
Central Washington University Central Washington University

ScholarWorks@CWU ScholarWorks@CWU

Computer Science Faculty Scholarship College of the Sciences

8-2022

Weighted Incremental–Decremental Support Vector Machines for Weighted Incremental–Decremental Support Vector Machines for

concept drift with shifting window concept drift with shifting window

Honorius Gâlmeanu

Răzvan Andonie

Follow this and additional works at: https://digitalcommons.cwu.edu/compsci

 Part of the Computer Sciences Commons

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/compsci
https://digitalcommons.cwu.edu/cots
https://digitalcommons.cwu.edu/compsci?utm_source=digitalcommons.cwu.edu%2Fcompsci%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.cwu.edu%2Fcompsci%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages

Neural Networks 152 (2022) 528–541

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Weighted Incremental–Decremental Support VectorMachines for
concept drift with shiftingwindow
Honorius Gâlmeanu a,∗, Răzvan Andonie b,c

a Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Braşov, Romania
b Computer Science Department, Central Washington University, Ellensburg, WA, USA
c Transilvania University of Braşov, Braşov, Romania

a r t i c l e i n f o

Article history:
Received 6 July 2021
Received in revised form 11 May 2022
Accepted 17 May 2022
Available online 27 May 2022

Keywords:
Support Vector Machines
Concept drift
Incremental learning
Shifting window

a b s t r a c t

We study the problem of learning the data samples’ distribution as it changes in time. This change,
known as concept drift, complicates the task of training a model, as the predictions become less and
less accurate. It is known that Support Vector Machines (SVMs) can learn weighted input instances
and that they can also be trained online (incremental–decremental learning). Combining these two
SVM properties, the open problem is to define an online SVM concept drift model with shifting
weighted window. The classic SVM model should be retrained from scratch after each window
shift. We introduce the Weighted Incremental–Decremental SVM (WIDSVM), a generalization of the
incremental–decremental SVM for shifting windows. WIDSVM is capable of learning from data streams
with concept drift, using the weighted shifting window technique. The soft margin constrained
optimization problem imposed on the shifting window is reduced to an incremental–decremental SVM.
At each window shift, we determine the exact conditions for vector migration during the incremental–
decremental process. We perform experiments on artificial and real-world concept drift datasets; they
show that the classification accuracy of WIDSVM significantly improves compared to a SVM with no
shifting window. The WIDSVM training phase is fast, since it does not retrain from scratch after each
window shift.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Some machine learning tasks are based on datasets collected
continuously over a long period of time. It may happen that, as we
collect more and more data, historic data becomes less and less
relevant for the task at hand. This is due to the intrinsic data dis-
tribution changing over time (i.e., the source generating the data
is not stationary). For example, energy companies collect various
characteristics regarding their customers, in order to compare
their consumption habits. This leads to a better estimation of
future customer energy requirements. However, the profiles of
customer consumption tend to change over time, and the model
should adapt dynamically to these changes.

Another example comes from climate prediction. For the past
40 years, computer models have delivered quite a consistent
picture of how fast human carbon emissions might warm up the
world. However, a host of global climate models developed for
the United Nation’s next major assessment of global warming,

∗ Corresponding author.
E-mail addresses: galmeanu@unitbv.ro (H. Gâlmeanu), andonie@cwu.edu

(R. Andonie).

due in 2021, is now showing a new trend. They show higher
temperatures than previous predictions (Voosen, 2019).

Such variations of a regular pattern of evolution over time
are known as concept drift, meaning that the input data may
shift from time to time, each time after some minimal persis-
tence (Gama, 2010). Many machine learning algorithms can ap-
proximate stationary distributions with arbitrary accuracy
(bounded by the Bayes error) whenever the number of training
samples increases to infinite (Gama, 2010). Detecting concept
drift in a non-stationary environment is more difficult. In this
case, the distribution of the input data stream changes in time.
It is hard to distinguish whether a new data sample represents
noise or change. The difference between noise and change is
given by persistence. For change, there should be a consistent
set of samples from the new distribution. To detect change, we
must combine robustness to noise/outliers with sensitivity to
concept drift (Gama, 2010). Concept drift is better associated to
gradual changes than to abrupt changes. For abrupt changes we
use the term concept shift (Gama, 2010). According to Lazarescu,
Venkatesh, and Bui (2004), concept drift is defined in terms of
consistency and persistence. Noise and outliers are not consistent
or persistent. Recent overviews of techniques, methods and ap-
plications of concept drift can be found in Gama, Žliobaitė, Bifet,

https://doi.org/10.1016/j.neunet.2022.05.018
0893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.neunet.2022.05.018
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.05.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:galmeanu@unitbv.ro
mailto:andonie@cwu.edu
https://doi.org/10.1016/j.neunet.2022.05.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Pechenizkiy, and Bouchachia (2014), Iwashita and Papa (2019)
and Lu et al. (2019).

Research on techniques that handle concept drift with ma-
chine learning methodologies is presently highly needed (Lu et al.,
2019). An important research focus is how to embed concept
drift detection in the learning phase of machine learning models.
According to Farid et al. (2013), there are three main approaches:
(a) instance selection or window-based approach, (b) weight-
based approach, and (c) ensemble of classifiers.

Most algorithms adapted to concept drift, including our ap-
proach, consider online (incremental) learning algorithms, which
are able to adapt to the evolution of the data generating process
over time. A taxonomy of online algorithms that learn from
evolving data is presented in Gama et al. (2014). In incremen-
tal machine learning, a common assumption is that the most
recent training samples are the most relevant; a mechanism
controls the gradual forgetting of the old information. Therefore,
a natural concept drift handling technique is based on instance
selection: a window moves over recently arrived instances and
the learned concepts are used for prediction only in the imme-
diate future (Tsymbal, 2004). The forgetting mechanism can be
extended by weighting the samples in a time window — its size
can be fixed or variable. However, the time window approach
may not always be effective. For instance, when the data is noisy
or when the change is slower than the window size, windowing
may fail as well (Gama et al., 2014).

To implement an incremental concept drift model with a
shifting (or sliding) window, we have to answer the following
questions: (i) how the model can learn new information with-
out corrupting/forgetting previously learned information (the
stability-plasticity dilemma (Carpenter & Grossberg, 1988)), and
(ii) how the model can forget obsolete information without cor-
rupting/forgetting still valid, already learned information. In
short, how can the model selectively learn and forget in a con-
trolled and dynamic way?

In the following, we say that a concept drift model with shift-
ing window has the Shifting Window (SW) Property if: (a) After
each shift, it learns the new sample and forgets the oldest one
without being retrained on the other samples; and (b) The drift
model produces for each window shift exactly the same results as
when it is trained from scratch on all samples within the window.
In other words, in a model with the SW Property, shifting the
window consists of two operations: adding a new sample to its
head and removing the oldest sample from the tail. Retraining
from scratch on the new configuration is not necessary. This
implies the condition of incremental–decremental training, since
the new configuration of the shifted window is the same as the
one obtained by retraining the new configuration from scratch.
Using the SW Property we can make a SVM learn faster than
learning from scratch. This is a good reason to have SVMs fulfill
the SW Property.

A SVM with the SW Property can be regarded as a generaliza-
tion of the incremental–decremental SVM SMO algorithm (Cris-
tianini & Shawe-Taylor, 2000). The incremental–decremental SVM
training algorithm achieves the SW property by shifting between
configurations for which Kuhn–Tucker conditions are always
satisfied. Since this is a convex optimization problem, having a
unique solution is the rule rather than the exception (Burges &
Chrisp, 1999).

We introduce a SVM with the SW Property, capable of learning
from data samples with concept drift using the shifting weighted
window technique. We obtain the same classification accuracy as
a model trained from scratch (non-incremental), but with signif-
icantly shorter training time. In our approach, the SW Property
is a particular case of the weighted incremental–decremental al-
gorithm, corresponding to a rectangular weight profile. However,
our model can be applied to any arbitrary weight profile. In this
case, the characteristic λ values that form the solution will satisfy
a more constrained set of Kuhn–Tucker conditions.

1.1. Related work and motivation

Several concept drift models with shifting window approaches
were proposed during the last years. Comprehensive compila-
tions can be found in Iwashita and Papa (2019) and Lu et al.
(2019).

The Learn++.NSE algorithm (Elwell & Polikar, 2009, 2011) and
its fast version (Shen, Zhu, Du, & Chen, 2018) use an ensemble of
classifiers for the incremental learning of concept drift. They are
examples of non-stationary environments, where the underlying
data distributions change over time. Learn ++.NSE trains one
new classifier for each batch of data it receives, and combines
these classifiers using a dynamically weighted majority voting.
The adaptive random forest algorithm for the classification of
evolving data streams, introduced in Gomes et al. (2017) com-
bines batch algorithm traits with dynamic update methods, to
deal with evolving data streams. Variable length windows have
been employed in FLORA algorithms (Widmer & Kubat, 1996).

The problem of concept drift and incremental learning has
already been approached. The Cauwenberghs and Poggio (2000)
(CP) algorithm, later extended in Diehl and Cauwenberghs (2003),
introduced incremental–decremental training of SVMs. An anal-
ysis of an efficient implementation for individual learning of the
CP algorithm was presented in Laskov, Gehl, Krüger, and Müller
(2006), along with a similar algorithm for one-class learning.
Practical implementation issues of the incremental–decremental
CP algorithm were discussed in Gâlmeanu and Andonie (2008,
2009). This algorithm was also adapted for regressions
(Gâlmeanu, Sasu, & Andonie, 2016; Ma, Theiler, & Perkins, 2003;
Martin, 2002). The CP algorithm is an exact online method to
incrementally train an SVM, incorporating one example at a time
and retaining the Kuhn–Tucker (KT) condition on all previously
seen data.

Syed, Liu, and Sung (1999) introduced a concept drift SVM
which could be trained incrementally on new data by discard-
ing all previous data except their support vectors. An improved
version of this method was provided by Rüping (2001). The in-
cremental learning result is similar to the non-incremental result,
but only if the last training set contains all examples that are also
support vectors in the non-incremental case.

ZareMoodi, Siahroudi, and Beigy (2016) proposed a SVM clas-
sification model beyond the learned label space in data streams
in the presence of concept-drift, where novel classes may emerge
while processing the stream. For modeling intricate-shape class
boundaries, they used data description methods based on
support-vectors. Yalcin, Erdem, and Gurgen (2007) used SVMs in
an ensemble-based incremental learning algorithm.

A weighted SVM for training shot-level representations of
video sequences is described in Chang, Yu, Yang, and Xing (2017).
Their method uses a linear SVM to learn the representation of
samples, by building their relevance information into the ar-
chitecture of the regularizer. This method, called nearly isotonic
SVM, takes into account the pre-computed saliency of the input
samples. On determining the input samples’ weights that form
the solution, it favors the configuration where the sorted order of
the weights matches the pre-computed saliency order of input
samples. This forces the important samples to weigh more in
the expression of the solution (and the opposite for the weaker
samples). There are some similarities with our proposed method,
since we also impose additional constraints on the weights de-
fined by the optimal solution. The nearly isotonic SVM encourages
the input vectors’ associated weights to take a certain precedence
by using a carefully designed regularizer. However, our method
imposes restrictions on the solution’s weights by limiting their
maximum allowed value — the limit is determined by the training
profile. The nearly isotonic SVM uses the primal form expression

529

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

of the linear SVM and learns from scratch, using nearly isotonic
regularization. In contrast, our method uses the dual formulation
of the kernel-based SVM, with squared Frobenius norm as regu-
larization, and does not require learning from scratch, being an
incremental approach.

In order to deal with the accumulation of new samples, strate-
gies for incremental learning using SVM have been recently pro-
posed. Thus, Chitrakar and Huang (2014) use the Improved Con-
centric Circles method: the points in the ring region are kept for
further training, while the others are discarded. This region is de-
fined as the area between two circles: the inner one, determined
by class center and the nearest support vector, and the outer one,
tangent to the nearest point at the hyperplane. Only the points
in this region are used for further incremental training. Chitrakar
et al. also propose a Half-partition strategy, that considers as
candidate support vectors all the vectors outside the inner circle,
with the refinement of probabilistic weighting for those samples.

Other incremental learning strategies are described in Chen,
Xiong, Xu, and Zuo (2019) and Wang and Xing (2019). In Chen
et al. (2019), the Variable SVM speeds up the updates by using
pre-calculated information and an incremental matrix update
derived from the Sherman–Morrison–Woodbury formula (Laskov
et al., 2006). Incremental cost-sensitive learning, a related method
also based on the CP algorithm, is employed in Ma, Zhao, Wang,
and Tian (2020) to deal with the class-imbalance problem in
online situations. High-cost is implemented for minority class
and low cost for majority class, using a linear-exponential func-
tion for the constraint in the expression of the Lagrangian. The
incremental–decremental migrations of vectors across the sets
are regulated by specific relations. Such relations were first de-
fined in Laskov et al. (2006) and Ma et al. (2003), and later
extended for a variable regularization parameter in Gâlmeanu
and Andonie (2008) and Gâlmeanu et al. (2016).

Instance weighting and learning windows of variable length
also appear in the papers of Klinkenberg (2004) and Klinkenberg
and Joachims (2000). The authors introduce a method for recog-
nizing and handling concept changes with SVMs. This method
uses a variable size window of training samples. The window
size is adjusted based on the estimate of the generalization error.
At each time step, the algorithm builds several SVM models
with various window sizes, then selects the one minimizing the
error estimate. Klinkenberg’s method shows how to select the
appropriate window size, sample selection, and sample weighting
for a SVM drift model with shifting window. While Klinkenberg
et al. methods can be used online in applications, they are not
incremental due to the following reasons (Klinkenberg, 2004):
(a) incremental SVM approaches do not address the problem
of concept drift, (b) the potential speed-up gained by using an
incremental technique did not seem very significant, and (c)
incremental learning sometimes leads to reduced accuracy com-
pared to non-incremental learning. In our approach, we address
all these questions: our proposed method is an incremental con-
cept drift SVM method, exhibits significant speed-up gain, and
does not sacrifice any accuracy compared to non-incremental
learning.

SVMs have the ability to process weighted instances (Yang,
Song, & Cao, 2007). In addition, SVMs can perform incremental–
decremental learning (e.g., the CP algorithm). Combining these
two properties, our goal is to define a SVM concept drift model
with shifted weighted window and the SW Property.

None of the above SVM algorithms have the SW Property.
Neither the CP method nor its successive developments take the
problem of concept drift into consideration. The CP algorithm
does not lead to accuracy loss compared to the non-incremental
approach, but it can be computationally more expensive (Klinken-
berg, 2004). There are also technical difficulties related to dealing

with the support vectors representing the samples inside a shift-
ing window. This may explain why the CP algorithm has not yet
been used for concept drift and this gave us the motivation for
the current work.

1.2. Our contribution

Our main contribution is the generalization of the CP algo-
rithm for concept drift with shifting window. We name this
concept drift model Weighted Incremental–Decremental SVM
(WIDSVM). WIDSVM combines two of the above concept drift
approaches: (a) instance selection (shifting window) and (b)
weight-based. The shifting window uses weights assigned to its
instances. In the current version, the window has a fixed size. The
weights control how, as time passes, old information changes its
relevance.

A classifier that considers the entire data set but also focuses
on the current region of interest is not trivial. WIDSVM uses
the following intuitive principle: it strengthens the margin clas-
sification constraint for some of the vectors, while relaxing this
constraint for others. This approach imposes specific constraints
for the most recently processed input vectors, while relaxing the
constraints for the previously learned vectors. Past information
becomes less and less relevant, in a manner dictated by the
considered concept drift profile. The extreme case would be when
the constraints are changed abruptly, by just removing the oldest
vector from the shifting window, and adding the latest vector
with full importance.

The technical contributions of this paper are summarized as
follows:

• We show that the soft margin SVM problem with con-
straints imposed on the shifting window is reduced to an
incremental–decremental SVM problem;
• We determine the exact symmetric migration conditions for

incremental learning and decremental unlearning, that is,
we determine which data sample will migrate next;
• We eliminate data inconsistencies that would lead to matrix

singularities and infinite coefficient updates;
• We compute the initial SVM parameters starting from

scratch, using two samples of opposite classes. Then, we
compute the hyperplane location at mid-point distance.
New data samples are added by incremental learning, start-
ing from this two-point solution;
• We prove that WIDSVM has the SW Property;
• We apply the WIDSVM algorithm on several artificial and

real-world benchmarks that have concept drift, and show
that it can be trained faster than starting from scratch after
each window shift.

The rest of the paper is structured as follows. Section 2 sum-
marizes the CP incremental–decremental SVM algorithm. Sec-
tion 3 introduces the WIDSVM algorithm, a generalization of the
CP algorithm able to handle concept drift with shifting window.
Section 4 presents and discusses experiments on artificial and
real-world benchmarks with concept drift. Section 5 contains
final remarks and open problems.

2. Background: Incremental–decremental SVM

Since the base of the WIDSVM training method is the CP algo-
rithm, this section reviews the notations and theoretical frame-
work of the CP algorithm.

530

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

2.1. SVM and the dual problem

The SVM computes the separating hyperplane w as a discrim-
inator function g(x):

g(x) = wT x+ b where (1)

sign{g(x)} =
{
+1, wT x+ b ≥ 0
−1, wT x+ b < 0 (2)

For a set of data samples xi with labels yi ∈ {−1,+1}, i =
1, . . . ,N , the separation hyperplane can be found by solving the
primal optimization problem:

min
w

1
2
∥w∥2 + C

N∑
i=1

ξi (3)

subject to yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,N (4)

Further, we define the penalty function h(xi) for data samples
xi as:

h(xi) = yig(xi)− 1 = yi(wT xi + b)− 1 (5)

For a correctly classified data sample, g(xi) has the same sign
as its class label yi and h(xi) > 0 if the margin to the hyperplane is
at least 1

∥w∥
. In this case, the constraint is not active, thus ξi = 0.

If the sample is not classified correctly within a sufficient
margin distance, h(xi) < 0 and the ξi > 0 penalty variable will
compensate for this. Eq. (3) imposes the smallest ξi penalty. The
parameter C controls the trade-off between increasing the mar-
gin 1

∥w∥
and ensuring that most samples are correctly classified

within this margin.
The associated Lagrangian for the primal problem is:

L(w, b, λ, µ) =
1
2
∥w∥2 + C

N∑
i=1

ξi −

N∑
i=1

µiξi−

N∑
i=1

λi
[
yi(wT xi + b)− 1+ ξi

]
, (6)

where ξi, λi, µi ≥ 0 (7)

where λi and µi are the non-negative Lagrange multipliers.
For a feasible solution (w∗, b∗), the constraints are satisfied,

thus the minimum is bounded below by

1
2
∥w∗∥2 + C

N∑
i=1

ξi ≥ L(w∗, b∗, λ, µ)

The expression L(w∗, b∗, λ, µ) is upper bounded and the solution
can be found by solving:

min
w,b

max
λ,µ

L(w, b, λ, µ)

The problem is usually reformulated using the primal and dual
problem notation:

θP (w, b) = max
λ,µ

L(w, b, λ, µ) [the primal problem]

(8)

θD(λ, µ) = min
w,b

L(w, b, λ, µ) [the dual problem] (9)

θD(λ∗, µ∗) = max
λ,µ

θD(λ, µ) = max
λ,µ

min
w,b

L(w, b, λ, µ)

≤ min
w,b

max
λ,µ

L(w, b, λ, µ)

= min
w,b

θP (w, b) = θP (w∗, b∗) (10)

Assuming that the constraint functions used in the Lagrangian
are affine and convex, the primal and dual problems have the

same solution: θD(λ∗, µ∗) = θP (w∗, b∗). Therefore, solving the
primal problem is equivalent to solving the dual problem, where
the dual problem transforms to:

max
λ

N∑
i=1

λi −
1
2

N∑
i,j=1

λiλjyiyjxTi xj (11)

subject to
∑N

i=1 λiyi = 0
0 ≤ λi ≤ C i = 1, . . . ,N

(12)

2.2. The role of Kuhn Tucker (KT) conditions in incremental learning

For a feasible solution, the dual problemmust verify the Kuhn–
Tucker (KT) conditions:

∂L
∂wi

L(w, b, λ, µ) = 0 i = 1, . . . ,N (13)

∂L
∂b

L(w, b, λ, µ) = 0 (14)

λi[h(xi)+ ξi] = 0 i = 1, . . . ,N (15)

h(xi)+ ξi ≥ 0 i = 1, . . . ,N (16)

These conditions, and especially (12), impose stronger condi-
tions on λi, so that (11) does not actually allow much flexibility.
Thus, the dual solution is directly determined by the constraint
of Eq. (13), which gives the optimal solution:

w∗ =

N∑
i=1

λiyixi (17)

With further substitution in Eq. (1), the expression of the sepa-
rating hyperplane becomes:

g(xi) =
N∑
j=1

λjyjxTj xi + b (18)

The hyperplane only depends on the scalar products of the
input vectors xi.

To increase the dimensionality of the initial input space where
the linear separation is performed, SVMs usually employ the
kernel trick. We use the kernel functions expressed as K (xi, xj) =
Φ(xi)TΦ(xj), where Φ(·) is the mapping in a space where we can
express the dot-product using the kernel property.

For the definition of the incremental–decremental SVM, we
use the shortcut notation:

Qij = yiyjK (xi, xj) (19)

The expression of the separation hyperplane defined in
Eq. (18) becomes:

g(xi) =
∑

j

λjyiQij + b, (20)

where we considered that yi is limited to {−1,+1} only. The
expression of the penalty function defined by Eq. (5) becomes:

h(xi) =
∑

j

λjQij + byi − 1 (21)

There is a KT condition that allows for direct classification of
the vectors used in the incremental–decremental SVM algorithm:
the complementary slackness condition described by Eq. (15). In

531

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

this context, the penalty h(xi) takes the following values:

h(xi) is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

> 0, λi = 0 is met and ξi = 0
= 0, 0 < λi < C ,

h(xi)+ ξi = 0 is met and ξi = 0
< 0, λi = C ,

h(xi)+ ξi = 0 is met and ξi > 0
to compensate for
the negative h(xi)

(22)

A vector xi could belong to one of the following sets:

• support vectors, where h(xi) = 0 and 0 < λi < C; these
define the separation hyperplane;
• error vectors, where h(xi) < 0 and λi = C; these are

situated on the wrong side of the separation hyperplane or
in the separation region;
• rest vectors, where h(xi) > 0 and λi = 0, which are

the vectors situated on the correct side of the separation
hyperplane, outside of the separation region.

2.3. Migration relations used in incremental learning

The context of the incremental–decremental SVM is com-
pletely determined by Eqs. (12), (21) and (22). The idea of the
incremental SVM is to add to a stable state of vectors, described
by these equations, a new vector xc . It starts with a characteristic
value λc = 0 and it increments this value, ensuring that Eqs. (12)
and (15) defined by the KT conditions are fulfilled again. The value
of λc is increased at the expense of the support vectors’ λs values.
In the process, vectors may migrate among the support, rest and
error sets.

Before any vector migrates, λc is increased from zero at the
expense of the support vectors’ λs values and the free coefficient
b in relations (12) and (21):

∆hi = ∆h(xi) =
∑
s

Qis∆λs + yi∆b+ Qic∆λc (23)

0 =
∑
s

ys∆λs + yc∆λc (24)

This way, the KT conditions are always satisfied. Hence, the
λ coefficients in Eq. (21) remain either C or 0, and the sum of
class-weighted coefficients of the support vectors remains zero
(Eq. (24)).

To determine the migration conditions among sets, we must
monitor the penalty cost variation for all vectors. We describe
these variations for each set of vectors (the support vectors (s),
the rest and error vectors (r), and the vector (c) to be learned) in
matrix form:⎡⎢⎣∆hs

∆hr
∆hc
0

⎤⎥⎦ =
⎡⎢⎣ys Qss
yr Qrs
yc Qcs
0 ys

⎤⎥⎦[
∆b
∆λs

]
+∆λc

⎡⎢⎣Qsc
Qrc
Qcc
yc

⎤⎥⎦ (25)

During the first training phase, the support vectors do not
migrate. Thus, their penalty hs remains zero, meaning that also
∆hs = 0. Considering this, grouping the first and last relations
in Eq. (25) yields:[
0
0

]
=

[
0 ys
ys Qss

][
∆b
∆λs

]
+∆λc

[
yc
Qsc

]
(26)

The variations of λs and b when λc changes can be expressed
as:[

∆b
∆λs

]
= −

[
0 ys
ys Qss

]−1 [
yc
Qsc

]

βs

∆λc (27)

or simply:[
∆b
∆λs

]
= βs∆λc (28)

Substituting this solution into lines 2 and 3 of Eq. (25), we
obtain the variation of penalties for the rest, error and newly
added xc vectors, respectively:[

∆hr
∆hc

]
=

{[
yr Qrs
yc Qcs

]
βs +

[
Qrc
Qcc

]}

γs

∆λc (29)

or, in brief:[
∆hr
∆hc

]
= γs∆λc (30)

These are the penalty changes that we monitor during train-
ing.

3. Weighted incremental–decremental SVM

This section introduces the WIDSVM algorithm (see Algorithm
1), a generalization of the CP algorithm for concept drift with
shifting window. The challenge is to constrain the WIDSVM to
exactly fulfill the SW condition introduced in Section 1.

The concept drift problem can be reformulated as an
incremental–decremental SVM. The window of input samples
that slides throughout the dataset can be regarded as only shifting
the focus to those samples that we want to learn. The rest of the
samples are disregarded.

Referring to Eq. (3), we formulate the optimization problem
for the entire dataset. We assign a weight, ρi ∈ [0, 1], to the ξi
constraint, responsible for the classification error. The constraint
will only be active for the samples within the shifting window.
The separation hyperplane solution, described by Eq. (20), is
expressed as a linear combination of the trained vectors; with this
in mind, we constrain the classifier to use only certain vectors,
up to specific weights (ρi ≤ 1), and disregard all of the others
(ρi = 0). The ρi parameter indicates how relevant a sample xi
is in the current context. This way, we can gradually learn and
unlearn samples.

The reformulated optimization problem aims to classify the
data samples inside the window, with the smallest possible error.
The classification error for the previous data samples is no longer
relevant and will be ignored. Considering the weight (relevance)
ρi, the problem rewrites as:

min
w

1
2
∥w∥2 + C

N∑
i=1

ρiξi (31)

subject to yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,N (32)

where
{
0 < ρi ≤ 1, if xi is inside the shifting window
ρi = 0, otherwise (33)

If ξi is unconstrained (ρi = 0), condition (32) can be always
fulfilled by taking a sufficiently large ξi. The constraint is removed
in Eq. (31) for the samples outside the shifting window, allowing
these ξi to vary freely. This SVM optimizes ξi only for the samples
within the shifting window.

The Lagrangian in Eq. (6) changes to:

L(w, b, λ, µ) =
1
2
∥w∥2 + C

N∑
i=1

ρiξi

−

N∑
i=1

µiξi −

N∑
i=1

λi
[
yi(wT xi + b)− 1+ ξi

]
(34)

532

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Fig. 1. An example of a weighted window shifting along the stream of samples. The sample thickness is proportional to the weight value ρ. The window size of
this profile is k− i+ 1.

where ξi, λi, µi ≥ 0,

ρi > 0 if xi is within the shifting window, (35)
ρi = 0 otherwise.

When computing the first derivatives with respect to wi, b, λi
and ξi, the KT conditions do not change much, except for Eq. (12).
We compute the derivative of the Lagrangian and make it zero:
∂L(w, b, λ, µ)

∂ξi
= Cρi − µi − λi = 0 (36)

Since µi ≥ 0, this leads to a slightly changed form of Eq. (12):

0 ≤ λi ≤ ρiC (37)

This relation imposes that the data samples outside the win-
dow should have their associated λi = 0 (since ρi = 0).

Algorithm 1 is defined for an arbitrary training profile. An
example of a training profile is depicted in Fig. 1. The window
contains the samples xi, . . . , xk. The weight (or importance) of
sample xj, j = 1, . . . , i−1 is ρj = 0. Sample xi, has ρi close to zero,
whereas the sample in the middle of the window has ρ = 1. One
may consider any other profile (logarithmic, exponential, linear,
etc.), customized for a specific problem.

3.1. Incremental learning

The idea behind incremental learning (and conversely decre-
mental unlearning) is to keep the KT conditions fulfilled at all
times, as described by Eqs. (13)–(16). We start from a configu-
ration for which KT conditions are fulfilled. For a new sample
xc and a new characteristic value which starts with λc = 0,
Eq. (21) will measure the penalty h(xc). If there is no penalty
(h(xc) > 0), it means that the KT conditions are fulfilled for the
newly added xc . Otherwise, Eqs. (28) and (30) would give the
needed increment ∆λc for decreasing the penalty h(xc), without
affecting the already fulfilled KT conditions of the other samples.
In the following, we discuss the necessary steps for reaching this
goal.

Starting from Eqs. (28) and (30), we compute the exact quanti-
ties that determine the vectors to migrate between sets. Support
vectors can migrate to the rest set (if their associated λs decreases
to zero) or to the error set (if λs increases up to ρC). Likewise, the
rest vectors can migrate to the support set when their positive
penalty cost, hr , decreases to zero. The error vectors can migrate
to the support set when their penalty cost (which is negative)
increases to zero.

A vector xc that is newly added to a set may fulfill the KT con-
ditions in Eq. (22) without requiring any processing. Otherwise,
it becomes subject of the learning process and its λc , initially
zero, is increased. We have to determine precisely how much λc
should be increased before some vector is forced to change sets.

Algorithm 1 Concept drift WIDSVM learning and unlearning

procedure ShiftingWindow(data_stream)
▷ the data stream is considered continuous
choose C parameter and window_size
set initial solutions using (x1, y1) and (x2, y2)
▷ window initialized with empty list
window← ∅
while incoming data samples exist do

(xk, yk)← next incoming sample
extend kernel with (xk, yk)
for samples xj on descending profile
▷ xk is the last sample of this profile

ρj ← ρj + ρstep
Learn(xj, ρjC)

if size(window) > window_size then
for samples xi on ascending profile

ρi ← ρi − ρstep
Unlearn(xi, ρiC)
▷ remove first sample in the window

if λi1 reached 0 then
remove sample xi1 from window

collect statistics for next unseen vectors

procedure Learn(xa, Ca)
while xa not yet learned do

Q ← compute_Q(kernel, y)
βs ← compute_beta(Q, y)
γs ← compute_gamma(Q, y, βs)
∆ls ← compute_limits_for_support_vectors(xa, Ca)
∆lr ← compute_limits_for_rest_vectors(xa, Ca)
∆λa ← min{∆ls, ∆lr , Ca − λa}

λj̸=a ← λj̸=a + βs∆la
λa ← λa +∆λa
rearrange_vectors_in_sets()

procedure Unlearn(xa, Ca)
while xa not yet unlearned do

if xa removal leaves its class unrepresented then
return

Q ← compute_Q(kernel, y)
βs ← compute_beta(Q, y)
γs ← compute_gamma(Q, y, βs)
∆ls ← compute_limits_for_support_vectors(xa, Ca)
∆lr ← compute_limits_for_rest_vectors(xa, Ca)
∆λa ← max{∆ls, ∆lr , Ca − λa}

λj̸=a ← λj̸=a + βs∆la
λa ← λa +∆λa
rearrange_vectors_in_sets()

533

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

We consider the incremental case where ∆λc > 0 (λc grows from
zero).

Support vectors migrate if we take ∆λs = βs ·∆λc :

• For βs > 0, ∆λs may grow up to ρC , and the first vector that
migrates is given by ∆λ

support1
c = mins

{
ρC−λs

βs

}
; the support

vector migrates to the error set;
• For βs < 0, ∆λs may decrease to 0, and the first support

vector that migrates is given by ∆λ
support2
c = mins

{
−

λs
βs

}
;

the support vector migrates to the rest set.

Error and rest vectors migrate if we take ∆hr = γr ·∆λc :

• This scenario happens either for a rest vector (hr > 0),
when the corresponding γr < 0 and hr decreases; or for an
error vector (hr < 0), when γr > 0 and thus hr increases.
In both cases, the first rest/error vector to migrate is the
vector given by the same relation, ∆λrest

c = minr

{
−

hr
γr

}
. The

rest/error vector migrates to the support set.
• We note that if a rest vector (hr > 0) has its associated

γr > 0, having a positive ∆λc only increases hr further;
this vector does not migrate. The same happens for an error
vector with γr < 0 - its hr only decreases further. In this
case no further checking is necessary.

We should not increment λc past ρC (Eq. (37)). An additional
constraint is that ∆λ

margin
c ≤ ρC − λc .

The maximum allowed update is computed as:

∆λc = min
{
∆λ

support1
c , ∆λ

support2
c , ∆λrest

c , ∆λmargin
c

}
3.2. Decremental unlearning

In this case, we want to remove a vector xc that is part of the
solution. If its corresponding λc = 0, the removal is straightfor-
ward. However, if λc ̸= 0, we first must decrease λc to zero before
removing the vector. Therefore, ∆λc < 0.

Support vectors migrate if we take ∆λs = βs ·∆λc :

• For βs > 0, ∆λs may decrease to 0, and the first vector to
migrate is given by ∆λ

support1
c = maxs

{
−

λs
βs

}
; the support

vector migrates to the rest set.
• For βs < 0, ∆λs may grow up to ρC , and the first support

vector to migrate is given by ∆λ
support2
c = maxs

{
ρC−λs

βs

}
; the

support vector migrates to the error set.

Error and rest vectors migrate if we take ∆hr = γr ·∆λc :

• This scenario happens either for a rest vector (hr > 0), when
corresponding γr > 0 and hr decreases; or for an error
vector (hr < 0), when γr < 0 and thus hr increases. In both
cases, the first rest or error vector to migrate is the vector
given by the relation ∆λrest

c = maxr
{
−

hr
γr

}
. The rest/error

vector migrates to the support set.
• Identically, we note that if a rest vector (hr > 0) has γr < 0,

having a negative ∆λc only increases hr further; this vector
does not migrate. The same happens for an error vector with
γr > 0 - its hr only decreases further. In this scenario, no
further checking is necessary.

The target is to decrease λc to the new ρC value (which can
be even 0). The additional condition is that ∆λ

margin
c ≥ ρC − λc .

Thus, the minimum allowed update before any migration
takes place (all these values being negative) is

∆λc = max
{
∆λ

support1
c , ∆λ

support2
c , ∆λrest

c , ∆λmargin
c

}

We change the λc by migrating the vectors among sets, step
by step, and thus we keep all KT conditions satisfied (except for
the sample xc in question).

3.3. Detecting training data inconsistencies

During training, it may happen that certain data features cause
undetermined conditions and computation cannot be performed.
One such issue may occur when computing the matrix inverse
in Eq. (27). We have to skip learning samples that are linear com-
binations of already trained samples within the shifting window,
otherwise the matrix becomes singular.

Another situation that impedes training is when γc = 0
in Eq. (30). We have to avoid the γc value of the newly introduced
vector becoming zero (or very close to zero), because learning
is not possible in this case. For every new vector xc , following
Eqs. (27) and (29), we compute γc and test it against zero:

γc = −
[
yc Q T

sc

] [
0 ys
yTs Qss

]−1 [
yc
Qsc

]
+ Qcc ̸= 0 (38)

If γc = 0 or very close to zero, the vector will be discarded.

3.4. Initial solution

The incremental learning process is initialized with two initial
vectors x1 and x2 that belong to different classes, such that besides
y1,2 ∈ {−1,+1} we have y1 · y2 = −1. These two vectors are
considered to be the first support vectors. Hence, their penalty
cost is zero:

0 = h(xi) =
2∑

j=1

λjQij + yib− 1 i = 1, 2 (39)

By solving this system of equations, the expressions for λi and
b are computed as:

λ1 = λ2 =
2

Q11 + 2Q12 + Q22
(40)

and

b =
Q11 − Q22

Q11 + 2Q12 + Q22
· y2 (41)

The initial value for the regularization constant C is chosen
such that λ1,2 ≤ C .

3.5. Computational complexity

The incremental–decremental SVM solution is computed only
from the samples inside the current shifting window. Let N be the
window size. The ShiftingWindow procedure, as described in Al-
gorithm 1, calls the Learn/Unlearn procedures. Both procedures
follow these steps:

1. a test to establish whether the associated λa is within the
allowed limits, 0 ≤ λa ≤ ρC , while testing whether the
penalty ha has either reached zero (due to xa migrating
to support set) or a positive or negative value (due to
migration to the rest/error sets);

2. computation of Q , as described by Eq. (19), which is in
O(N3);

3. computation of βs, given by Eq. (27), is based on matrix
inversion, so it is in O(nSV

3), where nSV ≤ N is the number
of support vectors;

4. the computation of γs is in O(nSV
2) as given by Eq. (29);

5. procedure compute_limits_for_support_vectors() is in
O(nSV), as it computes the maximum/minimum for ∆λ
values associated to support vectors;

534

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

6. procedure compute_limits_for_rest_vectors() is in O(N2),
since it involves computing the penalties h for all vectors;

7. procedure rearrange_vectors_in_sets() has linear time.

Overall, the internal loop of the learn/unlearn procedures is
in O(N3). At each iteration of the inner loop, the value of λa
approaches Ca for learning, or zero for unlearning. The number of
loops depends on the dataset. The algorithm will eventually con-
verge, since with each iteration we are getting closer to satisfying
the Kuhn–Tucker condition for xa, as described in Cristianini and
Shawe-Taylor (2000). One can observe that, for a large absolute
negative value of the penalty ha, the KT condition is not fulfilled.
However, in case of initial ha being positive, the inner loop is not
executed, since Eq. (15) is verified from the start (λa = 0).

4. Experiments

We describe a series of experiments performed on artificial
and real-world datasets which exhibit concept drift. First, we
compare the performance (classification accuracy) of WIDSVM
with a standard SVM (without shifting window). Our baseline is
the C-Support Vector Classification SVM implementation from the
Scikit-Learn library.1 We refer to it as the Classic SVM (C-SVM).
Next, we compare the training times of the WIDSVM and the C-
SVM retrained from scratch. Finally, we compare the performance
of WIDSVM with other concept drift models available in the
literature.

4.1. Datasets with concept drift

The most popular synthetic and real-world benchmark dataset
for testing concept drift handling models are (Iwashita & Papa,
2019): KDDCUP’99, STAGGER, Electricity, Hyperplane, SEA, Gauss,
and Forest Covertype. An important problem with most of the
real-world benchmark datasets is that there is little concept drift
in them, or concept drift is introduced artificially (Gama et al.,
2014; Tsymbal, 2004). In addition, some of these datasets are
corrupted.

KDDCUP’99 is the most widely used dataset for the evaluation
of concept drift systems (Iwashita & Papa, 2019). It contains
computer network intrusion data, classifying legitimate and il-
legitimate connections. There are 23 class labels; we chose to
test the ‘‘smurf’’ and ‘‘normal’’ classes, which are the most rep-
resented and account for about 80% of the dataset. We trained
the classic SVM on the first 9994 samples (2.6%), where we
found 7787 normal and 2207 smurf instances and tested on other
368,074 (97.4%). We obtained a 99.99% classification accuracy
(only 48 misclassified patterns). This nearly 100% accuracy is
strong evidence that the concept drift in the stream, if present, is
irrelevant. The analysis performed by Tavallaee, Bagheri, Lu, and
Ghorbani (2009) leads to a similar conclusion: they employed 21
learned machines (7 learners, each trained 3 times with different
train sets) and labeled the records of the entire KDD train and
test sets. They showed that about 98% of the records in the train
set and 86% of the test set were correctly classified with all
the 21 learners. For these reasons, we skip KDDCUP’99 in our
experiments.

The Electricity dataset is a popular benchmark for testing
concept drift models (Harries, 1999). The dataset covers a period
of two years of recordings, instances recorded every half hour, for
7 instance variables, one being a categorical variable (day of the
week). The dataset has 45,312 instances. The task is to predict an
increase (UP) or a decrease (DOWN) for the price of electricity
in New South Wales, Australia. The prior probability for price

1 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

increase is 58%. The price is subject to change due to consumption
habits, seasonality or unexpected events. Six of the variables are
normalized (Centre for Open Software Innovation, 2019) and for
the seventh (the day) we used one-hot encoding, to express the
day-of-week seasonality.

The Forest Covertype dataset (Blackard & Dean, 2000) de-
scribes the forest coverage type for 30 × 30 m cells, provided
by the US Forest Service (USFS). It consists of 581,012 instances
and 54 attributes, not counting the class type. Out of these, only
10 are continuous, and the rest of them (such as wilderness area
and soil type) are one-hot encoded. The set defines seven classes;
we only used the two most represented classes, with a total of
495,141 data samples. The classes are equally balanced: 211,840
in class 1 vs. 283,301 in class 2. The dataset was already normal-
ized (Centre for Open Software Innovation, 2019). For the SVM
to work properly, we detected the sets of temporally consecutive
data samples belonging to the same class. We observed that, apart
from a set of 5692 consecutive elements of the same class, which
was skipped, all other such sequences had less than 300 elements.
For those long sequences, we switched the middle element with
the most recent element of a different class, in order to ensure
that none are longer than 150 samples from the same class. This
is similar with SVM keeping its latest sample of the opposite class,
in its definition of the hyperplane.

The Circles dataset (Pesaranghader, Viktor, & Paquet, 2018)
is a synthetic dataset with gradual induced concept drift. It has
two attributes, distributed on the [0, 1] interval. The classification
function is a circle of predefined radius and center. Points that
belong to the interior of the circle are classified as belonging to
the first class, whereas the exterior points belong to the second
class. The drift happens when the definition of the circle function
changes. This happens every 25,000 samples.

The Sine1 dataset (Pesaranghader et al., 2018) is another syn-
thetic dataset, with abrupt concept drift. There are two contin-
uous attributes uniformly distributed on the [0, 1] interval. The
classification function is y = sin(x): instances are classified as
positive if they are under the curve; otherwise they are classified
as negative. Concept drift occurs by reversing the class labels,
happening at every 20,000 samples.

We studied the STAGGER dataset but we did not use it in our
experiments because of its nature. There are only three categor-
ical attributes for a sample, making the transitions rather abrupt
as the concept shifts too rapidly. This is out of our focus.

4.2. Implementation details and experimental setup

Experiments were run on a Dell Tower platform with In-
tel(R) Xeon(R) W-2145 CPU @ 3.70 GHz. Our WIDSVM code is
implemented in PyTorch and available on CodeOcean.2

In our implementation, the matrix operations run in a tensor-
optimized form. To speed up the execution, we use caching to
pre-calculate the kernel values, so the update of the kernel values
in Eq. (19) is performed in linear time, avoiding O(N2) kernel
recalculation for each new sample.

At the core of the algorithm lies the matrix inversion in
Eq. (27), which must be reconstructed every time a vector mi-
grates in/out of the support set. The support set size directly
determines the dimension of the inverted matrix. By increasing
the number of samples within the shifting window, the number
of support vectors increases, though this is data dependent.

During training, we detect the training vectors that lead to
rank reduction of matrix Q in Eq. (19) by computing the penalty
introduced by a new vector h(xc) and testing for equality with the
previous terms, computed in Eq. (21).

2 https://doi.org/10.24433/CO.2865125.v1.

535

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://doi.org/10.24433/CO.2865125.v1

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Fig. 2. Experiments on the Electricity dataset. (a) Accuracy of WIDSVM tested on the next 100 samples after the shifting window is shown together with the
exponentially-weighted average (EWA) and the global mean. (b) The mean accuracy assessed on the next sample after the shifting window (WIDSVM, shown in
blue) reaches 82.28% on average. The EWA accuracy is assessed on the 5, 20, 50 and 100 next samples. It is visible that performance degrades in time. Classic SVM
(C-SVM) accuracy is close. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The terms λ change during training, within the interval de-
scribed by Eq. (37). Because they are determined by Eqs. (28) and
(30), even if by these computations they are supposed to be zero
or ρC , they do not reach these exact values. In practice, we relax
the condition from Eq. (37) by testing that each λi is within limits:

λi = ϵ or λi = ρC − ϵ (42)

We also consider the penalty of support vectors to be very close
to zero, so condition (22) is written as:

h(xsupport) = ϵ (43)

We found ϵ = 10−10 to be an acceptable tolerance value to pre-
vent numerical stability problems. During training, it is possible
that, for a small window, all samples are from the same class. To
prevent this, we ensure that at least one sample of each class is
represented in the window.

We use the exponential kernel function in Eq. (19), K (xi, xj) =
e−s∥xi−xj∥

2
, and the optimal s is soptimal = 1/(N · Var[X]). For

the Electricity dataset, we determined the optimal value for s
using the first 6750 samples (approx. 15% of the whole set).
Similarly, for Forest Covertype, we determined this value using
the first 4000 samples (less than 1%). For Circles we considered

Table 1
Hyper-parameters used for each of the datasets.
Dataset Window size C s

Electricity 155 100 0.8364
Forest Covertype 1000 100 0.2415
Circles 1000 1 7.7977
Sine1 100 10 5.9913

the first 10 000 samples. The initial incremental SVM solution
for WIDSVM determines the appropriate values for λ1 and λ2,
which dictate the lower bound of the regularization constant C .
During learning, the WIDSVM classifier is trained on a fixed size
window of samples. We determined the window size by trial and
error, trying to optimize the classifier accuracy by training on a
window of samples and testing on the next samples following the
window. The window size influences the time complexity, since it
determines the maximum size of the inverse in Eq. (27), and also
the size of the h penalty that is repeatedly computed in Eq. (30)
until the solution fulfills the KT conditions. The hyper-parameters
are presented in Table 1.

We used three types of weight profiles for the shifting win-
dow: trapezoidal, exponential and abrupt step. These profiles

536

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

were chosen for no particular reason, just as an illustration of
the concept. We wanted to prove that WIDSVM is able to learn
samples with different associated weights. We used the following
trapezoidal shape: ρ1 = 0.5, ρ2 = ρ3 · · · = ρN−1 = 1, ρN = 0.5,
for a window size of N samples. This particular profile is not
optimized for a specific dataset or problem; however, in practice
we found that for the chosen datasets, the results on this profile
are practically similar with those using the step profile, due to
the large size of the shifting window.

4.3. Results

We set a window size of 155 samples for the Electricity dataset
and, as the window advances, we classify the next 100 instances
in the stream after the shifting window, using the model trained
on the current window. We show the next 100 instances classifi-
cation result after learning each data sample in the set. Fig. 2(a)
shows, in blue line, the accuracy of the model when tested on the
next 100 samples, as the window shifts. We count how many of
these next 100 samples are correctly classified. We represent the
exponentially weighted moving average (EWA) of this quantity
and the mean accuracy computed for all data samples (64.84%).
In Fig. 2(b), we compute in the same manner the accuracy on a set
of next 5, 20, 50 and 100 samples. We represent the exponentially
weighted moving average (EWA) accuracy. The EWA accuracy Vt
on sample t is computed as Vt = βVt−1+(1−β)At , where At is the
instant accuracy on sample t . In our experiments, we take β =

0.9995, equivalent to a weighted average for about the last 2000
samples. For testing on the next sample only, we use a different
technique. Because representing the accuracy in this case would
only generate two possible values (0% and 100%), we compute
the ratio of correctly classified samples so far. As a result, the
‘‘WIDSVM’’ line in Fig. 2(b) would converge to its mean value as
the number of samples increases. The mean accuracy of this pro-
file (its last value) reaches 82.28%. To emphasize the trends of the
graphs, we added solid markers every 2000 samples. The perfor-
mance of the classic SVM (C-SVM), trained using the same shifting
window, is shown for comparison. Here, its performance of 81.9%
is not far from the performance of WIDSVM. However, the C-SVM
is retrained from scratch every time the window shifts by one
sample. There are some known issues with the Electricity dataset
(Žliobaite, 2013). It has long sequences of samples belonging to
the same class. For example, if we construct a classifier that
always predicts the class of the next sample to always be the class
of the current sample (the moving average of one), then for this
particular dataset the obtained accuracy is 85.3%. If the data were
independently distributed, the moving average of one predictor
would give an accuracy of 51%. Also, the seasonality of the data
is very strong, the autocorrelation function peaking every 24 h.
In our experiments, we omit the day of year feature, since this is
steadily increasing.

Fig. 3 shows the performance of the WIDSVM on the Forest
Covertype dataset. The exponential weighted average of the accu-
racy indicates a better performance for the first half, and a poorer
performance on the second half, followed by a quick recovery in
the end. The performance of WIDSVM tested only on the next
sample is on average 92.28%. The performance on the next 5, 20,
50 and 100 samples following the shift window is also presented.
As expected, due to the concept drift, the accuracy is higher when
testing on nearby samples, rather than on the farther ones.

We calculated the accuracies for different training profiles on
the Forest Covertype dataset in Fig. 4. We used the abrupt step,
trapezoidal and exponential profiles (Fig. 4(a)). In Fig. 4(b) we
show both the performance of WIDSVM when tested only on the
next sample, as well as when tested on the next 20 samples in
the stream. The window size is 2000 samples, whereas the profile

Table 2
Accuracy (in percents) for training C-SVM and WIDSVM on different window
sizes, given the datasets.
Electricity Window size

100 125 155 175 200 300 500 1000

C-SVM 81.86 81.83 81.84 81.98 81.94 81.57 81.74 80.31
WIDSVM 81.77 81.98 82.24 82.36 82.54 81.43 81.50 79.88

Circles Window size

50 100 200 300 500 1000

C-SVM 83.87 85.55 86.44 86.81 87.06 87.15
WIDSVM 83.88 85.51 86.43 86.15 87.04 87.06

Sine1 Window size

50 100 200 300 500 1000

C-SVM 83.14 85.55 86.88 87.24 87.45 87.10
WIDSVM 83.06 85.57 86.88 87.25 87.30 86.44

Covertype Window size

150 200 300 500 1000 1500

C-SVM 91.13 90.81 92.25 93.85 94.38 93.05
WIDSVM 90.86 89.27 91.54 94.17 94.14 92.21

slopes are defined by only the first and last 10 samples in the
window size. The results show that the best performing profile
is the step profile, indicating, as expected, that for concept drift,
the most relevant samples for classification seem to be the most
recent ones. The difference in accuracy between the step profile
and the exponential profile (which puts less emphasis on newly
trained samples) is on average 1.3%.

Fig. 5 shows the performance of the WIDSVM on the synthetic
Circles dataset. Here we used a window size of 100 samples. The
performance is around 87.14%, independent of the window size,
up to a size of 50 samples inspected in advance. It is close to
the 85.56% performance of the C-SVM trained on a shifting win-
dow. The difference is explained by the incremental–decremental
process, which discards some of vectors early due to detection
of singularity in inversion matrix of Eq. (27) or condition (38).
We found out that the number of vectors composing the solution
is slightly different in the two implementations, supporting our
hypothesis.

The same behavior of sudden accuracy drop was found on the
Sine1 dataset. While the shifting window is able to cope with
slow drift to a certain degree, it fails to adapt to fast concept
drift. We tackled this problem in a different work (Gâlmeanu &
Andonie, 2021).

4.4. Comparison with classic SVM

In Table 2 we compare the performance of WIDSVM against
the classic SVM. Tests were made on different datasets, for dif-
ferent window sizes, computing the accuracy on the sample
following the shifting window. For the Electricity dataset, the
best window size is 175 for C-SVM, whereas for WIDSVM it is
200, which is close. For Circles dataset, the optimum window size
seems to be 1000 for both methods. The same goes for Sine1 (with
window size of 500), whereas for the Covertype dataset, the opti-
mumwindow size is 1000 for C-SVM, and 500 for WIDSVM. These
experiments suggest that the behavior of the two classifiers is
similar, which is expected; both construct the optimal separation
hyperplane. The WIDSVM however, by design, removes some of
the samples with contribution too similar with the existing ones,
avoiding γ close to zero in Eq. (38). This explains the reason why
we do not observe identical results, but most similar ones.

To see how accuracy varies for C-SVM and WIDSVM for test
sizes, we performed another set of experiments (see Table 3).
The results were computed by averaging performances for every

537

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Fig. 3. Experiments on the Forest Covertype dataset. The accuracy assessed on the next sample after the shifting window (WIDSVM) reaches 92.28% on average. The
EWA accuracy is assessed on the 5, 20, 50 and 100 next samples. The C-SVM accuracy is close to WIDSVM accuracy. This is explained by the fact that WIDSVM may
be forced to discard samples that trigger condition number issues for matrix Q in Eq. (27), as observed experimentally.

Fig. 4. Experiments with learning profiles. (a) Weight profiles used for WIDSVM, for a window size of 100. (b) Accuracies obtained for different weight profiles on
the Forest Covertype dataset, with a fixed window size of 2000 samples. We present the accuracy for testing on the next sample as well as on the next 20 samples.

shift position of the sliding window. We observe that the accuracy
decreases as the test set becomes farther extended in the future.
This behavior is natural since, as we test farther in the future,
the underlying distribution of the data changes due to drift, and
farther samples become harder to predict. Also, although on small
set sizes the C-SVM and WIDSVM results are comparable, as set

size increases, WIDSVM adapts better to drift, due to its learning
profile properties.

4.5. Training time

Comparing directly the execution time of WIDSVM and C-SVM
is not very precise, since WIDSVM has a custom implementation

538

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Fig. 5. Experiments with the Circles dataset. The concept drifts appears clearly at samples 25,000, 50,000 and 75,0000.

Table 3
Accuracy (in percents) for testing C-SVM and WIDSVM on different set sizes
following the shifting window.
Electricity Window size

1 5 20 50 100

C-SVM 81.90 73.44 68.93 64.05 62.64
WIDSVM 82.28 77.35 70.47 66.79 64.84

Covertype Window size

1 5 20 50 100

C-SVM 92.13 90.81 81.29 76.81 74.22
WIDSVM 92.28 88.60 83.39 81.08 81.47

Table 4
Average training time per sample, in milliseconds, for C-SVM vs. WIDSVM, on
different window sizes.
Method Window size

100 200 500 1000 1200 1500 1700 2000

C-SVM 0.7 1.7 8.6 37.3 52.2 75.8 98.5 136.6
WIDSVM 6.7 10.3 12.9 15.5 17.0 24.4 27.3 32.9

and C-SVM is based on scikit-learn. For informative purposes,
we determined the training times for the WIDSVM and C-SVM
algorithms on the Forest Covertype dataset. The purpose was to
depict the improvements when increasing the window size. We
used the same training samples for both classifiers. We started
from the beginning and trained up to the point when the shifting
window ‘‘fills up’’. For C-SVM, we retrained from scratch after
each window shift. In contrast, WIDSVM uses the incremental–
decremental approach. For each shift step, we measured the
training time. We performed a number of steps equal to the
window size; thus, the window shifts until the last window no
longer contains samples from the first window. The average time
was computed considering window_size steps. The results are
presented in Table 4, in ms.

We observe that for smaller window sizes, the training time is
slightly greater than the one achieved by retraining from scratch.
The advantage becomes significant as the size of the sliding win-
dow grows. We also observe that the matrix inversion in Eq. (27)
accounts for about 10% of training time. Further improvements
are possible, by employing the Sherman–Morrison–Woodbury
formula (Laskov et al., 2006).

By performing the fitting of a regression line on the log–log
plot of the training time versus the training size, we find an
empirical scaling for both the C-SVM as well as for the WIDSVM.

Table 5
Performance comparison of different concept drift models.
Dataset Model

Naive Bayes Very Fast Decision Tree C-SVM WIDSVM

Electricity 73.64% 77.93% 81.90% 82.28%
Forest Covertype 64.63% 86.90% 92.13% 92.21%
Circles 72.06% 82.09% 85.55% 87.14%
Sine1 57.21% 58.33% 85.59% 85.28%

C-SVM training time is found in the order of O(N1.9), as expected;
it is the same as the one described in the original SMO pa-
per (Platt, 1998). According to our experiments, WIDSVM training
time is in O(N1.7).

4.6. Performance comparison with other concept drift models

Finally, Table 5 compares the WIDSVM accuracy results with
the performances of other concept drift models, on the selected
datasets.

We compared our model with Naive Bayes (NB) and Very
Fast Decision Tree (VFDT, or Hoeffding Tree Classifier) classifiers
implemented in Scikit-Multiflow framework (Montiel, Read, Bifet,
& Abdessalem, 2018). Both classifiers are designed to support
streaming data, performing a so-called prequential (Montiel et al.,
2018) training: they replace the batch training mode, and use
every sample to test the performance before considering it as
training data. NB classifier provided poor performance; however
VFDT is better adapted to concept drift; it grows an alternate sub-
tree whenever the old one becomes out-of-date (Hulten, Spencer,
& Domingos, 2001).

NB and VFDT do not use shifting window. For a fair compari-
son, we also trained them on a shifting window, and tested them
using the next sample after the shifting window. However, the
results observed were much worse than the previous prequential
training mode — the best average performance is around 60%,
considering all four datasets.

Overall, WIDSVM performed better than NB and VFDT in all
cases. Its behavior is comparable to the C-SVM trained on the
same shifting window, having the advantage that it does not have
to be retrained from scratch.

5. Conclusions and open problems

We introduced the WIDSVM algorithm, a generalization of
the incremental–decremental SVM for concept drift with shift-
ing window. WIDSVM enables the incremental SVM to learn

539

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

the newly arrived data samples while it forgets the older ones,
both operations being controlled by the weights inside a shifting
window applied to the data input stream. Both learning and
forgetting can operate in a gradual manner.

The main difficulty was to constrain the WIDSVM to fulfill the
SW Property. Thus, when adding/removing samples, for the new
sample we increase the allowed characteristic λ value, whereas
we remove the obsolete sample by decreasing its allowed char-
acteristic value. This is accomplished by the incremental and
decremental procedures that construct the new solution as a
difference from the previous one. Evolving from the CP method
that gives the general bookkeeping conditions, WIDSVM defines
the maximum increment (or decrement) that determines the next
vector migration while keeping the Kuhn–Tucker conditions sat-
isfied for the existing samples and reducing the penalty cost for
the new sample. During this process, vectors may migrate among
sets, so we computed the exact conditions for the migrations. The
system changes with each vector migration, until it reaches the
KT equilibrium again. Using weighted constraints for the vectors
inside the shifting window, the KT conditions are fulfilled by
repeatedly applying the CP algorithm. This is much faster than
the traditional SVM since we do not relearn the already learned
samples.

While the SW property is intuitively best characterized by
a rectangular profile, it can also be extended to more general
weight profiles. For instance, by shifting the window and asso-
ciated instance weights, there is no need to retrain from scratch
on barely modified new input samples. In this case, for the new
context, it is more convenient to update the solution until the
Kuhn–Tucker conditions are met.

We used a fixed size window, determined a priori. This can
work well if information on the time-scale of change is available.
However, this is rarely the case (Bifet & Gavaldà, 2007) and it
is difficult to determine a priori an optimal window size. Using
an adaptive windowing is very appealing and was investigated
by several authors. For instance, we could automatically grow
the window when no change is apparent, and shrink it when
data changes, the strategy used in Bifet and Gavaldà (2007).
We recently introduced such an incremental–decremental SVM
model, capable of dynamically detecting the concept drift and
adjusting the size of the shifting window (Gâlmeanu & Andonie,
2021).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive
windowing. In SDM’07: Vol. 7, Proceedings of the seventh SIAM international
conference on data mining, Minneapolis, USA (p. 6). http://dx.doi.org/10.1137/
1.9781611972771.42.

Blackard, J., & Dean, D. (2000). Comparative accuracies of artificial neu-
ral networks and discriminant analysis in predicting forest cover types
from cartographic variables. Computers and Electronics in Agriculture, 24(3),
131–151.

Burges, C., & Chrisp, D. (1999). Uniqueness of the SVM solution. NIPS, 99.
Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition

by a self-organizing neural network. Computer, 21(3), 77–88.
Cauwenberghs, G., & Poggio, T. (2000). Incremental and decremental support

vector machine learning. In NIPS’00, Proceedings of the 13th international
conference on neural information processing systems (pp. 388–394). Cambridge,
MA, USA: MIT Press.

Centre for Open Software Innovation, T. U. o. W. (2019). Datasets - MOA.
https://moa.cms.waikato.ac.nz/datasets/ (accessed May 1, 2020).

Chang, X., Yu, Y., Yang, Y., & Xing, E. (2017). Semantic pooling for complex
event analysis in untrimmed videos. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(8), 1617–1632.

Chen, Y., Xiong, J., Xu, W., & Zuo, J. (2019). A novel online incremental and
decremental learning algorithm based on variable support vector machine.
Cluster Computing, 22, 11. http://dx.doi.org/10.1007/s10586-018-1772-4.

Chitrakar, R., & Huang, C. (2014). Selection of candidate support vectors in
incremental SVM for network intrusion detection. Computers and Security,
45, 231–241. http://dx.doi.org/10.1016/j.cose.2014.06.006.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector ma-
chines and other kernel-based learning methods (1st ed.). Cambridge University
Press.

Diehl, C. P., & Cauwenberghs, G. (2003). SVM incremental learning, adaptation
and optimization. In IJCNN’03: Vol. 4, Proceedings of the international joint
conference on neural networks, 2003 (pp. 2685–2690).

Elwell, R., & Polikar, R. (2009). Incremental learning in nonstationary environ-
ments with controlled forgetting. In 2009 international joint conference on
neural networks (pp. 771–778).

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in
nonstationary environments. IEEE Transactions on Neural Networks, 22(10),
1517–1531.

Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., et
al. (2013). An adaptive ensemble classifier for mining concept drifting data
streams. Expert Systems with Applications, 40(15), 5895–5906.

Gâlmeanu, H., & Andonie, R. (2008). Implementation issues of an incremental and
decremental SVM. In ICANN ’08, Proceedings of the 18th international confer-
ence on artificial neural networks, part I (pp. 325–335). Berlin, Heidelberg:
Springer-Verlag, http://dx.doi.org/10.1007/978-3-540-87536-9.34.

Gâlmeanu, H., & Andonie, R. (2009). A multi-class incremental and decremental
SVM approach using adaptive directed acyclic graphs. In 2009 international
conference on adaptive and intelligent systems (pp. 114–119).

Gâlmeanu, H., & Andonie, R. (2021). Concept drift adaptation with incremental–
decremental SVM. Applied Sciences, 20, 97–106. http://dx.doi.org/10.3390/
app11209644.

Gâlmeanu, H., Sasu, L. M., & Andonie, R. (2016). Incremental and decremen-
tal SVM for regression. International Journal of Computers Communications
& Control, 11(6), 755–775. http://dx.doi.org/10.15837/ijccc.2016.6.2744, URL
http://univagora.ro/jour/index.php/ijccc/article/view/2744.

Gama, J. (2010). Knowledge discovery from data streams (1st ed.). Chapman &
Hall/CRC.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM Computing Surveys, 46(4), 1–37.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., et
al. (2017). Adaptive random forests for evolving data stream classification.
Machine Learning, 106(9–10), 1469–1495. http://dx.doi.org/10.1007/s10994-
017-5642-8.

Harries, M. (1999). Splice-2 comparative evaluation: Electricity pricing: Tech. rep.,
University of New South Wales.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data
streams. In KDD’01: Proceedings of the seventh ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 97–106). http://dx.
doi.org/10.1145/502512.502529.

Iwashita, A. S., & Papa, J. P. (2019). An overview on concept drift learning. IEEE
Access, 7, 1532–1547.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. Example
weighting. Intelligent Data Analysis, 8(3), 281–300.

Klinkenberg, R., & Joachims, T. (2000). Detecting concept drift with support vec-
tor machines. In ICML, ICML ’00: Proceedings of the seventeenth international
conference on machine learning (pp. 487–494).

Laskov, P., Gehl, C., Krüger, S., & Müller, K.-R. (2006). Incremental support vector
learning: Analysis, implementation and applications. Journal of Machine
Learning Research, 7, 1909–1936.

Lazarescu, M. M., Venkatesh, S., & Bui, H. H. (2004). Using multiple windows to
track concept drift. Intelligent Data Analysis, 8(1), 29–59.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2019). Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12),
2346–2363.

Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector re-
gression. Neural Computation, 15(11), 2683–2703. http://dx.doi.org/10.1162/
089976603322385117.

Ma, Y., Zhao, K., Wang, Q., & Tian, Y. (2020). Incremental cost-sensitive support
vector machine with linear-exponential loss. IEEE Access, 8, 149899–149914.
http://dx.doi.org/10.1109/ACCESS.2020.3015954.

Martin, M. (2002). On-line support vector machine regression. In T. Elomaa,
H. Mannila, & H. Toivonen (Eds.), Machine learning: ECML 2002 (pp. 282–294).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-
output streaming framework. Journal of Machine Learning Research, 19, 1–5,
https://github.com/scikit-multiflow/scikit-multiflow.

540

http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1137/1.9781611972771.42
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb2
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb3
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb4
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb5
https://moa.cms.waikato.ac.nz/datasets/
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb7
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb7
http://dx.doi.org/10.1007/s10586-018-1772-4
http://dx.doi.org/10.1016/j.cose.2014.06.006
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb10
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb11
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb11
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb11
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb11
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb11
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb12
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb13
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb14
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb14
http://dx.doi.org/10.1007/978-3-540-87536-9.34
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb16
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb16
http://dx.doi.org/10.3390/app11209644
http://dx.doi.org/10.3390/app11209644
http://dx.doi.org/10.3390/app11209644
http://dx.doi.org/10.15837/ijccc.2016.6.2744
http://univagora.ro/jour/index.php/ijccc/article/view/2744
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb19
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb20
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb20
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/s10994-017-5642-8
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb22
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb22
http://dx.doi.org/10.1145/502512.502529
http://dx.doi.org/10.1145/502512.502529
http://dx.doi.org/10.1145/502512.502529
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb24
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb25
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb26
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb27
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb28
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb29
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb29
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.1109/ACCESS.2020.3015954
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb32
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb32
https://github.com/scikit-multiflow/scikit-multiflow

H. Gâlmeanu and R. Andonie Neural Networks 152 (2022) 528–541

Pesaranghader, A., Viktor, H., & Paquet, E. (2018). Reservoir of diverse adaptive
learners and stacking fast hoeffding drift detection methods for evolving data
streams. Machine Learning, 107, 1711–1743.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for
training support vector machines: Tech. Rep. MSR-TR-98-14, Microsoft,
https://www.microsoft.com/en-us/research/publication/sequential-minimal-
optimization-a-fast-algorithm-for-training-support-vector-machines/.

Rüping, S. (2001). Incremental learning with support vector machines. In
Proceedings 2001 IEEE international conference on data mining (pp. 641–642).

Shen, Y., Zhu, Y., Du, J., & Chen, Y. (2018). A Fast Learn++.NSE classification
algorithm based on weighted moving average. Filomat, 32, 1737–1745. http:
//dx.doi.org/10.2298/FIL1805737S.

Syed, N. A., Liu, H., & Sung, K. K. (1999). Handling concept drifts in incremental
learning with support vector machines. In KDD ’99, Proceedings of the fifth
ACM SIGKDD international conference on knowledge discovery and data mining
(pp. 317–321). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/312129.312267.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis
of the KDD cup 99 data set. In 2009 IEEE symposium on computational
intelligence for security and defense applications (pp. 1–6).

Tsymbal, A. (2004). The problem of concept drift: definitions and related work:
Tech. rep., Dublin: Department of Computer Science, Trinity College.

Voosen, P. (2019). New climate models predict a warming surge. Science, 16.
Wang, X., & Xing, Y. (2019). An online support vector machine for the open-

ended environment. Expert Systems with Applications, 120, 72–86. http://dx.
doi.org/10.1016/j.eswa.2018.10.027.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23(1), 69–101. http://dx.doi.org/10.1023/
A:1018046501280.

Yalcin, A., Erdem, Z., & Gurgen, F. (2007). Ensemble based incremental SVM
classifiers for changing environments. In 2007 22nd international symposium
on computer and information sciences (pp. 1–5).

Yang, X., Song, Q., & Cao, A. (2007). Weighted support vector machine for
data classification. In Proceedings of the IEEE international joint conference
on neural networks, Vol. 21 (pp. 859–864). http://dx.doi.org/10.1109/IJCNN.
2005.1555965, vol. 2,

ZareMoodi, P., Siahroudi, S. K., & Beigy, H. (2016). A support vector based
approach for classification beyond the learned label space in data streams. In
SAC ’16, Proceedings of the 31st annual ACM symposium on applied computing
(pp. 910–915). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/2851613.2851652.

Žliobaite, I. (2013). How good is the electricity benchmark for evaluating concept
drift adaptation. arXiv:13013524.

541

http://refhub.elsevier.com/S0893-6080(22)00192-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb34
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb34
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
http://dx.doi.org/10.2298/FIL1805737S
http://dx.doi.org/10.2298/FIL1805737S
http://dx.doi.org/10.2298/FIL1805737S
http://dx.doi.org/10.1145/312129.312267
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb39
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb40
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb41
http://dx.doi.org/10.1016/j.eswa.2018.10.027
http://dx.doi.org/10.1016/j.eswa.2018.10.027
http://dx.doi.org/10.1016/j.eswa.2018.10.027
http://dx.doi.org/10.1023/A:1018046501280
http://dx.doi.org/10.1023/A:1018046501280
http://dx.doi.org/10.1023/A:1018046501280
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb44
http://refhub.elsevier.com/S0893-6080(22)00192-7/sb44
http://dx.doi.org/10.1109/IJCNN.2005.1555965
http://dx.doi.org/10.1109/IJCNN.2005.1555965
http://dx.doi.org/10.1109/IJCNN.2005.1555965
http://dx.doi.org/10.1145/2851613.2851652
http://arxiv.org/abs/13013524

	Weighted Incremental–Decremental Support Vector Machines for concept drift with shifting window
	Weighted Incremental–Decremental Support Vector Machines for concept drift with shifting window
	Introduction
	Related work and motivation
	Our contribution

	Background: Incremental–decremental SVM
	SVM and the dual problem
	The role of Kuhn Tucker (KT) conditions in incremental learning
	Migration relations used in incremental learning

	Weighted incremental–decremental SVM
	Incremental learning
	Decremental unlearning
	Detecting training data inconsistencies
	Initial solution
	Computational complexity

	Experiments
	Datasets with concept drift
	Implementation details and experimental setup
	Results
	Comparison with classic SVM
	Training time
	Performance comparison with other concept drift models

	Conclusions and open problems
	Declaration of competing interest
	References

