
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Summer 8-9-2022

Towards General AI using Continual, Active Learning in Large and Towards General AI using Continual, Active Learning in Large and

Few Shot Domains Few Shot Domains

Jaya Krishna Mandivarapu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Mandivarapu, Jaya Krishna, "Towards General AI using Continual, Active Learning in Large and Few Shot
Domains." Dissertation, Georgia State University, 2022.
https://scholarworks.gsu.edu/cs_diss/188

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss/188?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Towards General AI using Continual, Active Learning in Large and Few Shot Domains

by

Jaya Krishna Mandivarapu

Under the Direction of Rolando Estrada, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2022

ABSTRACT

Lifelong learning a.k.a Continual Learning is an advanced machine learning paradigm in

which a system learns continuously, assembling the knowledge of prior skills in the process.

The system becomes more proficient at acquiring new skill using its accumulated knowledge.

This type of learning is one of the hallmarks of human intelligence. However, in the prevail-

ing machine learning paradigm, each task is learned in isolation: given a dataset for a task,

the system tries to find a machine learning model which performs well on the given dataset.

Isolated learning paradigm has led to deep neural networks achieving the state-of-the-art

performance on a wide variety of individual tasks. Although isolated learning has achieved

much success in a number of applications, it has wide range of struggles while learning mul-

tiple tasks in sequence. When trained on a new task using the isolated network performing

well on prior task, standard neural network forget most of the information related to previous

task by overwriting the old parameters for learning the new task at hand, a phenomenon

often referred to as “catastrophic forgetting”. In comparison, humans can learn effectively

new task without forgetting the old task and we can learn the new task quickly because we

have gained so much knowledge in the past, which allows us to learn the new task with little

data and lesser effort. This enables us to learn more and more continually in a self-motivated

manner. We can also adapt our previous knowledge to solve unfamiliar problems, an ability

beyond current machine learning systems.

INDEX WORDS: Continual learning, Active learning, Deep learning, Meta-learning

Copyright by
Jaya Krishna Mandivarapu

2022

Towards General AI using Continual, Active Learning in Large and Few Shot Domains

by

Jaya Krishna Mandivarapu

Committee Chair: Rolando Estrada

Committee: Rajshekhar Sunderraman

Xiaojun Cao

Yanqing Zhang

Ying Zhu, Member

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2022

DEDICATION

I dedicate this work God, Mother, Father and Brother. I’m dedicating it to my mom as

I want something that stays longer than me to show that there was once a women named

Lakshmi in Bobbili, India, who loved her son very much, set me on right path even through

her difficulties and taught me ”No matter what happens in life be good to people. Being

good to people is a wonderful legacy to leave behind but don’t waste time to prove it to

others”.

I also dedicate this book to myWife who somehow managed to be nothing but supportive.

Who think the same thoughts without need of speech and chatter the same speech without

need of the meaning. To my wife, for all you have done I know it wasn’t always fun.

IV

ACKNOWLEDGEMENTS

A significant credit for my Ph.D. goes to my advisor Dr. Rolando Estrada who was

always there for when you need it as a mentor, as a good human being and made the whole

Ph.D experience as gratifying journey. I cannot miss my Blake Camp who is my close friend,

researcher partner who provided me with the excellent opportunity to work along with him

and have intense intellectual discussions ranging boyish to latest AI related for the last 5

years. I also want to specially thank Dr. Raj Sunderraman who always helped me whenever

needed and initially gave excellent opportunity to learn in their lab(CDC Research) as a

research assistant during my master’s which led to foundations of what I am today. It was

truly an exciting experience where I learned a lot of valuable things. I would also like to

acknowledge the department of computer science for providing me this opportunity to pursue

PhD. I am also truly honoured to be working along side of my fantastic colleagues.

V

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Publications . 3

2 PROBLEM BACKGROUND 5

3 LITERATURE REVIEW 7

3.1 Continual Learning Scenarios : . 7

4 FIRST IDEA: SELF-NET LIFELONG LEARNING VIA CONTINUAL

SELF-MODELING 9

4.1 Problem Formulation . 9

4.2 Methodology . 11

4.2.1 Single-network encoding . 12

4.2.2 Continual encoding . 14

4.3 Task network fine-tuning . 16

4.4 Results . 17

4.4.1 Robustness analysis . 17

4.4.2 Performance and storage scalability 18

VI

4.4.3 Permuted MNIST . 21

4.4.4 Split MNIST . 22

4.4.5 Split CIFAR-10 . 22

4.4.6 Split CIFAR-100 . 24

4.4.7 Incremental Atari . 25

4.4.8 Split networks and multiple architectures 26

4.5 Conclusions and future work . 29

5 SECOND IDEA: CONTINUAL LEARNING USING DEEP ARTIFICIAL

NEURONS 30

5.1 Problem Formulation . 30

5.2 Model Architecture . 32

5.3 Methodology . 35

5.4 Experiments and Results . 39

5.5 Conclusions and Future Work . 41

6 THIRD IDEA: DEEP ACTIVE LEARNING VIA OPEN-SET RECOG-

NITION 43

6.1 Introduction . 43

6.2 Methodology . 44

6.2.1 Formal problem definition . 44

6.2.2 Active learning system . 45

6.2.3 Uncertainty sampling . 47

6.2.4 Wiebull distribution sampling 47

VII

6.3 Experimental Results . 48

6.3.1 Implementation Details . 48

6.3.2 Image classification results . 51

6.3.3 Additional experiments . 52

6.4 Conclusions and Future work . 56

7 FOURTH IDEA: DEEP ACTIVE LEARNINGUSING BARLOWTWINS 57

7.1 Introduction . 58

7.2 Related Work . 60

7.2.1 Active Learning . 60

7.2.2 Self-Supervised Learning . 64

7.3 Methodology . 66

7.3.1 Problem Definition . 67

7.3.2 Active Learning System . 68

7.3.3 Sampling technique . 70

7.4 Experimental Results . 71

7.4.1 Implementation Details . 72

7.5 Conclusions and Future work . 77

8 FIFTH IDEA: EFFICIENT DOCUMENT IMAGE CLASSIFICATION

USING REGION-BASED GRAPH NEURAL NETWORK 79

8.1 Methodology . 81

8.1.1 Deep Convolution Neural Network Learning Approaches . . 82

8.1.2 Language Model based Approaches 82

VIII

8.1.3 Document Segmentation . 82

8.1.4 Efficient GNN for Document Image Classification 83

8.2 Experimental Setup . 84

8.2.1 Datasets . 84

8.2.2 Document Pre-processing . 85

8.2.3 Hyper parameters and infrastructure 85

8.3 Results and Discussions . 86

8.3.1 Comparing classification accuracy 86

8.3.2 Comparing computing resources 87

8.4 Applications and Deployment . 88

8.5 Conclusion: . 90

9 SIXTH IDEA: DOMAIN AGNOSTIC FEW-SHOT LEARNING FORDOC-

UMENT INTELLIGENCE 92

9.1 Related Work . 94

9.1.1 Meta-learning . 94

9.1.2 Canonical Correlation . 95

9.1.3 Domain adaptation . 95

9.2 Methodology . 96

9.2.1 Formal problem definition . 96

9.2.2 Canonical Correlation . 99

9.2.3 DCCDI Model . 102

9.3 Experiments and Results . 104

IX

9.3.1 Datasets . 105

9.3.2 Document Pre-processing . 107

9.3.3 Implementation Details: . 107

9.3.4 Hyper parameters and infrastructure 108

9.3.5 Comparing classification accuracy 109

9.3.6 Ablation Studies . 111

9.4 Conclusion and Future Work . 112

10 DISCUSSION AND CONCLUSION 114

10.1 Conclusion . 114

10.2 Summary of Contributions . 114

10.3 Future Work . 115

X

LIST OF TABLES

6.1 Sampling Time Analysis: Mean time to select a sample from the unlabeled

pool of CIFAR-100. 55

8.1 Median number of nodes per class for the Insurance and Tobacco

data sets. 84

8.2 Classification accuracy on the Insurance, Tobacco-3482 dataset. . . 89

8.3 GPU Memory(training), hardware and time required by different

models on the Insurance dataset. The numbers are reported for

training 4544 images and inference for 1280 Images. 89

9.1 Few Classification accuracy on the INSR, miniRVL dataset when

source domain is miniImagenet. 106

9.2 Few Classification accuracy on the INSR, miniRVL dataset when

source domain is tieredImageNet. 106

9.3 Architecture of CCDI Block . 109

9.4 Effect on Output Vector dimension on Accuracy 110

9.5 Evaluation Augmentation Results on INSR Dataset when meta-trained on

TieredImagenet . 111

XI

9.6 Effect on CCDI block vs text-concatenation 112

XII

LIST OF FIGURES

4.1 Framework overview: . 13

4.2 10X Compression for Split-MNIST . 19

4.3 CL performance comparisons . 23

4.4 CL performance comparisons with average test set accuracy on all observed

tasks at each stage for CIFAR-100. 24

4.5 CL performance comparisons on Atari . 26

4.6 Additional analyses I . 27

4.7 Additional analyses II . 27

4.8 Robustness Analysis . 28

4.9 Reconstructing Analysis I . 28

4.10 Reconstructing Analysis II . 28

5.1 DAN Architecture . 32

5.2 CL Performance . 34

5.3 Model definitions I . 39

5.4 Model definitions II . 41

6.1 AL Performance on MNIST . 49

XIII

6.2 AL Performance on CIFAR-10,CIFAR-100 50

6.3 Robustness Performance on CIFAR-100 . 50

6.4 Robustness Performance on CIFAR-100 Noisy Oracle 54

6.5 Robustness Performance on CIFAR-10 Mixed Oracle 55

7.1 AL Framework Overview . 61

7.2 Robustness of our approach on MNIST . 74

7.3 Robustness of our approach on CIFAR-10 75

7.4 Robustness II of our approach on CIFAR-10 75

7.5 Robustness III of our approach on CIFAR-10 76

7.6 Robustness of our approach on CIFAR-10 Mixed Label 76

8.1 Eff-GNN Framework overview . 84

9.1 The overall architecture of our approach . 97

XIV

1| INTRODUCTION

Lifelong learning a.k.a Continual Learning is an advanced machine learning paradigm in

which a system learns continuously, assembling the knowledge of prior skills in the process.

The system becomes more proficient at acquiring new skill using its accumulated knowledge.

This type of learning is one of the hallmarks of human intelligence. However, in the prevail-

ing machine learning paradigm, each task is learned in isolation: given a dataset for a task,

the system tries to find a machine learning model which performs well on the given dataset.

Isolated learning paradigm has led to deep neural networks achieving the state-of-the-art

performance on a wide variety of individual tasks. Although isolated learning has achieved

much success in a number of applications, it has wide range of struggles while learning mul-

tiple tasks in sequence. When trained on a new task using the isolated network performing

well on prior task, standard neural network forget most of the information related to previous

task by overwriting the old parameters for learning the new task at hand, a phenomenon

often referred to as “catastrophic forgetting”. In comparison, humans can learn effectively

new task without forgetting the old task and we can learn the new task quickly because we

have gained so much knowledge in the past, which allows us to learn the new task with little

data and lesser effort. This enables us to learn more and more continually in a self-motivated

manner. We can also adapt our previous knowledge to solve unfamiliar problems, an ability

1

beyond current machine learning systems.

1.1 Motivation

Many modern machine learning algorithms face catastrophic forgetting because of the

way in which they are trained. Current deep learning models are trained end to end in which

all the network parameters are adjusted for decrease the loss and increasing the performance

on the current task. All the loss is adjusted using some optimization algorithms such as

standard SGD ..etc. While this kind of training is proven to be successful for gaining or

performing well on individual task. But as the same network is trained on new task and

trained in the same way in which all the network parameters are tuned. But this will lead

to degrading the performance on the old task and this degradation is oftern termed as ”

catastrophic forgetting”. For example , if a network with parameters as θ is trained on a

Task A (classification or regression) after which the model parameters reach a new state θ1,

then the Task B is learning using this new parameters and the latter training on TASK B will

modify the weights learned for TASK A as after training on TASK B will change the param-

eters to new state from θ1 to θ2 , thus likely reducing the network’s performance on this task.

Although deep neural networks (DNNs) demonstrated state of the art (SOTA) accuracy

on several supervised learning tasks such as as classification (He et al., 2016; Krizhevsky

et al., 2012), object detection (Redmon et al., 2016; Ren et al., 2015), and semantic segmen-

tation. But most of the deep neural networks (DNNs) require large set of labeled data to

achieve this feet. The challenges of labeling huge datasets in real world setting are many:

expensive, limited time available by domain business experts, long labeling time per for

2

large-scale sample such as videos and time-series data, financial constraints, or to minimize

the model’s carbon footprint. These all drawback does inherit the application of deep neural

networks (DNNs) to more research areas and more organization.

In order to overcome the above drawbacks, Active Learning(AL) system try to select to

most informative samples from the pool of unlabeled data points at each stage and send them

for annotation to maximize the accuracy of the model. Active learning uses a fixed budget

at each stage of learning to select and label a subset of a data points from the unlabeled pool

where budget(b) refers to cost associated with annotation by oracle(O). The model will be

trained on the current labeled pool along with the newly annotated data points. At the end

of active learning process model’s performance would be nearly the same accuracy as model

by utilized fraction of data when compared to the model trained on all the data. Active

Learning(AL) also highlights the fact that there exists a non-linear relationship between the

model’s performance and the amount of training data used. There exists most representative

subset of the unlabeled data and selecting those data points to label will provide most of

the information needed to learn to solve a task. In this case, we can achieve nearly the same

performance by selecting that representative subset for annotation (and training on) only

using data points from that representative subset samples, rather than the entire dataset.

1.2 Publications

1. Self-Net: Lifelong Learning via Continual Self-Modeling

3

2. Continual Learning using Deep Artificial Neurons

3. Deep Active learning using Open set recognition

4. Deep Active Learning using BarlowTwins

5. Efficient Document Image Classification Using Region-Based Graph Neural Network

6. Cross Domain Few-Shot Learning for Document Intelligence.

4

2| PROBLEM BACKGROUND

Lifelong learning or Continual Learning is an advanced machine learning paradigm in

which a system learns continuously, assembling the knowledge of prior skills in the process.

The system becomes more proficient at acquiring new skill using its accumulated knowledge.

This type of learning is one of the hallmarks of human intelligence. However, in the pre-

vailing machine learning paradigm, each task is learned in isolation: given a dataset, the

system tries to find a machine learning model which performs well on the given dataset.

Although isolated learning has achieved much success in a number of applications, it re-

quires a large number of training samples to achieve good performance on a given dataset

and is only suitable for well-defined tasks. In comparison, humans can learn effectively with

a few examples because we have gained so much knowledge in the past, which allows us

to learn with little data or effort. This enables us to learn more and more continually in

a self-motivated manner. We can also adapt our previous knowledge to solve unfamiliar

problems, an ability beyond current machine learning systems. While several approaches

have recently emerged, which address this problem indifferent capacities, they are generally

marred by either insufficient scalability or inflexibility. In this paper, we present a scal-

able approach to multi-context continual learning (MCCL) via lifelong skill encoding which

greatly improves training efficiency, storage scalability, and which may offer new insights

5

into knowledge conceptualization. Motivated by the biological process of hippocampus re-

sponsible for consolidating knowledge and compressing experiences for long term storage,

we show that it is highly beneficial to compress entire networks in sequential fashion. We

equate trained networks to learned skills, and to the best of our knowledge, we are the first to

demonstrate the efficacy of using Auto-encoders, and their variants, to encode learned skills

in order to mimic some of the fundamental memory encoding functions of the hippo-campus

and to facilitate efficient continual learning.

6

3| LITERATURE REVIEW

3.1 Continual Learning Scenarios :

Continual learning is a scenario in which sequence of tasks need to learned by neural

network following any of training protocol. But Continual learning can be subdivided into

three scenarios based on availability of task id during the phase of the evaluation or testing

time. Consider a standard neural network provided with stream of sequential tasks T1 to tn

and the tasks are assumed to be clearly separated. During the evaluation time the network is

required to inference the probabilities for the task provided. This scenario makes either the

evaluation at test time difficult or not for the model as if the task identity is also provided for

the network along with the test data it makes easy for the model just to make the prediction,

this case is called s task-incremental learning (Task-IL). The subcase of task identity not

being provided during the evaluation can be subdivided into two cases 1. In which the model

need to self identify the task which is provided and does to inference based on the respective

task based parameters, this case is called class-incremental learning (Class-IL) 2. In which

model doesn’t need to identify the task but just produce the inference results for the task.

This type of condition is called ”domain-incremental learning (Domain-IL)” (Paper is Three

scenarios for continual learning).

The recent works of continual learning can be subdivided into the following methods

7

1. Regularization based methods 2. Replay based methods 3. Growing network param-

eters along with the overall–architectural or parameter isolation methods

8

4| FIRST IDEA: SELF-NET LIFELONG LEARNINGVIA CONTINUAL SELF-

MODELING

4.1 Problem Formulation

Continual learning problem can be subdivided into different set of related problems such

as fixed architecture, no access to prior training data, inference of task id etc. and each

needs to be tackled in different way. As mentioned in the Section 3. One such scenario

which is handled during our current idea is during training, only data from the current task

is available and task id is provided during the inference time. Such that model doesn’t need

to infer the task during the testing time.

The overall continual learning setup for the current idea can be considered as below (1)

System learns one new task at a time, (2) Each task can be solved independently of other

tasks, (3) Each task is provided with task label (i.e., the system knows which task to solve

at any point), and (4) the system has no access to old training data. In particular, our

problem differs from settings in which a single task grows more difficult over time (e.g.,

class-incremental learning (CIL)).

One of the primary goals of the continual learning is to avoid catastrophic forgetting

in which learning a larger of numbers of tasks T0, T1, ..., Tn in a sequential way but in such

a way that after sequential learning average performance on all previous tasks learnt until

9

that time is high. More concretely, each task Ti is specified by a training set, Di = {Xi, Yi},

consisting of ni different {x, y} training pairs. However in our case of continual learning that

the system has access only to the dataDi for the current task only. The system is sequentially

trained on each Di dataset, using either a supervised or reinforcement learning paradigm,

as applicable with no access to previous task data. That is, the system is first exposed to

D1 (and thus must learn T1), then D2, D3, up to Dk, where k is the total number of tasks

encountered during its lifetime. Note that, in this paradigm, datasets are not required to be

disjoint, i.e., any two datasets Di and Dj many contain some common {x, y} pairs.

Critically, the system is trained on each Di only once during its lifetime. The system is

not allowed to store any exemplars from previous tasks or revisit old data when training on

new tasks. We do, however, allow multiple passes over the data when first learning the task,

as is standard in machine learning. We also assume that task labels are known; inferring the

desired task from the input data is important but is outside the scope of this paper.

As noted in Sec. 3, there are two common types of solutions for this CL problem. Reg-

ularization methods estimate a single set of parameters θ∗ for all tasks, while growth-based

approaches learn (and store) a new set of weights θi for each new task. The former uses

constant storage (w.r.t to the number of tasks) but has bad performance, while the latter

achieves good performance but is asymptotically equivalent to storing independent networks.

Below, we detail our proposed approach, which has nearly the same performance as growth-

based methods, but uses significantly less storage.

10

4.2 Methodology

Figure 9.1 provides a high-level overview of our proposed approach. The proposed system

is named as Self-Net as the name suggests the proposed system self models the independent

Task network (TN) for each task and single autoencoder (AE) for all tasks to solve the

problem of catasrophic forgetting in continual learning. At any given time step after solving

the first task the proposed system utilizes a m-dimensional Buffer for storing newly learned

tasks, an O(n) lifelong autoencoder (AE) for storing older tasks (at the end of the lifecycle

of learning tasks only decoder would be sufficient) and single s-dimensional latent vector for

each task. This s-dimensional latent vector for each task is saved, where s << n which means

that the size of the latent vector far smaller than the size of the task network which was

used to solve the current task. Assuming that c and m are constants, our space complexity

is O(n+ ks), where k is the number of learned tasks. In particular, the proposed approach

achieves asymptotic space savings compared to storing kn independent networks if s is sub-

linear w.r.t. n, (i.e., s = ω(n) in asymptotic notation).

One of the main advantage of the proposed approach is that each task network (TN) is

just an independent and standard neural network, which can learn regression, classification,

or reinforcement learning (RL) tasks (or some combination of the three as shown in the

experimental section). For ease of discussion, we will focus on the case where there is a

single TN and the Buffer can hold only one network; this can be easily extended to multiple

networks. The AE is made up of an encoder that compresses an input vector into a lower-

dimensional, latent vector e and a decoder that maps e back to the higher-dimensional

space. Our system can produce high-fidelity recollections of the learned weights, despite this

11

intermediate compression. In our experiments, we used a contractive autoencoder (CAE)

due to its ability to quickly incorporate new values into its latent space.

In CL, we must learn k different tasks sequentially. To learn these tasks independently,

one would need to train and save k networks, with O(n) parameters each, for a total of O(kn)

space. In contrast, we propose using our AE to encode each of these k networks as an s-

dimensional latent vector, with s << n. Thus, our method uses only O(n+ks) space, where

the O(n) term accounts for the TNs and the fixed-size Buffer. Despite this compression,

our experiments show that we can obtain a high-quality approximation of previously learned

weights, even when the number of tasks exceeds the number of parameters in the AE. Below,

we first describe how to encode a single task-network before discussing how to encode multiple

tasks in continual fashion.

4.2.1 Single-network encoding

For a simple explanation encoding of one skill is explained in this setion and can be easily

extended to encoding multiple skills. Let t be a task (e.g., classifying digits) and let f(θ) be

the network used to solve that task in which once flattened then θ is a O(n)-dimensional

vector of parameters of a network trained to solve t. That is, using a task-network with

parameters θ, we can achieve performance p on t (e.g., a classification accuracy of 95%).

After flattening the Now, let θ̂ be the approximate reconstruction of θ by our autoencoder

is training with an objective of reconstructing the O(n)-dimensional vector. Let p̂ be the

performance that we obtain by using these reconstructed weights for task t. Our goal is

to minimize any performance loss w.r.t. the original weights. If the performance of the

12

Figure 4.1: Framework overview: Our proposed system has a set of reusable task-specific net-

works (TN), a Buffer for storing the latest m tasks, and a lifelong, auto-encoder (AE) for long-term

storage. Given new tasks {tk+1, ..., tk+m}, where k is the number of tasks previously encountered,

we first train m task-networks independently to learn {θk+1, ..., θk+m} optimal parameters for these

tasks. These networks are temporarily stored in the Buffer. When the Buffer fills up, we incorporate

the new networks into our long-term representation by retraining the AE on both its approxima-

tions of previously learned networks and the new batch of networks. When an old network is needed

(e.g., when a task is revisited), we reconstruct its weights and load them onto the corresponding

TN (solid arrow). Even when the latent representation ei is asymptotically smaller than θi, the

reconstructed network closely approximates the performance of the original.

reconstructed weights is acceptable, then we can simply store the O(s) latent vector e,

instead of the O(n) original vector θ. If we had access to the test data for t, we could assess

this difference in performance directly and train our AE until we achieved an acceptable

margin ϵ:

p− p̂ ≤ ϵ. (4.1)

For example, for a classification task we could stop training our AE if the drop in accuracy

is less than 1%.

13

In a continual learning setting, though, the above scheme requires storing validation data

for each old task. Instead, we measure a distance between the original and reconstructed

weights and stop training when we achieve a suitably close approximation. Empirically, we

determined that the cosine similarity,

cos (θ, θ̂) =
θ · θ̂
∥θ∥∥θ̂∥

=

∑n
i=1 θiθ̂i√∑n

i=1 θ
2
i

√∑n
i=1 θ̂

2
i

, (4.2)

is an excellent proxy for a network’s performance. Unlike the mean-squared error, this

distance metric is scale-invariant, so it is equally suitable for weights of different scales, which

may be the case for separate networks trained on distinct tasks. As detailed in Section 7.4,

cosine similarity close to 0.99 yielded excellent performance for a wide variety of tasks and

architectures.

4.2.2 Continual encoding

In this section We will now detail now to use our propsed system Self-Net to encode a

sequence of trained networks in a continual fashion by overcoming the catastrophic forget-

ting. Let m be the size of the Buffer, and let k be the number of tasks which have been

previously encountered. As noted above, we train each of these m task-networks using con-

ventional backpropagation, one per task. Now, assume that our AE has already learned to

encode the first k task-networks. We will now show how to encode the most recent batch

of m task-networks corresponding to tasks {tk+1, ..., tk+m} into compressed representations

{ek+1, ..., ek+m} while still remembering all previously trained networks.

Let E be the set of latent vectors for the first k networks. In order to integrate m

14

new networks {θk+1, ..., θk+m} into the latent space, we first recollect all previously trained

networks by feeding each e ∈ E as input to the decoder of the AE. We thus generate a set R

of recollections, or approximations, of the original networks (see Fig. 9.1). We then append

each θi in the Buffer to R and retrain the AE on all k+m networks until it can reconstruct

them, i.e., until the average of their respective cosine similarities is above the predefined

threshold. Algorithm 3 summarizes our CL strategy.

As our experiments show, our compressed representations achieve excellent performance

compared to the original parameters. Since each θ̂ ∈ R is simply a vector of network

parameters, it can easily be loaded back onto a task-network with the correct architecture.

We can thus discard the original networks and store k networks using only O(n+ks) space. In

addition, our framework can encode many different types and sizes of networks in a continual

fashion. In particular, we can encode a network of arbitrary size q using a constant-size AE

(that takes inputs of size n) by splitting the input network into r subvectors1, such that

(n = q/r). As we verify in Section 7.4, we can effectively reconstruct a large network from

its subvectors and still achieve a suitable performance threshold.

As Fig. 4.8 illustrates, we empirically found a strong correlation between a reconstructed

network’s performance and its cosine similarity w.r.t. to the original network. Intuitively,

this implies that vectors of network parameters that have a cosine similarity approaching 1

will exhibit near-identical performance on the underlying task. Thus, the cosine similarity

can be used as a terminating condition during retraining of the AE. In practice, we found a

threshold of .997 to be sufficient for most experiments.

1We pad with zeros whenever q and n are not multiples of each other.

15

4.3 Task network fine-tuning

As an additional optimization, one can improve the speed with which the AE learns

a new task by encouraging the parameters of new task-networks to be are as similar as

possible to previously learned ones. This can be accomplished by fine-tuning all networks

from a common source and penalizing large deviations from this initial configuration with

a regularization term. Note that training new task networks in this manner differs from

standard regularization methods (e.g., EWC) because the weights learned for older tasks

are not modified (and hence their performance does not degrade).

Formally, let θ∗ be the source parameters, ideally optimized for some highly-related task.

Without loss of generality, we can define the loss function of task-network θi for task ti as:

TaskNetLossi = TaskLoss+ λMSE(θ∗, θi) (4.3)

where λ is a regularization coefficient that determines the importance of remaining close to

the source parameters vs. optimizing for the current task. By encouraging the parameters for

all task-networks to remain close to one another, we make it easier for the AE to learn a low-

dimensional representation of the original space. We employ this scheme for the experiments

section with λ = 0.001.

16

4.4 Results

We carried out a range of CL experiments on a variety of datasets, in both supervised and

reinforcement-learning (RL) settings. First, we performed a robustness analysis in order to

empirically establish how precise an approximation of a network must be in order to retain

comparable performance on a task. Then, we analyzed our system’s ability to encode a very

large number of tasks, thus validating that the AE does simply memorize the TNs. We then

evaluated the performance of our approach on the following CL datasets: Permuted MNIST

(Kirkpatrick et al., 2017), Split MNIST (Nguyen et al., 2018), Split CIFAR-10 (Zenke et al.,

2017), Split CIFAR-100 (Zenke et al., 2017), and successive Atari games (Mnih et al., 2013)

(we describe each dataset below). Finally, we also analyzed our system’s performance when

using (2) different sizes of AEs, and (3) different TN architectures.

4.4.1 Robustness analysis

In our initial experiments, we added different levels of i.i.d, zero-mean Gaussian noise

to the weights of a trained network. Our goal was twofold: (1) to verify that approximate

weights can differ from their original values while still retaining good performance and (2)

to establish a threshold at which to stop training our AE. Since we assume no access to data

from previously learned tasks, we need a way to estimate the performance of a reconstructed

network without testing on a validation set.

Figure 4.8 shows performance as a function of deviations from the original parameters as

measured by cosine similarity, for three datasets (described below). Under this metric, there

is a clear correlation between the amount of parameter dissimilarity and the probability of a

17

decrease in performance. The red line indicates a cosine similarity of 0.997. Weights above

this value had nearly identical performance to the original values. Thus, unless otherwise

noted, we used this threshold as a terminating condition in our subsequent experiments.

4.4.2 Performance and storage scalability

In the next set of experiments, we verified that our method retains excellent performance

even when the number of TN parameters exceeds the number of parameters in the AE.

In other words, here we confirmed that our AE is compressing previously learned weights,

not simply memorizing them. More generally, there is a trade-off in CL between storage

and performance. Using different networks for k tasks yields optimal performance but uses

O(kn) space, while regularized methods such as Online EWC (Huszár, 2018) only require

O(n) space but suffer a steep drop in performance as the number of tasks grows. For any

method, we can quantify performance as a compression factor, i.e., the number of additional

parameters it stores per task; in our case, our compression factor is k/s because we store an

s-dimensional vector per task.

Here, our experimental paradigm was as described in Sec. 4.2.2: we first trained the TN

on m tasks independently, storing each set of learned weights in the Buffer. Once the Buffer

became full, we trained the AE to encode these weights into its latent space, only storing the

latent vectors after training. We then continued to train the TN on new batches of m tasks

(saving the new weights to the Buffer). Every time the Buffer became full, we trained the AE

on all tasks, using the stored latent vectors and the new m weights. After the initial batch,

we fine-tuned all networks from the mean of the initial set of m networks and penalized

deviations from this source vector (using λ = 0.001), as described in Section 7.3.

18

Figure 4.2: 10X Compression for Split-MNIST: Orange lines denote the average accuracy

achieved by individual networks, one per task. Green lines denote the average accuracy when

training the AE to encode all networks as a single batch. Blue lines indicate the average accuracy

obtained by Self-Net at each CL Stage. Top: 50 tasks with latent vectors of size 5 and a Buffer

of size 5. Middle: 100 tasks with latent vectors of size 10 and Buffer of size 10. The x-axis (top

and middle) denotes the compression factor achieved at each learning stage. Bottom: the training

epochs required by the 5-dimensional AE to incorporate new networks decreases rapidly over time.

19

For these experiments, we used the Split MNIST dataset (Nguyen et al., 2018), which

consists of different binary subsets of the MNIST dataset (LeCun et al., 1998), drawn ran-

domly. In other words, tasks were defined by tuples comprised of the positive and negative

digit class(es), e.g., ([pos={1}, neg={6,7,8,9}], [pos={6}, neg={1,2,3,4}], etc.). Here, the

training and test sets consisted of approximately 40% positive examples and 60% negative

examples. For this experiment, we trained a deep convolutional task network with 2 con-

volution layers (kernels of size 5x5 and stride 1x1), 1 hidden layer (320x50), and 1 output

layer (50x10)—21,840 parameters in total. Our task network used ReLU activation units.

Our AE, on the other hand, had one fully connected hidden layer with either 5 or 10 units.

We used a Buffer of the same size as the latent vector, i.e., either 5 or 10. These values

were chosen so that each new batch of networks yielded an integer compression factor, e.g.,

encoding 15 networks with a latent vector of size 5 gives 3X compression (k/s = 3). We

used decreasing thresholds to stop training our AE: 0.9996 for the initial batch, 0.987 for

the second batch, and 0.986 for subsequent batches.

The top two plots of Fig. 4.2 show the mean performance for up to 50 and 100 Split-

MNIST tasks, given latent vectors of size 5 and 10, resp. All figures show the average

accuracy across all tasks learned up to that point. For comparison, we also plotted the

original networks’ performance and the performance of the reconstructions when the AE

learned all the tasks in a single batch (green and orange lines, resp.). The line with dots

represents the CL system; each dot indicates the point where the AE had to encode a

new set of m networks. For 10X compression, the Self-Net with a latent vector of size 5

retained ∼95.7% average performance across 50 Split-MNIST tasks, while the Self-Net with

10-dimensional latent vectors retained ∼95.2% across 100 tasks. This represents a relative

20

change of only ∼3.3% compared to the original performance of ∼99%. In other words, our

approach is able to compress 21,840 parameters into 5 or 10 values with little performance

loss, even when trained in a continual fashion. In contrast, existing methods dropped to

∼50% performance after learning only 10 tasks on this dataset (see Fig. 4.3 below). Finally,

we note that by initializing each new network from the mean of the initial batch, our AE

was able to incorporate subsequent networks with very little additional training (see stages

4-10 in bottom image of Fig. 4.2).

4.4.3 Permuted MNIST

In the next set of experiments, we compared our approach to state-of-the-art methods

across multiple datasets. First, we trained convolutional feed-forward neural networks with

21,840 parameters on successive tasks, each defined by distinct permutations of the MNIST

dataset (LeCun et al., 1998), for 10-digit classification. We used networks with 2 convolu-

tion layers (kernels of size 5x5, and stride 1x1), 1 hidden layer (320x50), and 1 output layer

(50x10). Our AE had three, fully connected layers with 21,840, 2000, and 20 parameters,

resp. Thus, our latent vectors were of size 20. For this experiment, we used a Buffer of size

1. Each task network was encoded by our AE in sequential fashion, and the accuracies of

all reconstructed networks were examined at the end of each learning stage (i.e., after learn-

ing a new task). Figure 4.3 (top) shows the mean performance after each stage for all tasks

learned up to that point. Our technique almost perfectly matched the performances achieved

by independently trained networks, and it dramatically outperformed other state-of-the-art

approaches including EWC (Kirkpatrick et al., 2017), Online EWC (the correction to EWC

proposed in (Huszár, 2018)), and Progress & Compress (Schwarz et al., 2018). As a base-

21

line, we also show the results for SGD (no regularization), L2-based regularization in which

we compare new weights to all the previous weights, and Online L2, which only measures

deviations from the weights learned in the previous iteration. Our technique remember old

tasks without inhibiting new learning.

4.4.4 Split MNIST

We the compared our method to the same set of prior approaches on the Split MNIST

(described above). Our task-networks, CAE, and Buffer size were the same as for Permuted

MNIST (except that the outputs of the task-networks were binary, instead of 10 classes). In

this domain, too, our technique dramatically outperformed competing approaches, as seen

in Figure 4.3 (middle).

4.4.5 Split CIFAR-10

We then verified that our proposed approach could reconstruct larger, more sophisticated

networks. Similar to the Split MNIST experiments above, we divided the CIFAR-10 dataset

(Krizhevsky, 2009a) into multiple training and test sets, yielding 10 binary classification

tasks (one per class). We then trained a task-specific network on each class. Here, we used

TNs having an architecture which consisted of 2 convolutional layers, followed by 3 fully

connected hidden layers, and a final layer having 2 output units. In all, these task networks

consisted of more than 60K parameters. Again, for this experiment we used a Buffer of size

1. Our AE had three, fully connected layers with 20442, 1000, and 50 parameters, resp. As

described in Sec. 7.3, we split the 60K networks into three subvectors to encode them with

our autoencoder; by splitting a larger input vector into smaller subvectors, we can encode

22

Figure 4.3: CL performance comparisons with average test set accuracy on all observed tasks at

each stage for (top) Permuted MNIST, (middle) Split MNIST, and (bottom) Split CIFAR-10.

23

Figure 4.4: CL performance comparisons with average test set accuracy on all observed tasks at

each stage for CIFAR-100.

networks of arbitrary sizes. The individual task-networks achieved accuracies ranging from

78% to 84%, and a mean accuracy of approximate 81%. Importantly, we encoded these larger

networks using almost the same AE architecture as the one used in the MNIST experiments.

As seen in Figure 4.3 (bottom), the accuracies of the reconstructed CIFAR networks also

nearly matched the performances of their original counterparts, while also outperforming all

other techniques.

4.4.6 Split CIFAR-100

We applied a similar approach for the CIFAR-100 dataset (Krizhevsky, 2009a). That

is, we split the dataset into 10 distinct batches comprised of 10 classes of images each. We

used the same task-network architecture and Buffer size as in our CIFAR-10 experiments,

modified slightly to accommodate a 10-class classification objective. The trained networks

achieved accuracies ranging from 46% to 49%. We then encoded these networks using the

same AE architecture described in the previous experiments, again accounting for the input

24

size discrepancy by splitting the task-networks into smaller subvectors. As seen in Figure

4.4, our technique almost perfectly matched the performances achieved by independently

trained networks.

4.4.7 Incremental Atari

To evaluate the CL performance of Self-Net in the challenging context of reinforcement

learning, we used the code available at (Greydanus, 2017) to implement a modified Async

Advantage Actor-Critic (A3C) framework; this architecture, originally introduced in (Mnih

et al., 2016), can learn successive Atari games while retaining good performance across all

games. The model we used had 4 convolutional layers (kernals of size 3x3, and strides of

size 2x2), a GRU layer (800x256), and two ouput layers: an Actor (256xNum Actions),

and Critic (256x1), resulting in a complex model architecture and over 800K parameters.

Critically, this entire model can be flattened and encoded by the single AE in our Self-Net

framework having three, fully connected layers with 76863, 2000, and 200 parameters, resp.

For these experiments we also used a Buffer of size 1.

Similar to previous experiments, we trained our system on successive tasks, specifically

the following Atari games: Boxing, Star Gunner, Kangaroo, Pong, and Space Invaders.

Figure 4.5 shows the near-perfect retention of performance on each of the 5 games over the

lifetime of the system. This was accomplished by training on each game only once, never

revisiting the game for training purposes. The dashed, vertical lines demarcate the different

stages of continual learning. That is, each stage indicates that a new network was trained

for a new game, over 40M frames. Afterwards, the mean (dashed, horizontal black lines)

and standard-deviation (solid, horizontal black lines) of the network’s performance were

25

Figure 4.5: CL on five Atari games with Self-Net: To evaluate the reconstruction score at

each stage, we ran the reconstructed networks for 80 full game episodes. The cumulative mean

score is nearly identical to the original TN at each stage.

computed by allowing it to play the game, unrestricted, for 80 episodes. After each stage,

the performances of all reconstructed networks were examined by re-playing each game with

the appropriate reconstructed network. As Figure 4.5 shows, the cumulative means and SD’s

of the reconstructed networks closely mimic those achieved by their original counterparts.

4.4.8 Split networks and multiple architectures

Finally, we verified that (1) a smaller AE can encode multiple network splits in substan-

tially less time than a larger one can learn the entire network and (2) that the same AE

can be used to encode trained networks of different sizes and architectures. Figure 4.7 (left)

shows the respective training rates of an AE with 20,000 input units (blue line)—trained to

reconstruct 3 sub-vectors of length 20,000—compared to that of a larger one, with 61,000

26

Figure 4.6: Additional analyses: Left: the AE training efficiency is improved when large net-

works are split into smaller subvectors. Right: a single AE can encode networks of different

architectures and sizes.

Figure 4.7: Additional analyses: Left: the AE training efficiency is improved when large net-

works are split into smaller subvectors. Right: a single AE can encode networks of different

architectures and sizes.

input units (yellow line), trained on a single 60K CIFAR-10 network. Clearly, using more

inputs for a smaller AE enables us to more quickly encode larger networks. Finally, Fig-

ure 4.7 (right) shows that the same AE can simultaneously reconstruct 5 MNIST networks

and 1 CIFAR network so that all networks approach their original accuracies.

27

Figure 4.8: Robustness analysis of network performance as a function of cosine simi-

larity: Each dot represents the accuracy of a reconstructed network and the dotted lines are the

baseline performances of the original networks. The above values for three datasets (Permuted

MNIST (in pink), MNIST (in cyan), and CIFAR-10 (in blue), show that cosine similarity values

above 0.997 guarantee nearly optimal performance for these datasets.

Figure 4.9: Reconstructing Multiple Net-

works For The Same Cifar-10 Task

Figure 4.10: Reconstructing Multiple Net-

works For The Same MNIST Task

28

4.5 Conclusions and future work

In this paper, we introduced a scalable approach for multi-context continual learning

that decouples how to learn a set of parameters from how to store them for future use.

Our proposed framework uses state-of-the-art autoencoders to facilitate lifelong learning via

continual self-modeling. Our empirical results confirm that our method can efficiently acquire

and retain large numbers of tasks in continual fashion. In future work, we plan to further

improve our autoencoder’s capacity and explore how to use the latent space to extrapolate to

new tasks using little or no training data. We also intend to compress the latent space even

further (e.g., using only log (k) latent vectors for k tasks). Promising approaches include

clustering the latent vectors into sets of related tasks or using sparse latent representations.

Finally, we will also investigate how to infer the current task automatically.

29

5| SECOND IDEA: CONTINUAL LEARNING USING DEEP ARTIFICIAL

NEURONS

5.1 Problem Formulation

In this work, we propose to meta-learn a single parameter vector φ, shared by all DANs

in the model, which can mitigate catastrophic forgetting in a network that learns during

deployment by updating its Synapses with standard backpropagation. We call this parameter

vector a neuronal phenotype, since it defines the behavior of each DAN in the network, and it

is kept fixed during intra-lifetime deployment. Specifically, we consider Continual Learning

Trajectories (e.g. [T0, T1, ..., Tk]) which are comprised of sequences of tasks T . These task

sequences are drawn uniformly from some underlying task distribution p(T). We add a

single-context stipulation stating that within a sequence of tasks, each data sample x ∈ Ti is

mapped to one and only one target value y, and each sample x belongs to one and only one

task Ti. In our experiments, we assume that tasks are disjoint, and therefore our model must

learn one task before moving on to the next, though we anticipate that we can relax this

assumption to handle overlapping or evolving task distributions in future work. The model is

therefore allowed to perform a fixed number of updates on data from each task, where tasks

are encountered one after the other. We seek a model which retains good performance over

the whole task trajectory, without being allowed to revisit data from previously encountered

30

tasks in the sequence.

We formulated an experiment similar to the one proposed in Flennerhag et al. (2020),

and originally in Finn et al. (2017a). More specifically, we consider the problem of sequential

non-linear regression, wherein a model must try to fit to a complete function, when exposed

to data from only part of that function in distinct time-intervals. In other words, it must

learn the complete function in a piece-wise, or incremental manner, since it cannot revisit

data to which it was exposed during previous intervals. As in Flennerhag et al. (2020), we

split the input domain [−5, 5] ⊂ R into 5 consecutive sub-intervals, which correspond to

5 distinct tasks. Task 1 therefore corresponds to the sub-function falling within [−5,−3);

Task 2 corresponds to the sub-function within [−3,−1), and so on. The model is exposed

to Tasks 1 through 5 in sequential manner. During each sub-task, the network is exposed

to 100 data points, drawn uniformly from the current task window. That is, during Task 1

the model performs 100 updates on data sampled from [−5,−3). In our experiments, we

perform 1 update on every sample, equating to a batch size of 1. Sub-tasks are thus defined

by their respective windows in the input domain.

We slightly modify the target functions used in Flennerhag et al. (2020). We define

a task sequence by a target function that is a mixture of two sine functions with varying

amplitudes, phases, and x-offsets. At the beginning of each meta-epoch, we randomly sample

two amplitudes α(0,1) ∈ (0,2), phases ρ(0,1) ∈ (0, π/3), and x-offsets ϕ(0,1) ∈ [−5, 5]. Summing

two such sine functions yields a target function of the form:

y = α0sin((ρ0x) + ϕ0) + α1sin((ρ1x) + ϕ1) (5.1)

31

Figure 5.1: A Network of Deep Artificial Neurons (DANs). DANs are connected to one another by

parameters θ, which can be regarded as vectorized synapses, or VECs. All DANs share parameters

φ, which we dub a neuronal phenotype. The strength of the connection existing between any 2

connected neurons is therefore a function of the state of the n-dimensional synaptic vector.

Afterwards, we discard any target functions from the training distribution meeting the

following criteria: ymax > .8; ymin > −.8; ymax − ymin < .4. This yields a final input domain

of [−5, 5] and output range of [−.8, .8].

5.2 Model Architecture

Deep Artificial Neurons, or DANs, are themselves realized as multi-layer neural networks.

For the purposes of demonstration, consider a DAN instantiated as a 2-layer neural network,

with a single layer of hidden nodes, and a single output node (i.e. the output activation of

the neuron). In practice, we apply a tanh non-linear activation to the output of the hidden

layer, as well as to the output layer of each DAN. See the bottom of Fig.5.1 for an illustration.

Let n channels denote both (1) the size of the input vector to this network, and (2) as we will

32

see, the number of connections between pairs of DANs. Conceptually, we can distribute this

single DAN amongst all nodes of a traditional neural network. Fig.5.1 offers an illustration

of how to convert a standard ANN into a network of DANs with n channels=3.

More generally, consider the topology of a standard, fully-connected, feed-forward neural

network with l layers of nodes, and let nl denote the number of nodes in layer l. Let l0 be

a special case, denoting the layer of input nodes, which are not DANs. We can convert this

topology to a network of DANs in the following way. For each layer of nodes, up to but

not including the layer of output nodes, we instantiate a layer of Synapses as a standard,

fully-connected weight-matrix θl with dimensions nl×(nl+1×n channels). Synapses connect

layers of DANs to one another. Feed-forward propagation of a signal along these connections

is therefore facilitated in the standard way, by computing the dot product of the activation

vector σl out from the previous layer and this layer of Synapses θl. This yields a large input

vector σ(l+1) in, to be processed by the DANs in the next layer:

σ(l+1) in = σl out · θl =
nl+1∑
i

θjiσ
j
l out + bi, (5.2)

where j denotes the index of nodes in layer l, and i is the index of nodes in layer l + 1.

Note that in practice we do not apply a non-linear activation function to this vector. Rather,

n slices of the raw dot product σ(l+1) in are fed as input to the n DANs in the next layer.

That is, since all DANs share parameters φ, the same DAN model processes each slice of

σ(l+1) in. Said another way, the input vector to the layer of DANs is sliced into nl+1 equally

sized sub-vectors, where n is the number of DANs in layer l + 1. The output vector of a

layer of DANs is obtained by passing each of these separate slices through the DAN, and

33

concatenating the resulting activations. This can be done very efficiently by simply reshaping

the inbound synaptic activations σ(l+1) in and using our single DAN phenotype to process all

slices as a batch. This results results in σ(l+1) out which constitute the output activations of

the DANs in layer l + 1.

Figure 5.2: Continual Learning during Deployment on 4 non-linear functions, each divided into 5

sub-tasks, using a meta-learned neuronal phenotype which is held fixed. Synapses are updated with

standard Backpropagation. In each of the 4 plots, each color in the plot depicts the predictions of

the model over the whole function after performing 100 updates on data from the current sub-task

only. In other words, the darkest plot represents the model’s predictions over the whole function

after training only on task 1 [−5,−3) . During the next stage of learning, the model performs 100

updates on data from task 2 only [−3,−1). The lightest plot (cyan) depicts the model’s predictions

after the last round of learning: 100 updates on data from task 5 [3, 5]. As shown, the model retains

a good fit over the whole function even when it learns these sub-tasks in a sequential manner.

In practice, we also use skip connections, inspired by Deep Residual Networks He et al.

(2015) and Flennerhag et al. (2020), in order to facilitate efficient learning. Skip connections

are realized as additional layers of Synapses θskip(j,k), with dimensions nj×(nk×n channels),

which bypass layers of DANs by providing a direct pathway from nodes in layer j to layer k,

where k = j+2. This allows some information to be sent directly downstream, without being

subjected to processing by the intermediate layer of DANs. When using skip conenctions,

34

the input vector to a layer of DANs in layer k is obtained by summing the vector computed

in Equation 5.2 with the vector signal traveling along θskip(j,k):

σ′
k in = σk in + (σj out · θskip(j,k)) (5.3)

The result is a complete model, comprised of 2 distinct sets of parameters: Synapses,

parameterized by θ, and DANs parameterized by φ. As we will show in coming sections,

Synapses are intended to be fully plastic at all times. The parameters of our DANs, our

so-called neuronal phenotype, are meta-learned and then held fixed during deployment.

As in Flennerhag et al. (2020), we leverage the benefits of a unique set of parameters φ

which can be shown to warp the gradients applied to another set of parameters θ in order to

prevent catastrophic forgetting. In contrast to WGD Flennerhag et al. (2020), however, we

show that a single, small network, parameterized by φ, is sufficient to facilitate our meta-

objective, rather than unique, separate layers of warp parameters. Additionally, we feel that

our approach offers an additional layer of biological plausibility, and might help to explain

some of the behavior and responsibilities of real neurons.

5.3 Methodology

Meta-Learning is generally concerned with optimizing some meta-objective over a distri-

bution of tasks in order to attain some innate proficiency at comparable tasks likely to be

encountered during a separate, deployment phase. To accomplish this, most meta-learning

algorithms employ an inner-loop/out-loop framework, wherein optimization over several spe-

cific tasks occurs in the inner-loop, and proficiency at the meta-objective is evaluated and

35

optimized in the outer-loop. Inspired by Warped Gradient Descent (WGD) Flennerhag et al.

(2020), we adopt such an approach, and wish to meta-learn parameters which facilitate con-

tinual learning during deployment.

During meta-training, we randomly sample target functions of the form defined in Equa-

tion 5.1. These target functions are split into 5 sub-tasks, as explained in Section 5.1. We

deploy our model on each target function, and sub-tasks are encountered sequentially. Op-

timization over a single sub-task is done by performing backpropagation on both sets of

parameters, θ and φ, using the loss over the current sub-task. This is known as an inner-

loop epoch. At the end of each inner-loop epoch, we quantify the Meta-Loss over subtasks

[0,...,cur], where cur is the current sub-task. Meta-Optimization is done by performing back-

propagation on parameters φ only , using the Meta-Loss. Repetition of this process over a

sequence of 5 sub-tasks, given the current target function, is known as a meta, or outer-loop

epoch. At the end of each outer-loop epoch, we sample a new target function, and repeat

the process.

More formally, let the Historical Learning Trajectory Ht represent the dataset [x0, x1,

. . . , xt] comprised of all data encountered by the system, prior to and including timestep

t. Note that Ht therefore contains data from one or more sub-tasks T . We have Synapses,

parameterized by θ, and DANs, parameterized by φ, which together define the complete

Model.

Note that since DANs are distributed throughout the network, the gradients for Synapses

∇θ depend on parameters φ, and that the meta-gradient ∇φ depends on parameters θ. This

is true, since each set of parameters θ and φ are factors of both gradients.

We can define a Model State at timestep t as θtφt. Given a new sample at timestep

36

t+ 1, this Model State will result in a measurable Task Loss LT , for which we can compute

a gradient ∇θtφtLt+1
T . Note that we can factor this gradient into its distinct components:

∇θtφtLt+1
T = ∇θt∇φtLt+1

T (5.4)

This is desirable since we may want to assign separate learning rates to each set of

parameters. For instance, let α denote the learning rate for parameters θ, and let γ denote

the learning rate for parameters φ. Since we update both θ and φ in the inner loop, when

learning individual sub-tasks, performing an inner-loop update on data from the current task

at timestep t+ 1, like so:

θt+1φt+1 ←− θtφt − α∇θtγ∇φtLt+1
T (5.5)

...results in the new Model State θt+1φt+1. Note that this update, θt+1φt+1 ←− θtφt, may

have caused forgetting over Ht+1, which now includes the latest data sample xt+1.

We can quantify the Memory Loss overHt+1, defined as LHt+1

M . This constitutes the meta-

loss, which we wish to minimize in order to facilitate our meta-objective during inner-loop

deployment.

Specifically, we seek an optimal neuronal phenotype, defined by a single parameter vector

φ∗, shared by all DANs, which would have resulted in the least amount of forgetting over

Ht+1. Said another way, had the original state of the model been θtφ
∗
t , instead of θtφt, then

the inner loop update would have been:

θ∗t+1φ
∗
t+1 ←− θtφ

∗
t − α∇θtγ∇φ∗

t
Lt+1

T (5.6)

37

This would have resulted in an alternative Model State θ∗t+1φ
∗
t+1, ideally resulting in less

forgetting than that originally induced by θtφt.

Therefore, we calculate the Memory Loss across Ht+1, using the current model state

θt+1φt+1, and compute the gradient w.r.t. this quantity. By taking a step towards φ∗
t , we

update the phenotype φ, and in the process attempt to minimize the meta-loss. We can do

this by factoring the gradient and isolating the update to φ only:

φ′
t+1 = φt+1 − γ∇φt+1L

Ht+1

M s.t. φ′
t+1 ≈ φ∗

t (5.7)

Algorithm 1 Meta-Learning a Neuronal Phenotype for Continual Learning

Require: p(T): distribution over target functions
Require: α, γ: learning rate hyperparameters
Require: inner steps: number of inner loop steps
1: θ ← θ0, φ← φ0: randomly initialize the model
2: while not done do
3:

Sample a Target Function T ∼ p(T) for sub-task st in T do

t in inner steps
4: Perform an update: θt+1φt+1 ←− θtφt − α∇θtγ∇φtLt

st ▷ Equation 5.5
5:

6: Ht+1 ← data from sub tasks[0,...,st] ⊂ T
7: Compute Memory-Loss over Ht+1

8: Update Phenotype: φ′
t+1 = φt+1 − γ∇φt+1L

Ht+1

M ▷ Equation 5.7
9:

10: θ ← θ0: reset VECs to initialization
11:

The full meta-training procedure is outlined in Algorithm 1.

After meta-training is completed, the model is deployed. DAN parameters φ are held

fixed , and the model is obligated to learn continually, without forgetting, using standard

backpropagation. That is, θ update normally, while DANs remain fixed. We offer empirical

validation of our approach in the next section.

38

5.4 Experiments and Results

For all experiments, we used a network topology of 1 input node, 2 hidden layers of 40

nodes each, and a single output node. Recall that, apart from the single node in the input

layer, each node represents a DAN, and the topology is therefore converted to a network

of DANs. To this topology, we added 2 skip layers, as described in Section 5.2: from layer

0 to layer 2, and also from layer 1 to layer 3. The DAN itself is a 3 layer neural network

with n channels input nodes, followed by a hidden layer with 15 nodes, another hidden layer

with 8 nodes, and a single output node, parameterized by φ. We applied tanh activation’s

to the hidden and output layers of the DAN. For all experiments except that depicted in

Fig.5.1, we set n channels = 40. For Meta-Training, we set the learning rate for Synaptic

parameters θ = .001, and the learning rate for DAN parameters φ = .0001.

(a) (b)

Figure 5.3: Model definitions: net0 uses a single, shared phenotype (cell-type); net1 uses one

phenotype for each layer; net2 does not enforce parameter sharing among any DANs. (left) Mini-

mization of the Memory-Loss during Meta-Training. (right) Avg Memory Loss during Deployment

is nearly equal for all models, and nearly identical to the loss achieved near the end of meta-training,

≈ .03 (mean squared error) across the full task-trajectory after learning 5 sub-tasks in sequence.

Fig.5.2 shows the ability of a meta-trained model to learn continually during deploy-

ment ; when it encounters tasks in a sequential manner, and is obligated to retain a good

39

fit over previous sub-tasks, even though it is exposed to data from each task only once.

During this experiment, DAN parameters φ were held fixed, and the network learns by using

standard backpropagation to update Synapses θ.

Fig.5.4 depicts minimization of the Memory-Loss, our meta-objective, during meta-

training. We found that the model converges relatively quickly, requiring only 200-300

meta-epochs to find a suitable phenotype, though this is likely due to task simplicity. Addi-

tionally, as the Figure shows, we sought to isolate the effect of using a single set of parameters

for DANs in the whole network. To do this, we compared 3 models: one which used a single

parameter vector for all DANs (net0: a single phenotype throughout the network), another

which used a separate parameter vector for each layer of DANs (net1: phenotypes unique to

each layer), and a third which did not enforce any parameter sharing amongst DANs (net2;

81 unique DANs in the network).

In above fig we compare the abilities of various models during deployment, when they are

confronted with tasks in a sequential manner, and obligated to learn continually. Specifically,

we sought to verify whether the meta-learning procedure was indeed endowing the DANs

with an innate ability to assist in learning without forgetting. These plots confirm that

hypothesis, showing that a meta-learned phenotype outperforms random parameter vectors,

regardless of whether they are fully plastic during deployment, or fixed.

Finally, we investigated the effect of the size of n channels on the ability of the model

to minimize Memory-Loss during meta-training. Specifically, we asked, is there indeed a

benefit to vectorizing the connections between pairs of DANs, and in the process increasing

the size of the input to each DAN Above figure shows that the answer to that question was

also yes. The plot shows that as the number of (1) connections between pairs of neurons

40

and (2) the size of the input to each DAN grows, the speed, or efficiency, with which the

Memory-Loss is minimized is increased. In other words, vectorized connections accelerated

optimization of our meta-objective.

(a) (b)

Figure 5.4: a) Model definitions: net0 uses a single, meta-learned phenotype, shared by all DANs,

fixed during deployment; net1 uses the same meta-learned single phenotype as net0, but it is fully

plastic during deployment (updates to the φ are allowed); net2 uses a random, shared phenotype,

fixed during deployment; net3 uses a random, shared phenotype, fully plastic during deployment;

net4 uses random, but completely unique DANs (no parameter sharing), fixed during deployment;

net5 uses random, but unique DANs, fully plastic during deployment. Once before learning begins,

and after training on each successive task, the Total-Loss over the complete function is calculated.

Clearly, the meta-learned phenotype outperforms random DANs. b)Total amount of Memory-

Loss experienced by different models during deployment. Clearly, the meta-learned phenotype

outperforms random DANs

5.5 Conclusions and Future Work

In this work, we offered a framework for thinking about artificial neurons as much more

powerful functions, realized as deep artificial networks, which can be embedded inside larger

plastic networks. We showed that it is possible to meta-learn a single parameter vector for

such a model that, when held fixed, can facilitate a meta-objective during deployment. In the

process, we hope to inspire a deeper understanding about the responsibilities of neurons in

both artificial neural networks, as well as real brains. In future work, we plan to investigate

41

the potential of DANs in real-world vision and reinforcement-learning settings, as well as the

possibility of optimizing several meta-objectives at once.

42

6| THIRD IDEA: DEEP ACTIVE LEARNING VIA OPEN-SET RECOGNI-

TION

6.1 Introduction

In many applications, data is easy to acquire but expensive and time-consuming to label

prominent examples include medical imaging and NLP. This disparity has only grown in

recent years as our ability to collect data improves. Under these constraints, it makes

sense to select only the most informative instances from the unlabeled pool and request

an oracle (e.g., a human expert) to provide labels for those samples. The goal of active

learning is to infer the informativeness of unlabeled samples so as to minimize the number

of requests to the oracle. Here, we formulate active learning as an open-set recognition

problem. In this paradigm, only some of the inputs belong to known classes; the classifier

must identify the rest as unknown. More specifically, we leverage variational neural networks

(VNNs), which produce high-confidence (i.e., low-entropy) predictions only for inputs that

closely resemble the training data. We use the inverse of this confidence measure to select

the samples that the oracle should label. Intuitively, unlabeled samples that the VNN

is uncertain about are more informative for future training. We carried out an extensive

evaluation of our novel, probabilistic formulation of active learning, achieving state-of the-art

results on MNIST, CIFAR-10, and CIFAR-100. Additionally, unlike current active learning

43

methods, our algorithm can learn tasks without the need for task labels. As our experiments

show, when the unlabeled pool consists of a mixture of samples from multiple datasets, our

approach can automatically distinguish between samples from seen vs. unseen tasks.

6.2 Methodology

As noted above, our active learning approach iteratively selects samples from an unlabeled

pool based on the confidence level of its OSR classifier. Below, we first formalize the active

learning paradigm we are tackling, then detail our proposed system. In particular, we provide

an overview of VNNs and explain how we use their outputs to select new samples to label.

6.2.1 Formal problem definition

Formally, an active learning problem is denoted as P = (C,Dtrain, Deval), where C indi-

cates the number of classes, Dtrain is the training set, and Deval is the evaluation set, s.t.

Dtrain ∩Deval = ∅.

Let Dtrain = {(xi, yi)}Ni=1 be a dataset consisting of N i.i.d. data points where only

m of them are labeled (m<<N). Each sample xi ∈ Rd is a d-dimensional feature vector,

and yi ∈ {1, 2, . . . , C} represents the target label. At the start, Dtrain is partitioned into

two disjoint subsets: a labeled set L which consists of the m labeled data points, and an

unlabeled set U which consists of the remaining N − m data points with unknown target

labels. We will update both L and U after each iteration of our algorithm. We denote the

state of a subset at a given timestep as Lt and U t, respectively, for t ∈ {0, 1, . . .}.

In active learning, we first train a classifier f , with parameters θ, on L0. Afterwards we

select b data points from U0 using our OSR criterion (see Sec. 6.2.2). These b data points

44

are then sent to the oracle for annotation. The annotated samples are removed from the

unlabeled pool and added to the labeled pool, along with their newly acquired target labels.

The updated labeled and unlabeled data pools become L1, of size m+b, and U1, respectively.

Thus, the labeled pool grows in size as training progresses. We continue this process until

the size of the labeled pool reaches a predefined limit (40% of Dtrain in our experiments).

Importantly, unlike other formulations of AL, we allow for the unlabeled pool U to contain

training data from multiple datasets. As we show in our experiments, our OSR-based AL

method can automatically ignore samples that do not belong to the target classes.

Algorithm 2 Active Learning

Input: Unlabeled pool U0, labeled pool L0 for t ∈ {0, 1, . . .} where size of L0 = m0.
Require: Active Learning Model, Optimizer, Sampling Strategy
Require: initialize b (budget), θ (Model parameters), Epochs
repeat

Train Active Learning Model on Labeled Pool (Lt) using selected optimizer.
Give trained model fθ on Labeled Pool (Lt), Sampling Strategy (6.2.3 or 6.2.4) selects
the uncertain data points according to budget size b.
Send the selected data points to Oracle for annotation.
Add the annotated data points to the Labeled Pool (Lt)

until stopping criterion (size of Labeled Pool (Lt) equals 40% of Dtrain);

6.2.2 Active learning system

Algorithm 3 summarizes our AL approach, which has two main components: a variational

neural network (VNN) Mundt et al. (2019b) that serves as our classifier and an OSR selection

mechanism based on the loss function of the VNN. We discuss each component below.

Variational Neural Networks (VNNs)

Variational neural networks (VNNs) Mundt et al. (2019b) are a supervised variant of

β-variational autoencoders (β-VAE) Higgins et al. (2017). The latter is itself a variant of

45

VAEs Doersch (2016) but with a regularized cost function. That is, the cost function for

a β-VAE consists of two terms: the reconstruction error, as with a regular VAE, and an

entanglement penalty on the latent vector. This penalty forces the dimensions of the latent

space to be as uncorrelated as possible, making them easier to interpret.

A VNN combines the encoder-decoder architecture of a β-VAE with a probabilistic linear

classifier (see Fig. 9.1 for a visual representation). As such, its loss function includes a clas-

sification error, i.e., a supervised signal, in addition to the reconstruction and entanglement

terms:

L(θ, ϕ, ξ) = Eqθ(z|x) [log pϕ(x|z) + log pξ(y|z)]

− βKL (qθ(z|x)∥p(z))
(6.1)

As detailed in Mundt et al. (2019b), θ, ϕ, and ξ are the parameters of the encoder, decoder,

and classifier, resp., while pϕ(x|z) and pξ(y|z) are the reconstruction and classification terms.

The last term is the entanglement penalty, which is given by the Kullback-Leibler divergence

between the latent vector distribution and an isotropic Gaussian distribution.

As in Mundt et al. (2019b), we evaluated both the full framework discussed above (dubbed

M2 in our experiments), which uses the loss function in Eq. 6.1, and a simplified version (M1)

without the reconstruction error:

L(θ, ξ) = Eqθ(z|x) [log pξ(y|z)]− βKL (qθ(z|x)∥p(z)) (6.2)

As our experiments show, both versions outperform the state of the art, but M2 achieves

better results overall.

46

Sample Selection

We wish to leverage the class disentanglement penalty defined in Eq. 6.1. Specifically,

our aim is to select b data points from the unlabeled pool U that the VNN is highly uncertain

about. Following Mundt et al. (2019a), in our experiments we investigated two sampling

algorithms for OSR: uncertainty sampling and Weibull distribution sampling. The former is

simpler, but the latter allows one to better reject outliers. We briefly describe each sampling

strategy below.

6.2.3 Uncertainty sampling

Here, we select a data point xi based directly on how uncertain the VNN is about it.

Specifically, we rank all unlabeled samples by the value of the most likely class label and

select the b samples with the lowest maximum values. Since the sum of class likelihoods is

normalized, the value of the maximum class probability will approach one for highly certain

samples and approach 1
|C| , where |C| is the number of classes, for highly uncertain samples.

In other words, the class likelihoods of uncertain samples have higher entropy than those for

which the VNN is certain about.

6.2.4 Wiebull distribution sampling

As our experiments show, uncertainty sampling is suitable for active learning problems

in which all unlabeled samples belong to known classes. However, for the case where the

unlabeled pool also contains samples from unknown classes, we need a more robust way to

exclude outliers. For this latter case, we employed the sampling procedure defined in Mundt

47

et al. (2019a), which leverages a Wiebull distribution to estimate the model’s uncertainty

w.r.t a specific sample.

For completeness, here we will briefly outline the methodology proposed in Mundt et al.

(2019a). Intuitively, it can be shown that it is useful to quantify the probability that a given

data sample is an outlier, herein defined as a sample which is not sufficiently similar to those

which have already been correctly classified. Mundt et al. (2019a) show that this can be

accomplished as follows. First, for each class, we compute the mean of the latent vectors

of all samples that have been correctly predicted by the model. Second, we compute the

distances from each class mean for all latent vectors, which Mundt et al. (2019a) showed

can be modeled with a Wiebull distribution. As such, a sample’s likelihood under this

distribution constitutes the minimum probability that the sample does not belong to any

previously known class. In other words, the lower this value, the more likely that the sample

is an outlier.

6.3 Experimental Results

We performed experiments on three image classification datasets—MNIST, CIFAR-10,

and CIFAR-100—following the methodology defined in Section 7.3. Below, we first present

our implementation details, then discuss our results.

6.3.1 Implementation Details

Budget: For CIFAR-10 and CIFAR-100, we used a max budget of 40%, and stage

budgets b of 10%, 15%, 20%, 25%, 30%, 35%, and 40%. For MNIST, we used stage budgets

of 100 and 1000 images.

48

(a) (b)

Figure 6.1: Performance on MNIST classification tasks using different query sizes for model M1.

(a) Query batch size of 100; (b) Query batch size of 1000 compared to Core-set Sener and Savarese

(2017), DBAL Gal et al. (2017), Random Sampling and Uncertainty Sampling. M1 indicates our

model with Encoder and Classifier. Best visible in color. Prior results adapted from Sinha et al.

(2019).

Runs: For all three datasets, we measured performance by computing the average accu-

racy across 5 independent runs.

State of the art comparison: We compared our method against several recent AL

approaches including Variational Adversarial Active Learning (VAAL) Sinha et al. (2019),

Core-Set Sener and Savarese (2017), Monte-Carlo Dropout Gal and Ghahramani (2016),

Ensembles using Variation Ratios (Ensembles w. VarR) Freeman (1965) Beluch et al.

(2018), and Deep Bayesian AL (DBAL) Gal et al. (2017). As a baseline, we also included

uniform random sampling (Random) since it remains a competitive strategy in the field of

active learning.

Architectures: For experiments on CIFAR-10 and CIFAR-100 we used a VGG16 net-

work Simonyan and Zisserman (2014a) as the encoder for both models, M1 and M2, and a

decoder based on 14-layer residual networks Higgins et al. (2017); Zagoruyko and Komodakis

(2016). We used latent vectors of size 60. As noted in Sec. 7.3, the classifier consists of a

single linear layer. For MNIST, we used a LeNET network Lecun et al. (1998) as our encoder

49

Figure 6.2: Performance on classification tasks for CIFAR-10 (left) and CIFAR-100 (right) com-

pared to VAAL Sinha et al. (2019), Core-set Sener and Savarese (2017), Ensembles w. VarR Beluch

et al. (2018), MC-Dropout Gal and Ghahramani (2016), DBAL Gal et al. (2017), and Random Sam-

pling. M1 indicates our model (6.2) and M2 indicates our model (6.1). All the legend names are in

descending order of final accuracies. Best visible in color. Prior results adapted from Sinha et al.

(2019).

(a) (b)

Figure 6.3: Robustness of our approach on CIFAR-100 given (a) biased initial labeled pool or (b)

different budget sizes compared to VAAL Sinha et al. (2019), Core-set Sener and Savarese (2017)

, Ensembles w. VarR Beluch et al. (2018), MC-Dropout Gal and Ghahramani (2016), DBAL Gal

et al. (2017), and Random Sampling. M1 indicates our model (6.2) and M2 indicates our model

(6.1). Best visible in color. Prior results adapted from Sinha et al. (2019).

50

and a latent vector of size 60.

Optimization: We optimized all models using a mini-batch size of 128, a learning rate

of 0.001, and a weight decay of 10−5. We tested two different optimizer, SGD and ADAM

Kingma and Ba (2014), for both M1 and M2, for a total of four combinations:

• M sgd
1 - Model M1 as shown in Eq. 6.2 with SGD optimizer.

• Madam
1 - Model M1 as shown in Eq. 6.2 with Adam optimizer.

• M sgd
2 - Model M2 as shown in Eq.6.1, with SGD optimizer.

• Madam
2 - Model M2 as shown in Eq.6.1 with Adam optimizer.

Oracle queries: We defined a learning stage (i.e., a period of training between queries

to the oracle) as lasting 150 epochs on CIFAR-10 and CIFAR-100 and 10 epochs on MNIST.

At the completion of a stage, we requested labels for b images from the unlabeled pool.

These were added to the labeled pool and used in the subsequent learning stages.

6.3.2 Image classification results

MNIST: Our results were comparable with the state of the art on MNIST. However, as

Figs. 6.1(a) and Fig. 6.1(b) show, random sampling is already a highly successful strategy

on MNIST, leaving little room for improvement on this dataset. In particular, as illustrated

in Fig. 6.1(b), all methods obtained statistically similar results as the batch size increased.

However, as shown in Fig. 6.1(a) methods such as DBAL or Coreset have lower accuracies

at the initial stages when using smaller batch sizes.

CIFAR-10 & CIFAR-100: As Fig. 6.2 clearly shows, we achieved state-of-the-art perfor-

mance by a considerable margin on both CIFAR-10 (left) and CIFAR-100 (right).

51

On CIFAR-10, models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2] achieved mean accuracies of [84.4%,

89.24%, 89.97%, 91.4%], respectively. To put this in perspective, the original accuracy for

this VNN using the entire CIFAR-10 dataset was 92.63%. VAAL came in second, with an

accuracy of only 80.71% , followed by Core-Set with an accuracy of 80.37%, and then Ensem-

ble w VarR at 79.465%. Random sampling, DBAL and MC-Dropout all trailed significantly

behind other methods. Finally, we found that our models trained with ADAM, on average,

outperform those trained with SGD.

On CIFAR-100, models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2] achieved mean accuracies of [54.47%,

60.68%, 61.25%, 61.93%], resp. The original accuracy with the entire CIFAR-100 dataset

was 63.14%. VAAL once again came in second, with an accuracy of 54.47 %, followed by

Core-Set, and Ensemble w VarR.

6.3.3 Additional experiments

In addition to our classification experiments, we replicated and extended the experiments

of the same name put forth in Sinha et al. (2019) in order to investigate the robustness of

our approach. Unless otherwise stated, we used CIFAR-100 for these experiments. Finally,

we also tested our methods’ ability to learn when the unlabeled pool contained out-of-

distribution samples, a case which, to the best of our knowledge, cannot be handled by any

existing methods.

Effect of Biased Initial Pool: We first investigated the effect of bias that may be present

in the initial labeled pool, L0. As stated in Sinha et al. (2019), bias can negatively im-

pact the training of an active learner because it means that the initial labeled pool may

not be representative of the true underlying data distribution. Unless explicitly accounted

52

for, this will cause a system to learn an incomplete, or biased, model of the latent space.

Following the protocol defined in Sinha et al. (2019), we removed all data points for c

classes from L0, thereby unbalancing the dataset and thus introducing bias. As shown in

Fig. 6.3(a), our method outperformed VAAL, Core-set, and random sampling w.r.t selecting

useful data points from classes that were underrepresented in the initial labeled pool. Mod-

els [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2] achieved accuracies of [53.35%, 60.54%, 61.36%, 61.55%],

respectively, when c = 20 and [54.72%, 60.79%, 61.53%, 61.57] when c = 10 (as noted above,

c is the number of classes from which to exclude data). VAAL, by comparison, came in

second, followed by Core-set, exhibiting accuracies [46.91%, 46.55%] for c=20 and [47.10%,

47.63%] for c=20, respectively. Random sampling achieved an accuracy of 45.33% for c =

10 and 45.87% for c = 20.

Effect of Budget Size on Performance: In this section, we tested the effect of different

budget sizes b on performance. Specifically, we investigated the effect of budgets of size b

= 5% and b = 10%, referring to percentage of samples taken from Dtrain at each stage of

learning. As shown in Fig. 6.3(b), our model outperformed VAAL, Core-Set, Ensemble, and

random sampling over both the budget sizes. VAAL comes in second followed by Core-set

and Ensemble. Models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2] achieve accuracies of [61.52%, 61.57%,

61.07%, 61.82%] for b = 10 and [54.32%, 60.68%, 61.29%, 61.9%] for b = 20.

Noisy Oracle: Next, we investigated the performance of our approach in the presence of

noisy data caused by an inaccurate, or noisy oracle. As in Sinha et al. (2019), we assumed

that incorrect labels can be caused by the natural ambiguity which exists between examples

drawn from 2 separate classes, rather than adversarial attacks. CIFAR-100 has both classes

and super-classes, so, following Sinha et al. (2019), we randomly modified the labels of either

53

Figure 6.4: Robustness of our approach on CIFAR-100 given a noisy oracle. M1 indicates our

model (6.2) and M2 indicates our model (6.1). All legend names are in descending order of final

accuracies.

10%, 20% or 30% of the samples by replacing them with a label from another class within

the same super-class. As shown in Fig. 6.4, our models consistently outperformed existing

approaches across all noise levels. In other words, our M1 model with 30% noise was more

accurate than VAAL, etc. with 10% noise.

Sampling Time Analysis We also replicated the sampling time analysis put forth in Sinha

et al. (2019). Table 6.1 shows that our method is competitive with other state-of-the-art

techniques w.r.t. execution time, thereby offering strong empirical evidence that our method

offers large performance advantages with minimal additional computation.

Out-of-distribution samples in unlabeled pool: Finally, we also tested an extreme

case of active learning in which data samples from other datasets are mixed into the current

unlabeled pool. We used CIFAR-10 for these experiments. Here, we intentionally added

20% data (10,000 images) from other datasets to the unlabeled pool; thus, the network must

54

Table 6.1: Sampling Time Analysis: Mean time to select a sample from the unlabeled pool of

CIFAR-100.

Method Time (Seconds)

VAAL 10.69
Uncertainty sampling 10.89
DBAL 11.05
Weibull sampling 20.41
Ensembles w. VarR 20.48
Core-set 75.33
MC-Dropout 83.65

Figure 6.5: Robustness of our approach on CIFAR10 classification tasks when the unlabeled pool

includes samples from either the SVHN, KMNIST, or FashionMNIST datasets. The first three

curves used the M2 classifier, while the ones with the ’Random’ subscript used random sampling.

Our results confirm that our approach significantly outperforms this baseline.

distinguish not only between informative and non-informative samples but also distinguish

in-distribution data samples from out-of-distribution samples. Whenever our model selected

an OOD sample, the oracle discarded the sample, thus reducing the overall budget size. The

discarded samples were placed back in the unlabeled pool (so the total number of OOD

samples remained at 10,000).

Figure 6.5 shows our M2 method’s performance on CIFAR-10 when the unlabeled pool

contained images from either SVHN, KMNIST, or FashionMNIST. Here, we used Weibull

sampling (Sec. 6.2.4) due to its better outlier rejection compared to uncertainty sampling.

55

For comparison, we also tested random sampling as a baseline. Impressively, despite the

presence of 20% OOD samples, our method significantly outperformed existing state-of-the-

art methods trained on the regular unlabeled pool (Fig. 6.2). And its performance, regardless

of the second dataset, was only slightly below the standard M2 method.

6.4 Conclusions and Future work

We have presented a novel approach for deep active learning using open-set recognition.

To the best of our knowledge, we are the first to merge AL with OSR. Extensive exper-

iments conducted over several image classification datasets have verified the effectiveness

of our approach and established new state-of-the-art benchmarks. Specifically, we empiri-

cally demonstrated that the samples most worth labeling are those which are most different

from the current labeled pool. Training on such samples allows the model to learn fea-

tures underrepresented in the existing training data. We extensively tested the robustness of

our approach using different budget sizes, a noisy oracle, and an unlabeled pool comprised

of multiple datasets. In future work, we plan to test our approach on continual learning

problems, in which the system must learn to solve different problems over time. We also

plan to test our method on other problems, including image segmentation and document

classification.

56

7| FOURTH IDEA: DEEP ACTIVE LEARNING USING BARLOW TWINS

The generalisation performance of a convolutional neural networks (CNN) is majorly

predisposed by the quantity, quality, and diversity of the training images. All the training

data needs to be annotated in-hand before, in many real-world applications data is easy

to acquire but expensive and time-consuming to label. The goal of the Active learning for

the task is to draw most informative samples from the unlabeled pool which can used for

training after annotation. With total different objective, self-supervised learning which have

been gaining meteoric popularity by closing the gap in performance with supervised methods

on large computer vision benchmarks. self-supervised learning (SSL) these days have shown

to produce low-level representations that are invariant to distortions of the input sample and

can encode invariance to artificially created distortions, e.g. rotation, solarization,cropping

etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks

for learning. In this paper, we unify these two families of approaches from the angle of active

learning using self-supervised learning mainfold and propose Deep Active Learning using

Barlow Twins (DALBT), an active learning method for all the datasets using combination

of classifier trained along with self-supervised loss framework of Barlow Twins to a setting

where the model can encode the invariance of artificially created distortions, e.g. rotation,

solarization,cropping etc.. We propose to use joint loss function which consist classifier

57

loss and self-supervised loss borrowed from Barlow twins to jointly learn an encoder that

produces representations invariant across such pairs. DALBT is a method that is simple, easy

to implement and train, and of broad applicability. We carried out an extensive evaluation of

our novel proposed method of active learning, achieving state-of-the-art results on MNIST,

Fashion-MNSIT, CIFAR-10. Additionally, to show the robustness of the proposed model we

also showed the results on where the unlabeled pool consists of a mixture of samples from

multiple datasets, proposed model can successfully distinguish between samples from seen

vs. unseen datasets.

7.1 Introduction

Although deep neural networks (DNNs) demonstrated state of the art (SOTA) accuracy

on several supervised learning tasks such as as classification (He et al., 2016; Krizhevsky

et al., 2012), object detection (Redmon et al., 2016; Ren et al., 2015), and semantic segmen-

tation. But most of the deep neural networks (DNNs) require large set of labeled data to

achieve this feet. The challenges of labeling huge datasets in real world setting are many:

expensive, limited time available by domain business experts, long labeling time per for

large-scale sample such as videos and time-series data, financial constraints, or to minimize

the model’s carbon footprint. These all drawback does inherit the application of deep neural

networks (DNNs) to more research areas and more organization.

In order to overcome the above drawbacks, Active Learning(AL) system try to select to

most informative samples from the pool of unlabeled data points at each stage and send them

for annotation to maximize the accuracy of the model. Active learning uses a fixed budget

58

at each stage of learning to select and label a subset of a data points from the unlabeled pool

where budget(b) refers to cost associated with annotation by oracle(O). The model will be

trained on the current labeled pool along with the newly annotated data points. At the end

of active learning process model’s performance would be nearly the same accuracy as model

by utilized fraction of data when compared to the model trained on all the data. Active

Learning(AL) also highlights the fact that there exists a non-linear relationship between the

model’s performance and the amount of training data used. There exists most representative

subset of the unlabeled data and selecting those data points to label will provide most of

the information needed to learn to solve a task. In this case, we can achieve nearly the same

performance by selecting that representative subset for annotation (and training on) only

using data points from that representative subset samples, rather than the entire dataset.

In contrast self-supervised learning which learns useful information from the dataset with-

out relying on human annotations. Most of the work in the field of self-supervised learning

work on goal of leaning good low level representations of input data without access to data

labels. With the current advances in the field of Self-supervised learning (SSL)which is

rapidly closing the dap with supervised learning methods on large datasets and computer

vision taks. Most of the methods in SSL work with the goal of learning representations

that are invariant under different distortions such as random cropping, resizing, horizontal

flipping, color jittering, converting to grayscale, Gaussian blurring, and solarization.(also

referred to as ‘data augmentations’).

From the high level view Active learning reduce the label-effort and Self-supervised learn-

59

ing aim to use the unlabeled data. With the goal of merging self-supervised learning along

with supervised learning we proposeDeepActive Learning using Barlow Twins (DALBT).

The proposed method aims to combine self-supervised learning along with supervised learn-

ing in each step. Our proposed work is different from the previous work in the field which

achieved this by doing pre-training on all the entire/partial unlabeled dataset using self-

supervised learning then use the pre-trained model for active learning training step using

supervised learning loss. But this approach increases the overall training time as in some

cases the overall size of the unlabeled pool can be really big and this process is not feasible

at times. In this paper we propose an Active learning system that utilizes both the super-

vise learning and unsupervised learning to achieve the goal of selecting the most informative

samples from the unlabeled pool.

Our paper is organized as follows: In section 2 we describe the related work. Next, in

section 3 we introduce the proposed framework. Section 4 present the experimental setup

and the evaluations on the datasets we used. Finally, section 6 conclusion and discusses an

interesting finding we observed in the proposed work.

7.2 Related Work

Here we detail previous work done in each of these directions.

7.2.1 Active Learning

Active learning methodologies were recently reviewed by Settles(Settles, 2010)), discussed

more here (Dasgupta, 2011; Hanneke et al., 2014) and it has been shown that there exists

60

Figure 7.1: Framework overview: Our proposed active learning system based on BarlowTwins

consists of encoeder(E),Projector(P),Classifer(C). Encoder takes two distorted versions of same

input as its input. Output of encoder is fed into projector network which projects both the distorted

versions into lower dimension. Classifier take latent vector(z) produced by passing the actual input

image without distortion through the encoder(E). Overall system is trained using joint loss of

cross-corelation loss and classification loss. Wiebull Sampling method to identify which samples

from the unlabeled pool to label.

informative samples which contribute to performance than the other training samples. Thus,

the overall goal of active learning is to learn or use an acquisition function along with model

to chooses the best data points for which a label should be requested from a large unlabeled

pool of data.

Existing Active learning approaches can be divide into Pool based methods or Query

Synthesizing methods. Pool based methods tries to find the most informative samples from

the unlabeled data using different sampling strategies which are more discussed in detailed

in this section. Query Synthesizing methods (Mahapatra et al., 2018; McCallum and Nigam,

1998; Zhu and Bento, 2017) use generative models to genearate the informative samples.

Active learning sampling strategies can be sub-divided into following catgeories a) Un-

certainity Sampling This is one of the popular sampling methodology in which where the

61

model queries data points about which it is most uncertain about. Recent research (Beluch

et al., 2018; Gorriz et al., 2017; Lewis and Gale, 1994; Scheffer et al., 2001; Wang et al.,

2017b) shows that uncertainity sampling approaches have proven effective in deep learn-

ing models such as CNNs. b) Diversity sampling This sampling method aims to choose

samples which are more diversify from the existing labeled samples. c) Representative

Sampling This sampling method aims to choose the samples from the unlabeled pool which

are representative of the whole dataset. There exists subfield in the research which uses

combination of features from these three disjoint groups mentioned above to increase the

performance of activelearing system.

(Schohn and Cohn, 2000) uses active learning to enhace the performance on document

classification tasks using support vector machines (SVM) by labeling examples that lie clos-

est to the SVM’s dividing hyperplane. The authors also proposed stopping heuristic for AL

on when the model reach the peak generalization performance.

(Tong and Koller, 2001) applied active learning to Text Classification using SVM by

implicitly projecting the training data into a different (often higher dimensional) feature

space which is linearly separable. Then projects the query selection problem as version

space optimization problem in which version space optimizates as quickly as possible still

obeying the SVM constraints which is equivalent to finding informative samples quickly.

(Tur et al., 2005) combines active and semi-supervised learning methods int the domain

of spoken language understanding.

(Wang et al., 2017a) combines uncertainty based active learning algorithm with diversity

62

constraint by sparse selection in which sample selection is represented as a sparse modeling

problem.

(Sener and Savarese, 2017) projected the problem of active learning as core-set selection

problem in set of points are choosen such that selected points should be dissimilar both to

each other and the labelled set, representative of the unlabelled set and competitive for the

remaining data points

(Zhu et al., 2009) combined uncertainty and density (SUD) and density-based re-ranking

to overcome the problem outlier selection problem present in Uncertainty sampling. By com-

bining uncertainty along with density-based re-ranking which selects the samples which are

most informative example in terms of uncertainty criterion, but also the most representative

example in terms of density criterion.

Similar to core-set approach of selecting batch of images in pool-based setting (Geifman

and El-Yaniv, 2017) selects the points for each class by using farthest-first(FF) traversal prin-

ciple or famously known as Gonzalez algorithm (Gonzalez, 1985). FF principle states that

traversal for a set of points can be constructed by selecting the first point x randomly then

next point is selected which is farthest from previously selected point x by greedily choos-

ing the point farthest away from any of the points already chosen. Set of point obtained

using the neural activation over a representation layer by forward passing all the unlabeled

data. farthest-first(FF) traversal principle is similar to building long-tail wiebull distribution.

(Gissin and Shalev-Shwartz, 2019) motivated by selecting sample for which the probabil-

63

ity of distinguishing it unlabeled pool and labeled pool is the highest. Such that selecting

such kind of the samples for labeling should be informative and helps in increasing the per-

formace of the model.

(Beluch et al., 2018) showed ensembles perform better and lead to more calibrated pre-

dictive uncertainties which can be used for ActiveLearning Uncertanity strategy. Authors

also showed that this method performs better than the Monte-Carlo Dropout and geometric

approaches

7.2.2 Self-Supervised Learning

In recent years, self-supervised learning has achieved comparable performance w.r.t to

suprvised learning (Caron et al., 2020; Chen et al., 2020; Grill et al., 2020). Most of the self-

supervised learning methods work with a goal of achieving where representations are learned

that are invariant to distortions present in the input data. Distorted inputs are created using

different data augmentation applied to input randomly. Different research methods try to

achieve this goal using different approaches such as in SIMCLR (Chen et al., 2020) achieved

this by creating ‘positive’ and ‘negative’ sample pairs from the input data and treating each

pair differently in the loss function, BarlowTwins (Zbontar et al., 2021) achieves this using

variance and invariance terms in which two distorted versions of single sample should pro-

duce sample low level represntaion which is achieved using custom loss function consists of

variance and redundancy reduction term.

64

(Ash et al., 2019) proposed Batch Active learning by Diverse Gradient Embeddings

(BADGE) method in which d to incorporate both predictive uncertainty and sample diversity

into every selected batch. Authors achieved this by calculating the gradient embedding for

hypothetical label and used Kmean++ seeding algorithm to choose the batch to be labelled.

Previous works in the field of researchers trying to merge active learning and self-

supervised learning are in Graphical domain (Zhu et al., 2020) applied self-supervised learn-

ing along with active learing to Graph Neural Networks by considering the information

propa-gation scheme of GNN and selecting the central nodes from homophilous ego net-

works, (Bengar et al., 2021) utlized autoencoder architecturem SSL technique SIMCLR to

form postive and negative pairs. In NLP for text classification task (Yuan et al., 2020) used

self-supervised learning as a pre-training step for training the language model and the sam-

ples which the language model is uncertainare sent for labelling and for efficient fine-tuning.

Similar approach of large-scale pseudo training data by randomly adding or deleting words

from unlabeled data is followed by (Wang et al., 2021) for disfluency detection heavily rely

on human-annotated data for solving sentence classificationt task. (Bengar et al., 2021)

Model is trained on the entire dataset to get the frozen backbone. Now linear classifier or an

SVM, decoder is fine-tuned on top of the features in supervised way, inference is run on the

entire unlabeled data and top-k samples are collected via acquisition function. In medical

domain (Mahapatra et al., 2021) collect the salency maps of medical images and project it

as self-supervised learning problem where the autoencoder reconstructs the saliency maps of

medical images followed by clustering the latent space to collect the top-k and Query labels

of the most representative sample per cluster. Our work is particulary different from the

other work in the field as all the previous work concentrates on high amount of pre-training

65

on all the data which is not feaisable as the unlabeled pool size is pretty high which add

hughe overhead training time, creating ”positive” and ”negative” pairs for training is not

feaisable when the overall dataset size is pretty large. (Mandivarapu et al., 2020b) merged

the fields of active learning and open-set recognition in which model is trained using infor-

mation bottleneck loss along with wiebull long tail distribution to find the outlier per class

and achieved the state of the art in the field of active learning.

This proposed approach explores a active learning method including self-supervised lear-

ing which can be used for informative sample selection for labelling, in which the wiebull

sampling was used as acquistion function. This work proposes to address all of above men-

titone issues with a single approach, driven by a distinct business need.

7.3 Methodology

In this section, we briefly review the setup of the pool based active learning for computer

vision classification tasks. We also discuss about used self supervised learning approach

barlow twins and the intuitions behind using it. We then describe our proposed approach

Deep Active Learning using Barlow Twins (DALBT). Throughout the sections, we refer to

the model being trained as f and denote its corresponding weights/parameters θ. Given an

unlabeled pool(U) of examples X without label, in each sampling iteration, our sampling

method selects a diverse set of examples on which the model is least confident and useful for

training at next iteration of active learning.

66

7.3.1 Problem Definition

Formally, pool based active learning problem is denoted as P = (Dtrain,Dtest); Dtrain is

the training set from where initial pool of samples are taken. Dtrain can be sub divided into

(DL,DU); DL is the labeled pool where each sample consist of pair of input and label denoted

by ((xL, yL)). DU denotes a much larger pool of samples ((xL) which are not yet labeled. The

goal of the active learning model is to train on labeled pool((xL) and used it along with sam-

pling method to iteratively querying the most label-efficient samples present in the ublabeled

pool DU to be annotated by the oracle such that the expected loss is minimized by a fixed

sampling budget(b). b is the total no of most informative samples that can be selected from

the unlabeled pool at each stage of active learning setup. These selected b sampled will be

sent to oracle for annotation. We denote the state of a subset at a given timestep as Lt and

U t, respectively, for t ∈ {0, 1, . . .} where t indicates the current stage of active learning stages.

In standard pool based active learning setup, we train model our active learning model(f)

with parameters θ on the initial labeled pool (L0) at stage t=0. After the initial stage t=0,

b datapoints are sampled from the unlabeled pool using some predefined sampling method

(eg: uncertainty measure, confidence estimate ..etc). These selected b data points will be

removed from unlabeled pool (U0) and sent to oracle (O) for annotation. These annotated

datapoints are then added to labeled pool (L0) which now becomes labeled pool (c) and

unlabeled pool(U0) becomes (U1). Now the model again will be trained on new labeled

pool (L1) at next stage t=1. In the current experimental setup we consider two scenarios

where unlabeled pool(U) contains samples from the same datasets and mixture of multiple

67

datasets.

7.3.2 Active Learning System

With the goal of active learning using self-supervised learning. Our system consists of

and encoder(E) followed by a projector (P), followed by a classifier(C) as shown in the

Fig 7.1. Our goal is to learn an encoder fθ can encode the invariance of artificially created

distortions, e.g. rotation, solarization,cropping etc. The proposed model fθ takes as input

two distorted versions of the vector x ∈ RD and outputs a corresponding reduced vector

z = fθ(x) ∈ Rd, with d << D. Without loss of generality, we define the encoder to be a

neural network with learnable parameters θ. Let L0 be a initial labeled pool training set of

datapoints in RD, the D-dimensional input space. Let x ∈ RD be a vector from X .

Barlow Twins

As mentioned in the Section Introduction we have used Barlowtwins (Zbontar et al.,

2021) for finding the low-level representation of our inputs. In this we explain about barlow

twins in more detailed fashion. Barlow twins networks consists of encoder(E) appended with

projector network (p) as shown in Fig 7.1 excluding the classifier. For simplicity of expla-

nation let’s consider the case where the batchsize is 1. For each input image two distorted

versions are produced using different types of random data augmentations applied during

the training. Lets consider d1 and d2 as two distorted version of same input image x. These

two distorted inputs are then fed into encoder(E) followed by a projector network (p) both

with trainable parameters. The model then produces two output low level representation of

the same input image but one each for each distorted version. Lets say zd1 and zd2 as two

68

low-level representations of d1 and d2.

Barlowtwins uses unique loss function as mentioned in the paper ”” which is different

from other SSL methods as shown below

LBT ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j ̸=i

C2ij︸ ︷︷ ︸
redundancy reduction term

(7.1)

where C indicates the cross-corelation matrix computed between the two identical net-

works which is given below and λ is hyper-parameter for defining the importance between

the first and second terms of the loss.

Cij ≜
∑

b z
d1

b,iz
d2

b,j√∑
b

(
zd

1

b,i

)2√∑
b

(
zd

2

b,j

)2
where b indexes batch samples and i, j index the vector dimension of the networks’ outputs.

C is a square matrix with size the dimensionality of the network’s output with range of values

from -1 to 1 where -1 indicated no-corelation between the zd
1

b,i and zd
2

b,i, where 1 indicated

perfect corelation between zd
1

b,i and zd
2

b,i.

Active Learning using Barlow Twins

With the intention of merging both the self supervised learning method Barlow twins and

active learning we proposed new changes to the existing barlow twins architecture as show

69

in Fig 7.1 and explained further. We appended additional classifier(C) to existing model

of encoder(E),projector(P). Overall system is trained using the modified innovative loss as

shown below

LBT ≜ log pξ(y|z)︸ ︷︷ ︸
Classifer term

+γ ∗ (
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j ̸=i

C2ij︸ ︷︷ ︸
redundancy reduction term

) (7.2)

where γ indicates the amount of importance given to the barlow twins loss and first term

indicates the classifier loss. The overall system is optimized using the joint loss as shown

in Eq 7.2. As you can see that the input to the classifier is the latent vector produced by

actualling passing the input image without distortions through the model(f).

7.3.3 Sampling technique

With an aim to select b most informative data points from the unlabeled pool along with

the trained model.

In depth the objective of the loss function in the Eq 7.2 is finidng the low-level repre-

sentations that captures as much information as possible about the inputs while being least

informative about the distortion applied to the input. We used wiebull sampling technique

proposed by (Weibull, 1951) . Using the wiebull sampling method can be used to quantify

weather a sample is an outlier or not. In our case if the latent representation is very different

from the labeled pool latent representions it is considered as an outlier. Usage of long-tail

distribution for finding the informative samples in the field of active learning is shown by

(Gonzalez, 1985) and (Mandivarapu et al., 2020b). Firstly collect all the latent vectors of

images which are classified correctly by the model at any stage of active learning. These

70

latent vectors are sub-divided into the respestive clusters depending on their class label. Now

mean of each cluster is calculated and distance between mean of each class to rest of the

points was calculated. Wiebull distribution is modeled using these distances for each class

cluster. Finally any new images with out label will be pass through the wiebull model to

check the percentage by which this image sample is considered as an outlier for all images

and top such images are collected for labeling or for getting annontated by the oracle.

Algorithm 3 Active Learning

Require: Unlabeled pool U0, labeled pool L0,number of labeling iterations t, initialize b
(budget)
Require: Active Learning Model(fθ), Optimizer
for k = 1 to t do

Train fθ on Labeled Pool (Lk)
Z ← Collect the latent vectors of all correctly classified samples in Labeled Pool (Lt)
Ci ← Mapping of Zi onto separate cluster per class Ci
⌈i ← Calculate the distance of each point to its cluster Ci
Wi ← Map the distances by fitting them to a wiebull model
Z ← Collect the latent vectors of all the samples Unlabeled Pool (Uk)
for Z = 1 to n do

Collect the outlier probability score using previously fitted wiebull model.

Request labels for top b samples
Lk+1 ← Lk ∪ b samples.

Train f on Lk+1.

7.4 Experimental Results

We performed experiments on four image classification datasets: MNIST (LeCun et al.,

2015), CIFAR-10 (Krizhevsky, 2009a), and FashionMNIST (Xiao et al., 2017)—following the

methodology defined in Sec. 7.3. Below, we first present our implementation details, then

discuss our results.

71

7.4.1 Implementation Details

Hardware: We carried out our experiments on a Dell Precision 7920R server with two

Intel Xeon Silver 4110 CPUs, two GeForce GTX 1080 Ti graphics cards, and 128 GBs of

RAM.

Dataset sizes and budgets: As previously explained in methodology section, budget

refers to the number of samples labeled by the oracle in each round of active learning. Budget

of the each experiments is shown in the legend of the each result. MNIST dataset consists of

50,000 images as part of the training set out of which is sub-divided into 100 images for the

initial labeled pool, 5000 images as a validation set, and the remaining 44,900 images as part

of the unlabeled pool. MNIST dataset also consists test set of size 10,000 images and we

used it to check the performance of our model after each stage of our active learning setup.

We used budgets of 100 and 1000 samples for experiments 7.2, resp. We used a similar setup

for FashionMNIST. For CIFAR-10 which is similar to MNIST w.r.t total of no of images in

train and test sets. CIFAR-10 training set out of which is sub-divided into 5000 images for

the initial labeled pool, 5000 images as a validation set, and the remaining images as part of

the unlabeled pool, we used a budget of 2500 images per round of active learning, up to 40%

of the training data. CIFAR-10 test set consists of 10,000 images and we used it to check

the performance of our model after each stage of our active learning setup

Runs: For all the experiments, we measured performance by computing the average

accuracy across 5 independent runs.

State of the art comparison: We compared our method against several recent AL

approaches including DAL-OSR(Mandivarapu et al., 2020b), Variational Adversarial Active

72

Learning (VAAL) (Sinha et al., 2019), Core-Set (Sener and Savarese, 2017), Monte-Carlo

Dropout (Gal and Ghahramani, 2016), Ensembles using Variation Ratios (Ensembles w.

VarR) (Freeman, 1965) (Beluch et al., 2018), Deep Bayesian AL (DBAL) (Gal et al., 2017),

BatchBALD (Kirsch et al., 2019), and WAAL((Shui et al., 2020)). As a baseline, we also

included uniform random sampling (Random) since it remains a competitive strategy in the

field of active learning.

Architectures: For experiments on MNIST and Fashion-MNIST we used a LeNET

network (Lecun et al., 1998) as the encoder, projector network, followed by a classifier. We

used latent vectors of size 60. As noted in Sec. 7.3, the classifier consists of a single linear

layer. For CIFAR-10, we used a VGG16 network (Simonyan and Zisserman, 2014a) as our

encoder and a latent vector of size 512 followed by classifier with single layer.

Optimization: We optimized the overall system using a mini-batch size of 64, a learning

rate of 0.001, barlow twins constant of 0.001 and a weight decay of 10−5. We optimized the

system for 150 epochs at each stage and 20 epochs on MNIST. At the completion of a stage,

using wiebull sampling method we requested labels for b images from the unlabeled pool.

Once the labels for the images are received from the oracle. These labeled images were added

to the labeled pool and used in the subsequent learning stages.

Image Augmentations We use the augmentations similar to BYOL (Grill et al., 2020)

which is used by major SSL approaches. As shown in the Fig 7.1 two distorted images are

produced from given single input image by applying different kind of transformations. The

image augmentation pipeline starts with random cropping, resizing which was applied to all

images. Followed by Gaussian blurring, color jittering, converting to grayscale,horizontal

flipping, and solarization which were e last five are applied randomly,

73

Figure 7.2: Robustness of our approach on MNIST classification . Our results confirm that our

approach significantly outperforms this baseline.

Computer Vision Task results: To evaluate the effectiveness of our method we tested

our method on MNIST,CIFAR-10, Fashion MNSIT and mixture of multiple datasets in the

unlabeled pool.

MNIST: We conducted on MNIST dataset where size of initial labeled pool is 100 and

using budget size of 100 at every stage of active learning. As it is shown in Fig 6.1 our

method performed on-par with the rest of exisitng method. As this is a easier computer

vision task all the methods performed within the range.

CIFAR-10: We conducted two separate experiments for CIFAR-10 with different bud-

get sizes. We conducted the experiment where the initial labeled pool is of size 5000 and

budget(b) is 2500 at each stage. As shown in Fig. 7.4 our proposed method performed on-par

with the existing state of art method DAL-OSR and VAAL came in third, with an accuracy

of only 80.71% , followed by Core-Set with an accuracy of 80.37%, and then Ensemble w

74

Figure 7.3: Robustness of our approach on CIFAR10 classification . Our results confirm that our

approach significantly outperforms this baseline.

Figure 7.4: Robustness of our approach on CIFAR10 classification . Our results confirm that our

approach significantly outperforms this baseline.

VarR at 79.465%. Random sampling, DBAL and MC-Dropout all trailed significantly be-

hind other methods.

To evaluate the effectiveness of the proposed model when compared to other methods for

small budgets we designed an experiments where the initial labeled pool is of size 5000 and

budget(b) is 1000 at each stage of active learning. As shown in the Fig. 7.3 the proposed

method overcomes all the existing methods by a huge margin and DAL-OSR method comes

second followed by BAtchBALD and rest of the methods are in similar range. This proves

75

Figure 7.5: Robustness of our approach on CIFAR10 classification . Our results confirm that our

approach significantly outperforms this baseline.

Figure 7.6: Robustness of our approach on CIFAR10 classification tasks when the unlabeled pool

includes samples from either the SVHN, KMNIST, or FashionMNIST datasets. The first three

curves used the M2 classifier, while the ones with the ’Random’ subscript used random sampling.

Our results confirm that our approach significantly outperforms this baseline.

the proposed method is very effective when the budget size if pretty low. The original accu-

racy which can be achieved using the entire CIFAR-10 dataset was 92.63%.

FashionMNIST: To evaluate the robutness of our approach to different datasets we

conducted experiemnt on another standard benchmark dataset FashionMNIST. Similar to

previous experiments we compared our method with other exisiting state of the art methods

like DAL-OSR, Core-Set (Sener and Savarese, 2017), Deep Bayesian AL (DBAL) (Gal et al.,

76

2017),WAAL, BatchBALD (Kirsch et al., 2019), and WAAL((Shui et al., 2020)). As shown

in the Fig 7.5 our method outperforms all the methods and comes in-par performance with

DAL-OSR.

Mixed UnLabeled Pool: Finally, we also tested the extreme case of active learning as

proposed in DAL-OSR. We followed the similar setup follwed by DAL-OSR in which 10,000

images from other datasets like SVHN,KMNIST,KMNIST was mixed into source dataset

of CIFAR-10. Thus the proposed method should distinguish not only between informative

and non-informative samples but also distinguish in-distribution data samples(CIFAR-10)

from out-of-distribution samples(SVHN,KMNIST,KMNIST. The better model untilizes the

budget well and picks the informative in-dataset samples. Eg: In the case of where the

budget is 1000, If the model picks 1000 samples out of which 400 belongs to samples from

out-of-distribution dataset. Then only 600 samples are sent for annonatation and add to

labeled pool dataset and rest of the 400 samples added back to unlabled pool which makes

total of 10,000 out of distribution data samples in the unlabeled pool at every state of active

learning. As the active learning increses in stages it makes more and more difficult for the

model to pick the in-label samples as unlabeled pool contains less in-label and more out of

distribution samples.

7.5 Conclusions and Future work

In this work, we proposed a novel method for Active learning under iid and non-iid

shift based unlabeled pool for computer vision based tasks using self-supervised learning

technique along with wiebull sampling method. We evaluated our work by extensive com-

77

parisons with existing methods on three open source datasets. We rigorously benchmarked

our method against the state-of-the-art active learning models on computer vision tasks. We

also presented different budget based and mixed unlabeled pool setup studies to show the

effectiveness of the proposed method with respect to the other methods. The results showed

our method consistently performed on par and better than existing baselines on computer

vision tasks. For future work, we would like to further explore more effective self supervised

methods for handling active learning at scale.

78

8| FIFTH IDEA: EFFICIENT DOCUMENT IMAGE CLASSIFICATION US-

ING REGION-BASED GRAPH NEURAL NETWORK

Gartner has estimated 80% of enterprises data is unstructured (emails, PDF and other

documents). These documents contain rich information and knowledge about internal and

external business communication and transactions. And they have ubiquitous applications

in numerous industrial sectors such as finance, health care, and law etc. Therefore, being

able to automatically and efficiently sort, analyze, and extract structure and content from

document images can improve efficiency and reduce cost for many business workflows. Doc-

ument image classification is an import task in these automation solutions, and has been a

popular research area for decades. Early works usually build classifiers that rely on Optical

Character Recognition (OCR) to extract text information, and employ heuristics to model

layout structural features. In light of the advancement of computer vision and deep learn-

ing, VGG-16 Simonyan and Zisserman (2014b) pre-trained on ImageNet Deng et al. (2009)

reported good classification performance on data sets mixed of business letters, print adver-

tisement, emails and magazine articles Kumar et al. (2014). Both Denk and Reisswig (2019)

and Xu et al. (2019) created document representations by encoding layout coordinates into

positional embeddings as inputs to pre-trained BERT Devlin et al. (2018) or transformer ar-

chitectures. The latest PubLayNet Zhong et al. (2019) addresses the limited public available

79

document image data sets by training a Mask R-CNN He et al. (2017) model on 360k images

of scientific articles, and enables transfer learning to other document domains. Motivated by

the development of graph neural network algorithms Wu et al. (2019); Zhang et al. (2018),

researchers Liu et al. (2019) attempted to use graph convolutions to model the interactions

among structural components of a document and between the visual and textual features,

as an alternative to pixel level or token level document modeling.

In contrast to fast moving research progress in document analysis and classification, few

have systematically studied the time and hardware resources when using different methods

and the financial implications of the model design. However, as document image classifica-

tions have been primarily motivated by its potential in commercialization, it is imperative

to study its model performance with computing resources requirements and financial impli-

cations. In this paper we propose an efficient document image classification framework as

shown in Fig. 9.1. Semantics regions of a document is extracted by pre-trained PubLayNet,

textual features are extracted by text embedding models and the image features are extracted

by a pre-trained VGG-16 model. Graphs formed for the document, with the document class

labels are used to train a sort pooling graph convolution network Zhang et al. (2018) which

normalizes and classify arbitrary graphs therefore documents. The major contributions of

our papers are as follows:

• We propose a novel document image classification framework which applies a graph

convolution neural network to a document image graph formed by semantic regions

extracted from a pre-trained document segmentation model. Moreover both image and

text features of the regions are extracted and assigned to the nodes so that information

80

from both modalities are captured and propagated in the graph convolutions. To

our best knowledge, our framework is the the first in effectively and economically

integrating image, text, and layout information for document image classification using

a graph convolution neural network.

• We have rigorously bench marked our proposed method against state-of-the-art pre-

trained vision models and transformer language models on document image data sets.

These include an insurance related document image data set consisted of 11 classes

and an open source data set of 10 classes. The results showed the classification results

of our method are comparable to those of baseline models, if not better.

• We extensively bench marked the computing resources required by all methods. The

results showed our framework needs substantially less computing resources and less

time, further indicating the cost advantages of training, deployment and hosting at

scale. Efficient model also helps accelerate model iterations and update.

We also discussed a few potential document image classification applications and the in-

frastructure to deploy our framework. The potentially large scale adoption of document

image classification further reinforced the need for an efficient document image classification

method.

8.1 Methodology

In this section, we briefly review the advantages and limitations when using either CNNs

or large language models in document classification. We also discuss document segmentation

and the intuitions of using region based representations. We then describe our proposed

81

efficient graph neural network, Eff-GNN

8.1.1 Deep Convolution Neural Network Learning Approaches

When using deep convolutional neural networks for document image classification, the

document is treated as an image and is ingested as tensor representing the pixel values of

the image. VGG-16 pre-trained on ImageNet can achieve good results on general business

documents Das et al. (2018). Even for the insurance data set, VGG-16 pre-trained on

ImageNet can be a powerful visual feature extractor.

8.1.2 Language Model based Approaches

In general, BERT-like pre-trained language models achieve superior performance on natu-

ral language processing tasks by adding self attention mechanism and positional information

to the encoder-decoder architecture. When using BERT-like models to classify document

images, we classify based on the contextualized embedding of text extracted from image.

DocBert Adhikari et al. (2019) assumes syntax features matter less if only the categories

of the document need to be decided. And DocBert successfully distills trained BERT into

a much smaller LSTM model. This gives us some insight that token level modeling for

document classification may not be necessary.

8.1.3 Document Segmentation

A business document contains visually salient structural components such as header,

footer, paragraph, table etc. Intuitively one can classify a document image by its layout

and structural components without accessing much of its content. The regions of structural

82

components are usually pixels or tokens with similar appearances or groupings. Hence regions

are a higher level abstraction and representation which we can leverage to classify this

document. Research in the computer vision community has provided plenty of tools of

segmenting document images. The latest advancement is PubLayNet which trained a Mask

R-CNN model for 360 thousand document images from scientific articles. The segmented

region results from PubLayNet

8.1.4 Efficient GNN for Document Image Classification

Ideally an effective document classification method need to leverage both textual, image

and layout information. However, training or fine tuning CNNs or large language models do

not only run into resource constraints (e.g. GPUs, memory), but also prevent fast model

iterations. We attempted to address this dilemma by graph representations using graph

representations to represent document. We then assign image and text features to the nodes

of the graph and apply a graph convolution neural network. Finally we classify the document

as classifying a graph.

Details of training our proposed Eff-GNN can be found in Algorithm 1. For each image

with class label, we extract its text using OCR PyTesseract and we extract its semantic

regions using PubLayNet. Each image is converted into a graph where each node is a region.

To generate the text feature of the nodes, we use Word2Vec to create the embeddings for

words in the region; to generate image feature of the nodes, we extract visual features from

that region using VGG-16 pre-trained on ImageNet. Text features and image features of the

node can be concatenated and assigned to the nodes. A graph convolution neural network

classifier with a SortPooling Zhang et al. (2018) layer is then trained on this data. We

83

Figure 8.1: Eff-GNN Framework overview: textual embedding, segmented regions and image

embeddings of an image are integrated when the graph of document is formed. Created graph

is fed into the Graph Convolution Neural Network for graph classification as document image

classification.

class label 0 1 2 3 4 5 6 7 8 9 10

Insurance 13 5 6 18 5 12 3 11 8 13 11

Tobacco 5 9 3 11 10 5 2 9 10 2 -

Table 8.1: Median number of nodes per class for the Insurance and Tobacco data sets.

adapted to this specific graph convolution neural network because it preserve features of

individual nodes and also enforces learning from graph global topology.

Till this end we have integrated textual, image and layout information into a document

classification task using a graph convolution neural network.

8.2 Experimental Setup

8.2.1 Datasets

For the Insurance dataset, we use the splits of 4544 images for train set and 1280 images

for test set; for Tobacco-3482 dataset, we use the standard splits of 2482 images for training,

84

800 images for testing, and rest 200 images for validation set.

8.2.2 Document Pre-processing

To construct a graph for each document image we need to utilize the different layout

regions’ information such as paragraphs, title, list, table present in each document. We

process the scanned document images using pre-trained PubLayNet to obtain the necessary

bounding boxes for each region. To extract the textual information present in the bounding

box of each region in the document images we apply PyTesseract, an open-source python

OCR package. All the results of the PubLayNet and PyTesseract were then serialized and

stored in tensor format using PyTorch. Paszke et al. (2019).

8.2.3 Hyper parameters and infrastructure

We use Hedwig1, an open-source deep learning toolkit with a number of implemented

of document classification models. We use a Tesla K80 GPU for all models requiring GPU

for train, and use amazon EC2-t2.micro and EC2-c type machine when only CPU is needed

. We use PyTorch 1.5 as the backend framework, and gensim Řeh̊uřek and Sojka (2010)

package for computing the node feature vectors using word2vec.

1https://github.com/castorini/hedwig

85

8.3 Results and Discussions

8.3.1 Comparing classification accuracy

We compare our proposed approach with the state-of-the-art deep learning models, VGG-

16 pre-trained on ImageNet and BERTbase pre-trained on Wikipedia. When using BERTbase

for classification, we extracted tokens from document images as input and fine tune BERTbase

with class labels. When using pre-trained VGG-16, we used it directly to extract document

image features for classification. No further fine-tuning is used. We also compared our model

with DocBERT which is specially designed for document level classification by simplifying

BERT models with knowledge distillation.

Table 8.2 shows the model comparison results of classification AUC on the two data sets.

In the insurance data set, our proposed model achieves 90.7% to 91.0 %, very competitive as

compared to models in BERT families (91.95 %) and VGG-16 (90.6 %). In the Tobacco-3482

data set, our models achieved 73.5 % to 77.5 % , comparable to models in BERT families

(82.3 %) and VGG-16 (81.5 %). The fact our proposed model shows more advantages when

classifying the insurance data set could be due to the high intra-class variance and low

inter-class variance in the Tobacco-3482 data set Kölsch et al. (2017).

We also experimented with combining text and image embedding features as node features

in the graph neural network. The combination does provides ample AUC improvements in

our proposed method on Tobacco-3482 dataset i.e. 73.5 % for Eff-GNN + Word2Vec and

for 77.5 % for Eff-GNN + Word2Vec + Image Embedding. In the insurance data set, Eff-

GNN + Word2Vec + Image Embedding shows little improvement over using Word2Vec text

features alone. That could be due to the fact that both the textual and image content in

86

the insurance data set provides enough information for classification. This assumption can

be further justified by the similar classification results achieved by models in BERT family

and VGG-16.

In addition to classification performance, we compare the number of trainable parameters

of each model. In both the insurance data set and Tobacco-3482, our model size is drastically

smaller than models in BERT families and VGG-16. We calculate the parameters of our

model as the sum of parameters in the graph neural network and the parameters in trained

word2vec. The small sizes of graph neural network model (Table 8.1) results in only 160,000

parameters. The Word2Vec model is also relatively light weight because each of the data set

contains a very limited vocabulary. Note we did not include the 44.2 million parameters of

PubLayNet, because in our framework we do not train or fine-tune any parameters of the

PubLayNet.

8.3.2 Comparing computing resources

We also bench marked the time and memory required for training our proposed Eff-GNN

against other models. Table 8.3 reports the statistics on the insurance data set, 4544 images

for training and 1280 images for inference. Eff-GNN models take less than 5 minutes to

train 50 epochs whereas VGG-16 or models in BERT Family take hours to train less number

of epochs (15 epochs and 28 epochs respectively). In particular Eff-GNN can run on CPU

alone and its model training time is comparable to its GPU counterpart. This is consistent

with the small size of our model (See Table 8.2, ”Parameters” column). Eff-GNN can

achieve these advantages because it models the documents using a graph formed by regions

extracted by PubLayNet. The time of using PubLayNet to extract regions for training

87

images are negligible. The size of the resulting graph leads to a small model compared

to deep models trained on pixel level information or transformers trained on token level

information. Therefore Eff-GNN only uses 470MB in GPU memory with additional 3.5 GB

for using PubLayNet. Consequently Eff-GNN requires drastically less time for the inference

of 1280 images (0.79 seconds) as compared VGG-16 (103 seconds) and BERT (40 seconds).

Note the time of document pre-porcessing steps such as OCR and training Word2Vec model

are not included in the table. Although these two steps are extra for our proposed framework,

we contend that their addition does not nullify the efficiencies gained through graph neural

nets. Even BERT based models require OCR extraction pre-processing step. Just one

Word2Vec needs to be trained for the entire data sets and OCR can be optimized by e.g.

parallel processing.

Compared with the SOTA pre-trained large models, our proposed Eff-GNN framework

achieved competitive classification results on our insurance document image data sets, and

achieved comparable results on the the open source Tobacco-3482 data set. We also showed

that combining text and image information as the node features in our graph neural network

can be advantageous when OCR fails to extract text information or when the two modalities

are complimentary. Our proposed method models document representations using extracted

semantic regions, instead of using token level or pixel level information. Therefore our model

size is dramatically less than other methods, and can be run on CPU machines.

8.4 Applications and Deployment

Document image classification can find many enterprise level applications in insurance

companies to reduce manual review and stream line claims processes. For example, casualty

88

Data Set Model AUC # Parameters
Insurance DocBert Adhikari et al. (2019) 91.95 % 110M

BERT Devlin et al. (2018) 91.95 % 110M
VGG-16 Simonyan and Zisserman (2014b) 90.6 % 130M
Eff-GNN + Word2Vec Mikolov et al. (2013) 91.0 % 124k + 610k
Eff-GNN + Word2Vec Mikolov et al. (2013) + Image Embedding 91.0 % 126k + 610k

Tobacco-3482 VGG-16 Simonyan and Zisserman (2014b) 81.5% 130M
DocBERT Adhikari et al. (2019) 82.3 % 110M
BERT Devlin et al. (2018) 79.0 % 110M
Eff-GNN+ Word2Vec Mikolov et al. (2013) 73.5 % 124k + 610k
Eff-GNN + Word2Vec Mikolov et al. (2013) + Image Embedding 77.5 % 126k + 610k

Table 8.2: Classification accuracy on the Insurance, Tobacco-3482 dataset.

Insurance Batch Size Epochs Training Time GPU Memory Inference Time
VGG 32 28 2.30 hours 7.08GB 103 seconds

Eff-GNN (GPU) 32 50 3.5 mins. 470MB + 3.5 GB 0.79 seconds
Eff-GNN (CPU) 32 50 4.1 mins. NA 0.79 seconds

BERT 16 15 6.2 hours 10.5GB 40 seconds

DocBERT 16 15 6.3 hours 8.1GB

”40 times faster
than BERT”
Adhikari et al. (2019)

Table 8.3: GPU Memory(training), hardware and time required by different models

on the Insurance dataset. The numbers are reported for training 4544 images and

inference for 1280 Images.

injuries claims usually have multiple correspondences with hospitals and clinics, each involv-

ing documents to be processed by the insurance company. Personal automobile claims pro-

cessing can use automatic document classification of letters of guarantee, purchase receipts,

and others in order to auto-approve a certain percentage of auto claim reimbursements. Each

year, millions of claim related document images are sent to insurance companies belonging

to hundreds of categorizes related to financial institutions, medical providers, or legal orga-

nizations. A scalable document classifier can assign the correct categories as meta data to

a document, which can be used to route to appropriate downstream tasks. Given the scale

document image classification can be deployed in an enterprise, an efficient framework for

model training and iterations, together with an economical model hosting solutions has clear

cost advantages.

89

To support all those applications and achieve scalability, we have deployed this trained

model using AWS Serverless Application Model framework as an API via AWS Lambda.

We have packaged the model artifacts and inference code in a Docker image, and used the

container image support functionality to deploy this to as a Lambda function, surfacing this

all through AWS API Gateway. This will host the model behind an Amazon API Gateway,

which serves as the front end and handles authentication when user submit the request.

All the deployments, security permissions, and advanced configuration capabilities are doing

using YAML.

8.5 Conclusion:

Millions of business document images, such as medical bills, attorney letters, contracts,

bank statements and personal checks are processed in insurance companies to support a wide

range of business workflows and applications. A scalable and efficient automation that is

more intelligent than the brittle OCR-template based method is desired.

In this paper we proposed a novel document image classification that uses graph con-

volution neural network to integrate text, image, and layout information of a document.

We rigorously bench marked our method against the SOTA computer vision and language

models on both the insurance dataset and Tobacco dataset. We also compared computing

time and hardware resources required for training those models. The results showed our

method is not only competitive on classification performance but also is much smaller in size

therefore requires much less time and resource. This could translate to big cost advantages of

hosting and deployment in real world applications. We are also working on enabling general

document classification that can handle hundreds of document classes. A few options include

90

training larger models for domain specific transfer learning, enabling few shot learning and

continual learning when dynamically adding new document classes. In addition, we would

like to further explore more effective document representations including more sophisticated

graph representations or jointly trained layout Xu et al. (2019).

91

9| SIXTH IDEA: DOMAIN AGNOSTIC FEW-SHOT LEARNING FOR DOC-

UMENT INTELLIGENCE

The generalisation performance of a convolutional neural networks (CNN) is majorly

predisposed by the quantity, quality, and diversity of the training images. All the training

data needs to be annotated in-hand before, in many real-world applications data is easy

to acquire but expensive and time-consuming to label. The goal of the Active learning for

the task is to draw most informative samples from the unlabeled pool which can used for

training after annotation. With total different objective, self-supervised learning which have

been gaining meteoric popularity by closing the gap in performance with supervised methods

on large computer vision benchmarks. self-supervised learning (SSL) these days have shown

to produce low-level representations that are invariant to distortions of the input sample and

can encode invariance to artificially created distortions, e.g. rotation, solarization,cropping

etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks

for learning. In this paper, we unify these two families of approaches from the angle of active

learning using self-supervised learning mainfold and propose Deep Active Learning using

Barlow Twins (DALBT), an active learning method for all the datasets using combination

of classifier trained along with self-supervised loss framework of Barlow Twins to a setting

where the model can encode the invariance of artificially created distortions, e.g. rotation,

92

solarization,cropping etc.. We propose to use joint loss function which consist classifier

loss and self-supervised loss borrowed from Barlow twins to jointly learn an encoder that

produces representations invariant across such pairs. DALBT is a method that is simple, easy

to implement and train, and of broad applicability. We carried out an extensive evaluation of

our novel proposed method of active learning, achieving state-of-the-art results on MNIST,

Fashion-MNSIT, CIFAR-10. Additionally, to show the robustness of the proposed model we

also showed the results on where the unlabeled pool consists of a mixture of samples from

multiple datasets, proposed model can successfully distinguish between samples from seen

vs. unseen datasets.

Few-shot learning aims to generalize to novel classes with only a few samples with class

labels. Research in few-shot learning has borrowed techniques from transfer learning, metric

learning, meta-learning, and Bayesian methods. These methods also aim to train models

from limited training samples, and while encouraging performance has been achieved, they

often fail to generalize to novel domains. Many of the existing meta-learning methods rely on

training data for which the base classes are sampled from the same domain as the novel classes

used for meta-testing. However, in many applications in the industry, such as document

classification, collecting large samples of data for meta-learning is infeasible or impossible.

While research in the field of the cross-domain few-shot learning exists, it is mostly limited

to computer vision. To our knowledge, no work yet exists that examines the use of few-

shot learning for classification of semi-structured documents (scans of paper documents)

generated as part of a business workflow (forms, letters, bills, etc.). Here the domain shift

is significant, going from natural images to the semi-structured documents of interest. In

this work, we address the problem of few-shot document image classification under domain

93

shift. We evaluate our work by extensive comparisons with existing methods. Experimental

results demonstrate that the proposed method shows consistent improvements on the few-

shot classification performance under domain shift.

9.1 Related Work

This work explores a method which can be used for few-shot learning on multi-channel

document data, in which the meta-training is done on a distinct domain of open source

documents. Work has been done in this area addressing the separate problems of:

1. Meta-training a few-shot model on document data,

2. Combining visual and textual feature channels via canonical correlation, and

3. Domain adaptation of models trained on image data.

This work proposes to address all of these issues with a single approach, driven by a distinct

business need. Here we detail previous work done in each of these directions.

9.1.1 Meta-learning

Meta-learning has been a powerful tool to answer the challenge of the large data require-

ments that many deep learning models seem to face. So far, many of the applications of

deep meta-learning have been in few-shot image classification Finn et al. (2019); Ravi and

Larochelle (2016); Snell et al. (2017). Meta-learning for few shot image classification has

often been evaluated on data sets such as ImageNet Russakovsky et al. (2015), CIFAR-10

and CIFAR-100 Krizhevsky (2009b), and Omniglot Lake et al. (2011). However, there has

been little done to apply the methods of meta-learning to industry level document images.

94

9.1.2 Canonical Correlation

One aspect of enterprise level document images is that they typically have two feature

channels; a visual channel, and a text channel. Each has useful information that can be

leveraged for document classification. However, a challenge to overcome with this is that

typically pre-trained models are used as feature extractors, which are further fine tuned

during meta-training. The vectors extracted by these pre-trained models (one for each

channel mentioned above) are typically not the same length, and encode the information of

the channel in semantically different ways. One method of overcoming this challenge is the

use of Canonical Correlation Akaho (2006); Andrew et al. (2013); Bach and Jordan (2002);

Hotelling (1992); Melzer et al. (2001), which in a sense aligns two vectors via projections

in such a way that the projections are maximally correlated. We use a later iteration of

this method called Deep Canonical Correlation Andrew et al. (2013). This allows us to

efficiently combine the two modalities of visual and text features occurring in enterprise

document images for the purpose of few-shot meta-learning.

9.1.3 Domain adaptation

In the traditional machine learning setting, the data samples used for training and testing

an algorithm are assumed to come from the same distribution. In practical applications

however, this is not always a valid assumption; the data available for training may fall

into a different distribution than the data the model is expected to perform on in a live

system. A typical example of this is a model which is trained on an open source data set

is then desired to be used for inference in a smaller, proprietary data set, perhaps for a

95

slightly different task. Domain adaptation is a subfield of machine learning that attempts to

overcome this challenge. Typical approaches include transfer learning Pan and Yang (2010),

semi-supervised learning Pise and Kulkarni (2008); Zhu (2008), multi-task learning Caruana

(2004), and meta-learning Huisman et al. (2021). Recent methods include (Liu et al., 2020)

which uses feature transformation ensemble model with batch spectral regularization, (Cai

and Shen, 2020) aims train specific layers of network using MAML, (Jiang et al., 2020) uses

a new prediction head and global classification network based on semantic information for

addressing the cross-domain adaptation.

9.2 Methodology

In this section, we briefly formally define the few-short learning and cross-domain few

shot learning problems. We then describe our proposed method, Cross Domain Few-Shot

Learning using Deep Canonical Correlation for Document Intelligence dubbed as DCCDI

in later parts of the paper.

9.2.1 Formal problem definition

Formally, a few-shot learning problem is denoted as P = (Dsource,Dtarget); Dsource is the

meta-train set from where base classes as sampled for episodic training. Novel classes during

meta-test are sampled from the target domain Dtarget, such that Dsource ∩ Dtarget = ∅. For

brevity, we will define the domain of the source dataset Dsource to be

dsource = {X ,Y , Psource} (9.1)

96

Figure 9.1: The overall architecture of our approach. LEFT(Stage-1): Using episodic training

paradigm train the last k layers of ResNet-10 (shown in green color) using Cross-entropy loss by

support set . Left(Stage-2): Using episodic training paradigm train all layers of ResNet-10 using

Cross-entropy loss by support, Query set and by including the Metric-Learning Module. During

Meta-testing all the Resnet-10 layers will be fixed. RIGHT: Canonical Correlation Block: During

Meta-testing all the text extracted from document image and both image, textual features was

trained using canonical correlation loss

where X is the feature space of all the inputs in d-dimensional space; X ⊂ Rd and Y is the

label space of all the labels; Y ⊂ {1, . . . C} where is the number of classes, and Psource is the

joint probability distribution over the feature,label pairs of {X ,Y} denoted by p(x, y). A

similar definition can be made for the target dataset.

We focus on few-shot settings for document classification using a model f with parameters

θ, wich we will denote fθ, via meta learning tasks using episodic training from the meta-train

set Dsource and aim to demonstrate generalization to novel classes present in the meta-test

set Dtarget.

During meta training the model fθ is provided with a wide range of classification tasks Ti

97

drawn from the datasetDsource = {T1, . . . , Tn} where each episodic task is Ti = {(xi
1, y

i
1), . . . , (x

i
k, y

i
k)},

and where xi represents image i and yi its corresponding label.

Each task Ti is further partitioned into a support set Si used for training, and a query set

Qi used for testing. That is, Ti can be written as the disjoint union Ti = Si∪̇Qi. Overall,

Dsource can be written as Dsource = {(S1,Q1), . . . , (Sn,Qn)}.

We follow the conventional way of preparing the support and query sets for each task

(Ti), which is a C-way, N -shot classification problem in which C classes are randomly drawn

from the entire set of classes from D. Furthermore, for each of the sampled classes, N and

M examples are sampled for the support and query set respectively such that each task Ti

consists of (Si,Qi) where Si = {(xi, yi)}C×N
i=1 is a support set consisting of N labeled images

for each of the C classes and the query set Qi = {x̃i, ỹi}C×M
i=1 with M samples per class and

y, ỹ ∈ {1, . . . , C} are the corresponding class labels.

The cross-domain few-shot learning scheme matches closely with our real-world industry

setting where the source domain Dsource and the target domain Dtarget belong to different

distributions. As in Eq. 9.1, the joint distribution of the source dataset is indicated as

Psource and the target domain distribution can be denoted as Ptarget. Furthermore, as is the

case in a cross-domain few-shot learning setting, Psource ̸= Ptarget and Ys is disjoint from Yt.

Also, similarly to a few-shot learning paradigm, during the episodic meta-training phase, the

model is trained on a large number of tasks Ti sampled from the source domain Dsource.

During the meta-testing phase, the model is presented with a support set S = {xi, yi}K×N
i=1

consisting of N examples from K novel classes and Q = {xi, yi}K×M
i=1 consisting of M exam-

ples which are very different from the meta-training classes.

After the meta-trained model f̂θ is adapted to the support set, a query set from novel

98

classes is used to evaluate the model performance.

9.2.2 Canonical Correlation

Ideally, an effective document classification method needs to leverage both textual and

image (including layout) information. When using deep convolutional neural networks for

document image classification, the document is treated as an image and is ingested as tensor

representing the pixel values of the image to get the visual feature vector of the document

images.On the other hand, all the text from the document image is extracted, converted into

tokens and passed through a BERT-like pre-trained transformer-based language model to

obtain textual features. Some of the ways of utilizing both the textual and visual features

during the classification are to concatenate or average them before passing them through

the final classification layer. Some of the disadvantages of doing this are a) More computa-

tional resources are required for model training for large dimensional features b) Difficult to

maintain the synchronization between both the visual and textual modalities, which might

impact model performance.

We address this dilemma by introducing the Deep Canonical Correlation for Document

Intelligence Module (DCCDI) during meta-test phase to represent a document utilizing both

the textual and visual features. By using the proposed DCCDI module, we produce highly

correlated transformations of multiple modalities of data such as textual and visual us-

ing complex non-linear transformations. Canonical correlation was proposed by Hotelling

(Hotelling, 1992). It is a widely used technique in the statistics community to measure the

linear relationship between two multidimensional variables, used in finding linear projections

of two multidimensional vectors that are maximally correlated. Later on it was applied to ma-

99

chine learning by different researchers (Akaho, 2006; Andrew et al., 2013; Bach and Jordan,

2002; Melzer et al., 2001). We use deep canonical corelation method propsed by (Andrew

et al., 2013) in our DCCM module with the goal of achieving fine-grained cross-modality

alignment between the visual and textual modalities.

As shown in RIGHT Figure 9.1; V ∈ RN×d1 is the multidimensional vector for the visual

modality where d1 is total number of dimensions and T ∈ RN×d2 is the multidimensional vec-

tor for the textual modality where d2 is total number of dimensions. N is the total number of

inputs available in each modality. The input multidimensional vectors in different modalities

are transformed using two neural networks g with parameters ϕ1, h with parameters ϕ2

Z1 = gϕ1
(V), Z2 = hϕ2(T) (9.2)

Z1 ∈ RN×d and Z2 ∈ RN×d are the d dimensional outputs of the neural networks. Both

the neural networks g, h are optimized jointly with a goal of making the correlation between

Z1 and Z2 as high as possible:

(ϕ∗
1, ϕ

∗
2) = argmax

ϕ1,ϕ2

corr(gϕ1
(V), hϕ2(T))

The above equation can be solved in multiple ways. For this work we chose an approach

suggested by (Martin and Maes, 1979) and that utilizes Singular Value Decomposition.

Define the centered output matrices by Z̄i = Z ′
i − 1

N
Z ′

i1. Then define

100

Σ̂11 =
1

d− 1
Z̄1Z̄ ′

1 + r1 (9.3)

Σ̂22 =
1

d− 1
Z̄2Z̄ ′

2 + r1

Σ̂12 =
1

d− 1
Z̄1Z̄ ′

2

where r1 > 0 is a regularization constant. As discussed in Andrew et al. (2013), the corre-

lation of the top k components of Z1 and Z2 is the sum of the top k singular values of the

matrix T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 . If we take k = d, then this is exactly the matrix trace norm of

T ; corr(Z1,Z2) = ∥T∥tr = tr(T ′T)1/2.

Both the networks parameters are updated by computing the gradient of corr(Z1,Z2)

and update the parameters using backpropagation. If the singular value decomposition of T

is T = UDV ′, then

∂ corr(Z1,Z2)

∂Z1

=
1

d− 1
(2∇11Z̄1 +∇12Z̄2) (9.4)

where

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22

and

∇11 = −
1

2
Σ̂

−1/2
11 UDU ′Σ̂

−1/2
11

101

9.2.3 DCCDI Model

The meta-training approach of our proposed DCCDI method can be found in Algorithm

1. Our primary focus in this work is to improve the generalization ability of few-shot classifi-

cation models to unseen domains by learning a prior on the model weights which is suitable

for Meta-Fine-tuning during the meta-testing phase on document datasets. We have also

proposed a canonical-correlation-based layer in the model to integrate effectively both the

textual and visual modalities of the document images which can be seen as a fine-grained

cross-modality alignment task.

Domain Agnostic Meta-Learning for Document Intelligence

Our focus in this work is to improve the generalization ability of our meta-trained model

to arbitrary unseen document intelligence domains. The Meta-training that incorporates

CCDI its described in detail in Algorithm 1.

We aim to train a model that can adapt swiftly to novel unseen classes. This problem

setting is often formalized as cross domain few-shot learning. In this proposed approach, the

model is meta-trained on a set of tasks generated using Dsource, such that the meta-trained

model can quickly adapt to new unseen novel tasks using only a small number of examples or

trials generated using Dtarget. In this section, we formally state the problem and present the

general form of our algorithm. Similar to Meta-Learning algorithms the proposed algorithm

can be subdivided into following phases.

102

Meta-Training Phase

We used ResNet-10 as our visual feature extractor or encoder. It have been shown

recently that this pre-training process significantly improves the generalization (Gidaris and

Komodakis, 2018; Lifchitz et al., 2019; Rusu et al., 2018). We pre-train the visual feature

encoder on a source dataset (miniImageNet or tiredImageNet) by incorporating a final linear

layer.

After the pre-training stage, we start our meta-training process of few-shot classification

training stage. First, we train and update the last k layers of the visual feature encoder

E followed by a linear classifier layer. We minimize the standard cross-entropy loss on the

meta-training dataset by using only the support set images as shown in the Stage-1 of Figure

9.1. After this Stage-1 training process, all the layers of the visual feature encoder block of

the model fθ will be unfrozen.

In the Stage-2 phase, we train the proposed model using the traditional episodic meta-

learning paradigm. For each episode a new task Ti is sampled from Dsource, the model fθ

is trained with N samples present in the support set. The model is then tested on query

samples from the same task. The prior parameters of the model f are then updated by

considering the test error on the query set. Actually, the test error on sampled tasks Ti

serves as the training error of the meta-learning process. All the parameters in the network

are updated using the MAML (Finn et al., 2017b) first order approach. For this stage-2,

we proceed similarly to (Cai and Shen, 2020; Chen et al., 2021; Guo et al., 2020) which

successfully use a metric mapping module to project the final linear classifier scores onto a

metric space which can be used to compare support and query samples, hence increasing the

103

overall accuracy. A graph neural network is used for the Metric-Learning module which is

similar to architecture used in few-shot graph neural networks (Garcia and Bruna, 2018).

Meta-Testing or Meta-Deployment Phase

At the start of the meta-test phase the first l layers of the visual feature extractor was

frozen and the last k layers are left unfrozen. With the main goal of adapting the meta-

trained model for the business document domain, we introduce the CCDI module during our

deployment phase. During Meta-Testing, a new task Ti is drawn from the Dtarget. The input

document images are resized to 224 × 224 then fed into the visual feature blocks. Visual

features are extracted for each of the document image present in the support set using the

visual feature encoder block from the meta-trained model f̂θ. Similarly for each of the doc-

ument images, text is extracted using Pytesseract and then fed into pre-trained longformer

model (Beltagy et al., 2020) to extract textual embedding features. Both the textual and

visual modalities are passed through its corresponding deep Canonical Correlation bock and

jointly optimized. Training the canonical co-relation block results in representations that

aligns both the modalities (Image and text). The resulting meta-trained model along with

the metric module, which consists of an ensemble of a graph convolution neural network

classifier and a linear classifier layer is then trained on this data. Finally both the scores are

combined and treated as the final classification scores.

9.3 Experiments and Results

In this section, we first introduce the different document image datasets used in our

training and evaluation process, then show quantitative comparisons against other baseline

104

Algorithm 4 DCCDI Meta-Test Protocol
Require: p(T)← T1..n ; n meta-testing tasks generated from Dtarget in the form of K shot-N-way

classification
Require: f̂θ ← meta-trained model
Require: f̂bert ← pre-trained longformer model
Require: gϕ1 , gϕ2 ← Canonical Corelation Module
Meta-Test

for i=1,...,n do
Sample Task Ti from p(T)
Sample N samples from support set S and M samples from query set Q.
Obtain visual, texual modality Z1 = gϕ1

(f̂θ(S)) and Z2 = gϕ2
(f̂θ(S)) Train the canonical

co relation module for 20 steps using canonical loss as shown in Eq 9.4 ∇ϕ1,ϕ2LTi(Z1,Z2)
by following the
Concatenate the visual features and low dimensional textual features found using the
trained canonical co-relation module ĝϕ1 , ĝϕ2

Feed the concatenated feature vectors through feature extractor and then through the
metric learning module

Calculate ∇θLTi(f̂θ(Q)) using the query set samples

Compute adapted parameters with gradient descent and update the model parameters.

methods in the following sections. The code will be attached as supplementary material and

will be released publicly after the conference.

9.3.1 Datasets

Robustness of the proposed approach has been tested using standardized few-shot clas-

sification datasets miniImageNet (Ravi and Larochelle, 2016), tieredImageNet as the

single source domain, and evaluate the trained model on two document domain datasets

as target domain. The two training datasets are MiniImageNet dataset which is a subset

of bigger ImageNet derived from ILSVRC- 2012 (Russakovsky et al., 2015) which is used

in our meta-training process consists of 60,000 images from 100 classes, and each class has

600 images in which 64 classes for training, 16 classes for validation, 20 classes for the test.

105

Baselines Embedding Net
INSR Dataset (5-way) RVL Dataset (5-way)

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
ProtoTypical Networks Conv-4 57.97 % 62.21 % 65.4% 44.64% 48.85 % 53.42 %
ProtoTypical Networks Resnet-10 50.04 % 53.33% 52.78% 49.50 % 52.58 % 53.25 %
Relational Networks Conv-4 55.47 % 56.58 % 57.27% 41.28 % 46.93 % 49.10 %
Relational Networks ResNet-10 32.42 % 43.08% 46.53% 33.08 % 34.68 % 37.57%
Matching Networks ResNet-10 48.53 % 50.21% 58.92% 40.57 % 44.76 % 52.21%
DCCDI without CCA ResNet-10 65.21 % 70.93% 77.2% 60.85 % 66.45 % 70.32 %
DCCDI ResNet-10 67.82 % 72.79 % 79.78% 61.76 % 67.40 % 72.93 %

Table 9.1: Few Classification accuracy on the INSR, miniRVL dataset when source

domain is miniImagenet.

Baselines Embedding Net
INSR Dataset (5-way) RVL Dataset (5-way)

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
ProtoTypical Networks Conv-4 61.09 % 61.41 % 65.18% 44.42% 46.94 % 54.50 %
ProtoTypical Networks Resnet-10 52.21 % 52.52% 53.76% 46.86 % 46.18 % 52.30 %
Relational Networks Conv-4 50.28 % 56.82 % 60.29% 41.30 % 48.61 % 47.61 %
Relational Networks ResNet-10 29.36% 39.36 % 54.82% 26.58 % 29.81 % 44.29 %
Matching Networks ResNet-10 40.09 % 45.88% 48.10 % 33.68% 42.37 % 43.92%
DCCDI without CCA ResNet-10 65.73 % 71.75% 77.11% 61.32 % 66.92 % 71.04 %
DCCDI ResNet-10 66.68 % 74.01 % 78.85 % 62.05 % 67.55 % 72.61 %

Table 9.2: Few Classification accuracy on the INSR, miniRVL dataset when source

domain is tieredImageNet.

We have used 64 classes using our meta-training phase for episodic training of the proposed

model. The TieredImageNet dataset is another dataset derived from ImageNet, it consists

608 classes in total derived from 34 high-level categories. These categories are split into 20

meta-training, 6 meta-validation and 8 meta-test , which corresponds to 351 train classes,

97 validation classes and 160 test classes respectively. We have used 351 train classes for the

training the model using episodic training.

We use the following two datasets to evaluate our proposed model. The Insurance com-

pany dataset, dubbed as INSR for anonymity contains 5772 document images which spans

across 11 categories. Some Categories from the INSR dataset include Medical Bills, Medical

Authorizations, Medical Records etc.

The second dataset is a few-shot learning dataset dubbed as The miniRVL dataset

106

Harley et al. (2015) that has been generated from a larger RVL dataset which consists of

400,000 images which spans across 16 categories. The data relates to document classification

and include Advertisements, Emails among other document types. The miniRVL dataset

consists of16 classes with 1000 images per class and it is designed to keep the inter-class

similarity sufficiently high to purposely pose a few-shot learning document classification

challenge.

9.3.2 Document Pre-processing

To construct the textual features for each document image, we use PyTesseract to extract

all the text present in the document. All the extracted text is then passed through longformer

model pre-trained on longformer-base-4096 (Beltagy et al., 2020) and the textual feature

vector is then collected for each image. We have used longformer models due to it’s increased

capacity to handle documents of thousands of tokens or longer as we want to utilize all the

textual information present in the document images.

For all the experiments, we measured performance by computing the average accuracy

across 3 independent runs.

9.3.3 Implementation Details:

We compared our method to three metric-based learning methods: Matching Networks

(Vinyals et al., 2016), Relation Networks (Sung et al., 2018), and Prototypical Networks

(Snell et al., 2017). We also compared the proposed method using visual and textual features

to the proposed method using only visual features. Prior to our meta training phase we also

pre-trained our image feature extractor by minimizing the standard supervised cross-entropy

107

loss on the source domain dataset such as miniImageNet or TieredImageNet. This is similar

to several recent works (Gidaris and Komodakis, 2018; Lifchitz et al., 2019; Rusu et al.,

2018) that have shown significant improvement in classification accuracy via this method.

In all our experiments, we used ResNet-10 model as the backbone of the visual encoder. We

also included ablation studies to see the effect of our proposed method for various hyper

parameters.

9.3.4 Hyper parameters and infrastructure

We use easyfsl1, an open-source deep learning toolkit with a number of implementations

of metric-based learning methods. We use a Tesla V100 GPU, consisting of 16GB of memory

for all models requiring GPU for train, and use amazon EC2-t2.micro. We use PyTorch 1.9

as the backend framework, and the Pytesseract package for extracting the text from the

document images. We used the public architecture implementation from official matching

networks (Chen et al., 2019) and relational networks, and the graph neural network is trained

using the official implementation for few-shot graph convolutional network2. We used the

canonical correlation block containing two neural networks, their architectures as shown in

Table 9.3. Both the network parameters were optimized together using canonical loss using

the RMSprop optimizer with a learning rate of 0.001

1https://github.com/sicara/easy-few-shot-learning
2https://github.com/vgsatorras/few-shot-gnn

108

Layer Visual Feature Text-Feature

Input 512 786
1st layer 1024, tanh 1024, tanh
2nd layer 1024, tanh 1024, tanh

3rd layer (output) 20, linear 20, linear

Table 9.3: Architecture of CCDI Block

9.3.5 Comparing classification accuracy

MiniImageNet

Results comparing the baselines to our model on meta-trained on miniImagenet and

deployed on document image datasets are shown in Table 9.1. For 5-shot 5-way, 10-shot

5-way, and 20-shot 5-way, our proposed model outperforms all the existing baselines. As

shown in the Table 9.1 all the baseline models, Prototypical Networks, Matching Networks

and Relational Networks work well when the embedded model is Conv-4 and the performance

degrades rapidly when a Resnet-10 block was used as an embedding model for each metric-

based baseline method. As shown, the baseline method which closest performance to our

proposed approach Prototypical network which achieves 61.09% accuracy for (5-shot, 5-

way). However, performance doesn’t improve much for both the (10-shot, 5-way) and the

(20-shot, 5-way) classification. The proposed CCDI Model without the canonical co-relation

block achieved an accuracy of 65.73% and the one with the canonical co-relation block has

achieved an state-of-the-art accuracy of 66.68% which shows the significance of proposed

method during the meta-testing phase.

Our experiments followed the same setup described above for meta-testing on the open

source RVL dataset. Results are shown in Table 9.2. However the miniRVL dataset classi-

109

fication task is more challenging as it contains many documents that doesn’t follow specific

layout structures within classes. As shown Table 9.2 (b), the proposed method also out-

performs the rest of the baseline methods and achieves state-of-the-art performance on this

dataset by a large margin of up to 12% when compared to its closer competitor: Relational

Networks.

TieredImageNet

To test the effectiveness of the proposed approach when meta-trained on a bigger do-

main, we repeated the experiments of the previous section. Results are shown in Table

9.2. On the INSR dataset, the models PrototTypical Networks(Conv-4), PrototTypical Net-

works(ResNet10), Relational Networks(Conv-4),Relational Networks(ResNet10)and Match-

ing Networks(ResNet10) achieved mean accuracies of [61.09%, 52.21%, 50.28 %, 39.36%,

48.10%], respectively for (5-way, 5-shot) classification. In comparison, our proposed method

achieved an accuracy of 66.68%. PrototTypical Networks (Con-4) came in second, with

an accuracy of only 61.09% , followed by Relational Networks Networks(Con-4) with an

accuracy of 50.28%. Finally, we found that our proposed model outperform those existing

baselines in all the scenarios of (5-way, 5-shot), (10-way, 5-shot) , (20-way, 5-shot) and results

can be found in the Table 9.2.

Vector Size Accuracy

15 64.75%
20 65.92%
25 64.88%

Table 9.4: Effect on Output Vector dimension on Accuracy

110

No of Aug Images Accuracy

0- Augmented Images 66.68%
5- Augmented Images 65.44%
10- Augmented Images 65.39%
15- Augmented Images 64.59%

Table 9.5: Evaluation Augmentation Results on INSR Dataset when meta-trained on TieredIma-

genet

9.3.6 Ablation Studies

Several ablation studies has been done to understand the significance and impact of

the different hyperparameters on the proposed model. To evaluate the effectiveness of our

proposed canonical correlation module for combining the textual and image features for doc-

ument image classification, we first investigate the performance of the canonical correlation

module for different output dimensions for Z based on the textual content and visual fea-

tures. We did grid search the output dimensions from the set of [10,15,20,25] and results

are shown in Table 9.4. The vector of size 20 gave the best performance results for different

experiments.

We also evaluate the effectiveness our proposed approach for aligning the textual and

image features instead of directly concatenating the textual and image features for document

classification. As it is shown in Table 9.6, the DCCDI method achieves higher accuracies

than the widely used concatenation of the image and textual features. We also performed an

ablation study to see the effect of data augmentation on the generalization of performance on

unseen data during the meta-test phase. As it is shown in various studies, data augmentation

helps in the process of generalization for visual tasks which provide view-point invariance

for each visual image. For this, we sampled additional images from the support set, and

111

perform jitter, random crops, and horizontal flips on a randomized basis. As we can see in

Table 9.5 applying data augmentation does not have a positive effect on the solution. One

reason for this might be that document images contain specific structure in them.

Method 5-Shot 20-Shot

Text-Concat 66.64% 78.51%
DCCDI 67.8% 79.78%

Table 9.6: Effect on CCDI block vs text-concatenation

9.4 Conclusion and Future Work

In many companies, millions of unlabeled documents containing information relevant to

many business-related workflows have to be processed to be classified or / and to extract key

information. Unfortunately, a large percentage of these documents consists of unstructured

formats in the form of images and PDF documents. Examples of these types of documents

include: medical bills, attorney letters, contracts, bank statements and personal checks.

This process automation it usually refer as ”Document intelligence” and relies on the use

of models that combine both the image and text information to classify, categorize, and

extract the relevant information. However, the labeled data needed by traditional learning

approaches maybe too expensive and taxing on business experts and hence not practical in

real-world industry settings. Hence, a few-shot learning pipeline is highly desired.

In this work, we proposed a novel method for few-shot document image classification

under domain shift for semi-structured business documents, using the canonical correlation

block to align extracted text and image feature vectors. We evaluate our work by extensive

comparisons with existing methods on two datasets. We rigorously benchmarked our method

112

against the state-of-the-art few-shot computer vision models on both an insurance process

derived dataset and the miniRVL dataset. We also presented the different ablation studies to

show the effectiveness of the proposed method. The results showed our method consistently

performed better than existing baselines on few-shot classification tasks. For future work,

we would like to further explore more effective document representations including more

sophisticated graph representations , or jointly trained layouts Mandivarapu et al. (2021a)

and future directions of implementing the continual learning in document classification Camp

et al. (2020); Mandivarapu et al. (2020a,2,2).

113

10| DISCUSSION AND CONCLUSION

10.1 Conclusion

In Conclusion, With the goal of achieving General AI which would be possible only with

system of capabilities such as continual learning, active learning, efficent learning both in the

fields of fewshot and large data pool and made significant contributions towards achieving

general AI. Published state of the art work in the field of continual, active learning with

showing range of usecases on the computervision tasks.

10.2 Summary of Contributions

This section will describe the contributions of the proposal. These can be summarized

as follows:

1. First Idea: Made contributions towards experience replay based method in the field of

continual learning using “Self-Net: Lifelong Learning via Continual Self-Modeling.”(Accepted

at Frontier’s in AI) and supported others works

2. Second Idea: Made contributions towards Continual learning by using biologically

motivated neuron structures and presented the work “Continual Learning using Deep

Artificial Neurons.” (Accepted at ICML-W)

114

3. Third Idea: Made contributions towards Active learning by first to propose solving

the Active learning problem using Open set recognition approaches. (Accepted at

Frontier’s in AI)

4. Fourth Idea: Made contributions towards active learning by using the self-supervised

methods and proposing ”Deep Active Learning using Barlow Twins”.

5. Fifth Idea: Made contributions towards efficient based learning by using Graph Neu-

ral networks (Efficient Document Image Classification Using Region-Based Graph Neu-

ral Network at Accepted at KDD-W)

6. Sixth Idea: Made contributions towards cross-domain learning by proposing ”Cross

Domain Few-Shot Learning for Document Intelligence”. (In-Review at AAAI Confer-

ence)

10.3 Future Work

Some potential areas for future efforts could include the following:

1. Planning on extending the work of Active learning approach to graph neural networks

and combing the active learning along with continual learning.

115

References

Adhikari, A., Ram, A., Tang, R., and Lin, J. (2019). Docbert: BERT for document classifi-

cation. CoRR, abs/1904.08398.

Akaho, S. (2006). A kernel method for canonical correlation analysis. arXiv preprint

cs/0609071.

Andrew, G., Arora, R., Bilmes, J., and Livescu, K. (2013). Deep canonical correlation

analysis. In International conference on machine learning, pages 1247–1255. PMLR.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. (2019). Deep

batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint

arXiv:1906.03671.

Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. Journal of

machine learning research, 3(Jul):1–48.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document trans-

former. arXiv:2004.05150.

Beluch, W. H., Genewein, T., Nurnberger, A., and Kohler, J. M. (2018). The power of

ensembles for active learning in image classification. In 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9368–9377.

Beluch, W. H., Genewein, T., Nürnberger, A., and Köhler, J. M. (2018). The power of ensem-

bles for active learning in image classification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9368–9377.

Bengar, J. Z., van de Weijer, J., Twardowski, B., and Raducanu, B. (2021). Reducing

label effort: Self-supervised meets active learning. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV) Workshops, pages 1631–1639.

Cai, J. and Shen, S. M. (2020). Cross-domain few-shot learning with meta fine-tuning. arXiv

preprint arXiv:2005.10544.

Camp, B., Mandivarapu, J. K., and Estrada, R. (2020). Continual learning with deep

artificial neurons.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsu-

pervised learning of visual features by contrasting cluster assignments. Advances in

Neural Information Processing Systems, 33:9912–9924.

Caruana, R. (2004). Multitask learning. Machine Learning, 28:41–75.

116

Chen, D., Chen, Y., Li, Y., Mao, F., He, Y., and Xue, H. (2021). Self-supervised learning for

few-shot image classification. In ICASSP 2021-2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 1745–1749. IEEE.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for

contrastive learning of visual representations. In International conference on machine

learning, pages 1597–1607. PMLR.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang, J.-B. (2019). A closer look

at few-shot classification. arXiv preprint arXiv:1904.04232.

Das, A., Roy, S., and Bhattacharya, U. (2018). Document image classification with intra-

domain transfer learning and stacked generalization of deep convolutional neural net-

works. CoRR, abs/1801.09321.

Dasgupta, S. (2011). Two faces of active learning. Theoretical computer science,

412(19):1767–1781.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009). Imagenet: A large-scale

hierarchical image database. In 2009 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,

pages 248–255. IEEE Computer Society.

Denk, T. I. and Reisswig, C. (2019). Bertgrid: Contextualized embedding for 2d document

representation and understanding. CoRR, abs/1909.04948.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv e-prints, page

arXiv:1606.05908.

Finn, C., Abbeel, P., and Levine, S. (2017a). Model-agnostic meta-learning for fast adapta-

tion of deep networks. CoRR, abs/1703.03400.

Finn, C., Abbeel, P., and Levine, S. (2017b). Model-agnostic meta-learning for fast adap-

tation of deep networks. In International Conference on Machine Learning, pages

1126–1135. PMLR.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). Online meta-learning.

Flennerhag, S., Rusu, A. A., Pascanu, R., Yin, H., and Hadsell, R. (2020). Meta-learning

with warped gradient descent. ArXiv, abs/1909.00025.

Freeman, L. C. (1965). Elementary applied statistics: for students in behavioral science.

John Wiley & Sons.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In international conference on machine learning,

pages 1050–1059.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning with image

117

data. In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 1183–1192. JMLR. org.

Garcia, V. and Bruna, J. (2018). Few-shot learning with graph neural networks.

Geifman, Y. and El-Yaniv, R. (2017). Deep active learning over the long tail. arXiv preprint

arXiv:1711.00941.

Gidaris, S. and Komodakis, N. (2018). Dynamic few-shot visual learning without forgetting.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4367–4375.

Gissin, D. and Shalev-Shwartz, S. (2019). Discriminative active learning. arXiv preprint

arXiv:1907.06347.

Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster distance. Theo-

retical computer science, 38:293–306.

Gorriz, M., Carlier, A., Faure, E., and Giró-i-Nieto, X. (2017). Cost-effective active learning

for melanoma segmentation. CoRR, abs/1711.09168.

Greydanus, S. (2017). baby-a3c. https://github.com/greydanus/baby-a3c.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,

Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own

latent-a new approach to self-supervised learning. Advances in Neural Information

Processing Systems, 33:21271–21284.

Guo, Y., Codella, N. C., Karlinsky, L., Codella, J. V., Smith, J. R., Saenko, K., Rosing, T.,

and Feris, R. (2020). A broader study of cross-domain few-shot learning. In European

Conference on Computer Vision, pages 124–141. Springer.

Hanneke, S. et al. (2014). Theory of disagreement-based active learning. Foundations and

Trends® in Machine Learning, 7(2-3):131–309.

Harley, A. W., Ufkes, A., and Derpanis, K. G. (2015). Evaluation of deep convolutional nets

for document image classification and retrieval. In 2015 13th International Conference

on Document Analysis and Recognition (ICDAR), pages 991–995. IEEE.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask R-CNN. CoRR,

abs/1703.06870.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

CoRR, abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,

and Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a constrained

variational framework. ICLR, 2(5):6.

118

https://github.com/greydanus/baby-a3c

Hotelling, H. (1992). Relations between two sets of variates. In Breakthroughs in statistics,

pages 162–190. Springer.

Huisman, M., van Rijn, J. N., and Plaat, A. (2021). A survey of deep meta-learning. Artificial

Intelligence Review, 54(6):4483–4541.

Huszár, F. (2018). Note on the quadratic penalties in elastic weight consolidation. Proceedings

of the National Academy of Sciences, 115(11):E2496–E2497.

Jiang, J., Li, Z., Guo, Y., and Ye, J. (2020). A transductive multi-head model for cross-

domain few-shot learning.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Mi-

lan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,

Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic forgetting in neural

networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526.

Kirsch, A., Van Amersfoort, J., and Gal, Y. (2019). Batchbald: Efficient and diverse batch

acquisition for deep bayesian active learning. Advances in neural information processing

systems, 32.

Kirsch, A., van Amersfoort, J., and Gal, Y. (2019). BatchBALD: Efficient and Diverse Batch

Acquisition for Deep Bayesian Active Learning. arXiv e-prints, page arXiv:1906.08158.

Kölsch, A., Afzal, M. Z., Ebbecke, M., and Liwicki, M. (2017). Real-time document image

classification using deep CNN and extreme learning machines. In 14th IAPR Interna-

tional Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan,

November 9-15, 2017, pages 1318–1323. IEEE.

Krizhevsky, A. (2009a). Learning multiple layers of features from tiny images. Technical

report, University of Toronto.

Krizhevsky, A. (2009b). Learning multiple layers of features from tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25.

Kumar, J., Ye, P., and Doermann, D. (2014). Structural similarity for document image

classification and retrieval. Pattern Recognition Letters, 43:119–126.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. (2011). One shot learning of

simple visual concepts. Cognitive Science, 33.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

119

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classifiers. In

SIGIR’94, pages 3–12. Springer.

Lifchitz, Y., Avrithis, Y., Picard, S., and Bursuc, A. (2019). Dense classification and implant-

ing for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 9258–9267.

Liu, B., Zhao, Z., Li, Z., Jiang, J., Guo, Y., and Ye, J. (2020). Feature transformation

ensemble model with batch spectral regularization for cross-domain few-shot classifi-

cation.

Liu, X., Gao, F., Zhang, Q., and Zhao, H. (2019). Graph convolution for multimodal in-

formation extraction from visually rich documents. In Loukina, A., Morales, M., and

Kumar, R., editors, Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, pages 32–39. Association

for Computational Linguistics.

Mahapatra, D., Bozorgtabar, B., Thiran, J., and Reyes, M. (2018). Efficient active learning

for image classification and segmentation using a sample selection and conditional

generative adversarial network. CoRR, abs/1806.05473.

Mahapatra, D., Poellinger, A., Shao, L., and Reyes, M. (2021). Interpretability-driven sam-

ple selection using self supervised learning for disease classification and segmentation.

IEEE Transactions on Medical Imaging, 40(10):2548–2562.

Mandivarapu, J., Camp, B., and Estrada, R. (2020a). Deep active learning via open set

recognition. CoRR, abs/2007.02196.

Mandivarapu, J. K., Bunch, E., You, Q., and Fung, G. (2021a). Efficient document image

classification using region-based graph neural network.

Mandivarapu, J. K., Camp, B., and Estrada, R. (2020b). Deep active learning via open set

recognition. arXiv preprint arXiv:2007.02196.

Mandivarapu, J. K., Camp, B., and Estrada, R. (2020c). Self-net: Lifelong learning via

continual self-modeling. Frontiers in Artificial Intelligence, 3:19.

Mandivarapu, J. K., Camp, B., and Estrada, R. (2021b). Deep active learning via open set

recognition.

Martin, N. and Maes, H. (1979). Multivariate analysis. Academic press London.

McCallum, A. and Nigam, K. (1998). Employing em and pool-based active learning for

text classification. In Proceedings of the Fifteenth International Conference on Ma-

chine Learning, ICML ’98, page 350–358, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Melzer, T., Reiter, M., and Bischof, H. (2001). Nonlinear feature extraction using gener-

alized canonical correlation analysis. In International Conference on Artificial Neural

120

Networks, pages 353–360. Springer.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,

and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.

CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-

miller, M. (2013). Playing Atari with Deep Reinforcement Learning. ArXiv e-prints.

Mundt, M., Majumder, S., Pliushch, I., and Ramesh, V. (2019a). Unified probabilistic

deep continual learning through generative replay and open set recognition. CoRR,

abs/1905.12019.

Mundt, M., Pliushch, I., Majumder, S., and Ramesh, V. (2019b). Open set recognition

through deep neural network uncertainty: Does out-of-distribution detection require

generative classifiers? 2019 IEEE/CVF International Conference on Computer Vision

Workshop (ICCVW), pages 753–757.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual learning.

In International Conference on Learning Representations.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22:1345–1359.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., and

Lin (2019). Pytorch: An imperative style, high-performance deep learning library. In

Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.

Curran Associates, Inc.

Pise, N. N. and Kulkarni, P. (2008). A survey of semi-supervised learning methods. In 2008

International Conference on Computational Intelligence and Security, volume 2, pages

30–34.

Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot learning.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 779–788.

Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with Large Cor-

pora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-

works, pages 45–50, Valletta, Malta. ELRA. http://is.muni.cz/publication/

884893/en.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. Advances in neural information processing

121

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

systems, 28.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition

challenge. International journal of computer vision, 115(3):211–252.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Had-

sell, R. (2018). Meta-learning with latent embedding optimization. arXiv preprint

arXiv:1807.05960.

Scheffer, T., Decomain, C., and Wrobel, S. (2001). Active hidden markov models for in-

formation extraction. In International Symposium on Intelligent Data Analysis, pages

309–318. Springer.

Schohn, G. and Cohn, D. (2000). Less is more: Active learning with support vector machines.

In ICML, volume 2, page 6. Citeseer.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-Barwinska, A., Whye Teh, Y., Pascanu,

R., and Hadsell, R. (2018). Progress & Compress: A scalable framework for continual

learning. ArXiv e-prints.

Sener, O. and Savarese, S. (2017). Active learning for convolutional neural networks: A

core-set approach. arXiv preprint arXiv:1708.00489.

Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison, 52.

Shui, C., Zhou, F., Gagné, C., and Wang, B. (2020). Deep active learning: Unified and

principled method for query and training. In International Conference on Artificial

Intelligence and Statistics, pages 1308–1318. PMLR.

Simonyan, K. and Zisserman, A. (2014a). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Sinha, S., Ebrahimi, S., and Darrell, T. (2019). Variational adversarial active learning. In

Proceedings of the IEEE International Conference on Computer Vision, pages 5972–

5981.

Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical networks for few-shot learning.

arXiv preprint arXiv:1703.05175.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. (2018).

Learning to compare: Relation network for few-shot learning. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1199–1208.

Tong, S. and Koller, D. (2001). Support vector machine active learning with applications to

text classification. Journal of machine learning research, 2(Nov):45–66.

Tur, G., Hakkani-Tür, D., and Schapire, R. E. (2005). Combining active and semi-supervised

learning for spoken language understanding. Speech Communication, 45(2):171–186.

122

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for

one shot learning. Advances in neural information processing systems, 29:3630–3638.

Wang, G., Hwang, J.-N., Rose, C., and Wallace, F. (2017a). Uncertainty sampling based

active learning with diversity constraint by sparse selection. In 2017 IEEE 19th Inter-

national Workshop on Multimedia Signal Processing (MMSP), pages 1–6. IEEE.

Wang, K., Zhang, D., Li, Y., Zhang, R., and Lin, L. (2017b). Cost-effective active learning

for deep image classification. CoRR, abs/1701.03551.

Wang, S., Wang, Z., Che, W., Zhao, S., and Liu, T. (2021). Combining self-supervised

learning and active learning for disfluency detection. Transactions on Asian and Low-

Resource Language Information Processing, 21(3):1–25.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of

applied mechanics.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2019). A comprehensive

survey on graph neural networks. CoRR, abs/1901.00596.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., and Zhou, M. (2019). Layoutlm: Pre-training

of text and layout for document image understanding. CoRR, abs/1912.13318.

Yuan, M., Lin, H.-T., and Boyd-Graber, J. (2020). Cold-start active learning through self-

supervised language modeling.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. arXiv preprint

arXiv:1605.07146.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-supervised

learning via redundancy reduction. In International Conference on Machine Learning,

pages 12310–12320. PMLR.

Zenke, F., Poole, B., and Ganguli, S. (2017). Improved multitask learning through synaptic

intelligence. CoRR, abs/1703.04200.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). An end-to-end deep learning

architecture for graph classification. In McIlraith, S. A. and Weinberger, K. Q., editors,

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-

18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4438–4445. AAAI Press.

Zhong, X., Tang, J., and Jimeno-Yepes, A. (2019). Publaynet: Largest dataset ever for

document layout analysis. In 2019 International Conference on Document Analysis

and Recognition, ICDAR 2019, Sydney, Australia, September 20-25, 2019, pages 1015–

1022. IEEE.

Zhu, J. and Bento, J. (2017). Generative adversarial active learning. CoRR, abs/1702.07956.

Zhu, J., Wang, H., Tsou, B. K., and Ma, M. (2009). Active learning with sampling by

123

uncertainty and density for data annotations. IEEE Transactions on audio, speech,

and language processing, 18(6):1323–1331.

Zhu, X. (2008). Semi-supervised learning literature survey. Comput Sci, University of

Wisconsin-Madison, 2.

Zhu, Y., Xu, W., Liu, Q., and Wu, S. (2020). When contrastive learning meets active

learning: A novel graph active learning paradigm with self-supervision.

124

	Towards General AI using Continual, Active Learning in Large and Few Shot Domains
	Recommended Citation

	Introduction
	Motivation
	Publications

	Problem Background
	Literature Review
	Continual Learning Scenarios :

	First Idea: Self-Net Lifelong Learning via Continual Self-Modeling
	Problem Formulation
	Methodology
	Single-network encoding
	Continual encoding

	Task network fine-tuning
	Results
	Robustness analysis
	Performance and storage scalability
	Permuted MNIST
	Split MNIST
	Split CIFAR-10
	Split CIFAR-100
	Incremental Atari
	Split networks and multiple architectures

	Conclusions and future work

	Second Idea: Continual Learning Using Deep Artificial Neurons
	Problem Formulation
	Model Architecture
	Methodology
	Experiments and Results
	Conclusions and Future Work

	Third Idea: Deep Active Learning via Open-Set Recognition
	Introduction
	Methodology
	Formal problem definition
	Active learning system
	Uncertainty sampling
	Wiebull distribution sampling

	Experimental Results
	Implementation Details
	Image classification results
	Additional experiments

	Conclusions and Future work

	Fourth Idea: Deep Active Learning using Barlow Twins
	Introduction
	Related Work
	Active Learning
	Self-Supervised Learning

	Methodology
	Problem Definition
	Active Learning System
	Sampling technique

	Experimental Results
	Implementation Details

	Conclusions and Future work

	Fifth Idea: Efficient Document Image Classification Using Region-Based Graph Neural Network
	Methodology
	Deep Convolution Neural Network Learning Approaches
	Language Model based Approaches
	Document Segmentation
	Efficient GNN for Document Image Classification

	Experimental Setup
	Datasets
	Document Pre-processing
	Hyper parameters and infrastructure

	Results and Discussions
	Comparing classification accuracy
	Comparing computing resources

	Applications and Deployment
	Conclusion:

	Sixth Idea: Domain Agnostic Few-Shot Learning For Document Intelligence
	Related Work
	Meta-learning
	Canonical Correlation
	Domain adaptation

	Methodology
	Formal problem definition
	Canonical Correlation
	DCCDI Model

	Experiments and Results
	Datasets
	Document Pre-processing
	Implementation Details:
	Hyper parameters and infrastructure
	Comparing classification accuracy
	Ablation Studies

	Conclusion and Future Work

	Discussion and Conclusion
	Conclusion
	Summary of Contributions
	Future Work

