calibrated properly in order to ensure consistency
between the different measures of hydrodynamic radius of a particle, ah. Now in order
to calibrate the coupling constant γ one can carry out simulations for each of the two
cases i.e. (a) sphere moving in a fluid with uniform velocity U to compute the fluid drag
force Fy and (b) measure the total torque, Tz on a stationary sphere in uniform shear
flow for different values of γ. Ollilia et al. in [120] have carried out this analysis in detail
and have presented consistent results for the two cases. As an illustration we present our
calibration results for a sphere of radius a = 2.8∆x in figure 2.13. Further details about
our analysis are discussed later in the implementations sections.
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Figure 2.13: Hydrodynamic radius of a sphere with nodes placed at radius, a = 1.4 nm
obtained from drag force, ah,F and torque, ah,T simulations
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From figure 2.13, we note that hydrodynamic radius calculated using the two different
approaches results in very different values for ah expect for the case where γ, the coupling
constant is set to a large values. Now, in practice setting γ to infinity is not feasible,
so the relevant question is simply how large does γ need to be for the torque and drag
force experiments to yield consistent results in imposing the no-slip boundary condition
on the particle’s surface. We can see that for all values of γ beyond 0.02, the agreement
between hydrodynamic radii of the sphere obtained from the two different approaches
is within 4% and continues to improve for values beyond that. It is also worth noting
that once the system is calibrated with a sphere of any given size what Ollila et al. [120]
one can use the calibration information for spheres of different sizes given a key quantity
namely the ration of γ to the area per node, An is kept constant i.e.

constant =
γ

An

=
γNv

4πa2
. (2.176)

With this relationship, if one calibrates γ for a sphere of radius a and then wants to scale
the sphere to size 2a, then γ must be scaled by 4. Lastly, as mentioned earlier to calibrate
the coupling constant, any measure sensitive to the particle’s size can be used, Ollila et
al. [120] also computed the hydrodynamic radius of a sphere by measuring its diffusion
constant in the LB fluid and found that as long as γ is calibrated properly and different
measurements of the hydrodynamic radius are in good agreement with each other, the
LB fluid also acts as a good heat bath for all the particles immersed in it and the diffusion
observed is as per the fluctuation-dissipation theorem.
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Polymer margination in shear flows

In this section, we present our work and results on the topic of polymer margination in
shear flow. As mentioned earlier in the introductory sections, in this work we primar-
ily investigate the effects of monomer size on a polymer chain’s margination tendencies
in shear flow. We address this issue of the chain’s lateral migration via hybrid LBMD
(Lattice-Boltzmann-Molecular Dynamics) simulations. We study the margination ten-
dencies of single polymer chains of length N in Couette flow over a range of shear rates
γ̇ and in particular investigate the effect of monomer size, a on the chain’s overall mi-
gration. We observe that polymer chains with smaller monomers show poor migration
tendencies as compared to their larger counterpart. Furthermore unlike Poiseuille flows,
the shear rate is constant throughout the entire channel in Couette flows indicating no
real benefit for single monomers to marginate cross-stream [148]. Based on these, we
believe our observations in this work are therefore primarily a chain effect rather effects
at a single monomer level.

We present our results in the next couple sections starting with our simulation model
using LAMMPS in section (3.0.1). Following this section we elaborate on our procedure
on calibrating the fluid particle coupling constant necessary to enforce the no-slip bound-
ary condition between the two. In the same section we also report our results on the
effects of improper calibration and see how it effects the thermalization of particles im-
mersed within the fluid. In the subsequent sections (3.0.3 - 3.0.5) we present the results
of our work along with discussions pertaining to our observations.

3.0.1 Simulation Model

In this work, using hybrid LBMD simulations we investigated the margination properties
of individual polymer chains in Couette flow. Moreover we studied the effect of monomer
size, a on the margination tendencies of the chains in flow. All our simulations were car-
ried out using LAMMPS [130,176] and we used a D3Q15 Lattice-Boltzmann (LB) model
to accurately incorporate hydrodynamic interactions (particle/particle, particle/no-slip
surface) in our system. We use nano-units in LAMMPS, where distances are in nm,
time in ns, and mass in ag. In our simulations the LB fluid mediates the hydrodynamic
interactions as well as acts as a heat bath for the particles immersed in it. Implement-
ing thermal fluctuations in the LB fluid so that it reproduces the fluctuation-dissipation

67
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correctly has been described in detail in [1]. Details pertaining to our implementation
of this framework can be found in earlier chapters as well in [117, 120]. This model and
implementation are now well-tested in many examples [4,98,116,181], including polymers
in solution [117–119].

We used a lattice spacing of dx = 0.5 nm and updated the entire fluid lattice every
time step. Depending on the chain length i.e. N = 16, 32 the simulation box dimensions
were set to (32, 60, 32), (60, 100, 32), nm respectively and a time step of ∆t = 30 fs was
used. Every simulation carried out was at least a minimum of 300 ns in duration. Fol-
lowing Ollila et al. [117,118], in order to speed up the diffusive dynamics, the density of
our fluid was set to 1/60 that of water at T = 300K and we scaled its kinematic viscosity
by a factor of 1.4. To study the effect of monomer size we considered two different radii
values, a = 0.7 and 1.4 nm and kept the same radii for all monomers in a given chain.
All the monomers were taken to be neutrally buoyant in the LB fluid. In LB simulations
mesh effects can be a major source of error if not accounted for properly. Following [120],
in our simulations each monomer was comprised of two types of MD atoms (a) a central
atom and (b) a spherical shell of Nv nodes. This configuration of atoms in a monomer is
depicted in figure (3.1).

Figure 3.1: (left) Composite monomer of radius a = 0.7 nm with Nv = 60 (right)
Composite monomer of radius a = 1.4 nm with Nv = 180.

The benefit of using such an approach is that it gives each monomer a hydrodynamic
size independent of the fluid lattice spacing. All bonded/non-bonded interactions are
mediated by the central atoms whereas the spherical shell nodes interact only with the
LB fluid and mediate the hydrodynamic interactions. In our simulations every monomer
was treated as a rigid body during integration. We choose the number of surface nodes,
Nv such that the surface area per node for a monomer of radius a is always smaller
than dx2 i.e. 4πa2/Nv < dx2. This rule of thumb ensures that the surface is sufficiently
discretized and there are no big gaps in the monomer. Lastly monomers are connected
using the FENE bond style,

Ub = −1

2
K R2

0 log

(
1− r2

R2
0

)
+ 4ϵ

((σ
r

)12
−
(σ
r

)6
+ 1

)
, (3.1)

with parameters K = 60 ag/nm2, ϵ = kBT , σb = 1.5 nm (a = 0.7 nm), 2.67 nm (a =
1.4 nm) and R0 = 1.5σb. We used periodic boundary conditions in the x and y directions
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and fixed boundary conditions in the z direction. In all cases the system size is more
than 2.5 times the equilibrium radius of gyration Rg of the chain so the chain is not
compressed due to the slit geometry of the system. To mimic interactions with an
impenetrable atomic surface we placed two layers of atoms in the tightly packed FCC
111 geometry with a lattice spacing of 1.0 nm at the z = 0 boundary of the simulation
domain as depicted in figure (3.2) We implemented a 12−6 Lennard-Jones (LJ) potential

dx

2.0 dx
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Figure 3.2: Schematic of the wall atom geometry used in our simulations along with
the LB lattice and surface interaction length scales. Here a1 and a2 are the radii of
the spheres respectively. δ is spacing between the bottom of the sphere and the z = 0
simulation domain boundary. σw is the surface potential interaction length scale.

of strength ϵw with interaction length scale σw between the central and wall atoms in
our simulations. The monomer shell atoms and the fluid lattice sites were coupled via
the method outlined in [120] to establish interactions between the two. Following [118]
and requiring that the gap size δ remains the same for different sized monomers when
they are at the LJ surface potential minimum i.e. a distance of 21/6σw from the bottom
surface (z = 0) we set our LJ interaction length scale to σ = 1.5 nm for the a = 0.7 nm
case and σw = 2.12 nm for the a = 1.4 nm case. Making the gap size, δ the same for
both monomers meant that the lubrication forces between the wall and the particles
depended only on the monomer radius and not on the differences between the distance
from the wall, which in principle would be the same in absence of hydrodynamics. Given
the FCC geometry of the surface and the different interaction length scales σw in our
simulations, an individual monomer can interact with a different number of surface atoms
depending on its size. To ensure we are comparing otherwise equivalent systems, the
surface potential interaction strength ϵw was tuned so that the adsorption tendencies of
the a = 0.7 and 1.4 nm chains were similar in equilibrium. Setting the surface interaction
strength ϵw to 0.24 in the 0.7 nm case and ϵw = 0.15 in the 1.4 nm case resulted in good
agreement in the respective equilibrium adsorption tendencies, as demonstrated below.
The surface interaction cutoff was placed at rc = 2.5σw for the both cases. To verify
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Figure 3.3: (a) Probability distribution of the average number of monomers within a
distance of dc = (26/7)1/6 σw from the surface, ϕ for Wi = 0. (b) Probability distribution
of the chain’s center of mass normal to the surface zc scaled by the interaction length
scale, σw. The fluctuations in the curves are due to statistical errors in the measurements.

the equivalence of the interaction with the wall, in figure (3.3) we plot the distribution
of two parameters that characterize the equilibrium adsorption tendencies of a single
N = 32 monomer long chain. In figure (3.3a) we consider the distribution of ϕ which
simply measures the fraction of monomers within a distance dc from the surface. We
chose the inflection point of the LJ potential as a suitable distance for this measure i.e.
dc = (26/7)1/6 σw. For the aforementioned values of the interaction potential strength
ϵw from this figure we can note that the agreement between the two ϕ distributions is
very good. As a second measure of adsorption in equilibrium, in figure (3.3b) we plot
the probability distribution of the chain’s center of mass normal to the surface scaled by
the respective interaction length scale, σw. Even though the data is a bit noisy in this
figure we can see that the agreement between the two distributions is very good and the
adsorption behavior for the chains in equilibrium is essentially identical.

We carried out simulations over a range of shear rates, γ̇(ns−1) = 0, 0.2, 1.0, 2.0. As
a dimensionless measure of the shear rate, we scaled these values to their respective
Weissenberg Number, Wi by simply multiplying them by the relaxation time of the
principal Rouse mode of the chains. In the Zimm model, this is expected to follow [131]

τ1 ∼
ζ N zν b2

3π2 kBT
. (3.2)

Here ζ is the frictional coefficient for a single monomer in the solvent i.e. 6πη a, N is
the number of monomers comprising the chain, b is the average bond length between
the monomers, and zν ≈ 1.74 [117]. For better ensemble averaging we did at least five
independent runs at each value of Wi. A Couette flow profile was generated by translating
the top wall of our simulation domain parallel to the bottom surface in the positive y
direction. This generated, on average a uniform shear flow profile in the channel. Lastly
in all the runs the polymers started off near the bottom surface however all the results
discussed in the following sections were computed after an equilibration period of at least
106 steps. A sample starting configuration of a chain is depicted in figure 3.4
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Figure 3.4: Sample of an initial conformation of the polymer on the surface. Note that
for better depiction of the chain’s conformation without overlapping of atoms we omit
drawing the spherical shell surrounding each monomer.

3.0.2 Monomer/Fluid coupling

As the monomers move through the fluid an interaction between the two must occur.
Stokes law dictates that the fluid drag force acting on a sphere is proportional to its
velocity through the medium. In our LB algorithm we exploit this fact to couple the
fluid and particles together by making the fluid drag force acting on a particle node
proportional to its velocity relative to that of the fluid velocity interpolated to its location
i.e.

Fi = −γ (vi − vf ) . (3.3)

However its important to note that proportionality constant, γ in (3.3) is not the Stokes
drag coefficient 6πηa in general and has to be calibrated properly to ensure proper dy-
namics, thermalization and consistency between different measures of the hydrodynamic
radii. The calibration procedure for the coupling parameter, γ is discussed in great de-
tail in [120] and we follow it in this work to consistently set a value for γ. In figure
3.5 we show the results from our γ calibration runs and agreement between the different
hydrodynamic radii measurements.
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Figure 3.5: Hydrodynamic radius of a sphere with nodes placed at radius, a = 1.4 nm
obtained from drag force, ah,F and torque, ah,T simulations

In principle the value of γ should be infinite in order to ensure a no-slip boundary
condition on the particle’s surface, however since equation (3.3) represents a stiff term,
large values of γ will likely render the numerical integration of the system unstable. Thus
γ must be large enough so that the hydrodynamic radius of the sphere obtained by say
measuring the drag force acting on it under uniform translation through the fluid, ah,F
or by computing the torque acting on it when held stationary in shear flow, ah,T must be
in good agreement with each other. In our work we saw good agreement between ah,F
and ah,T for γ > 0.02 in both cases i.e. a = 0.7, 1.4 nm. During the calibration runs
we noted that setting the value of γ > 0.11 resulted in numerically unstable runs in the
a = 0.7 nm case, however we were able to push γ to 0.15 in the a = 1.4 nm case. Both
of these values are sufficiently larger than the lower bound of 0.02 and over these ranges
good agreement between the different measures of the hydrodynamic radii was observed.
Calibrating the coupling parameter γ this way also ensured that the MD particles feel
the right fluid temperature and are thermostatted properly during simulations.

3.0.2.1 Single monomer thermalization

To address the importance of proper γ calibration, we carried out several simulations
of a single monomer a = 1.4 nm in our fluid near the surface. We carry out all these
simulations in the absence of any shear flow i.e. Wi = 0 and start the sphere out close to
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the surface in all cases. Since we are primarily interested in the equilibrium adsorption
behavior of a single monomer, we run the simulations with exactly the same parameters as
described earlier for an appropriate duration. Moreover, in order to illustrate the effects of
improper γ calibration, for these runs we initially used a value far smaller than γ < 0.02.
As per figure 3.5, we can see that over this range, the agreement between the different
measures of the hydrodynamic radius is quite poor. Thus in principle, one would expect
the no-slip boundary condition on the monomer’s surface to be poorly implemented
and improper fluid temperature reproduction. Now, in order to assess the accuracy of
the results from our LB runs, we carry out Langevin (LNGV) simulations of the exact
same system near the surface. Given that all simulations are being done in equilibrium,
the results from both are expected to be the same given a properly calibrated γ. In
both thermostats a fluid temperature of 300K was set in all simulations. In Langevin
simulations, the heat bath is artificial in the sense that the particle is kicked around due
to the addition of random, delta correlated forces that obey the fluctuation-dissipation
theorem. There is not hydrodynamic interactions present in Langevin simulations but in
equilibrium i.e. γ̇ = 0 those interactions should in principle have no effect on the particle’s
distribution. To ensure that we have properly calibrated γ for our LB simulations, we
compare the results we obtain for a single monomer near the surface in a LB thermostat
to the ones obtained via a purely Langevin simulation. A good agreement between the
two would give us confidence in our calibration and also go to show that the monomer is
feeling the correct fluid temperature as set in the simulation.

We begin by looking at the probability distributions of the monomer’s separation
from the surface potential minimum i.e. ∆ z = z − zm where zm ≈= 2.55 nm for the
different interaction strengths ϵw in both the thermostats i.e. LB/LNGV. From figures
in 3.6 we note that, in the LB case the sphere tends to remain more localized over smaller
values of ∆z. This, in principle, means that the diffusion of the monomer is effectively
reduced in the z direction in comparison to the Langevin thermostat. In figure (3.6 f), we
plot the mean height above the surface potential minimum the monomer attains over the
course of the simulation as a function of the surface interaction strength ϵw. We note that
difference in the mean height and zm in both cases diminishes with increasing ϵw. This
behaviour can simply be attributed to the fact that as the interaction strength increases,
regardless of the thermostat and γ calibration, the monomer becomes increasing confined
in the surface potential and remains fairly close to the potential minimum for the duration
of the simulation in both cases.

The differences in the monomer height distributions is rather large for weaker inter-
action strengths ϵw. These figures go to show that in equilibrium i.e. in the absence
of any shear flow, the sphere tends to remain more localized in the surface potential
well in comparison to the Langevin case. This apparent ambiguity points to less than
normal diffusion of the monomer in the LB thermostat and smaller diffusion coefficient.
In order to quantify this further, in figure 3.7 we plot the average time over the course of
a simulation the monomer spends confined within the surface potential. We record the
value of this quantity ϕ as a boolean and set it to one each time the monomer’s center of
mass is between the potential minimum and potential cutoff. In figure 3.7, we plot the
average ϕ as a function of the surface interaction strength in case of both thermostats
and clearly note that for smaller values of the ϵw the difference in adsorption is greater
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Figure 3.6: (a-e) Probability distribution of the monomer’s elevation relative to the
surface potential minimum, zm for different interaction strengths, ϵw. (f) Mean elevation,
⟨∆ z⟩ above the surface potential minimum as a function of the interaction strength
ϵw. (blue) Lattice-Boltzmann thermostat (LB), (orange, dashed) Langevin (LNGV). For
these runs γ was set to 0.01 which is below the value γ = 0.02 at which we begin to
see good agreement between the different measures of the hydrodynamic radius of the
monomer. γ = 0.15 gave us excellent agreement between the LB and LNGV runs and
also resulted in stable numerical simulations.
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between the two thermostats. This measure also indicates that the monomer tends to
spend longer in the potential well i.e. near the surface and diffuses much less when the
LB fluid thermostat is used with γ that is improperly calibrated.

As shown in [120], if γ is not calibrated properly, the diffusion coefficient of a sphere
will not be as dictated by the Einstein’s relation and indirectly results in the effective
temperature of the fluid will being a lot lower than the target temperature. In some
of our runs with poorly calibrated γ, we noticed that the fluid was around 20 K cooler
than the desired target temperature of 300 K. The discrepancy between the actual fluid
temperature and the target temperature can be described as a function of γ and the
values can be computed from extensive LB simulations.
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Figure 3.7: Fraction of net run time a sphere spends in the potential well, ⟨ϕ⟩ for
different interaction strengths, ϵw. (red circles) LB thermostat, (blue squares) Langevin
thermostat

3.0.2.2 Boltzmann Distribution: Effective potential, Ue and Force, Fe
z

Apart from looking at the distributions of the displacement of the monomer from the
surface potential minimum and the mean surface adsorption ⟨ϕ⟩, in this section we look
at another way to quantify the effects of improper γ calibration by looking at the effective
potential felt by the monomer as it moves around the fluid near the surface due to the
effect of the different thermostats (LB/Langevin). Given that all the simulations here are
carried out in the absence of any shear flow i.e. Wi = 0, one would expect the monomer’s
position in equilibrium be the same as postulated by the Boltzmann distribution i.e.

pe (z) = A exp

(
−Ue(z)

kBT

)
(3.4)

Following [25, 41, 153, 187] where the authors studied the effective forces acting on a
sphere near a surface using Total Internal Reflection Microscopy (TIRM), we compute the
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effective potential, Ue and forces acting on the sphere from the probability distributions
of its elevations above the surface. We eliminate the normalization constant by dividing
both sides of equation 3.4 by the probability of finding the sphere at some reference
elevation, z′. From the resulting expression the effective potential can easily be identified
as

Ue(z)− Ue(z
′) = kBT log

(
pe(z

′)

pe(z)

)
(3.5)

It is to be noted that for sufficiently large number of position samples one can compute
the potential by simply using the raw histogram counts since the probability density, pe(z)
will be directly proportional to it. We choose the minimum of the surface potential, zm
as the reference height with respect to which Ue(z) is evaluated. In terms of the raw
histogram this simply entails that we use the counts in the bin that contains zm.

In figure 3.8, we again plot the probability density of the sphere’s elevation relative to
the surface potential minimum i.e. ∆ z = zm ≈ 2.55 nm for different values of ϵw. It can
be seen that regardless of the thermostat used (LB/Langevin (LNGV)) the distribution
remains more or less uniform for weak interaction strengths (ϵw = 0.02, 0.08), but peaks
near ∆z = 0 are more prominent in the LB thermostat case indicating longer than
average confinement of the sphere near the surface. In figures (3.8 b, d), we plot the
distributions for much higher values of ϵw in order to quantify any differences in the
thermostats if the cases of strong monomer confinement near the surface. In the LB
case, if properly calibrated γ was used and the simulations are run for sufficiently long
duration, the difference between the LB and Langevin distributions should be negligible
as both of them should reproduce equilibrium Boltzmann dynamics properly.
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Figure 3.8: Probability densities of the sphere’s elevation relative to the surface potential
minimum, zm ≈ 2.55 nm in the different thermostats, (a,b) LB, (c,d) Langevin (LNGV).
In figures (b) and (d) we plot the same metric but for a much stronger interactions
strength i.e. ϵw = 0.4, 0.6, 0.8, 1.0. Due to this in both cases we see range of ∆z to be
severely restricted since in both cases the monomer remains strongly confined within the
surface potential

From figure 3.8, we note that there are significant differences between the LB and
LNGV distributions even for the strong confinement cases i.e. ϵw = 0.4, 0.6, 0.8, 1.0. Even
though the monomer spends most of the simulation duration near the surface confined in
the potential, from the distributions it is apparent that the confinement is much stronger
when the LB thermostat is used. This result again goes to show the importance of
properly calibrating γ when using the LB fluid as a heat bath for particles, since the
fluid temperature cannot be properly reproduced when the no-slip boundary condition
between the fluid and monomer surface is not properly implemented.

From the distributions we now derive the effective potential energy of the monomer as
a function of its elevation from the surface in either of the thermostats. In the Langevin
case since there is no explicit fluid the potential energy of the sphere is solely due to its
interaction with the surface, thus the surface Lennard-Jones potential and the computed
effective potential, Ue should be identical. In the LB fluid case however, due to improper
γ calibration an additional nonphysical contribution from the fluid is to be expected.

In figure (3.9-3.13) we plot the effective potential derived from the monomer’s eleva-
tion distribution show in figure 3.8 for the surface interaction strength ϵw = 0.2, 0.4, 0.6, 0.8, 1.0
respectively. Here the red curves, Ue are the plots of the potential derived from the dis-



78 Chapter 3. Polymer margination in shear flows

tributions via equation (3.5). The blue dashed curve is simply the 12-6 Lennard Jones
potential evaluated at elevations from the surface. We shift this potential by subtracting
its value at minimum i.e. z = 2(1/6)σw so that the potential becomes zero exactly at the
minimum. Lastly the green dashed curve is the apparent difference between the effective
potential computed by inverting the position distribution of the monomer and the true
shifted 12-6 Lennard-Jones potential.
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Figure 3.9: Effective potential derived from the probability distributions of the elevation
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in the case of the LB thermostat (right) Potentials derived for the Langevin thermostat
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From these figures, it is quite apparent that the derived potential in the LB case
matches extremely poorly with the true Lennard-Jones surface potential when γ is not
properly calibrated. In the Langevin thermostat case however the agreement between
the two is quite good and both can be considered exact up to roundoff errors. Moreover,
as pointed out earlier the discrepancy between the derived potential and true Lennard-
Jones in the LB case persists even when the interaction strength is really strong i.e.
ϵw = 1.0. This means that despite the particle being strongly confined in the surface
potential well its diffusive tendencies are reproduced extremely poorly and the heat bath
fails to generate the correct fluid temperature.

In light of the above figures, we extend our analysis by deriving effective force felt by
the monomer in the LB fluid that is poorly calibrated. To this end, we simply numerically
differentiate the derived effective potential in the direction normal to the surface and plot
the obtained values in figure 3.14. From the force profiles, we can clearly see that due
to incorrect γ calibration, a pseudo residual force, ∆Fz appears to act on the monomer
near the surface. Ideally, in the case when the calibration is done properly, the derived
effective force, F e

z and the Lennard-Jones force must be identical and the residual must
vanish for all values of ϵw.
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Figure 3.14: Effective force felt by the monomer normal to the surface in the LB ther-
mostat for ϵw = 0.2, 0.4, 0.6.0.8, 1.0. (blue) Effective force derived from Ue, (green)
Standard Lennard-Jones force acting on the monomer normal to the surface (orange)
Residual (pseudo) force acting on the monomer, computed as a difference between the
Lennard-Jones force and the effective derived force.

3.0.2.3 Proper calibration

So far, in the above sections we thoroughly investigated the effects that one might see in
the case when the LB fluid and particle coupling constant, γ is not calibrated properly.
But as shown in [120], if one follows the proposed recipe of picking a γ large enough so
that there is consistency between the different measures of the hydrodynamic radius of
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a particle, then the LB fluid can be expected to act as a good heat bath for the particles
immersed within it and the no-slip boundary condition on the particle’s surface will also
be well respected. To quantify the effects of a properly calibrated coupling constant i.e.
γ we begin plot plotting the distribution of the monomer’s elevation above the surface at
z = 0 in figure 3.15. In all these simulations, we set γ = 0.15 to be far greater than the
lower limit 0.02 as shown in figure 3.5. As mentioned in [120], we push to be the largest
possible value, γ = 0.15 in our case, until our simulations become numerically unstable.
From figure 3.15 we can clearly see the excellent agreement between the distributions
obtained from the different thermostats i.e. LB and Langevin. Similar to figures 3.9 -
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Figure 3.15: Probability distribution of the monomer’s elevation from the surface at
z = 0 for ϵw = 0.2, 0.4, 0.6, 0.8, 1.0. The inset figures in each shows linear fits on the tails
of the distribution on a log scale to match the results obtained from both thermostats.
Lattice-Boltzmann thermostat (LB), Langevin thermostat (LNGV)
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3.13, we again compute the effective potential from the monomer’s elevation distributions
using equation 3.5 and plot the results in (3.16). This time, unlike the earlier figures
we again get excellent agreement between the potentials from both thermostats for the
monomer across all ϵw values. The curves become noisy for larger values of ∆z for
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Figure 3.16: Normalized effective potentials, Ue derived from the monomer’s elevation
distributions for ϵw = 0.2, 0.4, 0.6, 0.8, 1.0. (blue circles) Lattice-Boltzmann (LB), (or-
ange, dashed curve) Langevin (LNGV)

ϵw = 0.6, 0.8, 1.0 since in these cases the monomer is quite strongly confined within
the surface potential well and over the course of the simulation its deviation from the
minimum to larger values is quite rare. Given the finite duration of the simulation, the
monomer just did not sample those points in its phase space sufficiently enough, resulting
in noiser distributions and effective potential curves. But regardless of these finite size



84 Chapter 3. Polymer margination in shear flows

effects, all the curves (distributions and effective potentials) are in really good agreement
with each other. These figures, illustrate very well that properly calibrating the coupling
constant, γ in the LB fluid results in accurate fluid temperature reproduction and proper
implementation of the no-slip boundary condition on the monomer’s surface as shown
in [120].

3.0.3 A single monomer

We first examine the effect of simple shear flow on a single monomer. We have already
examined the equilibrium behavior of monomers in figure (3.16) and in figure (3.17a)
we plot the effective potential obtained for the same monomer in shear, γ̇ = 1.0 and
observe almost no difference in the derived effective potential. Although the Boltzmann’
probability for a particle is an equilibrium property, performing the same analysis in
shear with essentially identical results demonstrates that the ambient fluid flow has very
little influence on the likelihood of a finding a single monomer close to the surface. The
same result is obtained for the 1.4 nm case in figure (3.17b).

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
z/σw

0

1

2

3

4

5

6

7

8

Û
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Figure 3.17: (a) Comparing the pseudo potential derived from the position distribution
of a single 0.7 nm monomer in shear flow, γ̇ = 1.0 to its equilibrium counterpart. (b)
Effective/pseudo potential(s) derived from the position distribution of a single a = 1.4 nm
monomer in equilibrium and in shear γ̇ = 1.0. The surface interaction strength, ϵw in
this case was set to 0.15 and the interaction length scale, σw was set to 2.12 nm

This result is not really a surprise as a single sphere in a simple shear flow, in the
absence of noise and any potential interactions with the wall, will typically simply follow
a streamline [49]. In the presence of walls, there is a small hydrodynamic force that,
without noise, will eventually cause the sphere to move to the center of the channel [84].
However, in our simulations we have noise which means the sphere moves from the
streamline it starts on due to diffusion. As we saw in figure (3.16) this allows the sphere
to explore the full energy landscape in equilibrium. In shear, the results in figure (3.17)
demonstrate that the presence of shear does not significantly affect this result. It should
also be noted that, based on [84], any hydrodynamic force on a single monomer would
be expected to move it away from the wall towards the center of the channel and that



85

this tendency would be greater for the larger sphere. For nanometer sized particles, this
effect is tiny and is overwhelmed by the thermal noise.

3.0.4 Max monomer height & Center of mass

To quantify the margination of our chains multiple parameters based on the monomer
positions in the direction normal to the surface at z = 0 can be calculated. In all
our simulations every 120 steps we saved the chain’s conformations to disk and carried
out our analysis using those trajectories. One of the ways we characterized the chain’s
margination was by analyzing the distribution of the maximum height attained by a
single monomer, zm for each sample configuration over the course of a simulation. In
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Figure 3.18: Probability density of the maximum height of a single monomer above the
surface in equilibrium, Wi = 0 (a) N = 16 (b) N = 32

figure (3.18), we plot the probability distribution of zm scaled by the surface interaction
length scale, σw for both the different chain lengths, N = 16, 32 in equilibrium (Wi = 0).
From these plots we can see that in both cases the distributions are mostly uniform
across the entire channel width. This result indicates that the chains, regardless of the
monomer sizes, display similar behavior in equilibrium. Moreover it should also be clear
from these distributions that in absence of any flow the polymers do not show a strong
tendency to adsorb onto the wall for any substantial period of time.

Now in order to address the effect of shear flow on the chain’s margination, in figure
(3.19) we plot the residual distribution, ∆PWi = PWi−P0 versus zm/σw which is basically
the difference between the in-shear and equilibrium distributions. From figure (3.19) to
begin with, we can note that in all cases the residuals distributions show a leftward
shifting trend that indicates an apparent increase in the probability for zm being within
zm = 2 to 4σw from the surface. Secondly the trend is also such that the peak heights
increase with increasing Weissenberg number. Apart from these overall trends a closer
look at the curves makes it apparent that monomer size has a noticeable impact on
the residual distributions. By analyzing plots (3.19a,c) versus (3.19b,d) we can notice
that in comparison to the a = 0.7 nm case, the shift in probability density towards
lower values of zm is stronger and clearer in the a = 1.4 nm case for both chain lengths,
N = 16, 32. Even at the lowest non-zero shear rate the a = 1.4 nm monomer radii chain
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Figure 3.19: Residual distributions, ∆P (zm/σw) = PWi(zm/σw) − P0(zm/σw) of the
maximum height attained by a single monomer away from the no-slip surface at z = 0 in
shear. The four different plots are for the cases (a) N = 16, a = 0.7 nm (b) N = 16, a =
1.4 nm (c) N = 32, a = 0.7 nm (d) N = 32, a = 1.4 nm respectively. The statistical error
in the measurement of the probability distribution for the equilibrium case is about 0.05
which sets a lower bound for the statistical error in the residuals plotted here.
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shows a significantly higher probability concentration in the zm = 2 to 4σw range from
the surface in comparison to its a = 0.7 nm counterpart (where the trend is barely visible
above the statistical fluctuations). This trend can also be seen to hold true for higher
shear rates and the larger monomer chains display a higher propensity for margination
in shear. From the latter two figures, i.e. (3.19c,d) we can again see evidence for stronger
margination in shear for the larger monomer chain as well as for the longer chains.

Since we are measuring distributions of the maximum height attained by a single
monomer such a trend illustrates that shear tends to compress the chain’s normal ex-
tent into the bulk and causes them to attain flatter conformations on the surface. We
also quantified the chain’s lateral size by measuring its radius of gyration in the normal
direction to the surface and observed similar trends. Results and discussion pertaining
to the chain’s size is carried out in a later section. Since the relaxation timescale of the
principal Rouse mode, τ1 scales with the monomer size due to its dependence on the drag
coefficient, ζ = 6πηa, and the bond length b, the apparent increase in the margination
tendency of the larger monomer sized chains may be explained in the light of longer re-
laxation times. As the chains assume flatter and elongated conformations on the surface,
despite being of the same length and under the influence of the same surface potential,
larger monomers couple more with the background fluid flow, which eventually causes
the chain to maintain its elongated state for longer durations. Such elongated conforma-
tional states result in a severe entropic losses which cause the chains to marginate more
towards the surfaces as under such circumstances, it becomes energetically favorable for
the chains. In an effort to see if this is the case we looked at the residual distributions
all scaled individually by their respective Wi numbers but we were unable achieve a
reasonable collapse of the data suggesting there may be more to the effect than can be
explained by scaling with the relaxation time of the polymer in equilibrium and in bulk.

Another related parameter to assess the chain’s margination in shear is its center of
mass normal to the surface, zcm. In figure (3.20) we plot the residual distributions of the
same scaled by the surface interaction strength, σw and observe trends very similar to
the ones depicted in figure (3.19). In these figures, we only plot the a = 1.4 nm monomer
case to illustrate the behavior. The strongest peaks observed in these distributions in
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Figure 3.20: Chain’s normal center of mass residual distribution, ∆PWi(zcm/σw) =
PWi(zcm/σw)− P0(zcm). The two different plots are for the cases (a) N = 16, a = 1.4 nm
(b) N = 32, a = 1.4 nm respectively
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figure (3.20) all seem to peak over the interval (1.5, 3.0)σw and this is somewhat to be
expected since the minimum of the surface interaction potential lies well within that
interval. From all the observations discussed in this and the previous subsections, it is
reasonable to conclude that longer chains and chains with the larger monomers are more
likely to remain within the vicinity of the surface in shear and tend to marginate better
in comparison to the shorter and smaller radii monomer chains.

3.0.5 Radius of Gyration

In the previous sections, we saw larger monomer and longer chains had enhanced margina-
tion. To see why it is helpful to examine the chain’s conformational behavior in shear.
In shear and elongational flows, polymers undergo severe conformational changes as
they stretch and relax along the shear direction and tumble end-to-end incessantly
[6, 7, 34, 108, 147, 158, 182]. On thermodynamic grounds, such dramatic conformational
changes result in severe conformational entropy losses for the polymer as the flow pre-
vents it from retaining the equilibrium conformations of a three-dimensional self-avoiding
walk which is the entropy maximum [117]) for a free polymer. In pressure driven flows
this causes a tendency for net migration of the chain away from the surface towards areas
of low shear rate where this effect is diminished i.e. towards the channel center line. In a
Couette flow, however due to the uniform shear rate across the channel, migrating away
from the no-slip surface is not entropically helpful for the chains.

In this section, by looking the radius of gyration of the chains we investigate their un-
folding in shear flow near the surface and demonstrate that relative to the a = 0.7 nm case,
chains with a = 1.4 nm sized monomers are somewhat more likely to be in the elongated
conformations. Based on the earlier observations of relatively stronger margination ten-
dencies of the a = 1.4 nm chains in shear such elongated and compressed conformations
imply more monomers being adsorbed on the surface making the situation energetically
favorable for them, thus compensating somewhat for the entropic losses.

For quantifying the chain’s conformation changes we computed its radius of gyration
in the principal directions i.e. Rx, Ry, Rz by simply computing the average extent of all
the monomers relative to the chain’s center of mass in either of the directions.

Rα =

√√√√ 1

N

N∑
i=1

(Ri,α −Rc,α)
2 (3.6)

where α = x, y, z, Ri,α is the ith monomer’s coordinate in direction α and Rc,α is chain’s
center of mass coordinate along the same (recall that the y-direction is along the flow
and z is the direction normal to the wall). In our analysis we scaled all the gyration
measurements in the x, y direction by the bulk gyration value Nν a where ν ≈ 0.588 and
used the surface interaction potential length scale σw to scale the gyration measure of
the chain normal to the surface, Rz. To study the effect of shear we again compute the
residual distributions, ∆Pα = PWi (Rα)− P0 (Rα) for all the gyration measures. We plot
the residual distributions of Ry and Rz in figures (3.21, 3.22). We omit the gyration
results from the γ̇ = 0.2 shear rate case as no significant differences from the equilibrium
case were observed.
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In figure (3.21 a, c) we plot the residual distributions for the Ry and Rz gyration
measures for the N = 16, 32 chains. We notice that the residuals are positive at larger
values of Ry in both cases indicating the elongation of the chains along the shear direction.
The corresponding negative residuals of ∆Py at smaller values of Ry clearly indicate that
the chains are less likely to be in compact configuration in this case. Furthermore, it is also
interesting to note that the Ry residuals are always higher in probability at larger values
of the Ry in the a = 1.4 nm case. From figure (3.21 b,d), the residual distributions for Rz

show an opposite trend as the peaks move leftward towards smaller values of Rz. This
indicates that the chains on average in shear are much more likely to be in conformations
which are rather elongated along the shear direction and compressed laterally. Plotting
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Figure 3.21: Residual distributions of the radius of gyration of the N = 16, 32 chains in
the direction parallel to the shear flow, Ry and normal to the surface. Blue line represent
the a = 0.7 nm case whereas the dashed line represents the distributions obtained in the
a = 1.4 nm case. Figure (a,c ) Residual distribution for Ry for the N = 16, 32 chains in
γ̇ = 1.0 respectively. Figure (b, d) Residual distribution for Rz for the N = 16, 32 chains
in γ̇ = 1.0

the same distributions for the shear rate γ̇ = 2.0 in figure (3.22) we notice the same
trends as before but more pronounced in nature.
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Figure 3.22: Residual distributions for the radius of gyration of the N = 16, 32 chains
in shear flow, γ̇ = 2.0. Blue line represent the a = 0.7 nm case whereas the dashed
line represents the distributions obtained in the a = 1.4 nm case. Figure (a,c ) Residual
distribution for Ry for the N = 16, 32 chains in γ̇ = 2.0 respectively. Figure (b, d)
Residual distribution for Rz for the N = 16, 32 chains in γ̇ = 2.0

Furthermore to ensure that the chains in shear were not in any log-rolling, states i.e.
extended mainly along the x direction, in figure (3.23) we plot the residual distributions of
chain’s the radius of gyration in the x direction i.e. Rx for all the shear rates. First, it can
be noted that the distributions for the a = 1.4 nm radii monomers are more pronounced
in comparison to the a = 0.7 nm case indicating that larger monomers chains are affected
by the shear flow more strongly. We also note that the distribution peak over smaller
values of Rx indicating that in shear flow, the chain’s extent in this direction becomes
restricted as the chains tend to align more in the direction of the shear flow.
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Figure 3.23: Residual distributions for the radius of gyration of the chains in the x
direction, Rx for all the non-zero shear rates. (a) N = 16, a = 0.7 nm (b) N = 16, a =
1.4 nm (c) N = 32, a = 0.7 nm (d) N = 32, a = 1.4 nm. We omit plotting the equilibrium
distribution of Rx since the effects of shear flows is best illustrated by considering the
residual distributions as plotted here. The actual form of the equilibrium distribution of
Rx is a Gaussian at Wi = 0

From the residual distributions of Rz plotted in figures (3.21) and (3.22) we can
note that the lateral extent of the chains is comparable to each other in both cases i.e.
a = 0.7, 1.4 nm as they all peak roughly over the same range of values for Rz and attain
similar heights, whereas the distributions for Ry and Rx are more clearly different for the
polymer with larger monomers. Overall, the results is that larger monomer and longer
chains experience a greater loss of entropy in shear (i.e. the distribution of conformations
is farther from the equilibrium distribution).

There a number of competing effects at play in this system. The first is the energy
from the wall-monomer potential which favors adsorbtion onto the wall. However, to gain
from this energy the polymer must first adopt a 2-dimensional configuration which ob-
viously has reduced entropy compared to the typical 3-dimensional self-avoiding random
walk the polymer prefers in equilibrium. Secondly, the shear exerts a hydrodynamic force
on the monomers. This force is greater for larger particles as the hydrodynamic drag
force is proportional to the particle size. There is also a hydrodynamic force between
monomers. This effect is similar to particle entrainment in a fluid stream where larger
particles have a much higher tendency to become entrained than smaller particles [128].
These forces act to elongate the polymer along the flow direction and are larger for the
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larger monomers. Finally, there is the relaxation time of the polymer relative the shear
rate, as typically captured by the Weissenberg number, Wi. When Wi is small, the poly-
mer should have time to relax towards it equilibrium configuration and should therefore
be less elongated compared to when Wi is high. For the same shear rate, the relaxation
time of a polymer with larger monomers is expected to be larger, as described in Eq.(3.2)
thus leading to a larger Weissenberg number. Note that this is distinct from the second
point above which relates to the force felt by a monomer as opposed to how long it takes
to respond to this force.

Once the polymer is elongated in shear and assumes something closer to a two (or one)
dimensional structure, it may as well take advantage of the energetic effects that favor
adsorption onto the wall. The caveat is that this is an equilibrium argument that is not
guaranteed to hold in the out-of-equilibrium situation studied here. In particular, if the
polymer is rapidly rearranging its configuration it may not have time to take advantage
of the adsorbtion energy before it changes to a configuration where adsorbtion is less
beneficial. Even if the deadsorbed state is short lived it could have a significant impact
on the overall likelihood of adsorbtion. Again, in this case the slower response time of
the larger monomers favors their adsorbtion over the smaller monomer chains.



Chapter 4

Nanorods dispersion in polymer
melts

In this chapter we present the results from our work on polymer nanocomposites stud-
ied using coarse-grained MD simulations through LAMMPS [130, 176]. The dispersion
patterns of nanorods in a pool of attracting polymer chains is a less explored field and
is the primary focus of our work. We simulated a polymer-nanorod composite where
all interactions were repulsive except for the polymer-rod. We looked at the effect of
such interactions on the dispersion of the nanorods within the melt as well as on their
orientations. We also looked at the effects of the nanorods on the conformations of the
interfacial polymer chains i.e. the chains in close proximity to the rods. In section (4.0.1),
we provide the details our simulation model and the parameters used to run the simu-
lations in LAMMPS. Following that in section (4.0.2), we present the results from our
work on the dispersion of the nanorods in the melt for different concentrations. We do
so by providing snapshots from our simulations as well as several quantitative measures
such as the average distance between nanorods once the melt is sufficiently equilibrated.
In the final results section i.e. (4.0.3) we present the results from our work on the orien-
tation of the nanorods in our melt at different concentrations. We also show results of
the conformational changes of interfacial polymers by looking at their radius of gyrations
and comparing them with the values obtained for the chains in the bulk.

4.0.1 Simulation Model

In this work, we adopt a coarse-grained approach to model the polymer-nanorod compos-
ite. The melt is comprised of a mix of polymer chains and rigid nanorods. Each polymer
molecule is composed of np = 32 consecutive beads (monomers) connected via Finitely
Extensible Non-linear Elastic (FENE) bonds (cf. Fig. 4.1a). The Kremer-Grest FENE
potential

Ub = −1

2
KR2

0 ln

[
1−

(
r

R0

)2
]

+ 4ϵb

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
H
(
2

1
6σ
)

(4.1)

is used to implement all the bonded interactions necessary for the monomer inter-
connectivity within the polymer chains [78]. The first term on the RHS is attractive
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in nature with K = 30ϵbσ
−2 being the effective elastic constant where ϵb = kBT , kB is

Boltzmann constant, and T is Temperature. R0 = 1.5σ is the maximum bond extension
in any direction and σ is the Lennard-Jones (LJ) length scale. On the other hand, the
second term on the RHS represents the repulsive portion of the potential with the cut-off
length rc = 21/6σ enforced through the Heaviside function H(x). This form of potential
also eliminates nonphysical bond crossings [78]. Excluded volume of the polymer chains
are implemented through a repulsive 12− 6 Lennard Jones (LJ) potential similar to the
one used for the FENE bonds. Interactions between the polymers and the rods are also
of a 12− 6 LJ potential form. However, the cutoff length for these interactions is set to
rc = 2.5σ creating attraction between the polymer chains and the nanorods.

The rigid rods in our system consist of four individual threads (sub-rods) which are
assembled in a helical pattern as shown in Fig.4.1b. Each thread has nr = 16 monomers
and are interconnected along the backbone via the FENE bonds described in Eq. 4.1
and rigidity of the rods is ensured by a harmonic angle potential Uh for every monomer
triad

Uh = k (θ − θ0)
2 (4.2)

where k = 1000 (LJ units) is the spring constant, θ is the angle formed by a triad at any
given time during the simulation and θ0 is its equilibrium value. A rigid conformation is
obtained by penalizing any bending of the rods by setting θ0 = 180◦ during the energy
minimization step. However, at equilibration and production stages, each rod is treated
as a rigid body to reduce computational cost of the simulation without compromising
the physics. The diameter and length of the rods are respectively D ≈ 2.35σ and L ≈
13.35σ giving them an aspect ratio of about 5.5. The multiple subrods give the nanorods
a realistic thickness, surface roughness, and eliminates commensurability between the
rods and polymers. This is different from most of previous studies where single thread
nanorods [44, 45, 95, 104, 122, 124, 125, 140, 151, 178, 179], hollow nanotubes [71, 72], or
smooth (sphero)cylinders were used [20,180,189]. All the simulations are done using the
open source package LAMMPS [177]. The initial atom coordinates and LAMMPS data
files were generated using the moltemplate package [64].

One of the main objectives of the present work is to investigate the effect of nanorod
inclusion on the conformation of the polymer chains in the melt, especially the chains at
the interface of the nanorods. As a measure of the shape and size of the polymers, we
calculated the radius of gyration tensor Rg of a chain from the particle coordinates as

R2
gαβ

=
1

M2

[
np∑
i=1

mi(ri,α − rcom,α)(ri,β − rcom,β)

]
(4.3)

where R2
gαβ

is the element of the tensor R2
g on the αth row and βth column, M is the

total mass of the chain, np is the number of beads in the chain, and mi is the mass of
the ith bead. The ri,α represents the position of the ith bead in α = x, y, z direction and
similarly, the ri,β is the position of the ith bead in β = x, y, z direction. The rcom is the
position of the centre of mass of the polymer chain. Then the |Rg| was found by

|Rg| =
√
λ2
1 + λ2

2 + λ2
3 (4.4)
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where λi is the ith eigenvalue of the gyration tensor. A set of 10 realizations of a pure
melt is run and the average radius of gyration of the polymer is measured to be R0 ≈ 3σ.
This value is used as a reference throughout the paper.

A fixed number of polymer chains Np = 1000 is used across realizations whereas
the total number of rigid rods Nr in the melt is varied in order to achieve different
concentrations of nanofillers. We quantify the concentration of the rods ϕc by simply
taking the ratio of the total number of rod monomers to the total number of polymer
monomers

ϕc =
number of rod beads

total number of beads
=

(4 ·Nr)nr

Npnp + (4 ·Nr)nr

(4.5)

where np = 32, nr = 16, Np = 1000, 60 ≤ Nr ≤ 500, and 0.1 ≤ ϕc ≤ 0.5.

The simulation is started from a random initial configuration and equilibration is con-
ducted carefully to ensure that the system does not get stuck in a kinetically favourable
glassy configuration. The thermodynamic variables of the system were monitored to
ensure this. Moreover, the direct visualization of the system shows that the polymer
chains move reasonable distances and the configuration of the system changes signifi-
cantly during equilibration as shown in Fig. 4.3. All suggesting that the system has been
equilibrated (Fig: 4.3(a)-(c)). All realizations were carried out under an NPT ensem-
ble [9]. The polymers were thermostated using a Langevin thermostat with a damping
parameter td = 100τ , τ being the LJ time unit, and dimensionless temperature of T = 1.0.
A Berendsen barostat with the damping factor 5τ was used to maintain the pressure of
the system at P = 1.0. We used a timestep of ∆t = 0.005 and carried out all our simu-
lations up to a maximum duration of 107 MD steps, 9 million steps of equilibration and
1 million steps for production.

Lastly, to improve results statistically, for each value of ϕc, a total of ten independent
realizations were carried out and the results were averaged over these realizations. All
quantities are presented in dimensionless LJ units unless mentioned otherwise.
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(a) (b)

(c)

Figure 4.1: An example of polymer chain is shown in (a) while (b) shows a lateral view of
a nanorod. A random initial configuration, shown in (c), is generated using moltemplate
package for each realization. The nanorods are shown in cyan(green) and the polymer
chains are shown as purple lines. The VMD software was used for this visualizations [61].
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Figure 4.2: The volume and total energy of the system for all concentrations are shown.
The dashed vertical lines separate the equilibration (to the left) and production (to the
right) stages. Initially, a change in the volume and energy is observed but it levels off
and stays constant during production (the last one million steps). The total energy is
normalized by the total number of atoms in the system N .
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(a) (b)

(c) (d)

Figure 4.3: A nanorod-polymer melt with nanorod concentration ϕ = 0.1 and nanorod-
polymer Lennard-Jones interaction strength ϵ = 1. As the system evolves, the initial
random configurations (a) progress to phase separate and form distinct rod droplets
after equilibration (c). (b) shows an intermediate stage. The considerable change in the
system configuration is an evidence of full equilibration of the system. (d) shows the
final configuration of the system after 9 × 106 equilibration steps and 106 production
steps resulting in approximately three hours of simulation runtime. The matrix polymer
chains are shown as purple dots for illustration purposes.

4.0.2 Dispersion and phase Separation

Rigid rods and nano particles have long been known to have poor dispersion in polymer
melts. However achieving optimal dispersion of the rods throughout the melt is extremely
important when considering the mechanical and structural properties of the resulting
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material. As mentioned earlier, chemically treating the surfaces of the rigid rods has
shown to improve dispersion as it boosts their interactions with the polymer matrix
[37, 56, 96, 203]. Therefore, due to their practical relevance, we focus on a system of
nanorod-polymer composite in which the polymer-rod interactions are attractive while
all other interactions are hard-core repulsive.
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(a) (b)

(c) (d)

Figure 4.4: Snapshots of the rod-polymer system at concentrations (a) ϕc = 0.1, (b)
ϕc = 0.2, (c) ϕc = 0.33, and (d)ϕc = 0.5 are shown. Initially, increasing the concentration
of the rods results in the growth of the size of the clusters, but further increase breaks
the clusters up and makes the system more isotropic. This is attributed to the interplay
of entropic and enthalpic effects.

In figure 4.3, we present snapshots of our system at the lowest concentration i.e.
ϕc = 0.1 for polymer-rod interaction strength ϵ = 1.0 as it equilibrates. Figure 4.3a
shows the system at an initial stage. As can be seen, the rods start out in a fairly random
configuration and are well dispersed throughout the melt. However, as the simulation
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progresses, the rods are seen to phase separate. The early stages of this agglomeration
is illustrated in figure 4.3b where a few clusters of rods appear. This phase separation
continues and distinct droplets of nanorods form at equilibrium, leaving some regions
completely filled with only polymers (for lower concentrations). This phase separation
has been observed in experiments [59, 183] as well. In most previous computational
studies where formation of such clusters were studied, an attractive interaction between
rods were at play [95, 179]. However, the formation of such clusters in a system with
rod-rod repulsive forces suggests the significance of entropic effects in this phenomenon.
At lower rod concentrations, the enthalpic energy gains for the polymers by interacting
with the rods is low, thus the chains tend to prefer conformations that increase their
conformational entropy. This entails that the polymers tend to phase separate the rods
out in order to maximize their conformational entropy. However, since the interaction
between the rods and polymers is attractive, the rods do not end up phase separating
entirely resulting in distinct clusters.

Figure 4.5: (a) shows the auto-correlation function of the number density ρn as a function
of radial distance from the origin for selected concentrations while (b) shows the intercept
of the auto-correlation function with ACF (ρn) = 0 axis as a function of concentration.
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To quantitatively investigate the phase separation visually observed in the simula-
tions, we divide the system into voxels and in each voxel we compute a number density
defined as

ρn =
pn − rn
pn + rn

, (4.6)

where pn is the number of polymer monomers and rn the number of rod monomers in the
voxel. The auto-correlation function of this number density characterizes the distribution
of particles inside the simulation box. The auto-correlation function for ρn is

Cρρ(rρ) =
⟨ρn(0) · ρn(rρ)⟩ − ⟨ρn⟩2

⟨ρ2n⟩
(4.7)

and found using Fast Fourier Transform, and Wiener-Khinchin theorem [99]. Figure
4.5(a) shows the Cρρ(rρ) as a function of radial distance from the reference point (r = 0).
Since we have a periodic boundary condition, we only plot the function for one octant of
the simulation box. The 3D distribution obtained from the calculations is mapped onto
the radial distance by averaging all the discrete values of the Cρρ(rρ) within distance rρ
and rρ + δrρ, where δrρ = 2.5σ, and assigning the mean value to the point at rρ.

In figure 4.5(b), a characteristic length rρ0 corresponding to the zero-crossing of the
auto-correlation function as a function of the concentration is illustrated. We observe a
slight increase at the beginning followed by a decay for higher concentrations. The initial
increase corresponds to a slight increase in the size of rod clusters seen in simulation
snapshots 4.4. From the definition of ρn, the decrease at higher concentrations shows that
the correlation between the composition of voxels decreases as function of concentration
which implies that the polymers and the rods are becoming better mixed.

Another important indicator of the structure of the system is the distance of nanorods
from each other in the melt. In figure 4.6(a), we show the probability of finding the centre
of mass of the nanorods at a distance ∆r from each other. By increasing this shell radius
to include larger distances, the number of rods within the shell increases just due to the
larger volume. Therefore, we normalize the probability by the volume of the shell. Similar
to typical pair correlation function graphs (g(r)), peaks in the rod-rod distance plot show
spatial order in the system. As can be seen, the graphs show a first peak around 3.25σ at
all concentrations which corresponds to the distance between rods within a cluster. The
area under the first peak is a measure of the number of rods in a cluster and is plotted
as a function of concentration in the inset of figure 4.6(a). At the beginning, the area
increases as the concentration increases corresponding to the growth in the size of the
droplets, but it reaches a maximum at ϕc = 0.33 and declines after reflecting droplet
shrinkage.

Moreover, in figure 4.6(a), the peaks slowly diminish as the concentration goes up
which implies that the system at higher concentrations is not as ordered. The system
becoming more isotropic is also manifested in the average volume of the system. In
figure 4.6(b), we see the average volume versus concentration. The volume initially
grows linearly, but beyond ϕc = 0.33, as the system becomes less ordered (particularly
the rods), the rate of growth increases. The orientation of rods and the order of the
system will be discussed in greater depth in the next section.
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To provide a better picture of the processes responsible for the above results, we
compare the result of our system with rod-polymer attractive interactions with a system
with all repulsive interactions.
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Figure 4.6: In (a), probability density function is shown for the pairwise distance between
the centre of mass of the rigid rods in the melt. ϕc = 0.1 (black), ϕc = 0.2 (magenta),
ϕc = 0.27 (red), ϕc = 0.33 (sky blue), ϕc = 0.375 (yellow), ϕc = 0.41 (brown), ϕc = 0.5
(green). The inset shows the area under the first peak of the probability density functions
versus concentration. (b) shows the average volume of the system as a function of the
concentration. The patterns in (a), and (b) suggest that the melt becomes more isotropic
and less ordered at concentrations higher than ϕc ≈ 0.3.

Figure 4.7(a) shows the Cρρ(rρ) for a system with repulsive forces between all com-
ponents. Compared to figure 4.5(a), the graphs reach the Cρρ(rρ) = 0 at larger distances



105

and we do not observe significant decrease in the zero-crossing as the concentration in-
creases. This shows that the neighbouring voxels contain similar type of atoms. In other
words, the rods and polymers are fully phase separated.

The difference in the behaviour of Cρρ(rρ) of the fully repulsive system and attractive
system can be described as follows. The phase separation of the polymers and the rods
in the repulsive system is an entropic process and since there is no other processes to
compete with, increasing the number of rods does not alter the behaviour of the system
significantly. However, in the presence of the rod-polymer attractive interactions, the
enthalpic effect that tries to increase the contact surface of rods and polymers competes
with the entropic effect pushing the system away from phase separation, and formation of
clusters. As a result, increasing the number of rods steers the attractive system towards
a more isotropic configuration as it boosts the energetic interactions.

In order to increase their contact surface with the rods, the polymers break up the
large clusters of rods into smaller ones as well as penetrate into the space between rods
within the clusters. This becomes more evident if we compare the rod-rod centre of mass
results for the repulsive and attractive cases. Similar to figure 4.6, figure 4.7(b) shows
the probability density of rod-rod centre of mass distance. The maximum probability
happens at a distance close to the diameter of the rods ∆r ≈ 2.35σ which means the rods
directly touch within a cluster while for the system with rod-polymer attractions, the
first peak happens at a larger distance which suggests that polymers are present between
the rods within a cluster.

This is also observed from direct visualizations of the systems. figure 4.8 shows
snapshots of the system for an all-repulsive system. As can be seen, the all-repulsive
system shows a full phase separation while the rods are mixed with the polymers in
the attractive system shown in figure 4.4(d). One might interpret this as polymers
gluing the rods together and therefore determine formation of cluster to be energetically
driven [45,54,140]. However, as shown by the Cρρ(rρ) graphs, introducing the attractive
forces not only does not bring the rods together but it splits the larger clusters into
smaller ones. This implies the phase separation for the system with all purely repulsive
forces is entirely driven by entropic effects similar to depletion forces seen in systems of
spherical colloids of two different sizes [12, 143]. This type of depletion-induced phase
separation is observed in nanorod-polymer solutions before [60]

Another interesting result illustrated in figure 4.3c is the orientation of rods within
the droplets. As can be seen, the rods within a cluster align laterally and in parallel. In
other words, they form a nematic phase within each droplet. The formation of nematic
phase of nanorods in solutions of polymers has been mentioned in the literature [87,188]
and is the topic of the next section.
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Figure 4.7: The auto-correlation function of the number density (a), and the rod-rod
centre of mass distance (b) for a system with all-repulsive interactions are illustrated.

4.0.3 Orientation and Order

4.0.3.1 Rod droplets

In the previous section, we observed that the nanorods tend to phase separate into
clusters that visually seem to have nematic order. In this section, we further investigate
this possible ordering and phase transition. The best place to start would be to look
at the orientational order of the rods as a function of their position. We introduce an
orientational correlation Crr as

Crr (|∆r|) =
〈
|êr

i (r) · êr
j(r +∆r)|

〉
(4.8)

where êr
i and êr

i are the end-to-end vectors of the ith and jth nanorods and ∆r = |∆r|
is the distance between the centre of mass of the nanorods. The value of Crr is 1 for
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Figure 4.8: A system with repulsive interactions between all components is shown for
ϕc = 0.5. The polymers are shown as purple dots for illustration purposes. The rods
are fully phase separated in the absence of the attractive forces but they are dispersed
isotropically and show no orientational order in the system with attractive forces (see
4.4(d)).
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a fully ordered state and 0.5 for an isotropic state. Figure 4.9 shows this value as a
function of ∆r for a range of concentrations. As can be seen, the neighbouring rods at
short distances are very correlated and Crr takes near one values. However, moving away
from a reference rod, the orientational correlation between the rod and other rods fades
away and Crr decreases. Moreover, we can see a shift towards smaller Crr values as the
concentration of the system increases. This is on par with what we have already seen in
figure 4.6: the order of the nanocomposite diminishes as the concentration of the rods
increases.

Figure 4.9: Orientational correlation between different rigid rod directors. The nearby
rods align in the same direction which results in values close to 1 in low ∆r and this value
decreases as ∆r increases. The nematic ordering of the rods weakens as the concentration
of rods increases.

In addition to orientational correlation between the rods, we look at an order param-
eter q similar to the one in liquid crystals literature [27]. The q is defined as the largest
eigenvalue of the traceless order parameter tensor

Qαβ =

〈
êαêβ −

1

3
δαβ

〉
(4.9)
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where ê is the unit vector (along the length) of a rod, α, β = x, y, z, and the angle brackets
denote the expectation value over all rods. The average of this value over 10 different
realization is plotted as a function of concentration in figure 4.9(b). One more time, we
see that the overall order of the nanocomposite decreases as a function of concentration.
However, the slight bump between ϕc = 0.2 and ϕc = 0.3 suggests competition between
the two present effects. At concentrations below ϕc = 0.2, the enthaplic effects are
weak and clusters form. Since rods prefer to align with their neighbours due to excluded
volume effects [121] the clusters that form are highly ordered. Initially, packing more rods
into the melt results in larger nematic droplets of rods. However, beyond ϕc = 0.3, the
enthalpic effects are strong enough to prevent phase separation. Besides, the entropic
cost of extending and aligning polymer chains with ordered clusters is more than the
entropic gain of the cluster formation. Therefore, we see a decrease in the size of the
ordered clusters as well as the order parameter ⟨q⟩.

4.0.3.2 Interfacial polymers

The phase separation of rods, and nematic ordering within the aggregates, has important
ramifications for the nanocomposite’s mechanical properties. However, another factor
that plays a determining role in understanding the mechanics of fracture of polymer-
nanorod composites is the behaviour of polymer chains at the polymer-nanorod inter-
face. Unlike nanorod dispersion patterns, the interfacial behaviour has not been studied
significantly in the literature which is the motivation for the work in this section.

In their recent article, Lu et al. found that the polymer chains near nanorod surfaces
take on more extended conformations while the chains far away behave like chains in a
pure melt [95]. Our simulations tell a similar story. We measure the radius of gyration
of the polymer chains within (near) and beyond (far) a distance of 5σ from surface of
rods. The probability density of radius of gyration for far away chains is shown for all
concentrations in figure 4.10(a). As can be seen, the graph is roughly normally distributed
about peak of about RG = R0 which implies that bulk chains (non-interfacial) typically
have a pure melt conformation. To see the difference between interfacial and bulk chains,
we also plot the difference between the probability densities for polymers near and far
from rods in figure 4.10(b). For concentrations up to ϕc ≈ 0.3, we consistently observe
a dip for values below R0 and a peak for values above R0. The peak also moves to the
right and expands to higher RG’s as the concentration increases. This is due to increase
in the number of rods and in turn, more rods for the polymers to align with. For higher
concentrations (ϕc > 0.3), due to the abundance of rod surfaces, we see elongation in the
bulk chains as well which results in a smaller difference between the far-away and near
behaviour.

The presence of the rods in the melt results in stretching of polymer chains but we
have not yet addressed the direction in which the polymers stretch. The chains can extend
along the length of the rods or perpendicular to the direction of clusters. Therefore it is
interesting to see if there is also some kind of orientational correlation between the rods
and polymers. To measure this, we defined a rod-polymer correlation parameter such
that

Crp (|∆r|) =
〈
|êr

i (r) · êp
j(r +∆r)|

〉
(4.10)
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Figure 4.10: (a) depicts probability density of the normalized radius of gyration of poly-
mer chains for selected concentrations while (b) shows the difference between the prob-
ability density of the near and far chains.
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where êr
i and êp

j are the director of the ith rod and the end-to-end vector of jth polymer
and ∆r = |∆r| is the distance between the centre of mass of the rod and polymer. Figure
4.11 shows the values of this correlation parameter for selected concentrations. As can
be seen, for all concentrations, polymers near rods are most elongated along the rod and
the correlation decays as the distance increases. An interesting feature of this plot is
the behaviour of Crp as a function of concentration. The overall correlation goes up as
the concentration increases up to ϕc ≈ 0.3 and then declines. By fitting an exponential,
we have defined a length scale ℓrp which is plotted in figure 4.11(b) as a function of
concentration. The ℓrp inclines at the beginning which corresponds to growth of cluster
size and reaches a peak around ϕc = 0.3. This agrees with what we have already seen
in the previous sections. The initial rise in the number of rods results in larger ordered
clusters where polymers sneak in between the rods and stretch along the director of the
cluster. However, further increase in the number of rods leads to a less ordered system,
particularly in the rod orientations, with an abundance of rod surfaces for the polymers
to interact with. Therefore, the polymer chains do not show any preference to align with
any specific rod.

Figure 4.11: Orientational correlation Crp between director of rods and polymers’ end-
to-end vector. The inset shows the length scale ℓrp as a function of concentration.

Lastly in this section, we look at the orientation of polymers with respect to each
other by introducing a polymer-polymer correlation function like the ones defined for
rod-rod and rod-polymer

Cpp (|∆r|) =
〈
|êp

i (r) · êp
j(r +∆r)|

〉
(4.11)

where ei and ej are the end-to-end vectors of the ith and jth polymer chains and ∆r =
|∆r| is the distance between the centre of mass of the polymers. In figure 4.12, the
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relative orienational correlation, ∆Cpp = Cpp − Cppmelt
, for selected concentrations is

shown.

Figure 4.12: The relative Orientational correlation parameter ∆Cpp = Cpp − Cppmelt
as a

function of pairwise distance

∆Cpp takes higher values for lower distances at all concentrations as expected. The
chains that align with a specific rod are as a result aligned with each other. With
increase in the number of rods, more chains are exposed to rods and ∆Cpp increases.
The long distance correlations become present as the size of the clusters grows. However,
beyond the ϕc ≈ 0.3, the long range correlations become less significant again as the rod
dispersion and orientation becomes more isotropic (see figure 4.8). Nevertheless, since
the system is crowded with rods, the polymers stretch out in the space between them
which is the reason for higher overall ∆Cpp at higher concentrations.
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Conclusions

Polymers and polymeric materials have proven to extremely useful in numerous indus-
trial settings as well as in our day to day lives. Apart from being used extensively in
industrial applications, the use of polymers in biomedical applications as well as in the
development and design of smart materials has had a significant positive influence in
our lives ( [160]). Responsive and smart materials are actively being used to develop
smart sensors and actuators due to their novel ability to quickly respond to external
stimuli [26]. Due to their novel properties, smart polymeric materials have also sparked
extensive experimental and computational research in this field ( [52,100,112,152,205]).

Apart from the novel industrial applications, the biomedical applications and the
importance of polymer based materials in the healthcare field cannot be overstated.
Polymer based materials are being used in several crucial medical procedures such as heart
implants and dental implants. Since polymeric materials tend to have fewer issues when
incorporated in such medical procedures while also being cheap and easier to manufacture,
their adoption in the healthcare industry has increased tremendously. As pointed out
in the review works ( [14, 93, 111]), the similarities between natural tissues, proteins
and synthetic polymers due to their long chain architecture make polymeric materials
suitable for use in procedures involving natural tissues. Due to similarities in structure
and properties, a wide array of materials have been developed that are actively used in
medical devices and procedures. Examples include acrylic cements for orthopedy, facial
prostheses, joint surgeries, blood pushes, catheters, cardiac valves, pumps and so on. The
biodegradable nature of certain polymeric materials have also proved important in the
development of certain therapeutic devices such as temporary prostheses, bone implants,
porous scaffolds for tissue regeneration as well as in nano sized drug transport vehicles
( [40, 74,92,103,129,194]).

Polymers/proteins also play a crucial role in several biological and physiological pro-
cesses. DNA which essentially is the blueprint of the human genome is the mostly
commonly known biopolymer found in all living cells. Another protein that is com-
monly found in our circulatory system is the von Willebrand factor (vWF) and plays
a crucial role in hemostasis. Our first research work is heavily influenced by vWF’s
novel margination tendency exhibited in high shear flows. In this work through exten-
sive LBMD simulations, we have addressed the issue of polymer margination in Couette
shear flows and have observed that monomer size plays a decisive role in the overall mi-
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gration of the chains, either away or towards the channel walls. We have shown that the
polymer chains comprised of larger radii monomers show a greater tendency to marginate
in comparison to chains of same length however with smaller radii monomers. By mea-
suring the probability distributions of the max extent of the chain into the channel bulk
we were able to note that although the general trend of increase in probability over lower
values of zm with increasing shear rate was present in all cases, the difference in the
distributions were more significant and more highly peaked for the larger monomer radii
cases and the longer chains. We also looked studied the effect of scaling all the zm resid-
ual distributions with their respective Weissenberg number but we did not see a good
collapse of the resulting data. It seems likely that such a scaling may still be possible but
would require defining the Weisenberg number with a relaxation time other than that
of the equilibrium polymer in bulk. We mention again that the effects observed in this
work appear to be a chain effect since in Couette flows due to the constant shear rate
across the channel, individual monomers do not benefit from any cross-stream migration
that would take them towards the walls.

By studying the chain’s conformations through its radius of gyration in the x, y, z
directions we also observed that in the vicinity of the surface, regardless the size of the
monomer, every chain’s lateral extent into the channel bulk was roughly the same how-
ever, the larger monomer sized chains showed higher probability to retain their elongated
states along the shear direction compared to their smaller counterpart. Since larger sized
monomers couple more with the shear flow as they experience a larger shear gradient
across their entire surface, experience greater hydrodynamic stresses and also due to
the anisotropic nature of the monomer’s mobility near the surface, motion of the chains
get significantly retarded near the surface causing it to relax more slowly. This in turn
causes the chains to remain in their elongated conformations for longer causing more
monomers to become adsorbed onto the surface. Our observed results can potentially
be used to provide a functional reason for the exceptionally large size of vWF monomers
(each monomer is typically made up of 2050 amino acids) and long length (∼ 20, 000
kDa) of vWF multimers which play a crucial role in the initial stages of hemostasis [138].

Apart from the novel properties and dynamics exhibited by single chains in flows,
polymeric solutions and melts exhibited far richer dynamics and properties under dif-
ferent situations. Polymer melts have a multitude of applications by themselves, but
since the discovery of carbon nanotubes (CNTs) research interest in novel polymer
nanocomposites (PNC) has grown tremendously. CNTs have displayed excellent me-
chanical strength, electrical conductivity and magnetic properties and their potential
to be used in technological applications cannot be overstated. Due to such desirable
traits, CNTs have been used quite extensively in the development of nanocomposites
( [2, 10, 62, 94, 106, 107, 123, 139, 167, 205]). Apart from their intrinsic properties of the
nanofillers/nanotubes used in the creation of the PNC, their distribution, orientation
and dispersion throughout the melt has also shown to play a crucial role in the over-
all performance of the nanocomposite material ( [3, 31, 80, 126]). Larger aspect ratio of
the nanofillers/tubes are known to increase the efficiency of the polymer nanocomposite
( [31, 126]) and previous computational works have studied the effect of nanorod length
( [142,178]). In our second work we addressed the issue of nanorod diffusion throughout a
melt of attractive polymer chains. We found that the dispersion and orientation patterns
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of nanorods in polymer melts with rod-polymer attractive interactions can be explained
by the competition between entropic and enthalpic effects. The entropic effects drive
phase separation and are responsible for formation of nematic clusters of rods whereas
the enthalpic effects bring the polymers and rods together and improve dispersion.

Since the strength of the enthalpic effects is proportional to the number of rods in the
system, the dispersion patterns show direct correlation with the rod concentration. At
lower concentrations, entropic processes are dominant and ordered clusters of nanorods
are created. However, due to the presence of the attractive forces, the rods do not
completely phase separate and polymers insert between the rods of a cluster. At higher
concentrations, the energetic effects become significant and the dispersion of the rods
improves. The structure and order of the system is also affected by the concentration.
The system is more ordered at lower concentrations as a result of the formation of the
ordered clusters, but as the concentration increases, the dispersion of the rods improves
and excluded volume effects of the rods is screened. Therefore, the system becomes more
isotropic.

5.1 Future Work

A simple next step to our work on polymer margination in uniform shear flows, further
simulations of the same can be carried out in a Poiseuille flow to study the margina-
tion tendencies of chains further. Since its a pressure driven flow, the shear rate will be
non-uniform throughout the channel and its effects on the chain’s elongation, surface ad-
sorption and margination as a function of the monomer size can be investigated further.
Other interesting research questions could to use longer chains in much bigger channels
to reduce finite size effects and also to consider a distribution of monomer sizes/types
along a single chain. This would model some realistic differences between monomers
within a single chain and the effect of the chain’s margination can then be again studied.
In our work, the surface was fully uniform and homogeneous. Although more computa-
tionally expensive, surfaces grafted with polymer brushes can also be considered in order
model cell wall collagen linings and adsorption and margination of the chains under such
conditions can be studied further.

With regards to the polymer melts, nanorods with polymer side brushes at different
concentrations can be modelled and simulated. The dispersion of such rods can then be
studied as a function of the polymer side brush concentrations. Nanorods of different
lengths and sizes i.e. large aspect ratios can also be studied quite easily and their ef-
fects on the neighbouring chains can then be studied using similar approaches. Longer
polymer chains can also be considered to better understand and differentiate between
the entropic and enthalpic effects as observed in our current work. Moreover, also using
coarse grained simulations, mechanical and elastic properties of the resulting PNC can
be studied by suitably deforming the material and recording its stress strain curves. The
mechanical strength and elastic results can then be correlated with the nanorod aspect
ratio, dispersion and side brush grafting densities. All these ideas could be considered as
viable next steps in order to better understand the properties of the systems studied in
our work.
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Appendix A

Moltemplate

Moltemplate [64] is a general cross platform text-based molecule builder tool for LAMMPS.
It can be used to prepare custom coarse-grained molecular models as well as all-atom
simulations as well. It supports the entire ATB molecular database along with a wide
variety of existing force fields and models including OPLS, AMBER (GAFF, GAFF2),
DREIDING, COMPASS, LOPLS, EFF, TraPPE, MOLC, mW, ELBA (water), oxDNA2.
It is fully open source and can be used to build molecules using any of the force fields
and atom styles in LAMMPS.

It is modular in structure, and the molecules built can be copied, combined and linked
together as basic blocks to define new and complex molecules. Once the base molecules
have been built, they and their subnits can be customized such as the atoms and subunits
can be either moved, rotated or deleted. The tool is also iteroperable with other suite
of scientific visualization software such as VMD, PACKMOL, OVITO, EMC and so on.
For further details, visit Moltemplate. As an example we give a short moltemplate
code snippet, obtained from the official moltemplate website for creating a simple water
molecule

Figure A.1: Simple water molecule (white) Hydrogen atoms (red) oxygen

SPCE {

# AtomID MoleculeID AtomType charge X Y Z

write("Data Atoms") {

$atom:o $mol:w @atom:O -0.8476 0.0000000 0.00000 0.000000

$atom:h1 $mol:w @atom:H 0.4238 0.8164904 0.00000 0.5773590

$atom:h2 $mol:w @atom:H 0.4238 -0.8164904 0.00000 0.5773590

}

write_once("Data Masses") {

133

 https://www.moltemplate.org/


134 Chapter A. Moltemplate

@atom:O 15.9994

@atom:H 1.008

}

write("Data Bonds") {

$bond:oh1 @bond:OH $atom:o $atom:h1

$bond:oh2 @bond:OH $atom:o $atom:h2

}

write("Data Angles") {

$angle:hoh @angle:HOH $atom:h1 $atom:o $atom:h2

}

write_once("In Settings") {

bond_coeff @bond:OH 600.0 1.0

angle_coeff @angle:HOH 75.0 109.47

pair_coeff @atom:O @atom:O 0.1553 3.166

pair_coeff @atom:H @atom:H 0.0 0.0

group spce type @atom:O @atom:H

fix fShakeSPCE spce shake 0.0001 10 100 b @bond:OH a @angle:HOH

# (Remember to "unfix" fShakeSPCE during minimization.)

# Note: Since we are using SHAKE constraints, the bond and angle strength

# parameters ("600.0", "75.0") do not matter. But the equilibrium bond

# length ("1.0") and equilibrium angle ("109.47") does matter. LAMMPS

# obtains these numbers from the bond_coeff and angle_coeff commands above.

}

write_once("In Init") {

# -- Default styles (for solo "SPCE" water) --

units real

atom_style full

pair_style lj/charmm/coul/long 9.0 10.0

bond_style harmonic

angle_style harmonic

kspace_style pppm 0.0001

#pair_modify mix arithmetic # LEAVE THIS UNSPECIFIED!

}

} # end of definition of "SPCE" water molecule type
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Hermite Polynomials

Hermite polynomials are a special set of orthogonal polynomials that naturally arise
when solving for the simple quantum harmonic oscillator. They form a complete set of
orthogonal polynomials and are especially useful in discretizing integrals over continuous
domains. The Hermite polynomials, Hn(x) may be defined by a generating function
[11, 141]

ω(x) =
1√
2π

exp

(
−x2

2

)
(B.1)

They arise naturally as solutions to the Hermite’s equation

d2f

dx2
− 2x

df

dx
+ 2nf = 0 (B.2)

and alternatively they can be generated recursively through Rodrigues formula

Hn(x) = (−1)n
1

ω(x)

dn

dxn
ω(x) (B.3)

The first few Hermite polynomials are

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x (B.4)

The Hermite polynomials also satisfy the following recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (B.5)

H
′

n(x) = 2nHn−1(x) (B.6)

One of the most useful features of these polynomials is the fact that they are orthogonal
to each other with respect to the weight function ω(x) i.e∫ ∞

−∞
ω(x)Hn(x)Hm(x)dx = n!δnm (B.7)
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Moreover, the 1-D Hermite polynomials also form a complete basis in R, so in princi-
ple any well behaved function f(x) ∈ R can be represented as a series over Hermite
polynomials

f(x) =
∞∑
n=0

1

n!
anHn(x) (B.8)

an =

∫ ∞

−∞
f(x)Hn(x)ω(x)dx (B.9)

B.1 Gauss-Hermite Quadrature

On of the most important features of Hermite polynomials is its applications in numerical
integration of functions. This is commonly referred to as Gauss-Hermite quadrature rules
and simply states that the integral over (−∞,∞) for any 1-D function f(x) multiplied by
the Hermite weight function, ω(x) can be approximated by a finite sum of the function
values evaluated at certain points xi called abscissae∫ ∞

−∞
ω(x)f(x)dx ≈

q∑
i=1

ωif(xi) (B.10)

The accuracy of the approximation depends on the values and the number of abscissae
points at which the function is evaluated at. Another important aspect of the relation
B.10 is that if one chooses the abscissae as the n roots of the nth order Hermite polyno-
mial, then it is guaranteed that for any polynomial P of order N = 2n− 1 relation B.10
holds exactly i.e ∫ ∞

−∞
ω(x)P (N)(x)dx =

n∑
i=1

ωiP
(N)(xi) (B.11)

The weights, ωi can then conveniently be obtained as

ωi =
n!

(nH(n−1)(xi))
2 (B.12)
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