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ABSTRACT 

Histopathological image classification has been at the forefront of medical research. We 

evaluated several deep and non-deep learning models for brain tumor histopathological image 

classification. The challenges were characterized by an insufficient amount of training data and 

identical glioma features. We employed transfer learning to tackle these challenges. We also 

employed some state-of-the-art non-deep learning classifiers on histogram of gradient features 

extracted from our images, as well as features extracted using CNN activations. Data 

augmentation was utilized in our study. We obtained an 82% accuracy with DenseNet-201 as our 

best for the deep learning models and an 83.8% accuracy with ANN for the non-deep learning 

classifiers. The average of the diagonals of the confusion matrices for each model was calculated 

as their accuracy. The performance metrics criteria in this study are our model’s precision in 

classifying each class and their average classification accuracy. Our result emphasizes the 

significance of deep learning as an invaluable tool for histopathological image studies.  
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1 INTRODUCTION  

Digital pathology represents an essential evolution in modern medicine. Although there were 

increasing advancements from as far back as the 17th century, image analysis was not making 

much progress until the advent of digital imaging and computational research in the second half 

of the last century. Digital pathology is referred to as the practice of pathology using digital 

imaging. Recently, its emergence has become a vital tool for making cancer prognosis and 

diagnosis [1]. It is the practice of pathology using digital imaging. Histopathology is a clinical 

medical procedure involving examining tissue removed from the patient for a comprehensive 

study. Histopathological images are very influential in deciding the final approach when 

determining effective treatments; they are significant when investigating a particular biological 

structure and diagnosing several diseases [2]. 

Furthermore, the deductions from a histopathology image remain the gold standard in diagnosing 

almost all significant types of cancer. The usage of digital pathology has employed live 

streaming of images, static images, and whole slide imaging (WSI). The process of WSI involves 

digitizing glass slides of collected samples of cells or tissues and then staining them [3]. The 

resultant images are called histopathological images. However, its evolution has become 

hampered by the lack of available resources, large dimensionality of WSI images, technology 

limitations, stain variability across laboratories, insufficient training samples, cost of equipment, 

etc. These images are huge, have high-level, complex clinical features, and only represent a few 

annotated regions [1]. Nevertheless, it is significant for the future practice of pathology [4].  
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Figure 1.1: An example of a histopathology image. 

 

The individuality of histopathological images has stimulated efforts to establish novel automated 

image analysis methodologies [1]. In recent years, the advancement of computational techniques 

has transformed the practice of pathology. They can be applied to histopathological images to 

specify regions of interest, make a diagnosis and extract features that may relate to treatment and 

prognosis. The proliferation of machine learning (ML) algorithms has facilitated significant 

support for medical research and clinical studies [3]. Artificial Intelligence (AI) models have 

increasingly migrated from conventional ML to deep learning (DL) because of their ability to 

automatically learn features from data in a more accessible, precise, and accurate manner [1]. 

Thus, the rise of powerful computational resources has diverted the interest of DL models in a 

broad range of medical image applications, such as interpreting, analyzing, and extracting 

pertinent information from WSI [1]. 

1.1 Deep Learning 

Until recently, most techniques employed for medical image analysis relied on traditional non-

deep learning (non-DL) models. Objects of interest in histopathological images are often too 

complex to be represented explicitly by any simple mathematical equation or model [5]. It 

usually requires a compound model with many parameters that cannot be achieved manually and 
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is dependent on data. Thus, the role of non-DL models has been significant in medical imaging. 

The schematic of such models mostly starts with data preprocessing and preparation, then 

regions of interest (ROI) selection, feature extraction, feature selection, and eventually, 

classification using linear and non-linear models [6]. The objective of these non-DL models is to 

determine optimal discrimination between the multiple output classes vis training. However, the 

performances of these ML models mainly rely on the selection of features on which they are 

being trained, despite having made satisfactory progress in analyzing medical images [7].  

In contrast to non-DL approaches, DL models differ in their architectural details. These models 

consist of an arbitrary number of layers of list-based vectors, or neurons which connect inputs to 

subsequent layers sequentially through weights vectors. Each layer can be used as a threshold by 

an activation function to transform further the output passed on to the succeeding layers. These 

intricate non-linearities allow DL models to capture mathematical relationships between the 

input features and labels. Over the years, DL has significantly impacted various science fields, 

such as computer vision, speech recognition, natural language processing, audio recognition, and 

bioinformatics [8]. DL allows computational models that use multiple processing layers 

composed of multiple non-linear transformations to learn data representations with numerous 

levels of abstraction. The application of DL has been highly relevant in medical imaging, 

particularly in image segmentation, denoising, detection, registration, and classification [9]. DL 

in the context of medical images makes use of pixel values rather than extracted or selected 

features. Hence, overcoming errors associated with inaccurate segmentation or subsequent 

feature extraction [5]. Automatically learning features from data and its self-learning capabilities 

are two of the most critical tools of DL.  
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The interest in DL stems from the evolution of convolutional neural networks (CNNs), a 

powerful way to learn valuable representations of images and other structured data. A CNN is a 

network architecture for DL which learns directly from data, eliminating the need for manual 

feature extraction. CNNs inspired by the biological structure of a visual cortex contain 

arrangements of simple and complex cells [10]. These cells are known to activate based on the 

subregions of a visual field. These subregions are called receptive fields. The neurons in a 

convolutional layer connect to the layer's subregions before that layer instead of being fully 

connected as in other types of neural networks. The neurons are unresponsive to the areas outside 

the image's subregions. They are the most popular neural networks for medical image analysis.  

1.2 The Architecture of a Convolutional Neural Network  

There are four CNN layers: the convolutional layer, the pooling layer, the rectified linear unit 

(ReLU) correction layer, and the fully connected layer. 

1.2.1 The Convolutional Layer 

The convolutional layer is the first and critical component of convolutional neural networks [11]. 

It serves as an extractor of features, as its purpose is to detect the representation of the data in the 

images received as input. A convolution converts all the pixels in its receptive field into a single 

pixel. The final output of a conventional layer is a vector. 

1.2.2 The Pooling Layer 

The pooling layer often succeeds the convolutional layer. It receives several feature maps to 

create a new set of the same number of pooled feature maps. Pooling involves selecting a 

pooling operation, which reduces the images' size while preserving their essential characteristics. 

A window is selected to perform a pooling operation, then the input elements lying in that 

window are passed through a pooling function. The best advantage of the pooling layer is that it 
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reduces the number of parameters and introduces translation invariance [12]; if a small amount 

translates the inputs, the value for most pooled outputs does not change. 

1.2.3 The ReLU Correction Layer 

The ReLU correction layer refers to the real non-linear function defined by ReLU(x) = max(0,x) 

[11]. It is a piecewise linear function that will output the input directly if it's positive and zero 

otherwise.  

   

It has become the most common activation function for many types of neural networks because 

of its advantages; Calculation of ReLU partial derivatives is much easier. It also does not allow 

gradients to disappear [12]. 

1.2.4 The Fully Connected Layer 

The fully connected layer is usually the last. Here, all the inputs from each layer are connected to 

every activation unit of the next layer. It produces an output vector by applying a linear 

combination and possibly an activation function to the inputs received. The fully connected layer 

regulates the relationship between the location of the features in the image and a class. If the 

position of a feature at a certain point in the image is characteristic of a particular class, then the 

corresponding value in the table is given significant weight.  
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Figure 1.2: A representation of a CNN architecture showing convolutional layers, activation 

layer, pooling layer, and the fully connected layer [13]. 

1.3 Data Augmentation  

DL for medical image analysis has often been constrained by the availability of labeled training 

data [14]. The performance (generalization) of a DL model is known to be associated with the 

volume of the training dataset. Hence, it is essential to help avoid overfitting our data and 

memorizing training sets by the DL models [15]. Data augmentation is a widely known 

technique that is cost-effective, less time-consuming and helps improve the generalization 

capabilities of deep neural networks. Thus, it can be perceived as an implicit regularizer. Data 

augmentation is used to increase the training dataset volume artificially. In medical image 

classification, the data augmentation technique is essentially done by employing transformations 

such as rotations, reflections, rescaling, translating, shearing, etc., to both the images and labels 

equally [14]. However, data augmentation can be achieved in two ways: offline augmentation 

and online augmentation. 

• Offline augmentation: This form of augmentation consists of performing transformations on 

the images and saving the outputs on your pc storage. This increases the volume of the 

dataset by a factor equal to the number of transformations employed [16] 
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• Online augmentation: This form of augmentation consists of performing transformations on 

the mini-batches that would be fed to the model during training [16].  

1.4 Transfer Learning 

In medical imaging, there are cases where training data are difficult to collect or too expensive. 

A widespread assumption has been that training and test data must have identical feature spaces 

with the underlying distribution. However, this assumption does not usually hold for real-world 

data. Hence, models need to be built from the ground up if the features and distribution change 

[17]. Consequently, there is a need to create high-performance models trained that could transfer 

the knowledge learned from trained data across different domains [18]. This methodology is 

known as transfer learning. This technique reduces the dependence on many target domain data 

for constructing target learners. Transfer learning uses knowledge from one domain called the 

source to improve the learning performance or, sometimes, minimize the number of labeled 

examples required in a particular field of interest [19].  

 

Figure 1.3: A schematic showing the use of a pre-trained network [20]. 

 

1.5 Feature Extraction  

Dimensionality reduction is a significant aspect of data visualization, modeling, and analysis. It 

is a widespread preprocessing step in non-DL applications. One method of accomplishing this 
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task is feature extraction. Feature extraction refers to the process of converting raw data into 

numerical features that can be processed by a model while preserving the information contained 

in the original data. It leads to the concept of discovering outstanding features that are invariant 

to inconsequential transformations of the input [21]. Feature extraction is a more general method 

of transforming an input space onto a lower-dimensional subspace without losing the most 

relevant information [22].   

Feature extraction is achieved either manually or automatically. Manual feature extraction 

requires identifying and describing the features that are deemed relevant for a particular task. 

This often calls for a good understanding of the dataset background. On the other hand, 

automated feature extraction uses deep networks or specialized algorithms to extract features 

from data without requiring manual intervention. With the rise of deep learning, feature 

extraction has been substituted mainly by the first layers of neural networks, especially for image 

data. 

Many researchers have employed classical feature descriptors inspired by the success of natural 

image analysis which has yielded considerable success in histopathological image analysis [23]. 

The attributes of tumors in histopathological images are distinct from those in natural images. 

However, certain classical feature descriptors like local binary pattern (LBP), scale-invariant 

feature transformation (SIFT), and histogram of oriented gradient (HOG) [24] have had 

favorable outcomes in depicting histopathological images. L. Ladha et al. [25] outlined some 

advantages of feature extraction: 

1. It helps in reducing the amount of redundant, irrelevant, or noisy data. 

2. It increases the speed and accuracy of the model. 

3. It improves the quality of the data. 
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4. It helps to understand or gain knowledge about the data. 

5. It improves the generalization of the model. 

1.6 Motivation For This Study 

Brain tumors have been known to be difficult to treat, hence, having poor prognoses. Thus, our 

motivations for this study are listed as follows: 

1. We would like to ascertain if there are potential insights that could be derived when mouse 

monoclonal antibodies targeting the isocitrate dehydrogenase (IDH1) is used to stain these 

tumor glioma cells. 

2. When glioma cells grow from low grade to high grade, they become more diffusive and 

invasive. Hence, in this study, we would like to evaluate the performances of several DL and 

non-DL models employed in classifying the 5 tumor types of different grades. 

3. We would also like to assess if our approach could potentially provide better therapy for 

patients diagnosed with these tumor types. 
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2 RELATED WORKS  

2.1 Machine Learning Methods for Histopathological Images 

With the evolution of ML in biomedical image analysis, numerous studies have been carried out 

on feature-based approaches for classifying histopathological images [6]. Kowal et al. in [26] 

focused on nuclei segmentation of 500 fine-needle biopsy images of breast cancer and extracted 

forty-two morphological, topological, and texture features. Afterward, these features were used 

to train different ML classifiers to classify them into benign and malignant classes. Osborne et al. 

[27] employed segmentation and morphology features, trained with a support vector machine 

(SVM) classifier for melanoma diagnosis in histopathological images. The suggested approach 

achieved an accuracy of 90%. Olgun et al. [28] proposed a method for classifying colon tissue 

histopathological images based on the local distribution of objects. This approach was then 

evaluated using an SVM that outperformed all thirteen classifiers with an accuracy of 93%. 

Muthu Rama et al. [29] utilized an SVM approach to classify oral mucosa histology images. 

Then a Bayesian classifier was implemented based on the defined space for characterizing 

inflammatory and fibroblast cells to observe the cells' distribution in a healthy state. M. Murat 

Dundar et al. [30] used expectation-maximization and watershed transformation to classify 

intraductal breast lesions. In this study, the system for automatic pre-invasive breast images was 

developed with 62 patient cases, and the overall classification accuracy was 87.9%. Filipczuk et 

al. [31] also carried out a nuclei segmentation of 737 cytology images of breast cancer, 

extracting twenty-five shape-based and texture-based features. Based on these features, four 

different ML classifiers – Naïve Bayes (NB), decision tree (DT), SVM, and k-nearest neighbor 

(KNN) – were trained for the classification of these cytological images into benign and 

malignant classes. Zhang et al. [32] combined LBP, the statistics from the gray-level co-
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occurrence matrix, and curvelet transform to design a cascade random space ensemble system 

(with rejection options) for effective classification of microscopic biopsy images of breast 

cancer. Mazo et al. [33] proposed the classification of cardiac tissue into five classes using a 

patching approach that aims to optimize the path size to improve the representation. A cascade of 

linear SVMs separates the tissue into four distinct classes, after which a polynomial SVM 

classifies one of these four classes into two sub-classes.  

Chan and Tuszynski [34] applied an SVM classifier to detect brain cancer using their fractal 

features. Their method achieved an F1 score of 97.9% when classifying histopathological images 

of magnification 40x into benign and malignant tumor classes. Furthermore, they achieved an F1 

score of 56.5% by employing this method on a multi-class problem. Harai and Tanaka [35] 

suggested a colorectal computer-aided design (CAD) system to separate the nuclei, background, 

and stroma using an Otsu thresholding of the red channel. An SVM classifier was used to 

achieve an accuracy of 78.3% as opposed to a method based on texture features which achieved 

an accuracy of 67%. Zhang et al. [36] proposed a multi-scale classification that employed sparse 

encoding and Fisher's discriminant analysis to create a visual dictionary of SIFT features. This 

approach had an accuracy of 81.6% when an SVM classifier was used, performing more than the 

state-of-the-art method, which had an accuracy of 79.5%. Atupelage et al. [37] applied an SVM 

to fractal features. They aim to classify non-neoplastic and grade hepatocellular carcinoma 

histopathological images into five classes. This approach had a 95% accuracy outperforming the 

other methods that adopted texture features in the study. Vanderbeck et al. [38] applied an SVM 

to a combination of 413-dimensional feature vectors extracted from the white regions of liver 

histopathological images, classifying them into seven classes with an accuracy of 93.5%. 

Rahman et al. [39] analyzed texture abnormalities in oral squamous cell carcinoma using 
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histopathological samples. Histogram and Gray Level co-occurrence matrix (GLCM) extracted 

texture features from biopsy images from normal and malignant cells. Afterward, a linear SVM 

classifier was employed to classify oral cancer, which achieved 100% accuracy automatically. 

Spanhol et al. [40] published a breast cancer dataset called BreaKHis containing 7,909 

histopathological images of 82 breast cancer patients. They used six different feature descriptors 

and 4 ML models – quadratic discriminant analysis (QDA), random forest (RF), KNN (with 

k=1), and an SVM with Gaussian kernel function. These 4 ML models were applied for binary 

classification of benign and malignant tumors. The accuracy was between 80 % and 85% using a 

5-cross validation. Orlov et al. [41] carried out a comparison of three-color spaces (RGB, 

CIELAB, and grayscale) with Hematoxylin & Eosin (H&E) representation. They employed a 

weighted KNN, a radial basis function (RBF) network, and an NB classifier. The methods each 

had an accuracy of 99%, 99%, and 90%, respectively. Additionally, the best results were 

achieved for the color space termed eosin representation. 

Several studies have shown that combining classifiers may enhance the performance of 

histopathological image classification. In their study, Kong et al. [42] classified neuroblastomas 

using textural and morphological features. They applied these methods using an ensemble 

approach combining KNN, linear discriminant analysis (LDA), NB, and an SVM classifier. They 

achieved an accuracy of 87.8% using the weighted voting rule. Zarella et al. [43] employed 

multiple classifiers in an ensemble of SVMs on ROIs segmented from a WSI. They were trained 

with subsets of features, achieving an accuracy of 88.6% when combined with a weighted sum 

(WS) function. Di Franco et al. [44] proposed an ensemble of SVM classifiers, trained with 

various images preprocessed by color spaces and Gaussian filters. Afterward, the classifiers were 

combined using the average rule, producing the best area under the curve (AUC) of about 97.8%. 
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Kruk et al. [45] used an ensemble of SVM and RF classifiers, trained with a subset of 

morphometric, textural, and statistical features extracted from nuclei. This method achieved an 

accuracy of 96.7%, outperforming a state-of-the-art and the best single SVM classifier, which 

both had an accuracy of 93.1% and 91.1%, respectively. Valkonen et al. [46], in their study, 

utilized Otsu, morphological operations, and histological constraints in segmenting a WSI. The 

ML models proposed for this study were RF, KNN, SVM, and logistic regression. The models 

were trained with textural, morphometric, and statistical features extracted from random patches 

of the segmented images. RF achieved the best accuracy of 93%. An ensemble of SVM and RF 

classifiers to classify prostate cancer was employed by Gertych et al. [47]. The SVM was used to 

separate the stroma and epithelium, while the RF classifier was used to identify the benign and 

malignant tissues. The best accuracy was 68.4% for cancer detection. Romo-Bucheli et al. [48] 

proposed an ensemble of an Adaboost classifier for grading skin cancer. This method was used 

to classify images described by features representing nuclei distribution created using graph 

theory. The ensemble achieved an accuracy of 72%. 

2.2 Deep Learning Methods for Histopathological Images 

The adoption of DL techniques in medical imaging has increased due to the positive impact 

observed on various tasks. Many recent studies have employed DL methods to classify 

histopathological images with and without leveraging transfer learning. DL has achieved 

tremendous performance in many digital pathology tasks. Malon et al. [49] were among the first 

set of authors that applied DL to histopathological images. They employed a classical LeNet-5, a 

7-layered CNN architecture initially proposed by Lecun et al. [50] in 1998, to learn a 

representation of histopathological images segmented by a support vector regression (SVR) 

model. An SVM was applied to the features extracted by the CNN in [49] to find the mitotic 
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nuclei. Dev Kumar et al. [51] proposed a method for automatically identifying relevant ROIs 

from oral tissue histological images to detect oral squamous cell carcinoma. They employed a 

12-layered deep CNN to different segmented keratin, epithelial, and subepithelial regions. 

Keratin pearls were detected from the segmented keratin region with the texture-based feature 

(Gabon filter). Then an RF was applied to classify the features attaining an accuracy of 96.88%. 

Sharma et al. [52] used an AlexNet CNN, as well as other custom CNN architectures, to classify 

benign and malignant tumors. Because of the small sample size, they also had to perform data 

augmentation by applying patching and affine transformations. Both AlexNet and other custom 

CNNs performed favorably to most handcrafted features. In their study, Khosravi et al. [53] 

evaluated the performance of different CNN models, including Inception and ResNet, as well as 

the combination of both on eight different datasets. Some of the datasets include breast, lung, and 

bladder tissues stained with H&E. The results, despite having been applied to raw images 

without preprocessing, had satisfactory performances. Zerhouni et al. [54] suggested a wide 

residual CNN in the classification of mitotic and non-mitotic pixels in breast histopathological 

images from the MICCAI TUPAC challenge dataset. The CNN was then trained on mitotic and 

non-mitotic patches extracted from the ground truth images. The results showed that the method 

employed in the study outperformed most other approaches.  

Kainz et al. [55] presented two CNNs based on the LeNet-5 model architecture for the 

segmentation and binary classification of benign and malignant colorectal cancer gland tissue. 

The first CNN model separates glands from the background while the other identifies gland-

separating structures. The experimental results on Warwick-QU colon adenocarcinoma and 

GlaS@MICCAI2015 challenge datasets showed a gland tissue classification accuracy for both 

models as 98% and 95%, respectively. AlexNet was adopted by Stanitsas et al. [56] to classify 
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breast cancer histopathological images. The performance of this CNN was compared against 

some handcrafted feature extractors and shallow classifiers. The result showed that the CNN 

model did not perform better than the shallow methods. Spanhol et al. [57] evaluated 

architectures based on AlexNet to classify the dataset in [40]. The result showed that depending 

on the magnification at the pixel level, the CNN model achieved average accuracy rates between 

81.7% and 88.6%. The DL method outperformed other non-DL approaches applied in the study. 

Li et al. [58] evaluated the performance of an SVM model on handcrafted features and features 

extracted from DL models (AlexNet and Inception-V1) to classify regions of colon histology 

images as gland or non-gland. The combination of handcrafted features with SVM achieved a 

better result. Talo [59] employed ResNet-50 and DenseNet-161 to classify grayscale and color 

histopathological images. With an accuracy of 95.79% for ResNet-50 and 97.77% for DenseNet-

161, these results outperformed the existing studies in the literature. Kwak and Hewitt [60] 

compared the performance of a proposed 6-layer CNN to other CNNs (AlexNet, VGG, 

GoogLeNet, and ResNet) and ML classifiers (SVM, KMM, RF, and NB) in identifying prostate 

cancer. The proposed CNN had an AUC of 0.974, which outperformed all other methods applied 

in the study. Budak et al. [61] employed an end-to-end model based on ALexNet and a 

bidirectional long-short term memory (BLSTM) identifying breast cancer cells in the BreaKHis 

dataset. The convolutional layers were used to encode the images, flattened before being fed to 

the BLSTM. The result showed that the proposed model achieved an accuracy of 95.69%, 

93.61%, 96.32%, and 94.29% for the magnification factor of 40x, 100x, 200x, and 400x 

respectively. 

Han et al. [62] suggested a class structure based on deep CNN for breast multi-classification 

using hierarchical feature representation. They achieved an accuracy of 95.9%. Nawaz et al. [63] 
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employed a DenseNet model for the multi-classification of breast cancer in the BreaKHis dataset 

to predict the subclass of breast cancer tumors. They achieved an accuracy of 95.4%. Ciresan et 

al. [64] presented a method that won the 2012 ICPR Mitosis Detection Contest. They employed a 

deep CNN in detecting mitosis in breast histology images. The CNN was utilized as a pixel-wise 

classifier through a sliding window manner in detecting mitosis. In other words, it was trained to 

classify pixels in the image from a patch centered on the pixel. This study would lay the 

foundation for other studies. For example, Sirinukunwattana et al. [65] used a spatially 

constrained CNN (SC-CNN) to classify and detect nuclei in histopathological images. More 

accurately, they employed SC-CNN in estimating the likelihood of a pixel being the center of a 

nucleus. They also utilized a neighboring ensemble predictor with CNN to predict the label of a 

detected cell nucleus. Xu et al. [66] employed a stacked autoencoder (SAE) for detecting breast 

cancer in histopathological images. They adopted a denoising autoencoder to improve its 

robustness to outliers and noise in training the DL model. Yang et al. [67] developed a 7-

convolutional layers CNN to classify kidney cancer in 500 histopathological images as tumor or 

non-tumor. They achieved an accuracy of 98%. Wang et al. [68] adopted the combination of 

CNN and handcrafted features for detecting mitosis in breast histopathological images. They 

presented a cascaded approach that probably maximizes exploiting two distinct feature sets. This 

approach demanded less computational cost and achieved greater accuracy. They also utilized 

crowdsourcing in the learning process of the CNN to exploit additional data sources annotated by 

non-expert users for mitosis detection [69]. They used different image scales to train a multi-

scale CNN to perform mitosis detection and provide the crowds with mitosis candidates for 

annotations. These annotations were then fed to the existing CNN for model refinement and 

ground-truth generation. Guo et al. [70] proposed a two-stage approach in their study. They 
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employed an Inception-V3 for classifying the tumor regions of breast cancer WSI pathological 

images, followed by a cascaded deep CNN for refined segmentation.  

Yan et al. [71] proposed a novel hybrid convolutional and recurrent deep neural network for 

breast cancer histopathological image classification in their study. They used this proposed 

method to classify the images into normal, benign, in situ, or invasive carcinoma. This approach 

consists of dividing the histopathological images into 12 patches. Then, using fine-tuned 

Inception-V3 to extract the features from the patches. Based on the richer multilevel feature 

representation of the patches, this method combines the advantages of the convolutional and 

recurrent neural networks while preserving the spatial correlations between the patches. The 

experimental results showed that this method achieved an accuracy of 91.3% for the 4-class 

classification task, outperforming the state-of-the-art approach. De Matos et al. [72] suggested a 

classification approach that uses Inception-V3 to extract features from breast cancer 

histopathological images. The method improved the accuracy by 3.7% and an additional 0.7% 

using the irrelevant patch elimination. Albarquoni et al. [69] introduced a framework that learns 

from crowds that handle data aggregation as part of the learning process of a CNN via an 

additional crowdsourcing layer for challenging classification tasks. This added layer was 

augmented to the CNN to aggregate ground truth from the crowd vote matrix. Experimental 

results on the AMIDA13 dataset indicated that the proposed model architecture was robust to 

noisy labels and positively improved the performance. Vizcarra et al. [73] developed a 

classification image pipeline using the BACH dataset that combines a shallow learner (SVM) 

and CNN for breast cancer histology classification. The pipeline consists of extracting speeded-

up robust features (SURF) for the SVM, color normalization (Reinhard method), and image 

resizing for both Inception-V3 and Inception-ResNet-V2. The results showed an average 
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accuracy of 79% and 81% for the shallow learner and CNN, respectively. When fused with both 

algorithms, the system obtained an accuracy of 92%, outperforming any individual learner. 

Brancati et al. [74] adopted a DL approach for two different cases: the detection of invasive 

ductal carcinoma in breast histological images and the classification of lymphoma subtypes. For 

the first case, the convolutional layers were trained without supervision to learn a latent 

representation to reconstruct the input image. For the other case, the fully connected layers were 

trained while supervised. However, both cases addressed the challenges by adopting a residual 

CNN, which is part of a convolutional autoencoder network. The performances were evaluated 

on the public dataset of digital histological images and compared with those obtained using 

different deep neural networks (UNet and ResNet). The experimental results showed an 

improvement of 5.06% in the F-measure score for the detection task and 1.09% in the accuracy 

measure for the classification task.  

Ataky et al. [75] proposed a novel approach for augmenting histopathological image datasets and 

distributing inter-patient variability through image blending using the Gaussian-Laplacian 

pyramid. Both sides of the histopathological images are joined on each level of the Laplacian 

pyramid. Also, from the joint pyramids, the original image is reconstructed. This constitution 

combines the stain variation of two patients, avoiding the color differences that may mislead the 

learning process. Experimental results with a texture CNN [76] have shown promising gains vis-

à-vis most data augmentation techniques on the BreaKHis dataset presented in the literature. 

Ciompi et al. [77] proposed a colorectal cancer tissue classification system based on an 11-layer 

CNN. In this study, the authors investigated the importance of stain normalization in tissue 

classification of colorectal cancer tissue samples in H&E-stained images. Experimental results 

on the colorectal cancer dataset validated the proposed CNN's performance and the role of stain 
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normalization in colorectal cancer tissue classification. Sheikh et al. [78] proposed a four-input 

24-layer custom CNN to classify histopathological images. This proposed model fuses multi-

resolution hierarchical feature maps at different layers, learning different scale image patches to 

account for cells’ overall structures and texture features. Experimental results on ICIAR2018 and 

BreaKHis datasets showed that the proposed model outperformed existing state-of-the-art. The 

explanation of our dataset and proposed methodologies will be discussed comprehensively in 

Section 3. 
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3 MATERIAL AND METHODS  

Brain tumors are difficult to treat and have poor prognoses. One main reason is that they are 

invasive without a clear boundary between tumor and normal brain tissue. Consequently, it is 

very challenging to detect and classify. Glioma is a tumor that starts at the brain or spine. It 

makes up about 80% of all malignant brain tumors. 

This section introduced our dataset, its preprocessing methodology, training, validation, testing 

criteria, and the data augmentation process. We also discussed the feature extraction techniques 

we employed and, finally, the Bayesian optimization of our non-DL models. 

3.1 Data Collection 

We collected 125 glioma slides, each corresponding to one patient. Sections of human gliomas of 

grades II-IV were stained with mouse monoclonal antibodies targeting the IDH1 RI32H 

mutation. Afterward, they were scanned using Olympus Nanozoomer whole-slide scanner at a 

resolution of 40x. Amongst the slides includes: 29 astrocytoma grade II (AII), 20 astrocytoma 

grade III (AIII), 9 oligoastrocytoma grade II (OAII), 7 oligoastrocytoma grade III (OAIII), 29 

oligodendroglioma grade II (OII), 26 oligodendroglioma grade III (OIII), 4 glioblastoma 

multiforme (GBM), and 1 secondary glioblastoma multiforme (GBMII). About half of the 

images are low grad gliomas, including AII, OAII, and OII. 

3.2 Preprocessing 

Mutation in IDH1 occurs in up to 75% of gliomas. The dataset used in this study contains 

histopathological images of brain tumors stained with mutation-specific antibodies for IDH1 

[79]. All works were carried out on MATLAB version 2022a. Each folder containing the brain 

tumor classes was saved in a single folder.  The ImageDatastore method was used to store the 
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collection of each folder class and then imported to MATLAB However, we did not initiate any 

stain normalization process in this study and thus used the original images. 

 

 

Figure 3.1: Color variations of images in our data. 

The countEachLabel method was then used to count and keep track of each label in the datastore. 

Afterward, the data were split into training, validation, and test using the splitEachLabel method 

on MATLAB. The learnable layers and the classification layer of the transfer learning DL model 

were adjusted to reflect the weights and number of classes of our data. The 

imageDataAugmenter was then used to specify the data augmentation parameters before using 

the augmentedImageDatastore method to transform the batches of training and validation data 

with optional preprocessing such as resizing to fit the network and the specified parameters from 

the imageDataAugmenter. During training, the epoch was set to 10, a stochastic gradient descent 

optimizer (sgdm) was selected for optimization, and the learning rate was set as 0.0001. 

3.3 Training Criteria 

For the individual DL models, we selected 60% of data for training, 20% for validation, and 20% 

for testing. This way, we had 1440 images for training, 480 for validation, and 480 for testing. 

On the other hand, for the individual non-DL models, we selected 70% of data for training and 

30% for testing. In this way, we had 1680 images for training and 720 images for testing. The 

statistics about training, validation, and testing for both types of models are shown below.  
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Table 3.1: Criteria for selection of training, validation, and test for DL classification 

 No. of Images Percentage 

Training 1440 60 

Validation 480 20 

Test 480 20 

Total 2400 100 

 

Table 3.2: Criteria for selection of training and test for our non-DL classification 

 No. of Images Percentage 

Training 1440 60 

Test 480 40 

Total 2400 100 

 

3.4 Data Augmentation 

In this study, we employ the online augmentation technique. By applying the 

imageDataAugmenter method in MATLAB library to our data, we generate batches of image 

data with real-time data augmentation. This way, we ensure that our network sees data variations 

at each epoch during the training process. Firstly, input as a batch of images is fed to the 

imageDataAugmneter, which then transforms each image in the batch by a series of random 

translations, rotations, reflections, etc. The rotation we specified has a range of 45, corresponding 

to a random rotation angle between [-45, 45] degrees. We also set the translation range as 3, 

corresponding to a random translation between [-3, 3]. Then we set the vertical and horizontal 

reflection to be true. Each image is reflected vertically and horizontally with a 50% probability. 



                                                                                                                                                      23 

Finally, the randomly transformed batch is returned to the calling function. All these parameters, 

alongside their values, are shown below. 

Table 3.3: Parameters of data augmentation 

Parameters of Image augmentation Values 

RandXReflection True 

RandYReflection True 

RandRotation 45 

RandXShear 30 

RandYShear 30 

RandXTranslation 3 

RandYTranslation 3 

3.5 Feature Extraction Techniques 

In this study, we employed two techniques for feature extraction: HOG features extraction and 

feature extraction with CNN. 

3.5.1 HOG Features Extraction 

A histogram of gradient (HOG) is a feature descriptor for object detection. It focuses on the 

structure or the shape of an object. For the regions of the image, it generates histograms using the 

magnitude orientations of the gradient. Suppose f(x, y) records the color of the pixel at location 

(x, y), and the gradient vector of the pixel (x, y) according to [80] is defined as  

  ∇𝑓𝑓(𝑥𝑥, 𝑦𝑦) = �
𝑔𝑔𝑥𝑥
𝑔𝑔𝑦𝑦� = �

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥
𝑑𝑑𝑓𝑓
𝑑𝑑𝑦𝑦

� =  �𝑓𝑓
(𝑥𝑥 + 1,𝑦𝑦) − 𝑓𝑓(𝑥𝑥 − 1,𝑦𝑦)
𝑓𝑓(𝑥𝑥, 𝑦𝑦 + 1) − 𝑓𝑓(𝑥𝑥,𝑦𝑦 − 1)� 
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The 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

 term is the partial derivative on the x-direction, computed as the color difference between 

the adjacent pixels left and right of the target, f(x + 1, y) – f(x-1, y). 

Similarly, the 𝑑𝑑𝑓𝑓
𝑑𝑑𝑦𝑦

 term is the partial derivative on the y-direction, computed as the color 

difference between the adjacent pixels above and below the target,  f(x, y+1) – f(x, y-1). 

 

Then, the magnitude and the angle as stated in [80] are  

   Magnitude, µ = �𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2  

           𝜃𝜃 = arctan �𝑔𝑔𝑦𝑦
𝑔𝑔𝑥𝑥
�  

After calculating the magnitude, the gradient matrices (magnitude and angle matrix) are divided 

into CxC cells to form a block. For each block, a 9-point histogram is calculated. A 9-point 

histogram develops a histogram with 9 bins [81]. With few bins, a pixel whose orientation is 

close to a bin boundary might end up contributing to a different bin, were the image to change 

slightly. To prevent these quantization artifacts, each pixel in a cell contributes to two adjacent 

bins (modulo B), a fraction of the pixel's magnitude that decreases linearly with the distance of 

that pixel's gradient orientation from the two bin centers. 

According to [82], the bins are numbered 0 through B – 1 and have width w =180
𝐵𝐵

 . Bin i have 

boundaries [wi, w(i+1)) and center ci = w(i +1
 2

). A pixel with magnitude µ and orientation 

𝜃𝜃 contributes a vote 

 

 ʋj = µ𝑐𝑐j+1−  𝜃𝜃 
𝑤𝑤

 to bin number   j = �𝜃𝜃
𝑤𝑤
−  1

2
�   mod B             {for the jth bin} 
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As sated in [81], similarly,  

 

ʋj+1 = µ𝜃𝜃− 𝑐𝑐j
𝑤𝑤

                                                 {for the (j+1)th bin} 

 

Once the histogram computation is done for all blocks, the cells are grouped into overlapping 

blocks of 2 x 2 cells each [81] so that each block has a size 2C x 2C pixels. Two horizontally or 

vertically consecutive blocks overlap by two cells, that is, the block stride is C pixels. 

Consequently, each internal cell is covered by four blocks. Concatenate the four-cell histograms 

in each block, as shown in [82], into a single block feature b and normalize the block feature by 

its Euclidean norm: 

 

b ← 𝑏𝑏
�||𝑏𝑏||2+ϵ

 

In this expression ϵ is a positive constant that does not allow division by zero in gradient-less 

blocks. The evidence for choosing this scheme over others is entirely empirical. 

Block normalization is a compromise: On one hand, cell histograms need to be normalized to 

reduce the effect of changes in the contrast between images of the same object. On the other 

hand, overall gradient magnitude does carry some information, and normalization over a block – 

a region frater than a single cell – preserves some of this information, namely, the relative 

magnitudes of gradients in cells within the same block. For each cell covered up to four blocks, 

each histogram is represented up to four times with up to four different normalizations. 
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The normalized block features are connected into a single HOG feature vector h, which is 

normalized as follows:  

    h ← ℎ
�||ℎ||2+ϵ

 

    ℎn ← min(ℎn, ꞇ) 

 

Here, ℎn is the n-th entry of h and ꞇ is a positive threshold (ꞇ = 0.2) [82]. Clipping the entries of h 

so that it can be no larger than ꞇ (after the first normalization) ensures that huge gradients do not 

have too much influence – they would end up washing out all other image detail. The final 

normalization makes the HOG feature independent of overall image contrast.  

Visualizing HOG Features  

The figure below depicts the process of HOG feature extraction on an image for different cell 

sizes.  

 

Figure 3.2: A representation of different cell sizes of HOG features extracted from an image 

 

3.5.2 Feature Extraction With CNN 

In this study, we also employed using ResNet-18 in extracting the features from our image 

datasets for machine learning applications. After splitting our image datasets into training and 

test, we resize them to the size suitable for our CNN model (224x224x3) using the 

augmentedImageDatastore in the MATLAB library. Each layer of the CNN produces a response 
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to an input. However, just a few layers within the CNN are suitable for image feature extraction. 

As visualized below, we use the initial layers to capture features such as edges and blobs. 

  

Figure 3.3: First convolutional weights  

The figure above indicates that the model has learned filters for capturing these features. The 

primitive features are then combined to form higher-level image features. Afterward, we selected 

the layer (pool5) before the fully connected layer to extract our features using the activations 

method. The activation output is specified as rows to make it suitable for our non-DL 

classification models. 

3.6 Bayesian Optimization 

In this study, we also applied bayesian optimization to our non-DL models. Bayesian 

optimization is an approach that uses the Bayes theorem to minimize a scalar objective function 

f(x) for x in a bounded domain [83]. The Bayes theorem is an approach for calculating the 

conditional probability of an event, as depicted in [84] 

 

  P(A | B) = P(B | A) * P(A) / P(B) 
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By normalizing value of P(B), this equation becomes 

  P(A | B) = P(B | A) * P(A) 

 

This conditional probability referred to as the posterior probability given as  

  Poserior = likelihood * prior 

 

This theorem provides the schema that can be used to quantify the assumptions about an 

unknown objective function given samples from the domain and their evaluation [84]. In other 

words, the posterior probability is a surrogate objective function. A surrogate objective function 

is the approximation of an objective function.  

Thus, Bayesian optimization builds a probability model of the objective function and uses it to 

select hyperparameters to evaluate the true objective function [85]. 
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4 RESULTS  

In this section, we describe and compare the results of eight different class of brain tumor 

histopathological images classification/recognition using 5 DL approaches. Afterward, we 

reiterate these process combined with an ensemble classifier and 5 non-DL approaches on a 

reduced dataset consisting of five classes to evaluate the performances of each model. 

  Table 4.1: The Transfer Learning DL classifiers used for the brain tumor classification 

Transfer Learning 

  DL Model 

Network Deep 

(Layer Size) 

Parameters 

(Millions) 

Image Input 

     Size 

GoogLeNet 22 7.0 224 x 224 

ResNet-50 50 25.6 224 x 224 

Inception-V3 48 24.0 299 x 299 

DenseNet-201 201 20.0 224 x 224 

Xception 71 23.0 299 x 299 

 

4.1 Comparison of Brain Tumor Histopathological Images Using the Complete Dataset 

Here, we analyze the performance of 5 DL models using the complete dataset of tumor images. 

(a) GoogLeNet      (b) ResNet-50 
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Figure 4.1: The validation and training plots for the 5 DL models and their loss plots for the 

complete dataset 

 

(c) Inception-V3    (d) DenseNet-201 

 

 

 

 

 

 

(e) Xception 

 

Fig. 4.1 shows that the validation and training loss for all models, excluding (a) failed to 

converge. This might indicate that these models may not generalize well with new sets of data 

due to signs of overfitting. The erractic patterns reflects the low volume of dataset currently 

available for this study 
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   Table 4.2: Accuracy for each Transfer Learning DL model for the complete dataset 

Transfer Learning  

   DL 

Accuracy (%) 

GoogLeNet 68 

ResNet-50 77 

Inception-V3 79 

DenseNet-201 80 

Xception 79 

 

Table 4.2 shows that the best performing model was DenseNet-201 which achieved the best 

classification accuracy at 80% followed by Inception-V3 and Xception both tied at 79%. The 

worst performing model GoogleNet at 68% despite showing best indication of a genearlized 

model for the dataset. 

Although the table above shows the average performance of each DL algorithm, it does not 

provide information about the weakness of each model and what accounts for misclassifications 

in this study. We generate the confusion matrices shown in Fig. 4.2 to evaluate our model 

performance for each class of brain tumor. 

 

 



                                                                                                                                                      32 

 
 

                 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 Figure 4.3: The confusion matrices of the best and worst DL model for the complete dataset 
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We designed a summary table in Table to briefly describe the classes classified with the highest 

rate and the lowest rate for each model. The table also described the classes that had the highest 

misclassified rates for each model 

   Table 4.3: Summary of the DL confusion natrices for the complete dataset 

      DL Models Best Classified class Worst 

Classified Class 

    Most 

Misclassified Class 

 GoogLeNet      GBMII  OII  OAII 

 ResNet-50      OAII  OII  OIII 

Inception-V3      GBM  OIII  OII 

DenseNet-201      GBM  OII  OIII 

 Xception     GBM and AII  OIII  OII 

 

GBM had the highest classification rate with an average rate of 93.6% while GBMII was the 

second-highest with an average classification rate of 91.7%. OII had the highest misclassification 

rate followed by OIII. OII was misclassified as OIII with an average error rate of 19%. On the 

other hand, OIII was misclassified as OII with an average error rate of 15.7%. 

4.2 Formation of the Reduced Dataset 

To further test if we can improve the accuracy of each model, we discarded the OA class known 

to have features of both oligodendroglioma and astrocytoma. We also combined the GBM and 

GBMII classes to form one glioblastoma multiforme (GBM) class. Hence, we now have 5 

classes, which are  

 Astrocytoma (grade II) 

 Astrocytoma (grade III) 
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 Oligodendroglioma (grade II) 

 Oligodendroglioma (grade III) 

 Glioblastoma  

4.2.1 Comparison of Brain Tumor Histopathological Image Classification Using the 

Reduced Dataset 

Similarly, we analyzed the performance of the 5 DL models using the reduced dataset of brain 

tumor images.  

 

(a) GoogLeNet       (b) ResNet-50 

 (c)Inception-V3      (d) DenseNet-201 
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Figure 4.4: The validation and training plots for the 5 DL models and their loss plots for 

the reduced dataset 

  

 

 

    

 

 

 

    (e) Xception 

 

 

Fig. 4.3 shows  that the  validation and training loss for all models converged. This might 

indicate that these models may generalize well with new sets of data. 

Table 4.4: Accuracy for each Transfer Learning DL model for the reduced dataset 

Transfer Learning  DL Accuracy (%) 

GoogLeNet 76 

ResNet-50 79 

Inception-V3 80 

DenseNet-201 82 

Xception 76 

 

Table 4.4 shows that the best performing model was also DenseNet-201 which achieved the best 

classification accuracy at 82% followed by Inception-V3 at 80%. There was no significant 

difference in terms of accuracy for all models except GoogLeNet. Xception achieved a lower 

accuracy compared to the its accuracy for the complete daatset. 
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  Figure 4.5: The confusion matrices of the best and worst DL model for the reduced dataset 

 

Similarly, confusion matrices were generated in Fig. 4.4 to assess each DL model performance 

for each of the bain tumor class 

 

 

 

 

 

 

 

 

 



                                                                                                                                                      37 

   Table 4.5: Summary of the DL confusion matrices for the reduced dataset 

DL Models Best 

Classified Class 

Worst 

Classified Class 

Most 

Misclassified Class 

 GoogLeNet      AIII  OIII  OII 

 ResNet-50      AII  OIII  OII 

 Inception-V3    AII and GBM  OIII  OII 

 DenseNet-201      AIII  OIII  OII 

 Xception      AIII  OII  OIII 

 

AIII had the highest classification rate with an average rate of 90.2%, followed by AIII with an 

average rate of 88.4% and then GBM. OII had the highest misclassification rate. It was often 

misclassified as OIII with an average error rate of 32.5%. 

4.2.2. HOG Features with Ensemble Method 

A cell size of 256 x 256 was chosen as the best compromise. This cell size encodes enough 

spatial information to visually identify an image shape while limiting the numbe of dimensions 

in the HOG feature vector. An ensemble method (Bag) was selected as the best classifier after 

initializing an automated machine learning process with bayesian optimization. 
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Figure 4.6: confusion matrix for the bagging of decision trees (ensemble) classifier. 

 

 

 

 

 

 

 

 

 

 

This method achieved a classification accuracy of 40.2%. AII had the highest classification rate 

at 61.1%. GBM had the lowest classification rate at 22.2%. AII was misclassified as AIII with an 

error rate of 26.7% while OIII was often misclassified as OII and GBM with a joint error rate of 

23.3%.  

4.2.3. Comparison of non-DL Classifiers Using Features Extracted with ResNet-

18 

We also evaluated the performance of 5 non-DL models on features extracted using the 18-layer 

residual network. To improve the ability of our non-DL classifiers to learn the features, it is 

necessary to carefully tune the model hyperparameters. For this reason, we apply Bayesian 

optimization to automatically tune the hyperparameters of our ML models. This optimization 

technique is a robust technique that models the objective function used to train an non-DL 

classifier as a Gaussian process [89]. The goal is to find the optimum model parameters that 

minimize an objective function on some bounded set. 
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Figure 4.7: (a) The estimated 2-dimensional objective function versus the non-DL model 

hyperparameters was obtained using the Bayesian optimization technique for Decision tree 

Classifier. (b) The estimated 3-dimensional objective function model for Naïve Bayes Classifier. 

(c) Hyperparameter optimization for the kNN classifier showing the effects of the distance metric 

(Distance) and the number of nearest neighbors (NumNeighbors). 
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Figure 4.8: Minimum objective function plot for the 5 non-DL classifiers. 

 

The values of the critical model hyperparameters for the different classifiers obtained from the 

Bayesian Optimization using the trained data are given below 

• Naïve Bayes: Distribution Name = Kernel, Width = 0.23137 

• Decision Tree: MinLeafSize = 63 

• ANN: Activations = relu, Standard Size = True, Lambda = 1.2169e-6, Layer Size = 66 

• KNN: Number of Neighbors = 1, Distance Metric (Distance) = Cosine 

• SVM Multiclass: Coding = OneVsOne, Box Constraint = 0.0011045, Kernel scale = 

0.17913 

 

 

 

 

 

 

 

 

 

Fig. 4.7 shows that artificial neural network (ANN) has the lowest minimum objective value 

followed by KNN and the SVM multiclass. The decision tree classifier had the highest minimum 

objective value. This minimum objective function plot reflects the performances of our non-DL 

classifiers. The high minimum objective value for the decision tree classifier indicates that the 

decision tree classifier did not perform well on our dataset. On the other hand, the low minimum 
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objective value for the ANN indicates that it had the best performance of all non-DL classifier 

for our dataset. 

   Table 4.6: Accuracy for each non-DL  model 

Non-DL Model      Accuracy (%) 

       Naïve Bayes 65.8 

      Decision Trees 54.2 

       ANN 83.8 

       KNN 83.6 

     SVM Multiclass 82 

 

ANN achived the best accuracy with 83.8% followed by KNN with 83.6% and SVM with 82%. 

Decision tree had the worst accuracy with 54.2%.  
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Figure 4.9: The confusion matrices of the best and worst non-DL model  

 

 

 

 

 

 

 

 

 

The summary of the confusion matrices for each non-DL classifier is shown below 

 

 

 

 

 



                                                                                                                                                      43 

    Table 4.7: Summary of the non-DL confusion natrices 

Non-DL Models Best 

Classified class 

Worst 

Classified Class 

 Most 

Misclassified              

Class 

Naïve Bayes      AIII  OII  OII 

 Decision Tree      AII  OII  AIII 

 ANN      AII  OIII  OII 

 KNN     GBM  OII  OII 

 SVM Multiclass       AIII  OII  OII 

 

AIII had the highest classification rate with an average rate of 75% followed by AII with 72%. 

OII had the highest misclassification rate followed by OIII. OII had an average misclassification 

rate of 20% with OIII while the vice versa had an average error rate of 19%.  

4.3 Comparing the Accuracy of All Models 

We evaluated varieties of DL and non-DL models. DL models did not perform better than some 

of the non-DL models supporting the reason why DL models require high volume of data. 

However, in overview, the DL models did perform better than the non-DL models, thus, 

emphasizing the significance of the ability of DL models to learn high-level features from data in 

an incremental manner. This makes DL models advantageous over non-DL models when 

analyzing high dimensional data.  
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     Table 4.8: Table Showing the Accuracy of All Models 

Models Accuracy (%) 

GoogLeNet 76 

ResNet-50 79 

Inception-V3 80 

DenseNet-201 82 

Xception 76 

Ensemble (Bag) 40.2 

Naïve Bayes 65.8 

Decision Tree 54.2 

ANN 83.8 

KNN 83.6 

SVM Multiclass 82 

 

Table 4.8 shows the accuracy of all models employed in this study. ANN proves to be the best 

model based on their accuracies in this study. However, the DL models achieved higher 

classification rates for all classes in terms of precision, clearly seen from their confusion 

matrices. Additionally, the decision tree classifier and the ensemble method both performed 

poorly, indicating that our dataset may not do so well with tree-like models. 
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5 CONCLUSION 

A monoclonal antibody specific for IDH1 RI32H mutation known to be efficient in detecting 

single infiltrating tumor cells was administered for this study. Data augmentation was employed 

to increase the volume of our training set and enhance the accuracy of the disease classification 

task. To classify brain tumors of different classes, a variety of transfer learning DL and non-DL 

approaches were evaluated in this study.  

For the original number of classes, DenseNet-201 achieved the best accuracy at 80%. To 

improve the accuracy of each model, we reduced the original classes from 8 classes to 5 classes. 

We discovered that this proposed method enhanced the accuracy and precision of each model. 

DenseNet-201 also achieved the best accuracy at 82% among the DL models for the reduced 

classes and seemed to generalize much better.  

Ensemble method (Bag) with histogram of oriented gradients (Bag + HOG) and a variety of non-

DL models with features extracted from ResNet-18 (non-DL + CNN) are two feature-based ML 

classification techniques also evaluated. The former achieved an accuracy of 40.2%. For the 

latter, ANN achieved the best accuracy at 83.8% followed by KNN with 83.6% and then SVM 

with 82%. 

The astrocytoma grade 3 and grade 2 tumors were the best-classified classes. This could be 

attributed to the fact that grade 3 astrocytoma otherwise known as anaplastic astrocytoma, 

displays a higher degree of cellular abnormalities, and evidence of mitosis (proliferation) in 

comparison to grade 2 astrocytoma. On the other hand, the oligodendroglioma grade 2 was often 

misclassified as oligodendroglioma grade 3 and vice versa. According to [88], calcification, and 

the cortical-subcortical location, most often found in the frontal lobe, are regarded as 

characteristic features of oligodendrogliomas. Consequently, minimal to moderate enhancement 
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and averagely increased perfusions are common in oligodendrogliomas making differentiation of 

grade 2 and grade 3 oligodendroglioma challenging. Furthermore, edema, hemorrhage, cystic 

degeneration, and contrast enhancement are mostly seen in oligodendroglioma grade 3, however, 

they have been known to be also present in grade 2 oligodendrogliomas. A machine-learning 

model based on radiomics for efficient detection of grade 2 and grade 3 oligodendrogliomas was 

proposed in their study. 

This study shows promising insights in detecting and diagnosing different glioma grades but will 

require further investigation. We could try using denoising and regularization techniques to 

evaluate the performance of each model. We could also explore other feature extraction 

techniques, such as wavelet scattering, which has shown promising results in recent medical 

image studies. However, increasing the volume of our dataset will undoubtedly yield better 

results. 

5.1 Limitation of Study 

The limitations of the study include the insufficient volume of available data. Due to their 

inherent complexity, and a structure of many layers, deep learning models need a large amount 

of data to perform effectively. Hence, the DL models applied in this study could not outperform 

several non-DL classifiers like the ANN, KNN and the SVM when considering their  

classification accuracies. Another factor is the complexity of the feature representation of the 

brain tumor histopathological images. The number of data points required for good performance 

of our non-DL classifiers increases exponentially as the feature dimensionality increases. The 

reason is that we would need more data points for any given combination of features, for any 

non-DL model to be valid. Lastly, the lack of clear boundaries between gliomas makes 

distinguishing each class difficult. Sometimes a biopsy is needed to make a proper diagnosis.  
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5.2 Implication of this Study 

The implications of this study are outlined below 

1. The use of deep learning in this study allowed us to extract and learn feature representation 

automatically from images characterized by data complexity. This indicates that deep 

learning is a promising tool for assisting pathologists in making prognoses and providing 

better treatment for patients.  

2. This study also shows that there are potential insights that could be derived when cell tissues 

are stained with antibodies that target specific biomarkers. 

3. This study also underscores the importance of the evolution of artificial intelligence in 

eradicating the subjective process of pathologists in analyzing each digital slide. 
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