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ABSTRACT 

 

INTERPRETABLE MACHINE LEARNING FOR SELF-SERVICE HIGH-RISK 

DECISION MAKING 

by 

Charles Patrick Recaido 

May 2022 

 

 This research contributes to interpretable machine learning via visual knowledge 

discovery in General Line Coordinates (GLC). The concepts of hyperblocks as 

interpretable dataset units and GLC are combined to create a visual self-service machine 

learning model. Two variants of GLC known as Dynamic Scaffold Coordinates (DSC) 

are proposed. DSC1 and DSC2 can map in a lossless manner multiple dataset attributes to 

a single two-dimensional (X, Y) Cartesian plane using a dynamic scaffolding graph 

construction algorithm.   

 Hyperblock analysis is used to determine visually appealing dataset attribute 

orders and to reduce line occlusion. It is shown that hyperblocks can generalize decision 

tree rules and a series of DSC1 or DSC2 plots can visualize in a lossless manner n-D data 

in accordance with a decision tree model. For large decision trees with many branches 

such as MNIST handwritten digits where hyperblock discovery was hampered, 

dimensionality reduction techniques such as principal component analysis, singular value 
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decomposition, and t-distributed stochastic neighbor embedding were used to create new 

attributes of interest for visual class separation.  

 Major benefits of DSC1 and DSC2 is their highly interpretable nature. They allow 

domain experts to control or establish new machine learning models through visual 

pattern discovery. A software package referred to as Dynamic Scaffold Coordinates 

Visualization System (DSCViz) was created to showcase the DSC1 and DSC2 systems. 

DSCViz expands the end-user’s capabilities by offering several functions such as real-

time drag and zoom, scaling techniques, sample clipping, attribute reordering, and the 

ability to hide classes or change their colors. DSC2 was used to estimate and visualize the 

worst-case validation splits in the Wisconsin Breast Cancer, Iris, and Seeds dataset. 

DSC2 was also plotted against MNIST Handwritten digits to determine its feasibility in 

large datasets. In general, the technique of estimating worst-case validation splits is 

important for every high-risk application. 
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CHAPTER 1 

INTRODUCTION 

 

Technological advancements continue to push the role of decision making onto 

machines. Machines have the raw computational power to analyze datasets with many 

samples and attributes in a timely manner. The information from the datasets is used to 

form predictions using a machine learning (ML) model such as k-nearest neighbors, 

support vector machines, decision trees, neural networks, and more. The results from 

these predictive models are interpreted either autonomously or by a human for decision 

making. Many but not all advanced ML models can be complex black boxes for the end 

users. Decision making using a black box method requires trust from the end user 

because of various assumptions [1, 2] that take place during the development process of 

the model. 

Decision making can be a life critical or high-risk process. One dataset this work 

considers is the Wisconsin Breast Cancer (WBC) dataset. This is a benchmark dataset 

used to classify tumors as benign or malignant. A misdiagnosis of a malignant tumor as 

benign could be a fatal decision for a patient [3]. Other high-risk applications to be 

considered are missile launches and certain investment strategies.  

ML algorithms often rely on random methods of splitting available data into 

training and validation data. The accuracy of each conducted split as well as the average 

model accuracy for these splits can be high and considered appropriate dependent on 

application. However, the accuracy of the worst-case split can be significantly lower. For 
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life critical or high-risk decision making, models with less average accuracy among many 

splits but an altogether higher accuracy using the estimate of worst-case split may be 

preferable.  

The field of data visualization offers many techniques to increase human 

interpretability of machine learning models and general data analysis [2]. The 

combination of data visualization and machine learning can even provide self-service 

models for the end-user [4]. Self-service visualization models allow an end-user to apply 

their domain knowledge to tweak the model rules for better decision making.  Human 

interpretability also provides benefits in data transparency, data fairness, and the 

development of new models. 

Our research considers two main problems: (1) the interpretability of ML models 

where many advanced ML models are difficult to understand, respectively called black 

boxes, and (2) the reliability of ML models where the model accuracy can be exaggerated 

which is unacceptable in applications with high cost of individual errors. 

One solution to increase human interpretability of machine learning and provide a 

basis for a self-service model to the end-user with visual means is General Line 

Coordinates (GLC). General line coordinates form a multidimensional coordinate system 

that represents data in the n-dimensional space without data loss based on a unique graph 

constructing algorithms [5]. Generally, GLC are mapped to three or less dimensions to 

enhance visual aids. GLC when combined with non-overlapping hyperblocks (HB), 

regions in an n-dimensional space containing a set of data samples, forms a powerful tool 

with high level visual clarity. The main advantage of HBs is that they are interpretable, 



   

 

3 

 

and all samples of the dataset can be grouped into class - pure HBs known as atomic HBs 

[12]. Therefore, complex datasets can be considered unions of the atomic HBs.  

In addition to HBs we explore principal component analysis and t-distributed 

stochastic neighbor embedding (t-SNE) dimensional reduction techniques. t-SNE 

components and principal components are used as polyline-origins to influence visual 

class separation. t-SNE is a non-linear unsupervised dimensionality reduction technique 

that has been applied to high dimensional datasets such as MNIST Handwritten digits 

(784 dimensions) [6] and genomic sampling [5]. This work considers the complications 

of t-SNE which is viewed as a black box visualization tool and proposes future 

alternatives. 

Our approach involved the development of two interpretable self-service ML 

models with the basis in General Line Coordinates. Both models use a special case of 

GLC known as Dynamic Scaffolding Coordinates (DSC1, and DSC2). DSC1 has basis in 

parallel coordinates whilst DSC2 has basis in paired coordinates. DSC1 and DSC2 are 

lossless data visualization methods that compact the many axes required in DSC1 and 

DSC2 to only two axes. 

One immediate consequence of our visual approach is that large datasets hamper 

visual knowledge discovery (VKD) due to line occlusion and permutation complexity [7]. 

We adjusted our dynamic scaffolding approach by incorporating hyperblocks and/or t-

SNE to reduce the number of lines and lay a foundation for our dynamic scaffolds to 

grow from.  
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We packaged DSC1 and DSC2 into a software application titled DSCViz. 

DSCViz grants the user interactive capabilities such as changing attribute order, 

emphasizing or deemphasizing classes and/or attributes, visualizing the coordinate 

system via polylines, markers, or both, zoom and drag capabilities, and 

clipping/bounding algorithms for sample selection. In addition, DSCViz includes parallel 

coordinate and shifted paired coordinate plots with the same functionalities listed above. 

All functionalities are purposefully built to enhance visual knowledge discovery for the 

end user. DSCViz was developed using Python as the default programming language, 

QTCreator for the GUI interface, and OpenGL for plot rendering. 

We applied the DSCViz software to a real problem which is using visual 

knowledge discovery to find the upper estimate of the worst dataset split (also referred to 

as the most difficult split) and/or reduce false predictions to improve critical decision 

making such as tumor diagnosis. This is achieved by analyzing the DSC1 and DSC2 plots 

for regions of class overlap and selecting these samples for a validation set. This 

validation set is expected to reduce general model accuracy when compared to standard 

k-fold cross validation. One challenge of this VKD approach we found was that not all 

overlapped regions are equal when discriminating classes from each other, some 

overlapped regions will have zero impact on model performance whereas other 

overlapped regions will have a great impact when used in the validation set.  

More worst-case split experiments were conducted on benchmark datasets such as 

Seeds, Iris, and Wisconsin Breast Cancer [8]. We further investigated our visualization 

tool on very large datasets such as MNIST handwritten digits [6]. 
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This work explores a novel visualization tool through the combination of a unique 

general line coordinate system known as Dynamic Scaffolding Coordinates, hyperblocks, 

and dimensional reduction techniques such as principal component analysis and t-

distributed stochastic neighbor embedding. Visualizations of high clarity are produced for 

multiple benchmark datasets where worst-case data splits can be discovered that impact 

model performance 

 

Related Concepts 

 

There are many forms of GLC visualizations which are dependent on the graph 

constructing algorithm. GLC generalize multidimensional coordinate systems that use 

multiple axes such as parallel coordinates (PC), radial (star) coordinates, and shifted 

paired coordinates (SPC), by transforming them into a line plot with one axis per 

dimension [8]. This work uses PC and SPC plots to construct two unique GLC 

visualizations on a two-dimensional plane. 

 Parallel line coordinates (PC) represent multidimensional data using several one-

dimensional axes. Each axis in a PC plot is independent and represents the informational 

space of one attribute. Figure 1a shows the Iris dataset on a parallel coordinate plot. Each 

axis is responsible for one of four attributes: petal width, petal length, sepal width, and 

sepal length. The minimum and maximum values of each axis correspond to the range of 

each attribute. Increasing the range of one attribute will have no effect on the other 

attributes. Parallel line coordinates can be an acceptable tool for decision making. Figure 

1a shows a clear classification area for the red class on the bottom right-hand corner 
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across two attributes. Any new samples that would plot in the bottom right-hand corner 

would be classified as red class. Establishing a rule to classify blue and green class from 

each other is more difficult as they exhibit overlap on all four attributes. 

 

  

(a) Iris dataset in Parallel Coordinates. (b) Iris dataset in one form of General Line 

Coordinates. 

 

FIGURE 1: Transformation of a 4-D PC plot to a 2-D GLC plot. 

 

Shifted paired coordinates (SPC) represent multidimensional data using several 

two-dimensional axes [4]. Each two-dimensional axis holds the informational space of 

two attributes. Unlike parallel coordinates, SPC can show relationships between two 

attributes. This leads to a limitation of the SPC plot in which an even number of attributes 

are required. A dataset with odd number of attributes will require engineering, 

duplicating, or removing an attribute. 

Figure 2 shows the Iris dataset on a shifted paired coordinate plot. The first 

attribute-pair shows a relationship between sepal width (vertical) and sepal length 

(horizontal), and the second attribute-pair shows a relationship between petal width 

(vertical) and petal length (horizontal). Separation of the red class is shown in the blue 

rectangle. Green and blue classes are highly overlapped. The order of attributes is 
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important when making a SPC plot due to the unique relationship between any two 

attributes which leads to visually different plots. This introduces a new hurdle in 

developing multidimensional visualizations which is the exponential time complexity of 

plotting every attribute order permutation and choosing the best one.  

 
 

FIGURE 2: Iris dataset on a shifted paired coordinate plot. 

 

Figure 3 is a visually appealing representation of class separation of the Iris 

dataset in SPC. The red class is completely separated from the red and green class. In 

Figure 2 the green class and blue class had large amounts of overlap, but for this 

permutation of attributes the blue and green classes overlap in a much smaller area. The 

difference between Figure 2 and Figure 3 is quite drastic in readability to the user. The 

time to produce every attribute permutation of the Iris dataset and choose the plot for 

Figure 3 was only a few seconds, however, computing permutations of larger 

multidimensional datasets may not be feasible.   
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FIGURE 3: Iris dataset on SPC with high visual classification clarity. 

 

A hyperblock (HB) is a multidimensional “rectangle” (n-orthotope) with set of 

multidimensional points {𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)} with center 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛) and side 

lengths 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝑛) [2] such that, 

 
∀𝑖 ∈ 𝑁, |𝑥𝑖 − 𝑐𝑖| ≤

𝐿𝑖

2
 (1) 

 

If a HB has equal length sides, then it may be referred to as a hypercube. HBs 

represent a group of samples with similar attribute values and can be used to condense 

the number of lines needed for visualization. HBs are highly interpretable data units as a 

combination of individual dimensions without non-interpretable operations between 

them. This allows for the separation of different data units that exist among multiple 

attributes like cell count and cell size for tumor diagnosis during model creation. For 

example, in k-nearest neighbors, a Euclidean distance search requires a summation of all 

attributes and the summation of a metric measurement with a count measurement may 
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not be appropriate to the domain expert. In a previous study hyperblocks were used to 

generalize decision tree rules [9]. Class purity ratings are given to HBs, with the purest 

HBs containing samples from only one class, and the least pure HBs contain equal 

number of samples from all classes.  

Figure 4 shows a HB in 4-D space. The boundary lines (pink) contain several 

green samples. The green lines can be omitted, and the pink boundary lines will still 

contain the information space of all those samples. Methods like principal component 

analysis can produce HBs but those HBs can be non-interpretable. Non-overlapping 

interpretable hyperblocks from a specific dataset can be found using decision trees, 

Merger Hyperblock algorithm [9], and by other methods. For this research we considered 

the decision tree method of creating hyperblocks due to the smaller time complexity of 

running a decision tree compared to Merger Hyperblock algorithm [9]. 

 

 
 

FIGURE 4: Hyperblock in 4-D space with boundary lines (pink) on a PC plot. 
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Literature Review 

 In this section we discuss prior works involving general line coordinate systems 

and their applications. These topics cover interactive visual knowledge discovery in 

shifted paired coordinates, pareto optimization in general line coordinates, GLC-L 

coordinate system, and more. We also look at other interpretable machine learning 

methods such as local interpretable model-agnostic explanations (LIME). 

 

Interactive Visual Self-service Data Classification Approach to 

Democratize Machine Learning 

 Wagle and Kovalerchuk., researchers from Central Washington University, were 

able to increase interpretability of machine learning by introducing the SPCVis software 

[4]. SPVis introduces a plethora of features that adapt the shifted paired coordinate 

system such as non-linear scaling, non-orthogonal displays, and serpent parallel 

coordinates. In addition, the researchers developed a genetic algorithm and coordinate 

order optimizer to find strong attribute permutations that led to class separability. This is 

especially important for dimensionally rich datasets. Wagle and Kovalerchuk used the 

SPCVis software and their optimization algorithms to produce a multi-stage visual 

classifier. Accuracy results using SPCVis on Seeds, Wisconsin Breast Cancer, and Iris 

datasets are comparable to ML algorithms from other papers. 
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Data Visualization and Classification of Artificially Created 

Images 

 Dovhalets, a researcher from Central Washington University, was able to use 

interpretable machine learning and General Line Coordinates to transform vectors filled 

with general attribute information into an image [10]. One important factor to Dovhalets’ 

work is that GLC is a lossless projection from multidimensional data into two 

dimensions, and the images Dovhalets created contained all the original information of 

the dataset. Dovhalets’ approach allowed him to apply any dataset that is not image such 

as Wisconsin Breast Cancer dataset and input that data into a Convolutional Neural 

Network. While our research uses a GLC system known as dynamic scaffolding, 

Dovhalets used an alternative GLC system referred to as GLC-L where angles are 

calculated using a linear function. 

 

Visualizing Multidimensional Data with General Line 

Coordinates and Pareto Optimization 

 Brown was able to use GLC-L and Pareto optimization to find a best-case 

scenario in certain datasets like student performance, and local weather [11] during his 

research at Central Washington University. As an example, one might want to know 

which month is best to go hiking, or which pre-major classes lead to better students in 

preparation for getting accepted into a CS program. Brown was able to pin down key 

attributes that would form a basis for his Pareto Subsets, and those subsets would lead to 
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a Pareto Frontier. Brown was able to condense several parallel coordinate plots into a 

single GLC-L plot. 

“Why Should I Trust You?” 

Explaining the Predictions of Any Classifier 

 Ribeiro et al. from the University of Washington developed a model that can 

explain predictions of arbitrary classifiers by using interpretable models to explain a 

prediction locally [12]. The researchers refer to this model as Local Interpretable Model-

agnostic Explanations (LIME). LIME uses linear surrogate models to explain a single 

instance by considering the input and the output of any given model, hence “Model-

agnostic”.  LIME uses perturbation around the input to measure changes in the output. 

LIME has been used in many applications from natural language processing [13] to 

computer vision [12]. 

 

 

 

 

 

 

 

 

 

 



   

 

13 

 

CHAPTER II 

DYNAMIC SCAFFOLD COORDINATES 

 

 

Dynamic Scaffolding Coordinates based on Parallel Coordinates 

 

 
Dynamic Scaffolding Coordinates based on Parallel Coordinates (DSC1) 

generalizes the parallel coordinate plot by creating a series of origin-to-attribute 

scaffolds. Each attribute axis is given a certain angle and the scaffolds connected tip-to-

tail to form a multidimensional line. The axis tilt can be user-defined or found 

analytically through optimization. The axis tilt is required to better visualize data trends 

across two dimensions. Without the axis tilt the line components would stack vertically in 

one dimension.  

The GLC-OS-PC graph construction algorithm (Figure 5) as follows: 

(1) Set up dataset sample coordinates in the same manner as a PC plot. 

(2) Apply a rotation transformation for each individual attribute axis with pre-defined 

angles. 

(3) Create a scaffold from the origin to the attribute point for each attribute and for all 

samples. 

(4) The first attribute scaffold position is left untouched; however, the tail of the first 

attribute scaffold is removed, making the tips of the first attribute the “origin” of 

the polyline. 

(5) Translate the remaining scaffolds to the tip of the preceding scaffold. 
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(a) One sample on parallel coordinates. (b) Rotating the axes. 

 
(c) Connect the scaffolds from tip-to-tail. 

FIGURE 5: Visual steps for construction of the DSC1 plot. 

 

 Figure 6 shows the final transformation between a parallel coordinate plot and the 

DSC1 plot on the Iris dataset. An immediate takeaway between the two plots is that 

DSC1 shows immediate class separation, whereas parallel coordinates require the user to 

focus on a single attribute.  
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(a) Iris dataset on PC. (b) Iris dataset on DSC1. 

FIGURE 6: Side-by-side comparison of PC and DSC1 of Iris dataset. 

 

The angles in the DSC1 graph construction algorithm are chosen to visually show 

separation of classes that separate on one attribute known as the attribute of separation. 

The attribute of separation is placed first in the order of attributes and given the steepest 

angle to emphasize its importance and the order for the remaining attributes sharing the 

same angle (Figure 6), however the possibility exists to change the angle of each attribute 

as shown in Figure 7.  

 
FIGURE 7: DSC1 with a different rotation for each attribute. 
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Other techniques may be applied to DSC1 such as hiding certain attributes 

markers and hiding the polylines. Figure 8 is another representation of Figure 6b where 

the polylines are hidden as well as the first three attributes. These self-service techniques 

can be deployed by the end-user to highlight certain attributes or regions of the dataset 

that may be of interest. 

 
FIGURE 8: Hiding polylines and certain attribute markers on DSC1. 

 

DSC1 grants the user the ability to reduce sample lines to an upper and lower 

hyperblock boundary line as shown in Figure 9. The alternative visualization reduces line 

occlusion, which can enhance visual knowledge discovery in sample dense but highly 

separable datasets. Hyperblocks containing only a few samples relative to the size of 

dataset do not benefit from this technique. 
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(a) HB boundaries on DSC1. (b) Shaded HBs on DSC1. 

 FIGURE 9: DSC1 visualized using only HBs. 

 

Dynamic scaffolding coordinates can be used to create visual classifiers. 

Particularly in DSC1 this can be done via a plot series of DSC1 plots using graphically 

linear separators as shown in Figure 10. 

 
(a) Complete Iris dataset with graphically linear separator (black line). 
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(b) Top split. (c) Bottom split. 

FIGURE 10: DSC1 plot series classifier. 

 

Figure 10a shows the graphically linear separator that separates the entire Setosa (red) 

class from the Virginica (blue) and Versicolor (green) classes. The next step of the 

classifier would be to separate the Virginica and Versicolor classes. There does not exist 

a spot that can completely divide the two classes without misclassifying some samples as 

shown in Figure 10b, thus one must analyze the best spot for a graphically linear 

separator. This methodology is very similar to rule establishment in a decision tree where 

clear divides between classes may not exist. 
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Dynamic Scaffolding Coordinates based on Paired Coordinates 

 

Dynamic Scaffolding Coordinates based on Shifted Paired Coordinates (DSC2) 

generalizes the shifted paired coordinate plot by creating a series of origin-to-pair 

scaffolds. Each scaffold is connected tip-to-tail; however, the tail of the first scaffold line 

is removed as the first attribute pair is the starting point of the multidimensional line. 

 

The DSC2 graph construction algorithm (Figure 11) as follows: 

(1) Set up dataset sample coordinates in the same manner as a SPC plot. 

(2) Create a scaffold from the origin to the attribute-pair point for each attribute-pair 

and for all samples. 

(3) The first attribute-pair scaffold position is left untouched; however, the tail of the 

first scaffold is removed, making the tips of the first attribute-pair the “origin” of 

the polyline. 

(4) Translate the remaining scaffolds, to the tip of the preceding scaffold 

 
(a) One sample with scaffolds on SPC. 
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(b) Connecting the scaffolds. (c) Removing the first scaffold. 

FIGURE 11: Visual steps for construction of the DSC2 plot. 

 

 

Figure 12 shows the final transformation between a shifted paired coordinate plot 

and the DSC2 plot on the Iris dataset.  

 

  
(a) Iris dataset on SPC. (b) Iris dataset on DSC2. 

FIGURE 12: Side-by-side comparison of SPC and DSC2 of Iris Dataset. 

 

DSC2 differs from DSC1 in that the hyperblock boundaries are difficult to 

conceptualize. FIGURE 13 illustrates the boundary boxes from each attribute-pair axes 
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on shifted paired coordinate and how they condense together to cause overlap within the 

hyperblock space when transformed into DSC2 coordinates. The Setosa hyperblock 2nd 

attribute-pair condenses onto the 1st attribute-pair and the 2nd attribute-pair of Versicolor 

hyperblock condenses onto the 1st attribute-pair of the Virginica hyperblock. 

 
FIGURE 13: Iris hyperblocks on DSC2. 

 

Hyperblock separation can still be identified by looking at the individual 

boundary boxes made by each attribute-pairing. The 2nd attribute-pair rectangle for all 

three classes is separated by white space, as well as the 1st attribute-pair rectangle for all 

classes. In Chapter III we deployed scaling techniques to better separate attribute-pairs on 

DSC2. 
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CHAPTER III 

METHODS FOR FINDING WORST-CASE SPLITS 

 

In this chapter we estimate the worst-case splits of the Iris dataset, Seeds dataset, 

and the Wisconsin Breast Cancer (WBC) dataset. In addition, we explored how our 

visualization performs on large datasets such as MNIST Handwritten Digits. Attributes of 

interest are developed to produce class separation on the DSC2 plot. Attributes of interest 

are important because testing every attribute permutation on a DSC2 plot, a factorial time 

complexity problem, is not feasible for large datasets.  

We employed three methods to find these attributes of interest. Hyperblock 

analysis from decision trees, principal component analysis, and t-distributed stochastic 

neighbor embedding. These methods are hierarchical in our decision making process, as 

we prefer to influence class separation on DSC2 using only the data themselves without 

additional feature engineering or dimensional reduction.  

For the Iris dataset we were able to show class separation on DSC2 with only a 

hyperblock analysis. On the other hand, we were unable to produce quality class 

separation of the WBC dataset on DSC2 using hyperblock analysis. To visualize WBC 

class separation, we escalated to using two principal components in addition to the real 

dataset attributes. Likewise, for MNIST we were unable to produce class separation using 

hyperblock analysis or principal components and escalated to using t-distributed 

stochastic neighbor embedding components in addition to principal components.  
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Iris Dataset and Hyperblocks 

 

 The Iris dataset contains 150 samples of three types of Iris flower (Setosa, 

Virginica, and Versicolor) [14]. The number of samples are balanced between the classes 

meaning there is 50 samples per Iris flower. The dataset has four attributes relating to 

petal width, petal length, sepal length, and sepal width. The dataset was obtained from the 

UCI ML repository [8]. 

The decision tree (DT) analysis is a simple way to develop HBs for a dataset. The 

decision tree model used a Classification and Regression Tree algorithm (CART) with 

Gini impurity criterion, and greedy approach on the best split. Figure 14 forms HBs of 

the Iris dataset. Each node of the DT represents one HB. To produce non-overlapping 

HBs from a DT a parent and child node cannot simultaneously be selected as the parent 

node contains the information of the child, essentially a child is a hyperblock contained 

inside a parent hyperblock. Going deep into a decision tree to reach 100% purity HBs, 

where 100 % pure blocks contain only one class, runs the risk of overfitting as HBs with 

very few or a single sample will be present.  
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FIGURE 14: Four levels below the root (level 0) of the Iris decision tree. 

 

The red (100% setosa purity), green (97.78% versicolor purity), and blue (97.61% 

virginica purity) HBs have high purity and contain many samples to reduce the 

possibility of overfitting. The cyan (61.53% virginica purity) HB is highly impure but 

still required to keep the information of all dataset samples. The orange highlighted text 

represent rules that the decision tree made to create these HBs. These DT rules can be 

applied to multidimensional visualizations when ordering attributes as shown in Figures 

15 and 16. 
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(a) Iris dataset on SPC (b) Iris dataset on DSC2 

FIGURE 15: Side-by-side comparison of SPC and DSC2 of three Iris HBs. 

 

 

FIGURE 16: Three main class hyperblocks chosen from the decision tree  

 

One caveat to the transformation of SPC to DSC2 is that the succeeding attribute-

pairs can condense onto the preceding attribute-pair as shown in Figure 16 where the tips 

of the green class are nearby the tail of the blue class for some samples. This 

phenomenon is particularly noticeable when an attribute-pair consists of zero or very 
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small values. One method we deployed to combat this phenomenon is to scale certain 

attributes-pairs to be larger than the succeeding attribute-pairs (Figure 17).  

 
FIGURE 17: Downscaling attribute-pair axes. 

 

This effect has diminishing returns on attribute-pairs that come last due to 

polyline growth always being in the positive up and right directions, thus it is 

recommended to carefully select the first couple of attribute-pairs. 

 By decreasing the size of the succeeding attribute pairs or increasing the size of 

the preceding attribute pairs we were able to highlight better separability between classes. 

In Figure 15b there was higher visual class overlap, and it was difficult to select samples 

for a validation set that would result in a worst-case split, however in Figure 18 it is 

immediately noticeable which samples to select for a worst-case split.  
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(a) Scaling 2nd attribute pair to 10% (b) Scaling 2nd attribute pair to 99% 

FIGURE 18: Emphasizing key attribute-pairs on DSC2. 

 

The Setosa (red) class is completely separated and can be omitted from the worst-

case decision analysis as ML models would not struggle to classify Setosa from the other 

two classes. However, Virginica (blue) and Versicolor (green) have overlap. This leaves 

100 samples between the two classes and a 90-10 test-validation split would require 10 

samples to be selected which is shown in Figure 18a. DSCViz features a clipping 

function that employs the Cohen-Sutherland line clipping algorithm to find samples that 

are clipped by a user defined rectangle. There also exists vertex bounding where samples 

are selected if any vertex of the sample’s polyline is contained within the box. This can 

be useful when viewing the dataset using markers rather than polylines. 

 Figure 19 is used to explain the reason why we tried to reduce class overlap as 

much as possible before choosing samples for a worst-case validation split. Whilst the 

orange rectangle is certainly over an area that appears to be highly overlapped, picking 

those samples may not lead to a bad split because those attributes are likely to not be used 

in classification. Clearly a model such as DT or SVM would make a classification 

decision using the third or fourth attributes and ignore the first two attributes. By 
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reducing overlap as much as possible we can determine which areas of a dataset that a 

ML model might use in the decision making process rather than ignore. The black 

rectangle is an excellent spot to choose samples for a bad split. However, the Iris dataset 

is a trivial dataset, and it is clear where ML models may decide to create rules. On larger 

datasets it is more difficult to determine what areas of overlap are forced into a ML 

model’s rule creation rather than ignored. 

 

FIGURE 19: Two areas of overlap on the Iris dataset on PC 

 

 Another technique known as non-linear scaling [4] can be used to separate Iris 

data as shown in Figure 20. The decision tree in Figure 17 for the Iris dataset made a rule 

that separated majority of the Setosa class (red) at a normalized value of 0.17 for petal 

length. Another decision tree was used to pick up separation using the petal width 

attribute. The Virginica class (blue) was separated from the Versicolor class (green) 0.67 
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for petal length. Samples with a petal length attribute greater than 0.17 scaled closer to a 

normalized value of one, while values less than 0.17 were scaled closer to a normalized 

value of zero. Likewise for petal width we used 0.67 as the indicator to push attributes 

values towards 0 or 1. Non-linear scaling exaggerations is also applied. A high 

exaggeration would squish attribute values at the limits of 0 and 1 whilst a low 

exaggeration will retain more of the original data.  

 

 

FIGURE 20: Non-linear scaling on certain attributes of the Iris dataset. 

 

Figure 21 demonstrates how non-linear scaling was applied on the first attribute-

pair to create Figure 29. The classes are pushed in the direction of the corresponding 

color arrows. The Virginica class (blue) is pushed up because it is above the black 

horizontal line and the Versicolor class (green) and Setosa class (red) are pushed down as 

they are below the black horizontal line. The red class is pushed to the left because it is 

on the left side of the black vertical line whilst the green and blue classes are pushed right 

as they are right of the black vertical line. 
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FIGURE 21: Non-linear scaling technique on SPC. 

 

Seeds Dataset And Hyperblocks 

 

 
 The Seeds dataset contains 210 samples of three types of wheat seeds (Kama, 

Rosa, and Canadian) [15]. The number of samples are balanced between the classes 

meaning there is 70 samples per wheat seed. The dataset has seven attributes relating to 

area, perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, 

and length of kernel groove. The dataset was obtained from the UCI ML repository [8]. 

 Immediate separation of classes is not apparent using a PC or SPC as shown in 

Figure 22. Note that the Kernel Groove attribute was duplicated to create an even number 

of attributes for the SPC plot. We decided to use a decision tree analysis (Appendix A.1) 

to find attributes of interest for DSC2. The attributes of interest happened to be area and 

kernel groove. 
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(a) Seeds dataset on Shifted Paired Coordinates (b) Seeds dataset on Parallel Coordinates 

FIGURE 22: Seeds dataset on SPC and PC. 

 

From the decision tree analysis in Appendix A.1, we established three 

hyperblocks, the green HB contained 68 samples of the green class and 1 sample from the 

red class, whilst the blue HB contained 70 samples of the red class and 14 samples of the 

red class. Finally, the red HB contained 55 samples of the red class and 2 samples of the 

green class. The green HB was separated from the red and blue HBs at a kernel groove 

value of 5.576 whilst the red and blue HBs were further separated from each other at an 

area value of 13.410. The decision tree model used a Classification and Regression Tree 

algorithm (CART) with Gini impurity criterion, and greedy approach on the best split. 

Using Figure 23 we employed a box clipping algorithm on 21 samples of the 

Seeds dataset which appeared to be overlapped.  
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FIGURE 23: Seeds on DSC2 after scaling and HB analysis. 

 

 Figure 23 is the full dataset and is difficult to see the boxes we used to clip 

samples as we plucked individual samples at a time. Figure 24 offers an enhanced view 

of Figure 23 which shows the samples we clipped into the validation set. 

 

FIGURE 24: Enhanced Version of the Seeds DSC2 Plot. 
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 After selecting 21 samples (10% of the Seeds dataset) and removing the 

duplicated kernel groove attribute we compared our validation split to a standard 10-Fold 

Cross Validation (CV) package in the scikit-learn library [16]. The 10 splits were reused 

for each model of the eight contained in Table 1. For each ML model all parameters were 

kept as default. The classifiers are as follows: Decision Tree (DT) using CART algorithm 

and greedy approach, Support Vector Machine (SVM) with linear approach and l2 

penalty, Random Forests (RF) with 100 estimators, K-Nearest Neighbors (KNN) with 5 

neighbors and uniform weights, Logistic Regression (LR) with l2 penalty, Gaussian 

Naïve Bayes (NB), Stochastic Gradient Descent (SGD), and Multilayer Perceptron 

(MLP) with one hidden layer of 100 hidden units. 

 

TABLE 1: Standard 10-fold Cross Validation model accuracy on Seeds dataset. 

 Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Fold 

6 

Fold 

7 

Fold 

8 

Fold 

9 

Fold 

10 

AVG 

DT 95.2 95.2 90.5 95.2 100.0 81.0 100.0 95.2 76.2 81.0 91.0 

SVM 100.0 95.2 90.5 100.0 100.0 85.7 100.0 90.5 71.4 66.7 97.1 

RF 85.7 95.2 95.2 95.2 100.0 95.2 100.0 95.2 71.4 85.7 91.9 

KNN 95.2 95.2 90.5 85.7 100.0 81.0 95.2 90.5 76.2 76.2 88.6 

LR 100.0 95.2 95.2 100.0 100.0 81.0 95.2 90.5 81.0 76.2 91.4 

NB 90.5 90.5 95.2 90.5 100.0 90.5 100.0 95.2 61.9 76.2 89.0 

SGD 81.0 85.7 81.0 90.5 81.0 85.7 95.2 81.0 71.4 90.5 84.3 

MLP 95.2 90.5 81.0 95.2 100.0 81.0 95.2 90.5 85.7 81.0 89.5 

 

Table 1 shows that standard ML algorithms can classify the Seeds dataset within 

84.3% to 97.1% average accuracy without any additional processing, dimensional 

reduction, or feature engineering. The lowest split was 66.7% in SVM, and the highest 
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split was 100% across all eight models. The best performing model was Support Vector 

Machine, and the worst performing model was Stochastic Gradient Descent. 

Table 2 shows that despite the strong model accuracies obtained in Table 1, all 

eight classifiers had an accuracy between 23.81% and 61.9% in the upper estimate of the 

worst-case split. Random Forest was the best performing algorithm whilst KNN had the 

lowest performance. Intuitively this makes sense that KNN would be the lowest because 

the samples we took from the DSC2 plot had neighbors from a different class. Using 

Table 1 we may have chosen SVM as our model, but if we had concern about the worst-

case scenario then Random Forest or Decision Tree could be an alternative model. 

 

TABLE 2: Estimate of the worst-case split on Seeds dataset. 

Model Accuracy 

DT 57.14% 

SVM 38.10% 

RF 61.90% 

KNN 23.81% 

LR 38.10% 

NB 57.14% 

SGD 42.86% 

MLP 23.81% 

 

 

Wisconsin Breast Cancer Dataset and Principal Components 

 

 
The Wisconsin Breast Cancer dataset contains 699 samples using nine descriptive 

attributes: clump thickness, uniformity of cell size, uniformity of cell shape, marginal 

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and 
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mitoses [3]. We removed 16 samples which have missing values leaving a total of 683 

samples. Those 683 samples include 444 benign cases and 239 malignant cases. We 

chose the WBC dataset due the high-risk nature of cancer tumor diagnosis. A 

misdiagnosis of a malignant tumor as a benign tumor could prove fatal for the patient 

[11]. The dataset was obtained from the UCI ML repository [8]. 

Figure 25 shows the WBC dataset on PC and SPC plots. In both types of plots the 

dataset samples are heavily overlapped, however, the benign class (green) is heavily 

concentrated towards the bottom of both plots. The benign class has 1.86x more samples 

than the malignant class (red), but the malignant class consumes more area of the plot.  

 

  
(a) Malignant class on top on PC (b) Benign class on top on PC 
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(a) Malignant class on top on SPC (b) Benign class on top on SPC 

 

FIGURE 25: Wisconsin Breast Cancer dataset on PC and SPC. 

 

 

A decision was made to remove the mitosis attribute for the SPC plot as it 

requires an even number of attributes. This decision was made from DT analysis 

(Appendix A) that showed the mitosis feature was not used for complete dataset 

separation. The decision tree model used a Classification and Regression Tree algorithm 

(CART) with Gini impurity criterion, and greedy approach on the best split. 

Figure 26 shows the WBC dataset on DSC2. It is shown that the benign class 

(green) exists mostly in the bottom left corner and has short polyline growth whilst the 

malignant class (red) also starts in the bottom left corner but has long polyline growth. To 

reduce the area of overlap to a manageable level we employed attribute scaling to find 

regions of overlap that would have meaning to a ML model.  
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(a) Benign class on top on DSC2 (b) Malig. class on top on DSC2 

 

FIGURE 26: DSC2 of the WBC dataset. 

 

 

Using the DT analysis in Appendix B, it was difficult to decide attributes of 

interest because of the many branches and deep level of the decision tree. Unlike the Iris 

dataset the WBC dataset requires multiple attributes to separate the two classes. It was 

noticed that the uniformity of cell size and uniformity of cell shape attributes were a 

reoccurring attribute that the decision tree used to create rules. Thus, we made these two 

attributes the attribute of interest and placed them as the first attribute-pair on DSC2 

(Figure 27). After upscaling, the 1st attribute-pair we were able to develop a clearer 

picture of where proper overlap can exist for a worst-case split. Proper overlap refers to 

areas of overlap that are not ignored in the decision making process. The red squares in 

Figure 27 represent areas that would clip samples for a validation set. 
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FIGURE 27: WBC dataset on DSC2 after upscaling the 1st attribute-pair. 

 

We decided to further escalate WBC data visualization by utilizing principal 

component analysis as an attempt to preserve global structure in only two dimensions. 

These two principal components would become our attributes of interest and accordingly 

placed as the first attribute-pair (Figure 28). Compared to Figure 27 it became easier to 

identify which samples would result in a worst-case split. However, one development 

that arose from the combination of principal components and real attributes is that we 

lacked enough samples to fill a validation set. In 10-Fold Cross Validation we would 

need to select 10% of the dataset, in 3- or 5-Fold Cross Validation even more samples 

would need to be removed. After removing overlapped samples, we decided to remove 

samples that were near the boundaries of the two classes. 
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FIGURE 28: WBC dataset with two Principal Components. 

  

One though that occurred to us is that dynamic scaffolding coordinates may not 

be necessary when looking for worst case splits.  That the two attributes of interest (in 

this case the principal components) in the form of a scatterplot would be just as effective, 

however, when combining the WBC attributes with the two principal components we 

were able to capture the general structure of the samples. One obvious trend in Figure 28 

that does not show up in Figure 29 is that malignant cases tend to have large values 
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across many attributes whereas benign cases tend to have attribute values close to zero. 

The end-user can gain a better insight into which samples are likely malignant and which 

ones are benign. It could also be useful in determining edge cases of benign tumors that 

may transform into a malignant tumor later. Of course, this line of logic would require 

going through the scientific process to determine if benign cases with long polylines are 

more likely to turn into malignant cases. With Figure 29 these higher-level insights would 

not be possible as the points themselves have no differentiation besides location and class 

color. 

 

 

FIGURE 29: WBC Principal Components. 
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MNIST Handwritten Digits and t-SNE Components 

  

 The MNIST Handwritten digits dataset (MNIST) [6] contains 60,000 samples of 

digits on a 28 x 28-pixel grid in a training set. There is an additional test set containing 

10,000 samples. The dataset is available from Kaggle.com [6]. The pixel values are 

represented in grayscale between 0 and 255. The 28 x 28-pixel grid was converted to a 

784-column dataset where each column would represent one attribute. We were unable to 

produce a SPC or PC plot with the 784 attributes due to the number of axes and plot size 

required to properly display the attributes without heavy occlusion. We tried to establish 

decision tree based hyperblocks, but the decision tree accuracy was around 79% and the 

decision tree was very large, deep branches, and finding attributes of interest in the 

MNIST dataset was difficult. 

Unlike SPC and PC we were able to render a plot that fit inside the application 

window using DSC2.  The plot in Figure 30 gave lack of insight into the dataset as all ten 

digits were stacked on top of each other and rotating which digit was on top of the stack 

did not help. The next plan of action was to use a dimensional reduction technique to 

reduce the number of attributes. In prior work [10] two digits of MNIST were analyzed 

together using 32 autoencoder features with a high model accuracy. Thus, we decided to 

reduce the MNIST dataset to 32 autoencoder attributes and plot them on DSC2. Unlike 

the previous work that compared only two digits, we chose to compare a single digit to 

all other digits. 
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FIGURE 30: 784 Attributes of MNIST on DSC2. 

Figure 31 provided interesting digit patterns of the MNIST dataset on DSC2. 

Each digit had a slightly different polyline growth pattern and density. However, there is 

large amounts of overlap between the ten-digit classes, and it was difficult to visually 

separate the classes from each other. From here we decided to use t-SNE components as 

our attributes of interest, considering that t-SNE has been used to visualize MNIST digits 

with high clarity. 
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FIGURE 31: Each MNIST Digit using autoencoder features against all other digits. 

 

 

We reduced the MNIST dataset from 784 attributes to only 50 truncated Singular 

Value Decomposition (SVD) components. SVD describes a linear transformation through 

rotations and scaling. It is essentially a map between different sized vector spaces. We 
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used Truncated SVD which is beneficial when data is sparse. MNIST can be considered 

sparse as many pixels in a single digit pixel-grid are without ink. With these 50 SVD 

components we generated two t-SNE components (Figure 32). However, t-SNE has 

several drawbacks. t-SNE components cannot be applied to unseen data without applying 

them simultaneously with the training data due to the lack of a parametric embedding 

[17] which leads to t-SNE algorithm being considered as a difficult to interpret or black 

box dimensional reduction technique. Next, t-SNE does not preserve distance between 

clusters, nor does it preserve cluster density [18]. t-SNE can be simplified to a 

dimensional reduction technique that does not preserve global structure but preserve local 

neighborhoods [5]. t-SNE uses a perplexity parameter which [17]. This parameter is 

related to how many nearby neighbors any point may have. 

 

 

FIGURE 32: t-SNE components for MNIST. 
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 Like the WBC with PCA in DSC2 plot from the previous section, we grew our 

sample polylines from the two t-SNE components which became our attributes of 

interest. The MNIST SVD components were downscaled by a factor of 0.003 to keep the 

polylines from growing on top of other clusters. Figure 32 and Figure 33 look very 

similar when the entire plot is in frame. However, zooming in on the DSC2 plot can 

reveal important differences between Figure 32 and Figure 33. 

 

FIGURE 33: t-SNE + MNIST attributes on DSC2. 

 

Figure 34 reveals that certain points can end up growing into the main cluster of 

their class when using DSC2 scaffolding on top of t-SNE. There is a risk to this analysis 

however, since t-SNE does not preserve distances, whilst the scaffolds from the SVD 
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components do preserve distance. In future work we consider other ways at visualizing 

MNIST dataset without having to rely on black box techniques such as t-SNE, but for our 

current research we found t-SNE and scaffolding to produce class clusters with high 

clarity. While MNIST dataset is not a high-risk application, if we were to choose samples 

for worst-case analysis, we would pick samples that lie in a class cluster but are not part 

of that class. 

  
(a) t-SNE only scatterplot. (b) t-SNE + DSC2 scaffolds. 

FIGURE 34: t-SNE scatterplot vs DSC2 scaffolds. 

 

   

 

 

 

 

 

 

 



   

 

47 

 

CHAPTER IV 

EXPERIMENTAL RESULTS AND COMPARISON WITH K-FOLD 

CROSS VALIDATION ON WBC DATASET 

 

Classification results were obtained from eight standard ML classifiers [16] in 

the sci-kit learn Python library using 10-fold cross validation. The single 10-Fold cross 

validation tested against eight models was compared to the validation split found using 

several box-clipping areas in Figure 24. The samples in the multiple boxes were clipped 

using Cohen Sutherland algorithm into a validation set of 67 samples which is 9.81% of 

the entire dataset. The PCA components were removed, and the mitosis attribute was 

added back to both the training and validation set. The goal of our DSC2 visualization 

was to select samples from the original dataset that may lead to an upper estimate of the 

worst-case split. We refer to this validation split as an upper estimate, as this 

methodology does not guarantee we chose the absolute worst-case split. 

  For each ML model all parameters were kept as default, except for the multilayer 

perceptron which was given an additional hidden layer from the default of one hidden 

layer. The classifiers are as follows: Decision Tree (DT) using CART algorithm and 

greedy approach, Support Vector Machine (SVM) with linear approach and l2 penalty, 

Random Forests (RF) with 100 estimators, K-Nearest Neighbors (KNN) with 5 neighbors 

and uniform weights, Logistic Regression (LR) with l2 penalty, Gaussian Naïve Bayes 

(NB), Stochastic Gradient Descent (SGD), and Multilayer Perceptron (MLP) with one 

hidden layer of 100 hidden units.  
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Table 3 shows that standard ML algorithms can classify the WBC dataset within 

94 to 97% accuracy without any additional processing, dimensional reduction, or feature 

engineering. The lowest split was 89.8% and the highest split was 100%. The best 

performing model was KNN and SVM, and the worst performing model was DT 

classifier. 

 

TABLE 3: Standard 10-fold Cross Validation model accuracy. 

 Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 

Fold 

6 

Fold 

7 

Fold 

8 

Fold 

9 

Fold 

10 

AVG 

DT 95.7 91.3 95.7 92.6 95.6 91.1 94.1 98.5 97.1 95.6 94.7 

SVM 92.8 98.6 95.7 94.1 98.5 97.1 97.1 100 98.5 98.5 97.1 

RF 92.8 94.2 95.7 94.1 98.5 97.1 98.5 98.5 98.5 98.5 96.6 

KNN 91.3 98.6 95.6 94.1 100 97.1 98.5 100 98.5 98.5 97.2 

LR 92.7 97.1 94.2 94.1 100 97.1 95.5 100 97.1 100 96.8 

NB 92.7 95.6 94.2 94.1 98.5 95.6 97.1 97.1 98.5 97.1 96.1 

SGD 95.7 92.8 95.7 94.1 100 91.2 95.6 98.5 98.5 100 96.2 

MLP 89.8 89.9 94.2 92.6 100 94.1 97.1 100 98.5 98.5 95.5 

 

 

Table 4 shows that despite the strong model accuracies obtained in Table 3, all eight 

classifiers had an accuracy between 57% and 72% in the upper estimate of the worst-

case scenario. In life-critical and other high-risk applications knowing the worst 

performance of a model can influence reliance on the model and the possibilities of 

incorporating additional models into decision making as a safeguard. In this case 10-fold 

cross validation accuracy suggests using KNN or SVM classifiers, but the model that 

performed the best on the estimate of the most difficult split was Naïve Bayes by a 

margin of 7.57% of the next best model Random Forest.  
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TABLE 4: Upper estimate of the worst split from PCA-DSC2 analysis. 

Model Accuracy 

DT 62.12% 

SVM 62.12% 

RF 65.15% 

KNN 60.60% 

LR 63.63% 

NB 72.72% 

SGD 57.58% 

MLP 60.60% 
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CHAPTER V 

CONCLUSIONS 

 

This thesis contributes to visual and interpretable machine learning methods by 

developing DSC1 and DSC2 systems that can be used for multidimensional visualization, 

analysis, and classification. DSC1 and DSC2 have self-service components that allow 

domain experts to change, add, or remove attributes and select regions of highly 

condensed samples for model selection.  

Hyperblocks as interpretable data units were used to highlight attributes of 

separation within a dataset as a computationally efficient alternative to genetic or brute 

force algorithms for attribute order permutation selection. When HBs were unable to 

provide adequate attributes of separation, we escalated to various dimensional reduction 

techniques that allowed for visualizing dimensionally rich datasets like MNIST, with the 

tradeoff of incorporating lossless attributes.   

The results in Table 2 and Table 4 were able to show the lower accuracy of 

standard ML models for benchmark datasets when looking for difficult dataset splits. 

Chapter III provides a logical and simple-to-follow framework of visualizing these 

difficult splits on DSC2. One area that we would like to improve on is visualizing 

difficult splits in a dataset without reliance on dimensional reduction techniques to 

provide plot clarity.  

In future work we look towards developing dimensional reduction techniques that 

preserve hyperblock structure or adapting another dimensional reduction technique that 
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preserves distance such as multidimensional scaling (MDS) or self-organizing maps 

(SOM). 
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APPENDIX 

Appendix A – Seeds Dataset Decision Tree 
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Appendix C – DSCViz 

 DSCViz provides a GUI application to control dynamic scaffolding coordinates, 

parallel coordinates, and shifted paired coordinate plots (Figure 35). The user can upload 

a data via the upload button, which brings up the file dialog, however the dataset needs to 

have some preprocessing done before it can be uploaded into DSCViz. The dataset 

should have all missing values removed or changed using analytical methods, and dataset 

attributes should be converted to numeric form rather than a categorical or descriptive 

string. The class column can remain a string. The class column must be labeled as class 

so that the software knows which column is the labels. 

 

FIGURE 35: DSCViz Application Screen. 
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 After the dataset is uploaded information about the dataset will populate in the top 

left corner of the window (Figure 36). The user then selects which of the four plots to create 

using the radio button and clicking generate plot. 

 

FIGURE 36: DSCViz application running SPC plot. 

  

 From here the user has the capabilities to drag and zoom in real time using GPU 

rendering by making various OpenGL calls. The dataset vertices are stored in the GPU 

memory for fast access when doing matrix operations. DSCViz has been used on datasets 

such as MNIST which can include 40 million data points, of course many are overlapped 

and do not render. If the dragging and zooming is slow one trick the user may use is 

hiding all the classes and markers, dragging the plot, and then reactivating. There are no 

immediate slowdowns for small datasets such as WBC and Iris, or MNIST after 
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dimensional reduction techniques are applied. Dragging is accomplished by holding 

down the left click button and moving the mouse. Zooming is accomplished using the 

mouse scroll wheel. 

Attributes in the attribute order table and be dragged and swapped in place. One 

the user establishes a specific order they click on replot features. This does require 

running the graph construction algorithm again and can have noticeable lag time on large 

datasets such as MNIST.  

 On a similar note, classes can also be reordered with the bottom most class 

showing on top. Individual class markers, class polylines, as well as the plot axes all have 

toggles to hide. The attribute markers can be controlled at the attribute level by toggling 

them in the highlight column (Figure 37). Depending on the plot attribute-pairs may sure 

a toggle, or attributes may have their own toggle. There is a general slider that controls 

the transparency of unselected attributes. The slider set at 0 will completely hide the 

attributes. 

 

FIGURE 37: Lowering attribute transparency. 
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 DSCViz gives the user the ability to clip samples from the dataset (Figure 38). 

However, these samples do not disappear off the screen when clipped, and hidden 

samples will still be clipped if they are in the clipping area. The line clipping algorithm is 

Cohen-Sutherland. There is also the option to clip samples by any vertex or end vertices. 

Unlike the line clipping method, the vertex methods only clip samples that have a vertex 

inside the clipping area. Clicking on Save Clip will save the current clip to a test.csv and 

train.csv file. These file names must be changed when the user is done clipping 

otherwise, they will be written over when making new clips. Sequential clips can be 

added and saved any time, but DSCViz does not grant the user the capability to move 

backwards. The user may remove and reset the clip entirely. All clipping does is remove 

training samples into the validation set. 

 

 

FIGURE 38: Two clipping areas on DSCViz. 
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