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ABSTRACT 

Over the last decade, advances in machine learning have led to an exponential growth in artificial 

intelligence i.e., machine learning models capable of learning from vast amounts of data to perform 

several tasks such as text classification, regression, machine translation, speech recognition, and 

many others. While massive volumes of data are available, due to the manual curation process 

involved in the generation of training datasets, only a percentage of the data is used to train 

machine learning models. The process of labeling data with a ground-truth value is extremely 

tedious, expensive, and is the major bottleneck of supervised learning. To curtail this, the theory 

of noisy learning can be employed where data labeled through heuristics, knowledge bases and 

weak classifiers can be utilized for training, instead of data obtained through manual annotation. 

The assumption here is that a large volume of training data, which contains noise and acquired 

through an automated process, can compensate for the lack of manual labels. In this study, we 

utilize heuristic based approaches to create noisy silver standard datasets. We extensively tested 

the theory of noisy learning on four different applications by training several machine learning 

models using the silver standard dataset with several sample sizes and class imbalances and tested 

the performance using a gold standard dataset. Our evaluations on the four applications indicate 

the success of silver standard datasets in identifying a gold standard dataset. We conclude the study 

with evidence that noisy social media data can be utilized for weak supervision 
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1 PURPOSE OF STUDY   

The primary purpose of this study is to explore the viability of using large-scale noisy social media 

data for weak supervision. This study aims to reduce labeling costs associated with supervised 

learning and move towards scalable approaches to generate training datasets. This study intends 

to compute the theoretical bounds of noisy learning and evaluate the accuracy of the bounds in an 

actual application. 

 

 

 

 

 

 

2 CONTRIBUTION TO SCIENCE  

The primary contribution of this study is to demonstrate the usage of noisy social media data for 

weak supervision through extensive evaluation. Furthermore, we contribute a feasible 

methodology that decreases labeling costs and generates large scale training datasets which can be 

adapted to a variety of applications. 
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3  INTRODUCTION 

Weak supervision utilizes noisy, limited, or imprecise sources to provide supervision signals for 

labeling large amounts of training data in a supervised learning setting1. The following are a few 

ways in which training data can be obtained using weak supervision.  

1. Obtaining cheaper, low quality labels from non-experts 

2. Obtaining large noisy data through heuristics, distant supervision, constraints, expected 

distributions and invariances  

3. Utilizing pre-trained models to provide supervision signal for data  

Weak supervision enables these noisy labels to be combined programmatically to form the training 

data that can be used to train a model. Labels are considered “weak” because they are imperfect 

i.e., the labels are not accurate and might have a margin of error.   

To decrease the labeling costs, researchers have been using weaker forms of supervision by 

heuristically generating training data with external knowledge bases, patterns/rules, or other 

classifiers2. In the early phases of applying weak supervision in research, authors induced noise 

(using a random probability) and flipped the labels of the gold standard training dataset and trained 

the classifiers3. However, in the past decade, researchers used noisy text and labeled the noisy text 

using weaker forms of supervision such as heuristics and constraints. Wang et al.4 proposed a 

clinical text classification paradigm using weak supervision and deep representation to reduce 

manual annotation. Deriu et al.5 utilized large amounts of weakly supervised data for multi-

language sentiment classification. Agarwal6 utilized a semi-automatic method to label training sets 

to create phenotype models in the field of medicine. Dehghani et al.7 proposed a method to train 

neural networks with a large set of noisy data with weak labels and a small amount of data with 

true labels and applied the method on a sentiment classification task. Zamani and Croft utilized 

https://paperpile.com/c/lwB191/oxNn2
https://paperpile.com/c/lwB191/UudQb
https://paperpile.com/c/lwB191/qvc8I
https://paperpile.com/c/lwB191/85xZF
https://paperpile.com/c/lwB191/azedb
https://paperpile.com/c/lwB191/ZqqhJ
https://paperpile.com/c/lwB191/LTJCc
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weak supervision for information retrieval8. Since 2017, weak supervision has been applied to 

several health applications like detection of intracranial hemorrhage (ICH)9, classification of aortic 

valve malformations10 and seizure detection in electroencephalography11. In computer vision, 

primitives like predicted bounding box or segmentation attributes from existing models have often 

been used to weakly supervise more complex image-based learning tasks12–14. In 2019, Weng et 

al. utilized weak supervision to infer complex objects and situations in autonomous driving data15. 

Khattar et al. applied weak supervision to time series data and programmatically labeled a dataset 

from wearable sensors. Their weakly supervised model matched performance with hand-labeled 

data16.  

3.1 Theory of Noise Learning 

It is mathematically proven that addition of noise during the training of a neural network model 

has a regularization effect and, in turn, improves the robustness of the model17. However, the 

important question to envisage is how much noisy data is required to obtain a model with 

satisfactory performance. In the past, Vibhu et al.6 computed the theoretical bounds to demonstrate 

an alternative to manual labeling for creating training sets for statistical models of phenotypes. 

Suchanek et al. utilized theoretical bounds to combine linguistic and statistical analysis to extract 

relations from web documents18. Kulkarni et al. discussed the use of theoretical bounds in pattern 

classification19. Several other researchers employed the sample bounds and created their own 

bounds for specific applications20–22. Simon23 and later Aslam et al. 24 formulated the following 

theory as a sample complexity bound, given below: 

D as the target data distribution consisting of observations and correct labels 

Dn  as the data distribution consisting of observations and noisy labels 

τ as the random classification error for Dn 

https://paperpile.com/c/lwB191/hRFRu
https://paperpile.com/c/lwB191/ZRUZE
https://paperpile.com/c/lwB191/cZwAl
https://paperpile.com/c/lwB191/8QPSb
https://paperpile.com/c/lwB191/TQDrK+6PLT8+uZDEE
https://paperpile.com/c/lwB191/cHPIy
https://paperpile.com/c/lwB191/zu8x6
https://paperpile.com/c/lwB191/9EiQ8
https://paperpile.com/c/lwB191/ZqqhJ
https://paperpile.com/c/lwB191/94ac
https://paperpile.com/c/lwB191/HNxs
https://paperpile.com/c/lwB191/4Hxy+qqgS+Jh02
https://paperpile.com/c/lwB191/Q9q1M
https://paperpile.com/c/lwB191/LS8Ba
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H as the class of learning algorithms to which our models belong 

S as the set of m observations drawn from Dn 

hˆ as a model in H and trained on S 

h* as a model in H that best fits the target distribution D 

ε(hˆ) as the generalization error of hˆ 

ε(h*) as the generalization error of h* 

Then for |ε( hˆ ) - ε( h *)| ≤ γ, with probability 1 - δ, it suffices that  

m ≥ O VC(H)   γ(1−2τ)2 + log(1/δ) γ(1−2τ)2where γ > 0 and 0 ≤δ≤1 

The case τ = 0 corresponds to observation data with clean labels, and the case τ = 0.5 represents 

the random flipping of labels that makes learning impossible. For a given error bound γ, probability 

1 − δ, and classification error rate τ, a learning algorithm can learn equally well from approximately 

m*(1−2τ)2 observations of noisy data of what it can learn from m observations of clean data. The 

important aspect to note is, it is easier to obtain m*(1−2τ)2 noisy observations than to acquire m 

clean data. In this work, we calculated the theoretical bounds for each application where we 

determined the number of noisy samples required when m clean data is available and draw 

comparisons to results with noisy and clean samples.  

To demonstrate a working example of calculating theoretical bounds, we considered the following 

hypothetical question. How many samples of noisy data do we require when a gold standard data 

of 1,000 samples is available? 

To answer the hypothetical question, we require the following details: a) error bound (γ), b) 

probability (1 − δ), c) classification error rate (τ) and d) learning algorithm with accuracy score 

(A) to calculate classification rate (τ = 1-A). Since a machine learning algorithm can perform either 
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exceptionally well or fail drastically, we calculated the minimum number of samples required for 

both a high performing and a low performing model.  

3.1.1 Calculating theoretical bounds for a high performing model 

In this computation, we consider “BERT” to be a model with high performance with an accuracy 

score of 95%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score(0.95), and clean 

samples (m = 1,000), the minimum number of noisy samples are calculated in the following way  

noisy samples =  m/ (1-(2*(1-τ)))**2 

noisy samples = 1,000/(1-2*(1-0.95)))**2 

noisy samples = 1,235 

We would require 1,235 noisy samples to achieve the performance similar to the performance of 

models trained on 1,000 clean samples for a high performing model.  

3.1.2 Calculating theoretical bounds for a low performing model 

In this computation, we consider “Naive Bayes” to be a model with low performance with an 

accuracy score of 65%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score (0.65), 

and clean samples (m = 1,000), the minimum number of noisy samples are calculated in the 

following way  

noisy samples =  m/ (1-(2*(1-τ)))**2 

noisy samples = 1,000/(1-2*(1-0.65)))**2 

noisy samples = 11,112 

We would require 11,112 noisy samples to achieve the performance similar to the performance 

of models trained on 1,000 clean samples for a low performing model. It is important to note that 

it is relatively easier to obtain 11,112 noisy samples than 1,000 clean samples. 
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3.2 Literature Review 

There has been a shift towards relying on methods that use less to no data (E.g: Zero, One shot 

learning) or methods that can replace labeled data (Eg: Weak Supervision) due to cost associated 

with labeling the data. The trend of shifting towards relying on weak supervision has also been 

fueled by the recent empirical success of automated feature generation approaches. Notably, deep 

learning methods such as long short-term memory (LSTM) networks25 ameliorate the burden of 

feature engineering when large labeled training sets are given. To help reduce the cost of training 

set creation, several frameworks have been built, designed and re-engineered to automate the 

process of labeling. Data Programming26 was the first paradigm to be built in 2016 to create large 

training sets quickly. The same team designed Snorkel2 in 2018, a first-of-its-kind system that 

enables users to train state-of-the-art models without hand labeling any training data. To deploy 

weak supervision at industrial scale, Snorkel DryBell was created27. The key to these paradigms 

was the design of heuristics. Large training sets could be created automatically by adopting 

heuristics and developing labeling functions that use the heuristics to label the dataset. In the 

beginning, the heuristics were manually developed by Subject Matter Experts (SMEs). As weak 

supervision gained popularity and was used on an industrial scale, there was a need to automate 

the process of generating heuristics that assign training labels to unlabeled data. Snuba28 

automatically generates heuristics using a small labeled dataset to assign training labels to a large, 

unlabeled dataset in the weak supervision setting. Bringer et al. designed Osprey29, a weak-

supervision system suited for highly imbalanced data, built on top of the Snorkel framework to 

support non-coders. With the increase of utilizing Weak Supervision for research in recent years, 

Zhang et al.30 compiled “WRENCH”, which is a comprehensive benchmark for weak supervision. 

WRENCH includes a set of 22 real-world datasets which can be utilized for weak supervision. The 

https://paperpile.com/c/lwB191/R0Qz
https://paperpile.com/c/lwB191/CNt0t
https://paperpile.com/c/lwB191/UudQb
https://paperpile.com/c/lwB191/59pgc
https://paperpile.com/c/lwB191/Fnwm6
https://paperpile.com/c/lwB191/Vmnzs
https://paperpile.com/c/lwB191/FVMg
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datasets can be applied for several domains like chemical, biomedical, news for several tasks like 

classification, sequence tagging and question & answering. However, not even one social media 

dataset was included in this study, out of 22 datasets. This demonstrates the absence of benchmark 

social media datasets in weak supervision and there is an immense scope for expansion to include 

datasets which can be utilized for several different applications. While there has been a growth in 

the use of weak supervision over the years, there has also been an increase in study on label 

generation for training data. Makar et al.31 suggested an approach to discourage shortcut learning 

by using auxiliary labels, and specify a set of distribution shifts across a robust model which is 

risk-invariant. Chen et al.32 proposed a targeted relabeling methodology where the budget is split 

between labeling and building the label set using machine learning. Wang et al.33 proposed a 

weighted feature agent and an updating mechanism to do contrastive learning by using the pseudo 

labels to bridge the gap between supervised and unsupervised learning for fine-grained 

classification.  

While weak supervision is attaining popularity in several applications, research on its application 

using social media data is limited. There have been several studies3,34,35 in the past which utilized 

noisy learning in conjunction with approximate learning or incomplete samples. The studies cited 

in Introduction and Literature review sections were either from the labs that created the 

frameworks for weak supervision or standalone works with no extensions. Hence, there is an 

immense scope for expansion where weak supervision can be utilized. 

 

 

 

 

https://paperpile.com/c/lwB191/yalB
https://paperpile.com/c/lwB191/kuDB
https://paperpile.com/c/lwB191/51BN
https://paperpile.com/c/lwB191/Fbj9L+qvc8I+KSwab
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4 SOCIAL MEDIA 

Social media is producing massive amounts of data at an unprecedented scale36. 4.62 billion 

individuals use social media globally, and 424 million more people have signed up since the 

beginning of the year37. According to a survey on social media usage worldwide, 2h 27m is the 

average daily amount of time spent on social media37. Several key interactions like, day to day 

communications, personal and professional relationships, expression of opinions, are presented via 

online interactions such as posts, comments, favorites, tags, likes, and links on social media. 

Interactions on social media leave traces in the form of data, which can be utilized for research38. 

The data on social media possesses unique qualities such, as  

a. The data stream is close to real time, which benefits research on current issues  

b. Large data on a global scale is available, which can be utilized to understand 

different perspectives on a similar topic 

c. Since the data is available, it can be reused to reproduce or enhance research  

d. The data is noisy and unstructured with misspellings, grammatical errors and 

poorly constructed sentences due to limitation of text  

In this work, we used Twitter data for the experiments, since the data acquisition is relatively easier 

when compared to other social media platforms. 

4.1 Advantages of using Twitter 

Facebook and Twitter are the most popular social media platforms where most user interactions 

take place39. However, it is illegal to scrape data from Facebook due to terms and conditions40. 

While Reddit permits users to scrape all the available data from subreddits the exact subreddit 

must be known to extract data, which might not offer extensive coverage. On the contrary, Twitter 

allows for easier and efficient data extraction. As of 2021, Twitter contains 322.4 million users 

https://paperpile.com/c/lwB191/ZzzAU
https://paperpile.com/c/lwB191/DuRl
https://paperpile.com/c/lwB191/DuRl
https://paperpile.com/c/lwB191/zzG27
https://paperpile.com/c/lwB191/U35lV
https://paperpile.com/c/lwB191/GcjQ
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and generates 500 million tweets every day on an average41, making it an attractive choice of social 

media platform to obtain data for research. Twitter data can be acquired in the several ways as 

listed below:  

a. Obtain the data from Internet Archive42 that contains the json objects of tweets. 

This data is a 1% sample of the tweets that Twitter releases for the users 

b. Obtain 1% sample of tweets from Twitter directly using the Twitter API. This 

requires a Twitter developer account and must obtain keys from Twitter 

c. Obtain only the tweets that are relevant to the research using keywords filter on 

Twitter API 

d. Hydrate tweet IDs from publicly available datasets 

To obtain tweets from Twitter streams or to hydrate tweets from publicly available datasets, a 

Twitter developer account is required. This developer account lets users access the Twitter API 

through which data can be collected. We used version 1 of the Twitter API for the data collection 

as our work started in 2019. Twitter released a new stable version (v2) in November 2021, which 

contains new features such as “ability to request specific objects and fields”, “new tweet create 

features” and “new and more detailed data objects”. Additionally, “academic research” access can 

be requested from Twitter, which would obtain access to even more data and advanced search 

endpoints. The newest Twitter API for Academic Research allows access to Twitter's real-time 

and historical public data with additional features and functionality that support collecting more 

precise, complete, and unbiased datasets. Pfeffer et al. demonstrated that Twitter's data endpoint 

v2 delivers better samples than the previously used endpoint v1.143. While the application process 

is fairly easy, several restrictions are placed on the developer account. Failure to adhere to the 

restrictions will result in freezing or canceling the account, which will impact the data collection 

https://paperpile.com/c/lwB191/tKLb
https://paperpile.com/c/lwB191/WIvt
https://paperpile.com/c/lwB191/ZHOM
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process. However, a Twitter developer account is not required to download tweets from the 

Internet Archive.  

4.2 Twitter’s Role in Academic Research 

There is no accurate method to identify the total number of articles that utilize Twitter data for 

research. Since 2006, there have been a total of 631,600 articles on arxiv.org articles that have 

either used or analyzed Twitter data44. In the field of computer science and machine learning, 

Twitter, in particular has been used as a data source for several applications such as hate speech 

detection45,46, sentiment analysis47,48, identifying adverse pregnancy outcomes49,50, symptoms 

associated with Covid-1951,52, many-to-many crisis communications during disasters53–56, usage of 

opioids57, detecting depression symptoms58, disease surveillance59, chemotherapy analysis60, 

quantifying mental health signals61–63 and many other countless applications. Additionally, Twitter 

is also utilized at organizational level to communicate with users. For instance, public health 

organizations use Twitter to promote smoking prevention64,65, oncologists use Twitter to share 

research findings and discuss treatment options66. In the artificial intelligence front, several 

machine learning approaches like volume analysis, time series analysis, classification, regression, 

clustering utilized Twitter data in applications. 

 

 

 

 

 

 

 

https://paperpile.com/c/lwB191/ogx5
https://paperpile.com/c/lwB191/xKt16+7e7qD
https://paperpile.com/c/lwB191/H2mCg+l0jbg
https://paperpile.com/c/lwB191/0jwhI+Vzqke
https://paperpile.com/c/lwB191/QJP7O+y6HaN
https://paperpile.com/c/lwB191/Dmgob+2BOos+iTKvA+19ZOB
https://paperpile.com/c/lwB191/9yZJO
https://paperpile.com/c/lwB191/54eUX
https://paperpile.com/c/lwB191/65FYW
https://paperpile.com/c/lwB191/wLVFj
https://paperpile.com/c/lwB191/iHiku+doCqq+CxTHV
https://paperpile.com/c/lwB191/LKMx7+TgOEw
https://paperpile.com/c/lwB191/oVe0s


11 

 

5 METHODS 

5.1 Data Acquisition from Twitter 

In the last 10 years, there has been a shift towards relying on Twitter data for research. To ease the 

data acquisition process and to access the Twitter API, several libraries and frameworks were 

created. In python, there are several libraries like Tweepy67, which can easily access the Twitter 

API, Twarc68, which is famously used for hydrating twitter data and retrieving historic data. 

Several third party scripts are available on Github69–72 to acquire data. Several researchers built 

their own in-house toolkits to acquire data which are application specific and would not work well 

with other applications. To address this issue, we created a Social Media Mining Toolkit  

(SMMT)73, containing utilities for data acquisition, preprocessing, annotation and standardization. 

The data acquisition utility contains utilities to hydrate data, obtain data from the Twitter stream. 

The preprocessing utility contains utilities to preprocess the tweet text by removing hyperlinks, 

extra spaces, emojis and emoticons. The data annotation and standardization contains utilities to 

make automatic NER annotations on preprocessed tweets, plugins to use popular annotation tools 

and NER systems. Researchers will be able to obtain, use, and disseminate data in a uniform and 

transparent manner by using a standard toolkit, hence easing reproducibility and accessibility in 

the social media domain. We have employed several utilities of SMMT in this work to acquire, 

preprocess and label data. In this work, we collected Twitter data from three different sources, a) 

Internet Archive, b) Twitter Stream and c) Publicly available datasets.  

5.2 Internet Archive 

The Internet Archive (IA)42 is a non-profit organization that builds digital libraries of Internet sites 

and other cultural artifacts in digital form and provides free access to researchers, historians, and 

scholars. The archive contains Twitter data collected using Twitter stream API, which yields a 1% 

https://paperpile.com/c/lwB191/wtLB
https://paperpile.com/c/lwB191/fduQ
https://paperpile.com/c/lwB191/G2EK+ukLo+ZOB0+pJ4V
https://paperpile.com/c/lwB191/4qa2
https://paperpile.com/c/lwB191/WIvt
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sample of daily tweets. This is the "Spritzer" version, the most light and shallow of Twitter grabs. 

This is the largest publicly available Twitter repository containing several json files of tweets in 

tar files sorted by date for each month of the year. To download and process the tweets disk space 

is essential since each month can take up to 700 GB of space. In order to download, a bash script 

was created which downloads tweets from all the days of a month. We downloaded tweets for each 

month and preprocessed the json file and created “tab separated value” (tsv) files for each day with 

relevant fields. Table 1 lists the details of the data available for each year from the Internet Archive. 

IA contains data from 2011 to 2020, however, we collected data from 2012 to 2018 for our 

applications since we started a longitudinal stream collection in 2018. The primary advantage of 

using IA over other sources is that the tweet json objects in IA are available and are never deleted, 

unless the repository has been removed. Since data is not lost, reproducible research is possible 

when using Internet Archive. The IA is also a very valuable source to obtain historic data since we 

cannot obtain large historic data using the Twitter end points and additionally the data is available 

for free. Since the files are stored on the web, a user can process only the required files and can 

delete the files from their local machine after a study reducing the need for large storage access. 

However, this method is time consuming since we have to re-process each file for each study if 

there are no storage options. It took us 190 days to process all the files from the Internet Archive 

from 2012 to 2018. The only disadvantage with IA is obtaining the latest tweets as the IA is only 

updated once in a few months. 

Table 1. Internet Archive Data Collection Details 

  

Year Total Tweets Available 

2012 1,245,785,016 

2013 1,871,457,526 
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2014 1,086,859,898 

2015 1,224,040,556 

2016 1,427,468,805 

2017 1,448,114,354 

2018 1,102,507,263 

Total 9,406,233,418 

 

5.3 Twitter Stream Collection 

While the Internet Archive contains historical data, it does not contain the latest tweets. So in order 

to obtain the current tweets, we started collecting 1% sample of the tweets from Twitter, yielding 

around 4 million tweets a day. We utilized the data acquisition tool from SMMT73 to collect the 

data. We set up a python script that listens to the Twitter end point and collects tweets every day. 

A json file is created each day with 1 json tweet object per line. We process the json files weekly 

and create a “tab separated value” (tsv) file with several relevant fields like “tweet id”, “tweet 

text”, “date”, “time”, “language”, “user id”, “user name”, “retweet status”. Depending on the 

retweet status, we filter the files and store the clean files and retweet files separately. We used a 

bash script to multi process the files. We created a total of 1,139 clean tsv files for the data collected 

between 2018 and 2021 used in this study. It takes 35 minutes to process all the clean files when 

using 8 threads on the server. Table 2 lists the details of data collected between 2018 and 2021. 

We use only clean tweets in this study, however, we also include the total number of tweets 

available for each year.  

Table 2. Twitter Stream Data Collection Details 

 

Year Total Tweets Clean Tweets 

2018 936,487,968 455,783,507 

https://paperpile.com/c/lwB191/4qa2
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2019 1,180,731,480 570,157,502 

2020 151,260,4381 777,863,405 

2021 621,615,285 325,579,195 

Total 4,251,439,114 2,129,383,609 

 

There are a few limitations and disadvantages when using this type of data collection. Firstly, data 

collection must be continuous and any problems like server downtime or storage issues would 

terminate the collection process which increases gaps in data collection. Secondly, data loss cannot 

be recovered unless we have a copy of the tweet ids to hydrate the tweets. While hydration is a 

good data recovery strategy, 100% data can never be recovered as tweets cannot be hydrated when 

a tweet is removed or deleted by the user. Finally, it is difficult to collect data every day unless 

there is access to a server with massive storage. 3.5 years of data collection (01/2018-05/2021) 

required 5.3 TB storage.  

5.4 Publicly Available Datasets 

Twitter is heavily used as a data source in many studies to analyze and identify patterns. We 

identified 35 studies which not only utilized Twitter as their primary source of data, but also made 

their data publicly available, enabling reproducible research. These datasets are valuable since they 

have historic data, which are very difficult to obtain. We cannot obtain “Nepal Earthquakes” or 

“H1N1 pandemic data” from Twitter end points (version 1) since it is historic data. The publicly 

available datasets, while collected for a different purpose, still have the data signals relevant to 

events that happened during the collection period. We intend to build a longitudinal dataset for 

each application which contains tweets from the past. A huge advantage in using the past data is 

the ability to identify the shift or trends in data. For example, during natural disasters, hurricane 

Harvey tweets could be analyzed to identify commodities that are required during a crisis and can 
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be easily adapted for future hurricanes of the same magnitude. The primary intent to use publicly 

available datasets is to re-use existing work and demonstrate an approach on how existing work 

can be utilized to build a superior dataset. Further, we observed that data augmentation improves 

the performance of machine learning models when we apply a heuristic to obtain more relevant 

tweets74. All the datasets from the 35 studies are collected based on keyword based search and 

contain significant noise. Since tweet texts cannot be shared publicly, all the studies released the 

tweet IDs corresponding to the tweets they have utilized in their study. The get_metadata utility 

of the SMMT73 toolkit was employed to hydrate the tweet IDs. The number of tweets to hydrate 

per day depends on the type of Twitter developer account. Using an academic research developer 

account, we could hydrate 8,640,000 tweets per day. However, a tweet cannot be hydrated if the 

tweet is deleted either by the user or Twitter. The following table summarizes the details of tweets 

we hydrated using publicly available datasets. A total of 2,905,714,184 tweets were hydrated out 

of which we could hydrate only 1,357,409,820 tweets. 46.71% of tweets were lost since the Twitter 

user or Twitter deleted the tweet. A total of 336 days was required to hydrate the 2,905,714,184 

(~2 billion) tweets. We pre-processed each dataset and extracted only relevant fields (“tweet id”, 

“text”, “language”, “date” and “time”) and stored all the extracted fields in a “tab separated 

value”(tsv). We used the processed tsv files for this study. It takes 55 minutes to process all the 

extracted files when using 8 threads on the server.   

Table 3. Publicly Available Dataset Details 

Dataset Name Total Tweets Total Hydrated Ids  Clean Tweets Time taken 

(in days) 

2016 presidential election75 283,244,653 122,799,810 50,788,341 33 

Solar Eclipse76
 13,816,206 8,345,117 1,537,247 2 

Election 201277 38,393,134 22,703,483 21,751,070 4 

Datarelease78 106,116,957 38,912,028 30,799,490 12 

Beyond the Hashtag79 40,815,855 23,137,993 7,307,037 5 

https://paperpile.com/c/lwB191/IKAT
https://paperpile.com/c/lwB191/4qa2
https://paperpile.com/c/lwB191/uX75
https://paperpile.com/c/lwB191/15ls0
https://paperpile.com/c/lwB191/ckUls
https://paperpile.com/c/lwB191/vJ33R


16 

 

 

Storage is the primary disadvantage of this kind of data collection. We needed a total of 7 TB disk 

space to download and process the 35 studies used in this study. A second disadvantage is that 

since there is no procedure to identify the removed or deleted tweet ids from the list of tweet ids, 

we have to make an API call with all the tweet ids resulting in increased amount of hydration time. 

Climate Change80 40,000,000 25,728,395 8,029,516 5 

Trump Tweet Ids81 40,202,199 16,690,791 9,408,459 5 

Health Care82 254,971,894 79,348,847 22,762,224 30 

Women's March83 14,478,518 7,061,577 1,286,113 2 

US Govt Ids84 9,673,959 9,085,817 6,933,491 1 

End of Term85 5,655,632 5,288,040 4,116,967 1 

Nipsey Tweets86 11,642,103 6,944,028 1,307,212 1 

Winter Olympics87 13,816,206 8,336,254 1,530,613 2 

Dallas Shooting88 7,146,993 3,683,170 1,224,715 1 

News Outlets89 110,656,738 103,811,445 91,026,264 13 

Charlottesville90 3,015,437 1,517,338 327,856 0 

Twitter-Events-2012-201691 147,055,035 80,675,871 35,454,578 17 

Immigration Exec Order92 16,875,766 7,108,723 2,088,736 2 

Irish news English tweets93 198,725,860 100,359,505 45,924,135 23 

Black Lives Matter94 17,292,130 6,460,739 2,527,358 2 

Tweets to Donald Trump95 583,890,932 227,909,402 175,277,501 68 

HurricaneHarvey96 18,352,142 10,406,538 2,142,577 2 

Hurricane Irma96 17,244,139 9,474,907 2,341,596 2 

Hurricane Florence97 7,766,964 4,891,342 1,394,576 1 

Hurricane Harvey98 7,041,866 4,433,003 883,466 1 

115th U.S. Congress Tweet Ids99 2,041,399 1,919,544 1,528,001 0 

2020 Presidential Election100 802,029,566 366,187,559 143,239,345 93 

Hurricane Florence101 4,971,575 3,399,192 744,050 1 

Hurricane Maria102 987,938 647,001 160,947 0 

Hurricane Sandy103 14,915,897 8,101,431 5,144,820 2 

Hurricane Dorian104 3,000,553 2,234,048 416,410 0 

Hurricane Dorian105 9,186,117 6,549,744 1,723,639 1 

2018 Congregational Election106 60,689,821 33,257,138 9,792,467 7 

Health ATAM107 144,344,099 75,053,674 75,053,674 17 

Epic Corpus108 30,651,626 27,903,463 27,903,463 3 

Total 3,080,709,909 1,460,366,957 793,877,954 359 

https://paperpile.com/c/lwB191/YBhly
https://paperpile.com/c/lwB191/3YmRx
https://paperpile.com/c/lwB191/khAIe
https://paperpile.com/c/lwB191/TdBa6
https://paperpile.com/c/lwB191/7t7ar
https://paperpile.com/c/lwB191/bVIY6
https://paperpile.com/c/lwB191/wuWLK
https://paperpile.com/c/lwB191/IRLRJ
https://paperpile.com/c/lwB191/xH3ar
https://paperpile.com/c/lwB191/7hLft
https://paperpile.com/c/lwB191/cS5oL
https://paperpile.com/c/lwB191/26mkV
https://paperpile.com/c/lwB191/o4Ff4
https://paperpile.com/c/lwB191/WLcMR
https://paperpile.com/c/lwB191/LTeCe
https://paperpile.com/c/lwB191/x8YV6
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PHTPD
https://paperpile.com/c/lwB191/7pR6W
https://paperpile.com/c/lwB191/zlRDV
https://paperpile.com/c/lwB191/9lfzJ
https://paperpile.com/c/lwB191/1KvOX
https://paperpile.com/c/lwB191/PAkR6
https://paperpile.com/c/lwB191/jYoW7
https://paperpile.com/c/lwB191/DSHnk
https://paperpile.com/c/lwB191/RkL5s
https://paperpile.com/c/lwB191/36RiY
https://paperpile.com/c/lwB191/IOOQ
https://paperpile.com/c/lwB191/stcW


17 

 

While this data source obtains tweets, reproducing results is difficult since the majority of the data 

is lost.  

Table 4 depicts the summary of the data collection. A total of 16,738,382,441 (16.7 billion) tweets 

were collected as part of this study. We used several subsets of the dataset in each of our 

applications, since the data was collected in a span of 3 years. 

Table 4. Data Collection Summary 

 

Dataset Total tweets Clean Tweets Data collection duration  

Internet Archive 9,406,233,418 4,003,116,709 2011-2018 

Regular Stream 4,251,439,114 2,129,383,609 2018-2021 

Publicly available datasets 3,080,709,909 793,877,954 2012-2020 

Total 16,738,382,441 6,926,378,272 
 

 

5.5 Technical Details 

For data collection, processing and running the experiments we used our lab server with the 

following configuration details. Our server is built with 2x Intel Xeon-Gold 6148 which contains 

20 cores or 40 threads. 768 GB RAM was available to run files in parallel. 14.4TB Hard Disk 

Drive (HDD) was available which was primarily used to store files and 7.68 TB Solid State Drive 

(SSD) was used for data collection. Our server is also equipped with 7 NVIDIA Tesla V100 GPUs 

with 32 GB GDDR5 that has 640 Tensor cores and 5,120 CUDA cores. We used a bash script to 

run python scripts that either collect data or standardize data. We used the GPUs to run deep 

learning models in parallel and used the server CPU cores to run classical models. 20-60 days were 

required to complete each application based on the number of experiments. 
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6 MACHINE LEARNING 

Machine learning is the study of computer algorithms that can improve automatically through 

experience and by the use of data109. Machine learning approaches are traditionally divided into 

three broad categories, depending on the nature of the "signal" or "feedback" available to the 

learning system. The three categories are Supervised Learning, Unsupervised Learning and 

Reinforcement Learning. Unsupervised learning is the training of a machine using information 

that is neither classified nor labeled and allowing the algorithm to act on that information without 

guidance. The task of the machine is usually to group unsorted information according to 

similarities, patterns, and differences without any prior training of data. Reinforcement Learning 

is a type of machine learning technique that enables an algorithm to learn in an interactive 

environment by trial and error using feedback from its own actions and experiences. Supervised 

learning algorithms build a mathematical model of a set of data that contains both the inputs and 

the desired outputs110. The data is known as training data, and consists of a set of training examples. 

Each training example has one or more inputs and the desired output, also known as a supervisory 

signal. In the mathematical model, each training example is represented by an array or vector, 

sometimes called a feature vector, and the training data is represented by a matrix. In this work, 

we utilized supervised learning algorithms in a weak supervision setting, i.e. the training data is 

noisy and is a silver standard instead of a gold standard. Both classical and deep learning models 

are utilized for the experiments, and the details of the models used are expanded below.  

6.1 Conventional or Classical Models 

Conventional or classical machine learning algorithms are based on learning of systems by training 

set to develop a trained model. This pre-trained model is used to classify or recognize the test 

dataset111. To implement the classical models, the scikit-learn112 python library was used. For 

https://paperpile.com/c/lwB191/GQu3
https://paperpile.com/c/lwB191/0MsL
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all the models, scikit-learn's TF-IDF vectorizer was used to convert raw tweet text to TF-IDF 

features and return the document-term matrix which is sent to the model. The classical models 

used in this work are detailed below. For the classical models, we utilized the 

“compute_class_weight” utility in scikit learn, which estimates class weights for unbalanced 

datasets. 

6.1.1 Support Vector Machines 

A Support Vector Machine (SVM)113 is a discriminative classifier formally defined by a separating 

hyperplane. Given labeled training data, the algorithm outputs an optimal hyperplane that 

categorizes new examples. For the implementation of the SVM model, we used a  LinearSVC, 

similar  to  SVC,  but  implemented  using  liblinear  rather  than  libsvm,  so  it  has  more 

flexibility  in  the  choice  of  penalties  and  loss  functions and scales better to large numbers of 

samples. 

6.1.2 Logistic Regression 

Logistic regression114 (LR) is a statistical model that uses a logistic function to model a binary 

dependent variable. Logistic regression becomes a classification technique only when a decision 

threshold is available. For the implementation of this model, we used regularized logistic 

regression using the ‘lbfgs’ solvers. 

6.1.3 Naive Bayes 

Naive Bayesian115 (NB) classifiers are Bayesian networks that make use of directed acyclic graphs 

containing only one unobserved (parent) node and several observed (children) nodes having an 

assumption of independence among them that is given by Naive Bayes independency model116. In 

this work, the multinomial Naive Bayes model was utilized which implements the naive Bayes 

https://paperpile.com/c/lwB191/wLoy
https://paperpile.com/c/lwB191/84V6
https://paperpile.com/c/lwB191/ylBY
https://paperpile.com/c/lwB191/yYve
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algorithm for multinomial distributed data and is one of the two classic naive Bayes variants used 

in text classification.  

6.1.4 Decision Trees 

A decision tree117 (DT) is a flowchart-like structure in which each internal node represents a "test" 

on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the 

outcome of the test, and each leaf node represents a class label (decision taken after computing all 

attributes). Decision trees are used for classification by sorting the classes based on parameters 

values. ID3, C4.5, CHAID and CART are some algorithms belonging to the decision tree. A major 

advantage of this approach is that it is able to handle numerical, as well as categorical attributes. 

This method holds good for small datasets, but causes lagging for large datasets. In this work, the 

decision tree classifier uses a CART algorithm (Classification And Regression Tree) from scikit-

learn. CART is a non-parametric decision tree learning 

technique that produces either classification or regression trees, depending on whether the 

dependent variable is categorical or numeric, respectively. However, the scikit-learn library uses 

an optimized version of the CART, which does not support categorical values. 

6.1.5 Random Forest 

A Random Forest118 (RF) is an ensemble technique capable of performing both regression and 

classification tasks with the use of multiple decision trees and a technique called Bootstrap and 

Aggregation, commonly known as bagging. The basic idea behind this is to combine multiple 

decision trees in determining the final output, rather than relying on individual decision trees. 

Random forest has multiple decision trees as base learning models. It 

is  a  meta  estimator  that  fits  a  number  of  decision  tree  classifiers  on  various  sub-

https://paperpile.com/c/lwB191/5M1k
https://paperpile.com/c/lwB191/Sl4j
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samples  of  the  dataset  and  uses  averaging  to  improve  the predictive accuracy and control 

over-fitting.  

6.2 Deep Learning Models 

Deep learning119 is a set of algorithms in machine learning that attempt to learn at multiple levels, 

corresponding to different levels of abstraction. It typically uses artificial neural networks. The 

levels in these learned statistical models correspond to distinct levels of concepts, where higher-

level concepts are defined from lower-level ones, and the same lower-level concepts can help to 

define many higher-level concepts. Several deep learning models were implemented in the 

applications using Pytorch and Keras python libraries. Keras implementation of CNN model by 

Text Classification Algorithms: A survey120 was utilized for implementing the keras models.  

6.2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) were inspired by the visual system’s structure121, in which 

the architecture of a CNN is analogous to that of the connectivity pattern of Neurons in the human 

brain. The algorithm122 takes an input image, assigns importance (learnable weights and biases) to 

various aspects/objects in the image, and is able to differentiate one from the other. A CNN 

comprises three main types of neural layers, namely, (i) convolutional layers, (ii) pooling layers, 

and (iii) fully connected layers. CNNs have demonstrated exceptional results in image related 

tasks12,123–125. CNNs have been applied in text classification applications with remarkable 

results126–128. Adam Optimizer, Relu Activation function were used in the experiments. 

6.2.2 Long Short Term Memory 

Long Short-Term Memory (LSTM)25 networks are a type of Recurrent Neural Network (RNN) 

capable of learning order dependence in sequence prediction problems. Unlike standard 

feedforward neural networks, LSTM has feedback connections. It can process not only single data 

https://paperpile.com/c/lwB191/rZvp
https://paperpile.com/c/lwB191/ZNDl
https://paperpile.com/c/lwB191/x70j
https://paperpile.com/c/lwB191/AMuQ
https://paperpile.com/c/lwB191/Ykbe+TQDrK+W9L2+VbH6
https://paperpile.com/c/lwB191/J4kF+pITY+Jg9L
https://paperpile.com/c/lwB191/R0Qz
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points, but also entire sequences of data. Bidirectional LSTMs (BiLSTM) are an improvement on 

the LSTMs that present each training sequence forwards and backwards to two separate recurrent 

networks, both of which are connected to the same output layer. An LSTM layer consists of a set 

of recurrently connected blocks, known as memory blocks. Each block contains one or more 

recurrently connected memory cells and three multiplicative units – the input, output and forget 

gates, which provide continuous analogues of write, read and reset operations for the cells. 

BiLSTMs are used for the experiments with Adam Optimizer, max sequence length set to 280, 

dropout set to 0.2 and softmax activation function. 

6.2.3 Word Embeddings 

A word embedding model is representation of words for text analysis, typically in the form of a 

real-valued vector that encodes the meaning of the word, such that the words that are closer in the 

vector space are expected to be similar in meaning129. To implement CNNs and LSTM models, 

several word embedding models were experimented with in each application. We utilized RedMed 

model130, Glove embeddings131 and Twitter Workd2Vec embeddings132 for the applications. The 

model used and the details of the model are explicitly mentioned in each application.  

6.3 Transformers 

A transformer133 is a model architecture eschewing recurrence and instead relying entirely on an 

attention mechanism to draw global dependencies between input and output. With the evolution 

of transformer models, there has been a shift in using transformers in the deep learning models as 

transformers allow for significantly more parallelization and can reach a new state of the art in 

translation quality. To implement the transformer models, we utilized Simple Transformers134, 

which seamlessly worked with the Natural Language Understanding (NLU) architectures made 

available by Hugging Face’s Transformers models135. For the transformer models, early stopping 

https://paperpile.com/c/lwB191/FbUG
https://paperpile.com/c/lwB191/8Looj
https://paperpile.com/c/lwB191/gO3Ud
https://paperpile.com/c/lwB191/81cve
https://paperpile.com/c/lwB191/lxTR
https://paperpile.com/c/lwB191/zaNol
https://paperpile.com/c/lwB191/v4xdX
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techniques were employed. The models would cease the training process when there is no 

significant improvement in the performance. To select and optimize the hyperparameters, 

Optuna136 framework was used. We assigned weight to the transformer models based on the 

proportion of negative samples in the training set. For example, for the 1:25 ratio, we assigned the 

weight for labels [1,0] as [1.0,0.04]. Several pre-trained transformer models were used and fine-

tuned in our applications. The details of the models are presented in the following section. 

6.3.1 BERT 

Bidirectional Encoder Representations from Transformers (BERT)137 is a language representation 

model designed to pre-train deep bidirectional representations from unlabeled text by jointly 

conditioning on both left and right context in all layers. The two important steps in BERT are pre-

training and fine-tuning. The BERT is pre-trained on the BooksCorpus138 (800M words) and 

English Wikipedia (2,500M words). The BERT-Large model, which has 24 layers, 1024 hidden 

size, 16 self-attention heads, and 340M total parameters was used in this study. Fine-tuning the 

BERT model is straightforward since the self-attention mechanism in the Transformer allows 

BERT to model many downstream tasks. In this work, we utilized silver standard datasets to fine-

tune the BERT model. 

6.3.2 BioBERT 

Bidirectional Encoder Representations from Transformers for Biomedical Text Mining 

(BioBERT)139 is the first domain-specific BERT based model pre-trained on biomedical corpora 

for 23 days on eight NVIDIA V100 GPUs. The BioBERT was trained on English Wikipedia (2.5B 

words), BooksCorpus138 (800 M words), biomedical PubMed Abstracts (4.5B words), and 

biomedical PMC Full-text articles (13.5B words) using initial weights from the BERT. The 

BioBERT-base model, containing 12 layers, 768 hidden size, 16 self-attention heads, and 1 million 

https://paperpile.com/c/lwB191/4jYe
https://paperpile.com/c/lwB191/Fxww
https://paperpile.com/c/lwB191/dvCc
https://paperpile.com/c/lwB191/pn6l
https://paperpile.com/c/lwB191/dvCc
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parameters, was used in this study. In this work, we utilized silver standard datasets to fine tune 

the BioBERT model. 

6.3.3 RoBERTa 

A Robustly Optimized BERT Pretraining Approach (RoBERTa)140 is a replication study of BERT 

pretraining, demonstrating the impact of hyperparameter selection during training. The 

modifications applied to the RoBERTa model over BERT are (i) training the model longer with 

bigger batches using more data (ii) removing the next sentence prediction objective (iii) training 

on longer sequences and  (iv) dynamically changing the masking pattern applied to the training 

data. The architecture used in RoBERTa are 24 layers, 1024 hidden size, 16 self attention heads 

and 355M parameters. Five English-language corpora (BookCorpus138, CCNews141, 

OpenWebText142 and Stories143) of varying sizes and domains, totaling over 160 GB of 

uncompressed text has been utilized for pre-training. In this study, we utilized silver standard 

datasets to fine tune the RoBERTa model. 

6.3.4 DisasterBERT 

Disaster-Tweet-Bert144 is a pre-trained language representation model, which is trained on disaster 

tweets such as road accidents, emergencies during natural disasters and man-made disasters. This 

model is uploaded to Hugging Face and contains 12 layers, 768 hidden size and 12 self-attention 

heads. In this study, we utilized silver standard datasets to fine tune the DisasterBERT model. 

6.3.5 BERTweet 

A pre-trained language model for English Tweets (BERTweet)145, is the first public large-scale 

pre-trained language model for English Tweets. BERTweet contains the same architecture as 

RoBERTa and is pre-trained on 850M Tweets collected from Internet Archive from 01/2012 to 

https://paperpile.com/c/lwB191/fL1M
https://paperpile.com/c/lwB191/dvCc
https://paperpile.com/c/lwB191/EkaL
https://paperpile.com/c/lwB191/FqCL
https://paperpile.com/c/lwB191/babu
https://paperpile.com/c/lwB191/rHZa
https://paperpile.com/c/lwB191/Oirw
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08/2019. In this work, the BERTweet-base model was utilized containing 12 layers, 768 hidden 

size, 12 self-attention heads and 135M parameters.  
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7 OUTLINE OF RESEARCH 

In this study, we utilize a heuristic based approach to label data and generate silver standard 

datasets from social media data. Our data acquisition process is listed in chapter 3, where we collect 

16 billion tweets from three different sources to use for our applications. In the first application, 

“Identifying drug mentions from Twitter”, we curate a drug dictionary as our heuristic, generate a 

silver standard dataset and train several machine learning models in a binary classification setting. 

In our second application, “Characterizing different types of Natural Disasters: Hurricanes, 

Earthquakes, Floods”, we curate a heuristic from past natural disasters and create a silver standard 

dataset and train various machine learning models in a binary classification setting. In our third 

application, “Detecting epidemic tweets and evaluation of large scale epidemic corpus”, we use 

regular expressions as our heuristic and test the weak supervision approach in both binary and 

multi-classification settings. In our final application, “Separating health related Twitter chatter”, 

we present a methodology to curate a “pseudo gold standard dataset” and use keywords as our 

heuristic to create the silver standard dataset.  We evaluate the silver standard dataset in a multi 

classification setting. We experiment with several training samples, class imbalances and evaluate 

the results for each application. We compute the theoretical bounds as detailed in Chapter 3 and 

verify the certainty of theoretical bounds in each application (Chapter 8-11). We summarize the 

results of applications in Chapter 12 and list the limitations of work in Chapter 13. We identify 

possibilities for future work in Chapter 14 and finally conclude the study in Chapter 15. 
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8 APPLICATION 1: IDENTIFYING DRUG MENTIONS FROM TWITTER 

Data which contains drug usage, side effects or beneficial information is very difficult to curate 

and is not easily available due to the sensitive nature of the data. Twitter contains an abundance of 

drug data as users tend to share their experience on social media146. In the past, researchers have 

acquired data from Twitter using a keyword based search. Leaman et al.147 utilized only 4 drugs 

to gather comments from Daily Strength148, to extract adverse drug reactions from user posts. 

Sarker and Gonzalez149,150 employed 250 drug keywords to obtain tweets from Twitter and 

released a drug chatter language model, which aids research in pharmacovigilance. In the past, 

SMEs were consulted for obtaining the drug keywords. While this approach obtains relevant data, 

it is heavily reliant on the number of keywords. In Twitter, the queries required to pull the stream 

are restricted to 500 characters, resulting in using less number of keywords. Consequently, this 

ensues: 

a. working with data acquired with lesser number of keywords, limiting the breadth 

of the research  

b. working with lesser data due to non-availability of data from keywords 

c. Devoting an increased amount of time to obtain more data 

While the intent of the aforementioned studies was to prove the credibility of automated methods 

using machine learning, none of them experimented with a large lexicon. Health Processing lab151 

at University of Pennsylvania is the largest research contributor in the field of pharmacovigilance 

and have released most of their annotated and validated datasets for public research. In this 

application, we utilized a weak supervision approach to identify drug mentions in Twitter and 

created a silver standard dataset that aids Pharmacovigilance152 applications. We first curated a 

silver standard dataset using a drug dictionary (i.e heuristic) and trained several machine learning 

https://paperpile.com/c/lwB191/GejNo
https://paperpile.com/c/lwB191/Z83GV
https://paperpile.com/c/lwB191/WvhFZ
https://paperpile.com/c/lwB191/bAIYv+u3Ra2
https://paperpile.com/c/lwB191/jtxUz
https://paperpile.com/c/lwB191/77zl2
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models using the silver standard dataset in a binary classification setting. The silver standard 

dataset was used to train the models in a stratified ratio of 75:25 (train:validation), with 25% of 

the data used for either improving the model or terminating the training when there was no 

improvement after a predetermined number of training steps. Furthermore, we tested the model 

using the gold standard data and presented results on four different metrics, determining the 

performance of silver standard data in identifying the gold standard data.  

8.1 Heuristic Curation 

The heuristic for this application is designed to include a large number of drug terms to add 

extensive coverage. In this application, we used a drug dictionary curated using UMLS153 as a 

heuristic. The RxNorm154 vocabulary was utilized to obtain the drug terms. We only utilized the 

terms with language set to “English” as we utilized only English tweets in this work. Initially, we 

included five different term types from RxNorm that are listed in Table 5. After an initial 

analysis155, we observed that all the term types are not required for this application. Since the 

dictionary was used on Twitter data and the total number of characters in a tweet were restricted 

to 140 (until 2017) and 280 (from October 2017), we eliminated all the strings of length less than 

or equal to 3 (too ambiguous) and greater than or equal to 100. This was due to a less likely chance 

for tweets to contain drug names that were as short as 3 characters or as long as 100 characters. 

Further, we removed strings such as “2,10,15,19,23-pentahydrosqualene” which are chemical 

compounds. After an initial analysis155, we observed that the heuristic gathered irrelevant noise 

because of the colloquially used terms like “patch, bar soap, disk, foam”.  We applied the heuristic 

on 9 billion tweets. Post analysis155, we removed all the terms with length greater than 38 

characters, since the longest term tagged from 9 billion tweets was only 37 characters. Each row 

in the dictionary has a Concept Unique Identifier (CUI), which links terms with similar meanings. 

https://paperpile.com/c/lwB191/0dsB
https://paperpile.com/c/lwB191/bk1H
https://paperpile.com/c/lwB191/SYVd
https://paperpile.com/c/lwB191/SYVd
https://paperpile.com/c/lwB191/SYVd
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The CUI is used in order to ensure that the meanings are preserved over time, regardless of the 

different terms that are used to express those meanings. All the strings have been converted to 

lowercase and trimmed of white spaces. The final heuristic is a dictionary, containing 19,643 

terms. Table 6 presents a sample of rows from the drug dictionary. 

Table 5. Term types and number of terms in each term type 

 

Term Type Example No of Terms 

Ingredients (IN) Fluoxetine 11,427 

Semantic Clinical Drug Component (SCDC) Fluoxetine 4 MG/ML 27,038 

Semantic Branded Drug Component  (SBDC) Fluoxetine 4 MG/ML [Prozac] 17,938 

Semantic Clinical  Drug (SCD) Fluoxetine 4 MG/ML Oral Solution 35,112 

Semantic Branded Drug  (SBD) Fluoxetine 4 MG/ML Oral Solution [Prozac] 20,003  

 

Table 6. Sample from drug dictionary 

 

Concept Unique  Identifier (CUI) Term 

C0290795 adderall 

C0700899 benadryl 

C0025219 melatonin 

C0162373 prozac 

C0699142 tylenol 

 

8.2 Generating the Silver Standard Dataset 

To create the silver standard dataset, we utilized the drug dictionary to filter tweets from Internet 

Archive, Publicly available datasets and Regular Stream. We mined a total of 9.4 billion tweets 

from the Internet Archive and separated 4,908,922 (4.9 million) clean English drug tweets using 
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the drug dictionary between 2012 and 2018. The data collection from the Internet Archive is 

presented in Table 7.  

Table 7. Drug tweets filtered from Internet Archive 

 

Year Total tweets Filtered Tweets 

2019 489,560,143 563,498 

2018 1,102,507,263 511,634 

2017 1,448,114,354 687,585 

2016 1,427,468,805 856,515 

2015 1,224,040,556 792,810 

2014 1,086,859,898 592,260 

2013 1,871,457,526 852,349 

2012 1,245,785,016 52,271 

Total 9,895,793,561 4,908,922 

8.2.1 Publicly Available Datasets 

We utilized 25 publicly available datasets in this application. We filtered 1,571,365 clean English 

drug tweets from 1,953,230,363 tweets. This demonstrates that data can be found in datasets which 

are outside the scope of this application domain. While we hydrated 1.9 billion tweets from 

publicly available datasets, only 0.12% of the tweets were filtered for this application. Table 8 lists 

the details of the drug tweets found in publicly available datasets. 

Table 8. Drug tweets from publicly available datasets 

 

Dataset  Filtered tweets Percentage of filtered tweets  

2016 presidential election75  181,943 0.11 

Trump Tweet Ids81 19,960 0.10 

Women’s March83 1,494 0.01 

Winter Olympics87 2,636 0.03 

US Govt Ids84 60,250 0.64 

Solar Eclipse76  4,374 0.05 

https://paperpile.com/c/lwB191/uX75
https://paperpile.com/c/lwB191/3YmRx
https://paperpile.com/c/lwB191/TdBa6
https://paperpile.com/c/lwB191/IRLRJ
https://paperpile.com/c/lwB191/7t7ar
https://paperpile.com/c/lwB191/gpCJe
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Social Sensor156 2,324 0.09 

Nipsey Tweets86 1,470 0.02 

News Outlets89 208,630 0.54 

Immigration Exec Order92  8,681 0.08 

hurricaneHarvey_irma96 8,101 0.04 

Hurricane Florence97 6,492 0.11 

Tweets to Donald Trump95 246,265 0.06 

Hurricane Harvey98 2,493 0.05 

Irish English News93 278,687 0.24 

End of Term85 34,391 0.63 

Election201277 47,568 0.20 

Dallas Shooting88 1,356 0.03 

Datarelease78 181,724 0.30 

Beyond the Hashtag79 12,869 0.05 

Black Lives Matter94 3,313 0.04 

Climate Change80 69,348 0.24 

Twitter-Events-2012-201691 81,865 0.09 

Health Care82 103,787 0.06 

Charlottesville TweetIds90 1344 0.03 

Total 1,571,365 0.12 

 

8.2.2 Regular Stream 

In this application, we utilized tweets from the regular stream between 2019-10-06 and 2020-10-

31. We applied the drug dictionary on our regular stream and filtered a total of 810,628 tweets 

from 773,059,908 clean tweets. Table 9 presents the details of stream collection totals for this 

application. Since we used Internet Archive tweets until 09-2019, we utilized tweets from 10-2019 

from this collection to avoid duplicates. 

Table 10 summarizes the details of all the data collected. A total of 13,406,947,422 (13.4 billion) 

tweets were mined for this application combining all our data collection methods. Only clean 

English tweets were preprocessed which resulted in 7,290,915 drug tweets. However, there is an 

overlap in the data collection which resulted in duplicate data and the reasons are listed below. 

https://paperpile.com/c/lwB191/gnny
https://paperpile.com/c/lwB191/wuWLK
https://paperpile.com/c/lwB191/7hLft
https://paperpile.com/c/lwB191/o4Ff4
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PHTPD
https://paperpile.com/c/lwB191/x8YV6
https://paperpile.com/c/lwB191/7pR6W
https://paperpile.com/c/lwB191/WLcMR
https://paperpile.com/c/lwB191/bVIY6
https://paperpile.com/c/lwB191/15ls0
https://paperpile.com/c/lwB191/xH3ar
https://paperpile.com/c/lwB191/ckUls
https://paperpile.com/c/lwB191/vJ33R
https://paperpile.com/c/lwB191/LTeCe
https://paperpile.com/c/lwB191/YBhly
https://paperpile.com/c/lwB191/26mkV
https://paperpile.com/c/lwB191/khAIe
https://paperpile.com/c/lwB191/cS5oL
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1. Overlap between similar data sets - Most studies utilized Twitter to collect tweets using 

keywords from the 1% sample which would narrow down the collection stream to relevant 

tweets. However, there is a good chance of having similar tweets for two different topics, 

if their search criteria had common keywords. For example, in the Publicly available 

datasets, there is an overlap in tweets between 2016 Presidential Election and Tweets to 

Donald Trump.  

2. Overlap in the time frame of collection - Few of the tweets from publicly available datasets 

(2016 presidential election, Hurricane Tweets) overlap with Internet Archive (2011-2018) 

tweets because they were collected during the same time.   

Table 9. Drug tweets from Regular Stream 

 

Year Filtered Tweets Percentage of 

 filtered tweets 

2019 (Oct - Dec) 162,255 0.11 

2020 (Jan - Oct) 648,373 0.10 

Total 810,628 0.10 

 

Table 10. Summary of data collection 

 

Data Collection Collection Period Total number of tweets Number of  

filtered tweets 

Internet Archive 01/2011 - 09/2019 9,895,793,561 4,908,922 

Regular Stream 10/2019 - 10/2020 1,557,923,498 810,628 

Publicly Available Datasets 01/2012 - 12/2017 1,953,230,363 1,571,365 

Total 
 

13,406,947,422 7,290,915 

 

We removed duplicate tweets between the datasets. The silver standard dataset consists of 

7,007,551 clean English drug tweets. Figure 1 presents the top 10 drug terms in the silver standard 
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dataset. Listed below are a few samples of the preprocessed tweets obtained through heuristics. 

The drug terms are highlighted in bold. 

1. “health melatonin and exercise key combination for helping with alzheimers” 

2. “i hate having breathing problems where i have to take up to 2-3 xanax at once just to slow 

down my heart beat” 

3. “hopefully this tylenol breaks my fever” 

 

Figure 1. Top 10 drug terms in the silver standard dataset 

 

8.3 Calculating Theoretical Bounds 

To compute the theoretical bounds, we trained several machine learning models on the gold 

standard data and presented the theoretical bounds for a high and low performing model. We split 

the gold standard data into 75:25 for training and test and obtained the accuracy of the machine 

learning models. We use accuracy to calculate the theoretical bounds.  
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8.3.1 Calculating theoretical bounds for a high performing model 

In this computation, we consider “BERT” to be a model with high performance with an accuracy 

score of 99%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score(0.9978), and 

clean samples (m=14,430), the minimum number of noisy samples are calculated in the following 

way  

noisy samples =  m/(1-(2*(1-τ)))**2 

noisy samples = 14,430/(1-2*(1-0.9978)))**2 

noisy samples = 14,458 

We would require 14,458 noisy samples to achieve the performance similar to the performance of 

models trained on 14,430 clean samples for a high performing model.  

8.3.2 Calculating theoretical bounds for a low performing model 

In this computation, we consider “Decision  Tree” to be a model with low performance with an 

accuracy score of 79%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score (0.79), 

and clean samples (m = 14,430), the minimum number of noisy samples are calculated in the 

following way  

noisy samples =  m/ (1-(2*(1-τ)))**2 

noisy samples = 14,430/(1-2*(1-0.7930)))**2 

noisy samples = 42,022 

We would require 42,022 noisy samples to achieve the performance similar to the performance of 

models trained on 14,430 clean samples for a high performing model. 

To summarize, the minimum number of noisy samples required for the best performing model 

(BERT) is 14,458 and the minimum number of noisy samples required for the least performing 

model (decision tree) with accuracy score(0.7930) is 42,022.  
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8.4 Experimental Setup 

To examine the performance of noisy data, we performed 7,700 experiments. We started the 

experiments with a class balanced ratio of 1:1 ratio i.e drug:non drug tweets and systematically 

increased the non-drug ratio all the way to 1,000, representing the realistic ratio of drug to non-

drug tweets on Twitter. For each training ratio, we experimented with training size starting at 

10,000 tweets and increasing it to 3,000,000 tweets. For example, in the 1:15 drug to non-drug 

tweets ratio, for training size with 1,000,000 samples, we trained the models with 66,667 drug 

tweets and 933,333 non drug tweets. A total of 7 training ratios (1:1, 1:5, 1:15, 1:25, 1:50, 1:100, 

1:1000), 11 training sizes (10,000, 30,000, 50,000, 70,000, 100,000, 200,000, 300,000, 500,000, 

1,000,000, 2,000,000, 3,000,000), 10 machine learning models (SVM, Naive Bayes, Random 

Forest, Decision Tree, Logistic Regression, BioBERT, BERT, RoBERTa, CNN and LSTM) and 

10 seeds for each training size and ratio were used in the experiments. We used the silver standard 

dataset for training the models and labeled all the samples in the silver standard dataset as positive 

samples. For CNN and LSTM models, we used the RedMed130 embedding model which was 

trained on 3M tokens from Reddit drug posts and contained 64 dimensions. We collected 3 million 

non-drug tweets and labeled them as negative tweets. A non-drug tweet is a tweet which does not 

match with any of our terms in the heuristic. As training and validation data, we employed a 

stratified ratio of 75:25 of the dataset. The validation data was utilized to obtain metrics to either 

improve the performance of the model or terminate the training using early stopping methods. We 

do not present any validation results since it was used to only enhance training steps. To test our 

models, we utilized a publicly available gold standard dataset which is detailed in the next section.  

 

https://paperpile.com/c/lwB191/8Looj
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8.4.1 Gold Standard Data 

To test the models, we collected publicly available manually and expertly curated datasets146,157. 

While the original dataset contains over 15,000 tweet IDs, we could only use 7,215 annotated drug 

tweets since we could not hydrate the tweet IDs, which were deleted. To these 7,215 annotated 

drug tweets, we added 7,215 non drug tweets to create a balanced gold standard dataset of 14,430 

tweets. We emphasize that we did not manually annotate any tweets and instead used publicly 

available, manually and expertly annotated drug tweets in our test set. In this application, we 

evaluate the performance of the silver standard dataset in identifying the gold standard dataset in 

this application.  

8.5 Results 

In order to evaluate the performance, we used the following metrics: Precision (P), Recall (R), F-

Measure (F) and Accuracy (A). For each training size, we used 10 seeds, which resulted in 10 

experiments. Hence, in order to avoid bias and not show only the best results, we present the mean 

of 10 experiments in each training size. Figures 2-6 represent the performance of F-measure in 

classical models starting from sample size 10,000 to 1,000,000 samples for training rations 1:1 to 

1:50. However, for the imbalanced training ratios (Eg: 1:25 and 1:50), the recall metric is more 

valuable than the precision metric. Figures 7-8 present the progression of the recall metric for 

training ratios 1:25 and 1:50 for classical models. Figures 9-13 illustrate the F-measure 

performance of deep learning models for each ratio. Figures 14-15 present the recall metric for the 

ratios 1:25 and 1:50 training rations for the deep learning models. All the precision and remaining 

recall metrics plots for both the classical and deep learning models are enclosed in the Appendix 

section. Additionally, for this application, we experimented with 1:100 and 1:1000 ratios as they 

https://paperpile.com/c/lwB191/YXqp+GejNo
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represent the realistic ratio of drug mentions in Twitter158. However the results for 1:100 and 

1:1000 are enclosed in the appendix as they are additional evaluations. 

 

Figure 2. Classical models mean F-measure for 1:1 ratio 

 

 

Figure 3. Classical models mean F-measure for 1:5 ratio 

 

https://paperpile.com/c/lwB191/adPn
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Figure 4. Classical models mean F-measure for 1:15 ratio 

 

 

 

Figure 5. Classical models mean F-measure for 1:25 ratio 
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Figure 6. Classical models mean F-measure for 1:50 ratio 

 

 

Figure 7. Classical models mean Recall for 1:25 ratio 
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Figure 8. Classical models mean Recall for 1:50 ratio 

 

 

Figure 9. Mean of F-measure for 1:1 ratio for deep learning models 
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Figure 10. Deep learning models mean F-measure for 1:5 ratio 

 

 

Figure 11. Deep learning models mean F-measure for 1:15 ratio 
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Figure 12. Deep learning models mean F-measure for 1:25 ratio 

 

 

Figure 13.  Deep learning models mean F-measure for 1:50 ratio 
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Figure 14. Deep learning models mean Recall for 1:25 ratio 

 

 

Figure 15. Deep learning models mean Recall for 1:50 ratio 
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On the classical models front, the SVM model outperformed all the other models by achieving the 

best performance when compared to other models in every training ratio. In the heavily imbalanced 

ratios (1:25 and 1:50), most classical models have consistently low performance. Surprisingly, 

SVM and Logistic Regression demonstrate an improvement in performance as the training size 

increases. This demonstrates that the models could learn drug signals despite heavy imbalances in 

the training data as the sample size increases.  

Unsurprisingly, the deep learning models outperformed the classical models in the both balanced 

and heavily imbalanced ratios. Except for CNN, most models performed consistently (F-Measure 

> 0.85) in the balanced experiment (i.e 1:1 ratio). As the imbalance increased, there was a dip in 

the performance for the training sizes with lesser samples. In the heavily imbalanced ratios (1:25 

and 1:50), the performance of the models increased as the sample size increased. This demonstrates 

that deep learning models are efficient in identifying the signals despite noise in the data when 

large noisy samples are available when compared to classical models.  

This application is our proof of concept application for this study. In this application, we 

demonstrate a heuristic approach to create a silver standard dataset and train machine learning 

models in a weak supervision setting. We experimented with a binary classification setting and 

tested the models using a gold standard dataset. We evaluated the performance of the silver 

standard dataset in identifying the gold standard dataset using four different metrics and presented 

F-Measure and Recall metrics in the Results section. We observed an increase in the performance 

of the models with an increase in the sample size in both class balanced and imbalanced settings. 

We calculated theoretical bounds which indicate that when 14,430 clean samples (gold standard 

data) are available, we require 14,458 noisy samples for a best performing model and 42,021 noisy 

samples for the least performing model. Based on the theoretical bounds, we set up our 
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experiments starting from 10,000 samples and systematically increased the training samples to 3 

million. The results demonstrate the theoretical bounds to be accurate and also present an 

improvement in performance as the sample size increases. As discussed in chapter 3, it is relatively 

easier to obtain 42,022 samples of silver standard data than to obtain 14,430 samples of gold 

standard data. 
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9 APPLICATION 2: CHARACTERIZING DIFFERENT TYPES OF NATURAL 

DISASTERS: HURRICANES, EARTHQUAKES, FLOODS 

Twitter has been extensively used as an active communication channel, especially during many 

crisis events, such as natural disasters like earthquakes, floods, typhoons, and hurricanes159. A wide 

range of information is tweeted during a disaster by people who are in need of help (e.g., food, 

shelter, medical assistance, etc.) or by people who are willing to donate or offer volunteering 

services or by the government to inform people of the latest updates160,161. Hence, it is essential to 

identify valuable information from the sea of information162. Several studies in the past have 

demonstrated the role of machine learning in analyzing natural disasters. Ofli et al.163 utilized 

machine learning to make sense of aerial data during disasters. Resch et al.164, utilized topic 

modeling and spatio-temporal analysis of social media data for disaster footprint and damage 

assessment. Several NLP techniques have been developed to detect and extract relevant 

information165–167. Nguyen et al. utilized convolutional neural networks to classify crisis related 

data on social networks. Madichetty and M, Sridevi168 demonstrated that contextual 

representations improve supervised learning when using Twitter data for natural disasters. Several 

individual disasters were analyzed in the past and released the datasets to encourage reproducible 

research55,162,169. In this application, we first developed a heuristic to curate a silver standard dataset 

consisting of data from three different types of disasters i.e Hurricanes, Floods and Earthquakes. 

We then trained several machine learning models and compared the results to observe how 

efficient the silver standard trained models are in identifying ground truth labels.  

 

 

 

https://paperpile.com/c/lwB191/6pk9g
https://paperpile.com/c/lwB191/F3kDJ+3PIaj
https://paperpile.com/c/lwB191/k8L4D
https://paperpile.com/c/lwB191/yrUdS
https://paperpile.com/c/lwB191/eIFPu
https://paperpile.com/c/lwB191/HUqiK+CeQ9R+DYsOd
https://paperpile.com/c/lwB191/EnnqU
https://paperpile.com/c/lwB191/iTKvA+k8L4D+EsxiX
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9.1 Heuristic Curation 

The heuristic is designed to identify signals that occur during a natural disaster. The objective here 

is to curate a heuristic independent to the type of specific natural disaster. In order to have a 

comprehensive list of signals, we generated n-grams (n=2 and n=3) from natural disaster datasets. 

To generate n-grams, we preprocessed the tweet text to remove emojis, emoticons, stopwords and 

lowercased the text. The generation of terms for each type of natural disaster is explained in the 

following sections. An initial analysis on the terms presented overlaps between bigrams and 

trigrams and hence we used only bigrams (n=2) as the heuristic.  

9.1.1 Hurricanes 

Hurricanes have been examined most frequently in supervised learning and NLP, particularly for 

text content analysis and multimedia content analysis55. For hurricanes, we hydrated the publicly 

available datasets for Hurricane Maria102, Hurricane Sandy103, Hurricane Irma and Hurricane 

Harvey96 and obtained 51,500,116 tweets. We filtered the tweets and acquired only 9,789,940 

clean English tweets. An initial analysis on the terms presented overlaps between bigrams and 

trigrams and hence we used only bigrams to attain the list of terms. Once we generated the bigrams, 

we sorted the terms in descending order of the counts and retained the top 150 terms. We removed 

terms in the format hurricane <Name> / <Name> hurricane / <hurricane name> term (Example: 

irma relief) and filtered 62 terms (“hurricane victims”, “power outages”, “heavy rain”) for 

hurricanes. Figure 16 displays the top 10 most frequent bigrams for hurricanes after filtering the 

hurricane names. 

 

 

 

https://paperpile.com/c/lwB191/iTKvA
https://paperpile.com/c/lwB191/PAkR6
https://paperpile.com/c/lwB191/jYoW7
https://paperpile.com/c/lwB191/LkTES
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Figure 16. Top 10 most frequent bigrams for hurricanes 

9.1.2 Earthquakes and Floods 

We did not find any exclusive publicly available social media datasets for floods and earthquakes. 

Hence, we compiled the list of floods and earthquakes that occurred between 2018 and 2020 and 

extracted all relevant tweets from our longitudinal collection of Twitter data. We included 24 

different floods and 4 different earthquakes to obtain relevant tweets from Regular Stream and 

generated the bigrams. We sorted the terms in descending order of the counts and retained the top 

150 terms. We eliminated terms which contain the format <Country Name> floods, floods 

<Country Name>, <Country Name> earthquake. Post filtering, our final list of terms contain 58 

unique flood terms and 48 unique earthquake terms. Figures 17 and 18 depict the top 10 most 

frequent bigrams for earthquakes and floods after filtering the country names. 
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Figure 17. Top 10 most frequent bigrams for earthquakes 

 

 

Figure 18. Top 10 most frequent bigrams for floods 
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The primary reason to eliminate the terms which are tied to a particular country (Eg: <country 

name> floods) or specific hurricane is to remove all the terms that can identify one specific event 

of a disaster. This enhances generalizability when using the heuristic for future natural disasters. 

Table 11 presents the details of the natural disasters utilized in this application and the events 

utilized for each natural disaster and the number of terms for each natural disaster. There is an 

overlap (Eg: “death toll”) in terms between the three different types of natural disasters. Since our 

objective is to identify the terms relevant to natural disasters, we filtered the terms from individual 

disasters and eliminated duplicate terms and created a comprehensive heuristic containing 155 

unique bi-gram terms. As an additional filtering rule, we add an additional comprehensive list to 

the heuristic which contains a list of generic natural disaster terms i.e. [“hurricane”, “floods”, 

“earthquake” and “quake”]. When applying the heuristic for filtering, the bi-gram from the list of 

bi-grams and a term from the list of generic natural disasters must match to retrieve a tweet. Our 

final heuristic contains 155 bi-gram terms and a list of 7 generic natural disaster terms. 

Table 11. No of terms for obtained for each natural disaster 

 

Natural 

Disaster 
Events Included Number of 

terms 

Hurricane Maria, Sandy, Irma, Harvey 62 

Floods Rwanda, Kenya, Somalia, Burundi, Djibouti,   Ethiopia, Uganda, Japan, Kerala, 

Vietnam, India, Indonesia, European, Spain, France, Italy, United Kingdom, 
Portugal, Maryland, Townsville, Venice, Thailand, Pakistan,Iran 

58 

Earthquakes Indonesia, Albania, Fiji, Peru 48 

Total unique 

terms 

 
155 
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9.2 Generating the silver standard dataset 

To create the silver standard dataset, we utilized the heuristic to filter tweets from Publicly 

available datasets and Regular Stream. We mined over 7 billion tweets from the two sources, and 

separated 977,353 clean English drug tweets using the heuristic. The data collection from each 

source is presented in the following sections. 

9.2.1 Regular Stream Details 

In this application, we used tweets collected between 2018 and 2021. Table 2 lists the details of 

tweets collected and filtered from the Twitter Stream. We used only clean English tweets for this 

stream. Table 12 lists the number of filtered tweets from the regular stream. The % tweets column 

represents the percentage of tweets filtered from the clean tweets. We filtered 38,260 natural 

disaster tweets from a total of 2,129,383,609 clean English tweets.  

Table 12.  Filtered Tweets from Regular Stream 

 

Year  Filtered Tweets Percentage of filtered tweets 

2018 13,276 0.0029 

2019 11,778 0.0021 

2020 10,506 0.0014 

2021 (Jan - May) 
2,700 0.0008 

Total 38,260 0.0018 

 

9.2.2 Publicly Available Datasets 

We filtered tweets from 34 different publicly available datasets using the heuristic. The publicly 

available datasets yielded more tweets than the regular stream because they are targeted datasets. 

11 of the datasets are related to natural disasters (Eg: Hurricane Harvey, Dorian, climate change). 

Of all the datasets, hurricane Dorian dataset has the maximum percentage (19.23 %) of the clean 

tweets. Hurricane datasets retrieved only a small percentage of the total hurricane data. We believe 
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that our heuristic eliminated the noise in the dataset since the datasets were collected based on 

keywords like “hurricane harvey, harvey”. The percentage of tweets in the following table is the 

percentage of filtered natural disaster tweets in clean tweets. Table 13 presents the number of 

filtered tweets from publicly available datasets.  

Table 13.  Filtered Tweets from publicly available datasets 

 

Dataset Filtered tweets  Percentage of filtered tweets 

2016 presidential election75 4,428 0.01 

Solar Eclipse76 23 0.00 

hurricaneHarvey96 108,011 5.04 

Hurricane Florence97 62,618 4.49 

Hurricane Florence101 50,776 6.82 

Hurricane Harvey98 35,540 4.02 

Hurricane Irma96 53,378 2.28 

Hurricane Maria102 2,276 1.41 

Hurricane Sandy103 89,348 1.74 

Hurricane Dorian104 80,068 19.23 

Hurricane Dorian105 30,244 1.75 

Election 201277 8,772 0.04 

Datarelease78 766 0.00 

Beyond the Hashtag79 53 0.00 

Climate Change80 93,494 1.16 

Trump Tweet Ids81 294 0.00 

Health Care82 2,645 0.01 

2018 Congregational Election106 1,956 0.02 

News Outlets89 99,508 0.11 

Women's March83 3 0.00 

US Govt Ids84 24,750 0.36 

End of Term85 7,222 0.18 

https://paperpile.com/c/lwB191/uX75
https://paperpile.com/c/lwB191/gpCJe
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PHTPD
https://paperpile.com/c/lwB191/1KvOX
https://paperpile.com/c/lwB191/7pR6W
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PAkR6
https://paperpile.com/c/lwB191/jYoW7
https://paperpile.com/c/lwB191/DSHnk
https://paperpile.com/c/lwB191/RkL5s
https://paperpile.com/c/lwB191/15ls0
https://paperpile.com/c/lwB191/ckUls
https://paperpile.com/c/lwB191/vJ33R
https://paperpile.com/c/lwB191/YBhly
https://paperpile.com/c/lwB191/3YmRx
https://paperpile.com/c/lwB191/khAIe
https://paperpile.com/c/lwB191/36RiY
https://paperpile.com/c/lwB191/7hLft
https://paperpile.com/c/lwB191/TdBa6
https://paperpile.com/c/lwB191/7t7ar
https://paperpile.com/c/lwB191/bVIY6


53 

 

Nipsey Tweets86 3 0.00 

Winter Olympics87 23 0.00 

Dallas Shooting88 53 0.00 

Charlottesville90 0 0.00 

Twitter-Events-2012-201691 315,954 0.89 

115th U.S. Congress Tweet Ids99 2,037 0.13 

Immigration Exec Order92 10 0.00 

Irish news English tweets 93 59,211 0.13 

Black Lives Matter94 688 0.03 

2020 Presidential Election100 7,449 0.01 

Tweets to Donald Trump95 28,574 0.02 

Total 1,170,175 0.17 

 

The silver standard dataset contains tweets from three different types of natural disasters, i.e. 

hurricanes, earthquakes, and floods. To summarize, we created a heuristic by generating bigrams 

from existing natural disasters datasets. To the heuristic we added a list of generic natural disaster 

terms which aids in identifying relevant tweets. Our heuristic of 155 bi-grams (n=2) and 7 generic 

natural disasters terms could filter 977,353 natural disaster tweets which is termed as silver 

standard dataset170. The heuristic does not contain any of the labels from the gold standard dataset 

and we did not use any annotated dataset to create the heuristic. The following are a sample of 

tweets from the silver standard dataset.  

1. “flood waters as deep as four feet close roads in many southern wisconsin counties” 

2. “number of terengganu flood victims swells to 2,000” 

3. “taiwan earthquake: buildings tilt on sides after at least four killed and scores missing amid 

rescue operation” 

4. “death toll rises further, hundreds left homeless as hurricane irma devastates the caribbean” 

https://paperpile.com/c/lwB191/wuWLK
https://paperpile.com/c/lwB191/IRLRJ
https://paperpile.com/c/lwB191/xH3ar
https://paperpile.com/c/lwB191/cS5oL
https://paperpile.com/c/lwB191/26mkV
https://paperpile.com/c/lwB191/zlRDV
https://paperpile.com/c/lwB191/o4Ff4
https://paperpile.com/c/lwB191/WLcMR
https://paperpile.com/c/lwB191/LTeCe
https://paperpile.com/c/lwB191/9lfzJ
https://paperpile.com/c/lwB191/x8YV6
https://paperpile.com/c/lwB191/qvLE
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9.3 Calculating Theoretical Bounds 

To compute the theoretical bounds, we trained several machine learning models on the gold 

standard data and presented the theoretical bounds for a high and low performing model. We split 

the gold standard data into 75:25 for training and test and obtained the accuracy of the machine 

learning models. We use accuracy to calculate the theoretical bounds.  

9.3.1 Calculating theoretical bounds for a high performing model 

In this computation, we consider “RoBERTa” to be a model with high performance with an 

accuracy score of 98%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score(0.98), 

and clean samples(m = 5,692), the minimum number of noisy samples are calculated below 

noisy samples  = m/ (1-(2*(1-τ)))**2 

noisy samples  = 5,692/(1-2*(1-0.98)))**2 

noisy samples  = 6,177 

We would require 6,177 noisy samples to achieve the performance similar to the performance of 

models trained on 5,692 clean samples for a high performing model.  

9.3.2 Calculating theoretical bounds for a low performing model 

In this computation, we consider “Decision Tree” to be a model with low performance with an 

accuracy score of 85%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score (0.85), 

and clean samples (m = 5,692), the minimum number of noisy samples are calculated below  

noisy samples = m/ (1-(2*(1-τ)))**2 

noisy samples = 5,692/(1-2*(1-0.85)))**2 

noisy samples = 11,617 

We would require 16,576 noisy samples to achieve the performance similar to the performance of 

models trained on 5,692 clean samples for a high performing model. 
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To summarize, the minimum number of noisy samples required for the best performing model 

(RoBERTa) is 6,177 and the minimum number of noisy samples required for the least performing 

model (Decision Tree) with accuracy score(0.85) is 11,617.  

9.4 Experimental Setup 

We started with a class balanced ratio, i.e 1:1 of natural disaster:non-natural disaster samples and 

systematically increased the non-natural disaster samples ratio all the way to 50. For each training 

ratio, we started with 10,000 samples and incrementally increased the sample size all the way to 

1,000,000. For each training size, we also experimented with 10 different seeds. For example, we 

have 10,000 positive labeled samples and 40,000 negative labeled samples in a training ratio of 

1:5 with a sample size of 50,000. In total, we experimented with 5 different training ratios (1:1, 

1:5, 1:15, 1:25, 1:50), 9 different sample sizes (10,000, 30,000, 50,000, 100,000, 200,000, 300,000, 

500,000, 800,000, 1,000,000), 10 seeds for each training size, and 11 different machine learning 

models (SVM, NB, LR, RF, DT, CNN, LSTM , BERT,RoBERTa, BERTweet, DisasterBERT), 

totaling to 4,950 experiments. We used the silver standard dataset and labeled all the samples in 

the silver standard dataset as positive samples. For CNN and LSTM models, we used the Glove 

embedding model that was trained on 840B tokens, 2.2M vocab, cased, and 300d vectors. We 

collected 1.5 million non-natural disaster tweets and labeled them as negative tweets. A non-

natural disaster tweet is a tweet which does not match with any of our terms in the heuristic. We 

utilized a stratified ratio of 75-25 of the dataset as training and validation data. The validation data 

was utilized to either improve the performance of the model or to terminate the learning process 

when there is no significant improvement. To test our models, we utilized a publicly available gold 

standard dataset which is detailed in the next section.  
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9.4.1 Gold Standard Data 

To evaluate the machine learning models, we used a publicly available gold standard dataset160 

that was released in 2016. The labeled dataset contained data labeled by paid workers171 and 

volunteers for several natural disasters like hurricanes, earthquakes, floods, typhoons, and 

landslides. In this application, we utilized data labeled by paid workers to maintain uniform 

standards. We utilized the data for three different types of natural disasters, i.e hurricanes, floods 

and earthquakes. Only one of the 9 different labels were available for each tweet in the dataset. 

Injured or dead people indicate reports of casualties and/or injured people due to the 

crisis.  Missing, trapped, or found people signify reports and or questions about missing or found 

people. Displaced people and evacuations denote information about people who have relocated 

due to the crisis, even for a short time (includes evacuations). Infrastructure and utilities damage 

imply reports of damaged buildings, roads, bridges, or utilities/services interrupted or restored. 

Donation needs or offers or volunteering services reveal reports of urgent needs or donations of 

shelter and/or supplies such as food, water, clothing, money, medical supplies or blood; and 

volunteering services. Caution and advice contain reports of warnings issued or lifted, guidance 

and tips. Sympathy and emotional support indicate prayers, thoughts, and emotional support. 

Other useful information indicates other useful information that helps understand the situation 

and not related or irrelevant indicate unrelated to the situation or irrelevant. We did not use 

tweets labeled with Donation needs or offers or volunteering services, Sympathy and emotional 

support and Other useful information in our gold standard dataset as they do not provide any strong 

signals describing a natural disaster. Tweets labeled as “Not related” are used as negative sets 

(label 0). We cleaned up the gold standard dataset by removing retweets and incomplete tweets. 

Post clean up, we found that the dataset was imbalanced, hence to balance the dataset, we added 

https://paperpile.com/c/lwB191/F3kDJ
https://paperpile.com/c/lwB191/aYIF5
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few negative tweets to the dataset. The tweets which do not match with any of the patterns in our 

heuristic were added as negative tweets. A total of 5,692 tweets are used in the gold standard 

dataset with 2,846 tweets labeled as positive (label 1) and 2,846 labeled as negative (label 0).  

9.5 Results  

To evaluate the performance of the models, we used four different metrics, Precision (P), Recall 

(R), F-Measure (F), and Accuracy (A). For each training size, we used 10 seeds which resulted in 

10 experiments. Hence, in order to avoid bias and not show only the best results, we present the 

mean of 10 experiments in each training size. Figures 19-23 represent the performance of F-

measure in classical models starting from sample size 10,000 to 1,000,000 samples for each ratio. 

However, for the imbalanced training ratios (Eg: 1:25 and 1:50), the recall metric is more valuable 

than the precision metric. Figures 24 and 25 present the progression of the recall metric for training 

ratios 1:25 and 1:50. Figures 26-30 present the F-measure performance of deep learning models 

for each ratio. Figures 31 and 32 present the recall metric for the ratios 1:25 and 1:50 training ratios 

for the deep learning models. All the additional results (all precision plots, balanced and lightly 

imbalance recall plots) for both the classical and deep learning models are enclosed in the 

Appendix section.  
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Figure 19. Classical models mean F-measure for 1:1 ratio 

 

 

Figure 20. Classical models mean F-measure for 1:5 ratio 
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Figure 21. Classical models mean F-measure for 1:15 ratio 

 

 

Figure 22. Classical models mean F-measure for 1:25 ratio 
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Figure 23. Classical models mean F-measure for 1:50 ratio 

 

 

Figure 24. Classical models mean Recall  for 1:25 ratio 
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Figure 25.  Classical models mean Recall for 1:50 ratio 

 

Figure 26. Deep learning models mean F-measure for 1:1 ratio 
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Figure 27.  Deep learning models mean F-measure for 1:5 ratio 

 

 

Figure 28. Deep learning models mean F-measure for 1:15 ratio 
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Figure 29.  Deep learning models mean F-measure for 1:25 ratio 

 

 

Figure 30. Deep learning models mean F-measure for 1:50 ratio 
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Figure 31. Deep learning models mean Recall for 1:25 ratio 

 

 

Figure 32. Deep learning models mean Recall for 1:50 ratio 
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In all our experiments, the classical models, especially the Naive Bayes model, had the best 

performance when compared to all the other models for each training size and training ratio. For 

all the training ratios, the Naive Bayes model achieved performance greater than 89% when trained 

with the noisy silver standard dataset. Logistic Regression and SVM also had performance greater 

than 75% for training ratios until 1:25. As the unbalanced ratio increases, there is a decline in 

performance. A decline in the performance of random forest and decision tree can also be observed 

as the unbalanced samples in the training data increase. Surprisingly, the deep learning models did 

not outperform the classical models. The CNN model consistently performed better than other 

models. The CNN model hits 88% F-measure on 1:1 training ratio and has a performance greater 

than 70% for most training ratios. As the training ratio increases, there is an increase in the negative 

samples in the training data. Hence, there is a decrease in the performance in imbalance classes. 

Further, we experience a decrease in the performance as the sample size increases for each training 

ratio for imbalance classes. We expected the transformer models to perform better, however, they 

were not the top performing models in this application. Noticeably, there is a decline in the 

performance of transformer models in the evenly balanced and lightly imbalanced ratios. We 

believe the increase of noisy labels to be the reason for a decreased performance.  

To summarize, in this application we utilized a heuristic which contains bigrams generated from 

past natural disasters and a list of generic natural disaster terms to create the silver standard dataset. 

We experimented with both class balanced and imbalanced data and trained several machine 

learning models in a binary classification setting. Our results demonstrate the performance of silver 

standard data in identifying publicly available gold standard data. We calculate theoretical bounds 

which indicate that a minimum of 6,177 noisy samples were required for the least performing 

model while a minimum of 11,617 noisy samples were required for the best performing model. 
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We experimented with sample sizes starting from 10,000 which is within the limit of the theoretical 

bounds and present our results that demonstrate the accuracy of theoretical bounds.  
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10 APPLICATION 3: DETECTING EPIDEMIC TWEETS AND EVALUATION OF 

LARGE SCALE EPIDEMIC CORPUS 

Social media is where people digitally converge during disasters and use it as a lifeline for 

communication during natural disasters, epidemics, war and other crises. In the past monitoring 

disease outbreaks using the Internet, typically involved either mining newspaper articles172,173  or 

mining health related websites148,174,175. However, with an increase in the microblogging websites 

such as Twitter and Facebook, people often tend to utilize these platforms to communicate, which 

results in large amounts of valuable information. For example, Covid-19 is a recent epidemic in 

which Twitter was extensively used by users across the globe. There have been over 1.3 billion 

Covid-19 tweets retrieved from the 1% sample of the Twitter data over a period of 2 years176. This 

demonstrates that people tend to heavily rely on Twitter for communication during epidemics, and 

additionally displays that Twitter contains an abundance of data signals which can be used for 

research. Several studies in the past demonstrated successful results using NLP177,178 and 

supervised learning techniques179,180. However, in recent times there has been a shift in relying 

towards other forms of machine learning techniques to avoid the manual curation process involved 

in supervised learning and weak supervision methods have not been utilized thus far for epidemic 

research. In this application, we created a heuristic using regular expressions to identify epidemic 

related tweets and collected over 7 billion tweets from Twitter between 2013 and 2021. We filtered 

8 different types of epidemic tweets using a heuristic approach and curated a silver standard 

dataset. We trained several machine learning models using the silver standard dataset and validated 

the performance of the models using a large epidemic corpus108 containing over 30 million 

epidemic tweets. To further validate the silver standard dataset, we used a gold standard dataset to 

https://paperpile.com/c/lwB191/O2yl+jO0w
https://paperpile.com/c/lwB191/WvhFZ+6Ifq+S5RZ
https://paperpile.com/c/lwB191/J1bJ
https://paperpile.com/c/lwB191/tfao+zP1D
https://paperpile.com/c/lwB191/gmWU+k475
https://paperpile.com/c/lwB191/stcW
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determine the performance of models in identifying a gold standard dataset. To the best of our 

knowledge, we are the first to utilize weak supervision techniques for epidemics research. 

10.1 Heuristic Curation 

To create a heuristic, we first identified all the epidemics that occurred between 2006 and 2019. 

2006 was our starting point since Twitter was established in 2006. We intentionally did not include 

Covid-19 as there are several large datasets on Covid-19176,181,182 and very limited datasets on other 

epidemics. Several studies in the past were on identifying and analyzing influenza177,179,183,184 and 

a few other individual epidemics like Dengue185, Swine Flu186–188, HIV189,190. However, none of 

these studies utilized a longitudinal dataset or have multiple epidemics in the dataset. In order to 

build a longitudinal and multi epidemic dataset, we identified 8 different deadly epidemics 

including Cholera, Ebola, H1N1, HIV, Influenza, MERS, SARS and Yellow Fever. In addition to 

the epidemics, we also identified virus variants for few epidemics (Eg: Swine flu is a virus variant 

of H1N1; AIDS is caused by HIV). We used regular expressions as our labeling heuristic since for 

epidemics like “cholera”, we wanted to retrieve all the tweets irrespective of case. To summarize, 

for epidemics Cholera, Ebola, H1N1, Influenza, flu, HIV, MERS and SARS we used expressions 

which would filter tweets irrespective of case. Regular expressions have the advantage of enabling 

faster searches than a list of terms, especially when the text cannot be divided into tokens. 

Epidemic tweets usually have valuable information in hashtags and regular expressions decrease 

the search time in such cases. The regular expression used for filtering epidemic tweets is presented 

in the appendix. 

10.2 Generating the silver standard dataset 

To create the silver standard dataset, we filtered 8 different types of English epidemic tweets 

using the heuristic and filtered tweets from both publicly available datasets and Twitter regular 

https://paperpile.com/c/lwB191/RWsO+J1bJ+GiKN
https://paperpile.com/c/lwB191/nO2h+gmWU+tfao+7Lbt
https://paperpile.com/c/lwB191/BlC4
https://paperpile.com/c/lwB191/dZBA+hDUP+ZPJL
https://paperpile.com/c/lwB191/C79g+VAKD
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stream. We removed duplicate tweets and preprocessed the tweet text by removing emojis, 

emoticons, URLs and striped white spaces. 

10.2.1 Regular Stream Details 

In this application, we used tweets collected between 2018 and 2021. Table 14 lists the details of 

tweets collected and filtered from the Twitter Stream. We used only clean English tweets from this 

stream. The % tweets column represents the percentage of tweets filtered from the clean tweets. 

There is an increase in the count of relevant tweets due to Covid-19. While we did not use Covid-

19 in our heuristic, several people on Twitter compared similarities between Covid-19 and flu, as 

Covid-19 also causes respiratory illness. We filtered a total of 325,125 tweets from 2,129,383,609 

clean tweets using the heuristic on the regular stream. 

Table 14. Filtered Tweets from Regular Stream 

 

Year  Filtered tweets Percentage of filtered tweets 

2018 51,647 0.01 

2019 50,647 0.01 

2020 183,901 0.02 

2021 (Jan - May) 68,762 0.01 

Total 325,125 0.02 

10.2.2 Publicly Available Datasets 

We filtered tweets from 34 different publicly available datasets using the heuristic. The publicly 

available datasets yielded more tweets than the regular stream, since the datasets contain tweets 

that have been collected since 2013. Only 2 datasets are related to Epidemics (Health Care and 

ATAM dataset). While the other datasets are not relevant to Epidemics, we could obtain a 

significant number of tweets from the publicly available datasets. This demonstrates the 

availability of epidemic tweets in non-epidemic datasets. A total of 2,095,057 tweets were filtered 
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using the heuristic from a total of 3,050,058,283 tweets. Table 15 presents the details of the total 

number of filtered tweets for this application.  

Table 15. Filtered tweets from publicly available datasets 

 

Dataset filtered tweets  Percentage of  filtered tweets 

2016 presidential election75 16,657 0.03 

Solar Eclipse76 241 0.02 

hurricaneHarvey96 324 0.02 

Hurricane Florence97 180 0.01 

Hurricane Florence101 102 0.01 

Hurricane Harvey98 207 0.02 

Hurricane Irma96 168 0.01 

Hurricane Maria102 85 0.05 

Hurricane Sandy103 1,397 0.03 

Hurricane Dorian104 254 0.06 

Hurricane Dorian105 42 0.00 

Election 201277 3,483 0.02 

Datarelease78 10,671 0.03 

Beyond the Hashtag79 8,220 0.11 

Climate Change80 3,395 0.04 

Trump Tweet Ids81 1,782 0.02 

Health Care82 41,411 0.18 

2018 Congregational Election106 3,357 0.03 

News Outlets89 107,736 0.12 

Women's March83 154 0.01 

US Govt Ids84 53,734 0.77 

End of Term85 38,804 0.94 

Nipsey Tweets86 1,385 0.11 

Winter Olympics87 241 0.02 

Dallas Shooting88 106 0.01 

Charlottesville90 23 0.01 

Twitter-Events-2012-201691 315,301 0.89 

115th U.S. Congress Tweet Ids99 3,095 0.20 

Immigration Exec Order92 359 0.02 

Irish news English tweets93 62,180 0.14 

https://paperpile.com/c/lwB191/uX75
https://paperpile.com/c/lwB191/gpCJe
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PHTPD
https://paperpile.com/c/lwB191/1KvOX
https://paperpile.com/c/lwB191/7pR6W
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PAkR6
https://paperpile.com/c/lwB191/jYoW7
https://paperpile.com/c/lwB191/DSHnk
https://paperpile.com/c/lwB191/RkL5s
https://paperpile.com/c/lwB191/15ls0
https://paperpile.com/c/lwB191/ckUls
https://paperpile.com/c/lwB191/vJ33R
https://paperpile.com/c/lwB191/YBhly
https://paperpile.com/c/lwB191/3YmRx
https://paperpile.com/c/lwB191/khAIe
https://paperpile.com/c/lwB191/36RiY
https://paperpile.com/c/lwB191/7hLft
https://paperpile.com/c/lwB191/TdBa6
https://paperpile.com/c/lwB191/7t7ar
https://paperpile.com/c/lwB191/bVIY6
https://paperpile.com/c/lwB191/wuWLK
https://paperpile.com/c/lwB191/IRLRJ
https://paperpile.com/c/lwB191/xH3ar
https://paperpile.com/c/lwB191/cS5oL
https://paperpile.com/c/lwB191/26mkV
https://paperpile.com/c/lwB191/zlRDV
https://paperpile.com/c/lwB191/o4Ff4
https://paperpile.com/c/lwB191/WLcMR


71 

 

Black Lives Matter94 783 0.03 

2020 Presidential Election100 379,256 0.26 

Tweets to Donald Trump95 169,410 0.10 

ATAM dataset107 870,514 1.16 

Total 2,095,057 0.27 

 

Combining our data filtered from the Twitter stream and hydrated datasets, we obtained 2,420,182 

tweets and pre-processed the filtered tweets. We also lowercased the tweet text for data 

standardization. After removing duplicate tweets, the silver standard dataset contains 2,302,924 

tweets which belong to 9 different epidemics191. Table 16 lists the number of tweets in the silver 

standard dataset for each epidemic.  

Table 16. Counts of Epidemic Tweets in Silver Standard Dataset 

 

Epidemic Counts 

Cholera 18,375 

Ebola 441,035 

Flu 1,340,557 

H1N1 100,146 

HIV/AIDS 200,291 

Influenza 41,060 

MERS 8,993 

SARS 66,980 

Swine Flu 76,784 

Yellow Fever 8,703 

Total 2,302,924 

 

Unsurprisingly flu has the most number of tweets (58.2%) of the epidemic tweets, since it is more 

prevalent than other epidemics. 19.2% of the filtered tweets are from the epidemic Ebola. We 

intentionally separated flu and influenza tweets, since flu is more prevalent in Internet language 

than influenza. The following are a sample of tweets from the silver standard dataset.  

1. “so sick headache, fever, chills, nausea... guess the flu finally got me. nyquil and bed.” 

https://paperpile.com/c/lwB191/LTeCe
https://paperpile.com/c/lwB191/9lfzJ
https://paperpile.com/c/lwB191/x8YV6
https://paperpile.com/c/lwB191/IOOQ
https://paperpile.com/c/lwB191/Iw4h
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2. “59 persons came in contact with ebola victim -lasg via @360nobs” 

3. “the horrifying spread of cholera epidemic has claimed the lives of 2906 people in yemen 

#yemenforgottenwar” 

4. “london man may be cured of hiv after stem-cell transplant, researchers say” 

5. “having an allergic reacting to the yellow fever vaccine... #disgusting” 

10.3 Calculating Theoretical Bounds 

To compute the theoretical bounds, we trained several machine learning models on the gold 

standard data and presented the theoretical bounds for a high and low performing model. We split 

the gold standard data into 75:25 for training and test and obtained the accuracy of the machine 

learning models. We use accuracy to calculate the theoretical bounds.  

10.3.1 Calculating theoretical bounds for a high performing model 

In this computation, we consider “RoBERTa” to be a model with high performance with an 

accuracy score of 99%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score(0.99), 

and clean samples (m = 4,590), the minimum number of noisy samples are calculated below 

noisy samples =  m/ (1-(2*(1-τ)))**2 

noisy samples = 4,590/(1-2*(1-0.99)))**2 

noisy samples = 4,780 

We would require 4,780 noisy samples to achieve the performance similar to the performance of 

models trained on 4,590 clean samples for a high performing model.  

10.3.2 Calculating theoretical bounds for a low performing model 

In this computation, we consider “Decision Tree” to be a model with low performance with an 

accuracy score of 79%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score 

(0.7930), and clean samples (m = 4,590), the minimum number of noisy samples are below 
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noisy samples =  m/ (1-(2*(1-τ)))**2 

noisy samples = 4,590/(1-2*(1-0.7930)))**2 

noisy samples = 13,367 

We would require 13,367 noisy samples to achieve the performance similar to the performance of 

models trained on 4,590 clean samples for a high performing model. 

To summarize, the minimum number of noisy samples required for the best performing model 

(RoBERTa) is 4,780 and the minimum number of noisy samples required for the least performing 

model (Decision Tree) is 13,367.  

10.4 Evaluation on a large scale corpus 

In the previous applications, we utilized a relatively smaller gold standard dataset to test the weak 

supervision approach. In this application, we set to evaluate the silver standard data using a large 

epidemic corpus. We identified only 1 large multi class epidemic corpus and this further highlights 

the need to have a publicly available large epidemic corpus open for scientific research which our 

silver standard intends to achieve. The EPIC corpus108 contains 30 million tweets from 4 epidemics 

(Cholera, Ebola, MERS and Swine Flu) in several languages collected between 2009 and 2020. 

We could hydrate only 27,903,463 tweets from the Epic corpus as tweets were not available since 

they were either removed or deleted. Out of the 27,903,463 hydrated tweets only 18,367,000 were 

English language tweets. Since we built our silver standard dataset using a language filter set to 

English, we only utilized English language tweets from EPIC corpus. In the English tweets, 

4,548,519 tweets were Swine Flu tweets, 1,020,094 tweets were Cholera tweets, 11,092,583 tweets 

were Ebola tweets and 133,011 were MERS tweets. This is the largest publicly available non-

covid19 epidemic corpus. This corpus was purely collected based on keywords from Twitter 

streams. Table 17 depicts the distribution of different kinds of epidemic tweets on the EPIC corpus. 

https://paperpile.com/c/lwB191/stcW
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The majority of tweets belong to Ebola and Swine Flu epidemics while Cholera and MERS were 

in minority. 

Table 17. Distribution of epidemics in EPIC corpus 

 

Epidemic  Total Tweets English Tweets 

Swine Flu 5,965,868 4,586,012 

Cholera 2,180,427 1,032,900 

Ebola 19,516,570 11,414,459 

MERS 240,598 134,306 

Total 27,903,463 17,167,677 

 

10.4.1 Experimental Setup 

To test the weak supervision approach, we trained several machine learning models using the silver 

standard. We used the filtered tweets from the Cholera, Ebola, MERS and Swine Flu and labeled 

each class separately. We collected an equal number of non-epidemic tweets i.e. tweets that do not 

contain any of the epidemics in the tweet text and labeled them as non-epidemic samples. We 

utilized a stratified ratio of 75-25 of the dataset as training and validation data. The validation data 

was utilized to either improve the performance of the models or to incorporate early stopping 

techniques. To test the models, we utilized the EPIC corpus English tweets as a test set. Since the 

silver standard dataset contains less number of tweets than EPIC Corpus we removed tweets from 

EPIC corpus which were already available in silver standard dataset. We evaluated this corpus 

using a multi class classification instead of a binary setting. 

We experimented with three classical models including SVM, Decision Tree, and Logistic 

Regression models using the Scikit learn112 python library and 2 different Transformer models 

which include BERT137, and  BERTweet145. For the classical models, the TF-IDF vectorizer was 

https://paperpile.com/c/lwB191/FWOd
https://paperpile.com/c/lwB191/Fxww
https://paperpile.com/c/lwB191/Oirw
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used to convert raw tweet text to TF-IDF features and return the document-term matrix, which is 

sent to the model for training. We utilized LinearSVC for the SVM model and used the default 

parameters SVM. For the logistic regression model we set “max_iter to 1,000” and for the decision 

tree we set max_features to 'auto', criterion to "entropy" and max_depth to 150. We performed 

three different types of experiments for evaluating the silver standard corpus. The description for 

each experiment is outlined below 

Experiment 1: A balanced corpus of silver standard dataset matched to the minimum number of 

samples available for all epidemics used as training data, i.e. each class contains 8,993 samples in 

the training data. For the test set, we balanced the test set using the minimum number of samples 

available in the EPIC corpus. In this scenario, each class in the test set contains 133,011 samples.  

Experiment 2: This is a completely unbalanced experiment where we utilized all the samples 

available from silver standard dataset as training data and all the samples available in the EPIC 

corpus as test data.  

10.4.2 Results of Multi-classification 

To evaluate the performance of the models, we used four different metrics, Precision (P), Recall 

(R), F-Measure (F) for each class and also calculated Accuracy (A). Table 18,19,20 presents the 

results of F-Measure, Precision and Recall for all the 5 machine learning models. 

Table 18.  F-Measure of machine learning models 

 
 

Experiment 1 Experiment 2 

class Classical Models Deep Learning  Classical Models Deep Learning  

DT LR SVM B BT DT LR SVM B BT 

Cholera 0.6817 0.9866 0.9880 0.9925 0.9625 0.1826 0.9816 0.9836 0.9834 0.9822 

Ebola 0.8545 0.9818 0.9803 0.9922 0.9860 0.474 0.9736 0.9797 0.9925 0.9924 
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MERS 0.9722 0.9866 0.9939 0.9947 0.9961 0.2673 0.9346 0.9337 0.8947 0.874 

Swine Flu 0.7639 0.8644 0.8658 0.8788 0.8508 0.1843 0.8441 0.8598 0.8231 0.8163 

non 
epidemic 0.7209 0.8889 0.8913 0.8967 0.8956 0.7244 0.9723 0.9726 0.9592 0.9576 

weighted 

avg 0.7987 0.9417 0.9439 0.9510 0.9382 0.5503 0.9555 0.9599 0.9455 0.9504 

 

Table 19. Precision of machine learning models 

 
 

Experiment 1 Experiment 2 

class Classical Models Deep Learning  Classical Models Deep Learning  

DT LR SVM B BT DT LR SVM B BT 

Cholera 0.6963 0.9950 0.9969 0.9975 0.9418 0.5372 0.9914 0.989 0.9959 0.9810 

Ebola 0.8362 0.9808 0.9769 0.9952 0.9844 0.6249 0.9617 0.9727 0.994 0.9974 

MERS 0.9745 0.9849 0.9926 0.9924 0.9948 0.3924 0.9016 0.8852 0.8118 0.7786 

Swine Flu 0.9157 0.9973 0.9979 0.9982 0.9985 0.7171 0.9977 0.9977 0.9997 0.9962 

non 
epidemic 0.6409 0.8011 0.8045 0.8143 0.8188 0.5974 0.9464 0.9469 0.9224 0.9193 

weighted 

avg 0.8127 0.9518 0.9538 0.9595 0.9477 0.6201 0.9596 0.9634 0.9583 0.9568 

 

Table 20.  Recall of machine learning model 

 
 

Experiment 1 Experiment 2 

class Classical Models Deep Learning  Classical Models Deep Learning  

DT LR SVM B BT DT LR SVM B BT 

Cholera 0.6678 0.9783 0.9793 0.9875 0.9842 0.5372 0.9914 0.989 0.9959 0.9810 

Ebola 0.8737 0.9829 0.9836 0.9893 0.9877 0.6249 0.9617 0.9727 0.994 0.9974 

MERS 0.9699 0.9882 0.9953 0.9970 0.9974 0.3924 0.9016 0.8852 0.8118 0.7786 

Swine Flu 0.6553 0.7627 0.7646 0.7849 0.7411 0.7171 0.9977 0.9977 0.9997 0.9962 

non 
epidemic 0.8237 0.9984 0.9991 0.9976 0.9882 0.5974 0.9464 0.9469 0.9224 0.9193 
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weighted 

avg 0.6046 0.9421 0.9444 0.9513 0.9397 0.6201 0.9579 0.9619 0.9549 0.9532 

 

Table 18-20 represents the performance of the silver standard dataset in identifying a large 

epidemic corpus. Except for the decision tree model, all models had a satisfactory performance (F-

measure > 85%) for five different classes. Additionally, we calculated weighted F-measure for 

each model, and all the models performed at a level of 94%, compared to a score of 55% for the 

decision tree. This indicates the performance of silver standard data in identifying different classes 

in a large scale corpus. Since this is a multi-classification experiment, we plotted confusion 

matrices to determine how accurately the classes were predicted. Figures 33,34 depict the 

confusion matrices for the best models of each experiment. From Figure 34, we can observe that 

in the extremely imbalanced experiment, swine flu class tweets were incorrectly predicted as  other 

classes.  
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Figure 33. Confusion Matrix for BERT model for experiment 1 

 

 

Figure 34. Confusion Matrix for BERTweet model for experiment 2 
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The primary objective of this experiment is to demonstrate the evaluation of a large epidemic 

corpus using the silver standard dataset. However, the large corpus is not gold standard and is 

noisy as it was curated using keyword based search on Twitter. In the next section, we demonstrate 

additional validation of the silver standard dataset. 

10.5 Additional experiments to validate silver standard dataset 

It is extremely difficult to obtain gold standard data for all the classes in the silver standard dataset, 

as the process of curation is tedious and laborious. Hence, we sought to identify publicly available 

gold standard datasets and discovered an “Influenza” gold standard dataset192. The data was 

annotated by using the Amazon Mechanical Turk service, and the annotated data was made 

available by Mark Dredze’s group from Johns Hopkins University. Two different sets of labeled 

tweets were released - a) Self vs others indicating whether the condition is self-reported or not b) 

Awareness vs Infection tweets to indicate whether the tweet is about infection or awareness. 

However, since we are interested in influenza tweets, all the tweets were considered as “related” 

tweets. To perform a binary classification, we required a negative class. Hence, we added an equal 

number of non-influenza/ flu tweets also termed as “not related”. A tweet is considered to be not 

related if the tweet text does not contain the term flu or influenza. Out of 15,131 tweets, we could 

hydrate only 8,731 tweets out of which only 4,816 were unique tweets. We filtered relevant tweets 

from the unique tweets and added an equal number of not related tweets to the gold standard. The 

final gold standard data contains 2,295 related (label 1) tweets and 2,295 not related tweets (label 

0). The gold standard data was utilized as a test set for testing the models. 

10.5.1 Experimental Setup 

To examine the performance of silver standard data, like in previous applications, we experimented 

with several training sizes and ratios which include both class balanced and unbalanced data. We 

https://paperpile.com/c/lwB191/vfYL
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started with a class balanced ratio, i.e. 1:1 of relevant flu samples: not relevant flu samples and 

systematically increased the not relevant flu samples ratio all the way to 50. For each training ratio, 

we started with 10,000 samples and incrementally increased the sample size all the way to 

1,000,000. For each training size we experimented with 10 different seeds. For example, we have 

10,000 positive labeled samples and 40,000 negative labeled samples in a training ratio of 1:5 with 

a sample size of 50,000. In total, we experimented with 5 different training ratios (1:1, 1:5, 1:15, 

1:25, 1:50), 9 different sample sizes (10,000, 30,000, 50,000, 100,000, 200,000, 300,000, 500,000, 

800,000, 1,000,000), 10 seeds for each training size, and 10 different machine learning models 

(SVM, NB, LR, RF, DT, CNN, LSTM , BERT,RoBERTa, BERTweet) which totals to 4,500 

experiments. We used the “flu” samples from the silver standard dataset and labeled all the 

samples in the silver standard dataset as positive samples. For CNN and LSTM models we used 

the Glove embedding model which was trained on 840B tokens, 2.2M vocab, cased, 300d vectors. 

We collected 1.5 million non-flu tweets and labeled them as negative tweets. A non-flu tweet is a 

tweet which does not match with any of our terms in the heuristic. We utilized a stratified ratio of 

75-25 of the dataset as training and validation data. To summarize, we used the flu class tweets 

from our silver standard dataset as positive samples and additionally added negative samples to 

the training data. The publicly available gold standard data was utilized to test the machine learning 

models.  

10.6 Results 

Similar to previous applications, we used the same metrics (Precision, Recall, F-Measure and 

Accuracy) to evaluate the machine learning models. Since we used 10 seeds for each training size, 

which resulted in 10 experiments, we calculated the mean of the 10 experiments per training size 

to avoid bias and presented the results. Table 21 presents the mean F-Measure for all the models 



81 

 

for 1:1 and 1:50 ratios, which are class balanced and extremely imbalanced. We present the 

progression of the F-measure metric for classical models in Figures 35-39 and deep learning 

models in Figures 42-46 for all training ratios. Since recall is an important metric for highly 

imbalanced ratios, we present the progression of recall metric in classical models in Figures 40 

and 41 and deep learning models in Figure 47 and 48 for 1:25 and 1:50 ratio. The other results are 

added to the appendix. The ‘k’ in Table 21 represents samples in thousands (Eg: 10k is 10,000 

samples) and ‘M’ represents samples in millions. 

Evidently, the classical models performed as good as the deep learning models in the class 

balanced ratio. The Decision Tree model had an inconsistent performance when compared to all 

other models. In classical models SVM, Logistic Regression and Naive Bayes performed equally 

well as the deep learning models. In the extremely imbalanced ratio i.e 1:50 the deep learning 

models outperform the classical models. Naive Bayes and Decision Tree classifiers could not fit 

the imbalanced data, while all the deep learning models consistently performed well in 1:50 ratio. 

In fact, the deep learning models’ results are comparable to 1:1 ratio.  

Table 21. Mean F-Measure of all the models for 1:1 and 1:50 ratio 

 

Ratio Size Classical Models Deep Learning Models 

SVM LR NB DT RF B RB BT CNN LSTM 

1:1 10k 0.9989 0.9963 0.8097 0.8779 0.997 0.9994 0.9995 0.9991 0.8957 0.9912 

30k 0.9994 0.9986 0.8314 0.8765 0.9981 0.9996 0.9997 0.9998 0.9324 0.9974 

50k 0.9996 0.999 0.8542 0.8568 0.9982 0.9996 0.9998 0.9997 0.9426 0.9983 

100k 0.9996 0.9992 0.8535 0.7817 0.9977 0.9993 0.9998 0.9997 0.9532 0.9989 

200k 0.9998 0.9993 0.8652 0.8588 0.9983 0.9993 0.9998 0.9997 0.9568 0.9993 

300k 0.9998 0.9995 0.8699 0.7843 0.9981 0.9992 0.9998 0.9998 0.961 0.9994 

500k 0.9998 0.9996 0.8766 0.6902 0.9982 0.9657 0.9996 0.9997 0.9616 0.9998 

800k 0.9998 0.9997 0.8883 0.6229 0.9979 0.9988 0.9997 0.9997 0.9637 0.9998 
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1M 0.9998 0.9997 0.8913 0.6112 0.9982 0.9969 0.9996 0.9997 0.964 0.9998 

1:50 10k 0.9994 0.6752 0.0008 0.5931 0.8203 0.9967 0.9997 0.9969 0.8613 0.9967 

30k 0.9996 0.9246 0.001 0.7245 0.9341 0.9996 0.9998 0.9963 0.8715 0.9996 

50k 0.9997 0.9677 0.0018 0.6027 0.9499 0.9994 0.9996 0.997 0.8887 0.9994 

100k 0.9998 0.9905 0.0081 0.5273 0.9599 0.9996 0.9996 0.9991 0.9065 0.9996 

200k 0.9998 0.9973 0.0251 0.4656 0.937 0.9994 0.9998 0.9998 0.9016 0.9994 

300k 0.9998 0.9987 0.0516 0.4532 0.9394 0.9995 0.9998 0.9998 0.9086 0.9995 

500k 0.9998 0.9989 0.0642 0.452 0.9464 0.9994 0.9989 0.9991 0.9177 0.9994 

800k 0.9998 0.9992 0.0738 0.5178 0.9397 0.9996 0.9989 0.9998 0.9107 0.9996 

1M 0.9998 0.9994 0.0826 0.3622 0.9347 0.9989 0.9987 0.9996 0.9146 0.9989 

 

 

Figure 35. Progression of F-Measure mean for all the classical models in 1:1 ratio 
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Figure 36. Progression of F-Measure mean for all the classical models in 1:5 ratio 

 

 

Figure 37. Progression of F-Measure mean for all the classical models in 1:15 ratio 
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Figure 38. Progression of F-Measure mean for all the classical models in 1:25 ratio 

 

 

Figure 39. Progression of F-Measure mean for all the classical models in 1:50 ratio 
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Figure 40. Progression of Recall mean for all the classical models in 1:25 ratio 

 

 

Figure 41. Progression of Recall mean for all the classical models in 1:50 ratio 
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Figure 42. Progression of F-Measure mean for all the deep learning models in 1:1 ratio 

 

 

Figure 43. Progression of F-Measure mean for all the deep learning models in 1:5 ratio 
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Figure 44. Progression of F-Measure mean for all the deep learning models in 1:15 ratio 

 

 

Figure 45. Progression of F-Measure mean for all the deep learning models in 1:25 ratio 
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Figure 46. Progression of F-Measure mean for all the deep learning models in 1:50 ratio 

 

 

Figure 47. Progression of Recall mean for all the deep learning models in 1:25 ratio 
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Figure 48. Progression of Recall mean for all the deep learning models in 1:50 ratio 

 

We believe several factors to be the reason for the surprisingly very high performance. Firstly, the 

gold standard data contains well separated positive and negative samples, as the positive samples 

are definitely flu samples and the negative samples do not contain any flu tweets. The negative 

samples in the training data also do not contain any flu tweets. Secondly, the total number of 

samples in the test set are comparatively less and in most cases the models had consistently a few 

false negatives in the larger training sizes and more false positives in the smaller training size. 

Further, a recent research on detecting influenza tweets using Deep Learning193 also demonstrated 

similar results using deep learning methods on a gold standard dataset containing samples in both 

English and Arabic languages. This demonstrates that flu class tweets can be easily separable on 

Twitter.  

One observation in this application is that the heuristic contains patterns which are similar to the 

keywords used for collecting EPIC corpus. The heuristic can be utilized to collect relevant tweets 

https://paperpile.com/c/lwB191/jaQO
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from several datasets along with Twitter Regular stream. However, a machine learning model 

would be able to filter/ separate tweets that are missed by the heuristic. In this aspect, the Google 

flu trends project194 was used by Google to identify trends and calculate predictions. This was 

based on Google searches, and projections were made as an early warning that matched the reports 

made public by the CDC. However two years after its inception, researchers identified an over-

estimation resulting in inaccuracy and also determined that few searches were not relevant to “flu” 

and finally terminated the project in 2015. While the purpose of our application is different to the 

objective of the Google trends project, evidently, the methodology of utilizing the noisy data and 

training several machine learning models is able to identify the gold standard and can be definitely 

adopted for research with “Influenza”.  

To summarize, in this application, we utilized regular expressions as our heuristic and created a 

silver standard dataset of epidemic tweets. We experimented with a multi-classification setting and 

evaluated the performance of silver standard data using a large-scale epidemic corpus. The results 

from both class balanced and imbalanced experiments demonstrate the success in adopting a weak 

supervision approach in a multi-classification setting. Since the large-scale epidemic corpus is not 

a gold standard dataset, we performed empirical evaluation on one class of the silver standard data 

in a binary classification setting. We calculated theoretical bounds indicating that a minimum of 

13,367 noisy samples were required for the least performing model. We experimented with sample 

size starting at 10,000 and systemically increased the sample size to 1 million and presented our 

results demonstrating the accuracy of theoretical bounds. While the empirical evaluation on one 

class of silver standard validated the silver standard dataset partially, we present successful results 

on evaluating a large multi class epidemic corpus, which has never been demonstrated in the past.  

 

https://paperpile.com/c/lwB191/Kavj
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11 APPLICATION 4:  SEPARATING HEALTH RELATED TWITTER CHATTER 

From previous applications, we determined the extent of information overflow on Twitter, during 

crises, epidemics and in generic pharmacovigilance chatter. Additionally, Twitter data has been 

extensively utilized to analyze content on health-related topics, including influenza outbreak, 

alcohol abuse195, dental pain196, vaccinations197, breast cancer198, mental health199 and childhood 

obesity200. Twitter can definitely be utilized for public health research as several users 

communicate openly and willingly about various health related topics. In this aspect, Sinnenberg 

et al.201 presented a systematic review of use of Twitter in health research, where 137 articles were 

explored and constituted a new taxonomy to describe Twitter use in health research with 6 

categories. With the advance of research on public health, several researchers explored utilizing 

machine learning on a multitude of health applications. Michael J. Paul and Mark Dredze presented 

a methodology to model and mine several health topics from Twitter and released over 144 million 

tweets107,192. Prieto et al. used regular expressions to filter relevant health tweets and tested their 

approach on 4 different health topics202.  

Apart from identifying different topics, several studies also demonstrated successful results in 

several applications which dived deep into a single health topic (Eg: Pregnancy). The Health 

Language Processing Lab at UPENN annotated a dataset for identifying women reporting adverse 

pregnancy outcomes on Twitter50 and also presented a cohort study of drug safety203 and monitored 

COVID-19 vaccine safety204 during pregnancy. The Social Dynamics and Wellbeing Lab at 

Georgia Tech have been researching on several mental health issues like depression205, 

suicide206, and other self-disclosure posts on anxiety, stress and other mental health conditions207.  

 

https://paperpile.com/c/lwB191/RNg2
https://paperpile.com/c/lwB191/kGuU
https://paperpile.com/c/lwB191/vygB
https://paperpile.com/c/lwB191/YPcj
https://paperpile.com/c/lwB191/xOtf
https://paperpile.com/c/lwB191/p4rt
https://paperpile.com/c/lwB191/lql0
https://paperpile.com/c/lwB191/vfYL+IOOQ
https://paperpile.com/c/lwB191/vZwd
https://paperpile.com/c/lwB191/Vzqke
https://paperpile.com/c/lwB191/yUgw
https://paperpile.com/c/lwB191/Uo1H
https://paperpile.com/c/lwB191/L9Hs
https://paperpile.com/c/lwB191/7sWa
https://paperpile.com/c/lwB191/lHPE
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While most of the studies and their methodology is available via research papers, labeled data is 

not available to reproduce the results or utilize the data for other applications. The primary reason 

for non-availability of the data corresponds to the sensitive nature of the text in the tweet. Hence 

a data annotation process is needed when large scale data has to be labeled.  

In this application, our objective is to employ a weak supervision approach to evaluate the silver 

standard dataset on three different health topics. However, we did not find any publicly available 

multi-class gold standard datasets. Hence, we utilized weak supervision to create a “pseudo gold 

standard dataset” which utilizes a fraction of manual samples when compared to traditional manual 

labeling. We first curated a heuristic to generate a silver standard dataset containing three different 

health topics (i.e Pregnancy, Mental health and Heart Conditions) and further identified several 

sub topics for each topic. We trained several machine learning models in a multi classification 

setting using both class balanced and imbalanced samples. We calculated theoretical bounds and 

discussed our findings on the performance of a silver standard dataset in identifying the pseudo 

gold standard dataset.  

11.1 Heuristic Creation 

Unlike previous applications, we employed a basic heuristic, or "keywords", for this application. 

The objective of this application is to identify sub-classes for each class of health topic. Table 22 

enlists the Health topic class, sub-class and the keywords used to retrieve the tweets.  

Table 22. Health topics and sub classes with keywords 

 

Health Topic  Sub Class & keyword used 

 

 

Pregnancy 

pregnant 

miscarriage 

abortion 
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Mental Health 

anxiety attack 

insomnia 

panic attack 

suicidal 

depression 
 

 

Heart Conditions 
chest pain, chest pains 

heartburn 

acid reflux, reflux 

 

 

11.2 Pseudo Gold Standard Dataset Creation 

To create the pseudo gold standard data, we first use the heuristic to obtain relevant samples for 

each class. To label the samples, we adopted an iterative process where a small set of manual 

labeled (gold standard) data is utilized to train a machine learning model until an optimal 

performance is acquired. In this application, since there were no publicly available gold standard 

datasets, we manually labeled a small set of data for each health topic and subtopic. We then use 

the trained model to assign probabilities to the unseen samples. Based on a cut-off threshold, we 

labeled all the samples with probabilities greater than threshold as positive samples and added the 

samples to the manually labeled samples hence creating the pseudo gold standard dataset. Figure 

49 presents the construction steps of the pseudo gold standard dataset. 
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Figure 49. Pseudo gold standard construction steps 

 

In this application, we used the heuristic to filter data from the regular stream from 2018 to 2021. 

We preprocessed the filtered data and separated the data by each topic and subtopic. For each 

subtopic, we randomly sampled and manually labeled 100 samples for each subtopic. We ensured 

the samples were “self-reported” condition tweets. We labeled both positive (class 1) and negative 

(class 0) samples. We tested several classical models in a binary classification setting and finalized 

the SVM model with “rbf kernel” as our machine learning model since it had the best performance. 

Our target is to train a classifier with performance greater than 80%. We used F-Measure as our 

metric and iteratively labeled the data until optimal performance was achieved. Subsequently, we 

used the trained model to assign probabilities to all the unseen samples of a subtopic. We iteratively 

repeated the same process for each subtopic. Based on the distribution of probabilities, we 

determined a cut off threshold for each subtopic and then labeled all the samples greater than 

threshold as positive samples. Finally, we added the model labeled samples to the manually labeled 

samples and created the pseudo gold standard dataset. Table 23 presents the number of samples in 

the pseudo gold standard dataset for each subtopic.  
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Table 23. Total number of samples in Pseudo gold standard dataset 

 

Class Sub Class Manually labeled 

samples 
Model labeled 

samples 
Total tweets in Pseudo 

Gold Standard 
Threshold 

used  

Pregnancy pregnant 167 572 739 0.98 

miscarriage 134 153 287 0.96 

abortion 110 162 272 0.95 

Mental 

Health 
anxiety attack 116 2,266 2,382 0.99 

insomnia 137 231 368 0.987 

panic attack 143 460 603 0.98 

suicidal 138 325 463 0.99 

depression 100 3,626 3,726 0.99 

Heart 

Conditions 
acid reflux 101 177 278 0.67 

chest pain 110 382 492 0.98 

heartburn 101 305 406 0.98 

 

11.3 Generating the Silver Standard dataset 

To create the silver standard dataset, we applied the heuristic on Publicly available datasets and 

Regular Stream. We mined a total of 7.3 billion tweets from the two sources and separated tweets 

for 11 subclasses. 

11.3.1 Regular Stream Details 

In this application, we used tweets collected between 2018 and 2021. Table 24 lists the details of 

tweets collected and filtered from the Twitter Stream. We used only clean English tweets from this 

stream. The % tweets column represents the percentage of tweets filtered from the clean tweets. 

There is an increase in the count of relevant tweets in 2020 due to Covid-19, where users actively 

tweeted about battling with mental health issues due to lockdown and pandemic. While we 
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obtained a total of 853,758 tweets from the regular stream, after removing duplicate tweets and 

tweets that existed in gold standard, only 799,554 tweets were filtered from the regular stream. 

Only 0.04% of relevant health tweets were identified from the regular stream.   

Table 24. Total number of filtered tweets from Regular Stream 

 

Year  Filtered Tweets Percentage of filtered tweets 

2018 184,999 0.04 

2019 251,321 0.04 

2020 267,440 0.03 

2021 (Jan - May) 95,794 0.03 

Total 799,554 0.04 

 

11.3.2 Publicly Available Datasets 

We filtered tweets from 34 different publicly available datasets using the heuristic. The publicly 

available datasets yielded more tweets than the regular stream, since the datasets contained tweets 

that were collected since 2013. Only 2 datasets were related to Health (Health Care and ATAM 

dataset). While the other datasets were unrelated to health, we could obtain a significant number 

of tweets from the publicly available datasets. A total of 1,924,235 tweets were filtered using the 

heuristic from a total of 3,050,058,283 tweets. Table 25 presents the data collection results from 

the publicly available datasets. While tweets from only two datasets were relevant to the current 

application, we observed that several other datasets (Eg: Natural Disasters, Election, Women’s 

March) contained a significant number of tweets. A quick analysis into the filtered tweets 

determined that a lot of health relevant chatter was frequent during elections and crises. Various 

health care policies are usually discussed during elections and crisis situations always have health 

related tweets. For example, during natural disasters (Eg: hurricanes), users tweeted about the 
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impact on mental health due to loss of properties while also dealing with misplacement and 

damage.  

Table 25. Filtered tweets from publicly available dataset 

 

Dataset Filtered tweets  Percentage of filtered tweets 

2016 presidential election75 70,185 0.14 

Solar Eclipse76 331 0.02 

hurricaneHarvey96 1,890 0.09 

Hurricane Florence97 4,331 0.31 

Hurricane Florence101 1,467 0.20 

Hurricane Harvey98 1,430 0.16 

Hurricane Irma96 1,414 0.06 

Hurricane Maria102 40 0.02 

Hurricane Sandy103 1,926 0.04 

Hurricane Dorian104 258 0.06 

Hurricane Dorian105 2711 0.16 

Election 201277 82,873 0.38 

Datarelease78 62,221 0.20 

Beyond the Hashtag79 8,267 0.11 

Climate Change80 15,937 0.20 

Trump Tweet Ids81 6,851 0.07 

Health Care82 99,757 0.44 

2018 Congregational Election106 13,354 0.14 

News Outlets89 180,018 0.20 

Women's March83 5,311 0.41 

US Govt Ids84 14,417 0.21 

End of Term85 7,916 0.19 

Nipsey Tweets86 423 0.03 

Winter Olympics87 328 0.02 

Dallas Shooting88 259 0.02 

Charlottesville90 70 0.02 

Twitter-Events-2012-201691 31,018 0.09 

115th U.S. Congress Tweet Ids99 3,436 0.22 

Immigration Exec Order92 647 0.03 

https://paperpile.com/c/lwB191/uX75
https://paperpile.com/c/lwB191/gpCJe
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PHTPD
https://paperpile.com/c/lwB191/1KvOX
https://paperpile.com/c/lwB191/7pR6W
https://paperpile.com/c/lwB191/LkTES
https://paperpile.com/c/lwB191/PAkR6
https://paperpile.com/c/lwB191/jYoW7
https://paperpile.com/c/lwB191/DSHnk
https://paperpile.com/c/lwB191/RkL5s
https://paperpile.com/c/lwB191/15ls0
https://paperpile.com/c/lwB191/ckUls
https://paperpile.com/c/lwB191/vJ33R
https://paperpile.com/c/lwB191/YBhly
https://paperpile.com/c/lwB191/3YmRx
https://paperpile.com/c/lwB191/khAIe
https://paperpile.com/c/lwB191/36RiY
https://paperpile.com/c/lwB191/7hLft
https://paperpile.com/c/lwB191/TdBa6
https://paperpile.com/c/lwB191/7t7ar
https://paperpile.com/c/lwB191/bVIY6
https://paperpile.com/c/lwB191/wuWLK
https://paperpile.com/c/lwB191/IRLRJ
https://paperpile.com/c/lwB191/xH3ar
https://paperpile.com/c/lwB191/cS5oL
https://paperpile.com/c/lwB191/26mkV
https://paperpile.com/c/lwB191/zlRDV
https://paperpile.com/c/lwB191/o4Ff4
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Irish news English tweets 93 68,741 0.15 

Black Lives Matter94 2,080 0.08 

2020 Presidential Election100 246,618 0.17 

Tweets to Donald Trump95 140,304 0.08 

ATAM dataset107 847,406 1.13 

Total 1,924,235 0.25 

 

Combining our data filtered from the Twitter stream and hydrated datasets, we obtained 2,516,574 

tweets from 11 different subclasses. To create the silver standard dataset, we removed duplicate 

tweets and preprocessed the tweet text by removing emojis, emoticons, URLs and striped white 

spaces. We also lowercased the tweet text for data standardization. Table 26 lists the number of 

tweets in the silver standard dataset for each class and subclass.  

Table 26. Number of tweets in silver standard dataset 

 

Class Sub Class Total number of Tweets 

Pregnancy pregnant 518,240 

miscarriage 21,866 

abortion 620,724 

 

 

 

Mental Health 

anxiety attack 60,269 

insomnia 308,158 

panic attack 51,695 

suicidal 75,226 

depression 703,386 

Heart Conditions acid reflux 7,468 

chest pain 94,197 

heartburn 55,345 

Total  2,516,574 

 

 

https://paperpile.com/c/lwB191/WLcMR
https://paperpile.com/c/lwB191/LTeCe
https://paperpile.com/c/lwB191/9lfzJ
https://paperpile.com/c/lwB191/x8YV6
https://paperpile.com/c/lwB191/IOOQ
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11.4 Calculating Theoretical Bounds 

To compute the theoretical bounds, we trained several machine learning models on the gold 

standard data and presented the theoretical bounds for a high and low performing model. We split 

the gold standard data into 75:25 for training and test and obtained the accuracy of the machine 

learning models. We use accuracy to calculate the theoretical bounds.  

11.4.1 Calculating theoretical bounds for a high performing model 

In this computation, we consider “BERTweet” to be a model with high performance with an 

accuracy score of 99%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score(0.99), 

and clean samples (m =10,016), the minimum number of noisy samples are calculated below 

noisy samples = m/ (1-(2*(1-τ)))**2 

noisy samples = 10,016/(1-2*(1-0.99)))**2 

noisy samples = 10,429 

We would require 4,780 noisy samples to achieve the performance similar to the performance of 

models trained on 10,429 clean samples for a high performing model.  

11.4.2 Calculating theoretical bounds for a low performing model 

In this computation, we consider “Naive Bayes” to be a model with low performance with an 

accuracy score of 54%. For an error bound(γ = 0.05), probability(δ = 0.05), accuracy score 

(0.54), and clean samples (m = 10,016), the minimum number of noisy samples are below 

noisy samples = m/ (1-(2*(1-τ)))**2 

noisy samples = 10,016/(1-2*(1-0.54)))**2 

noisy samples = 1,564,999 

We would require 13,367 noisy samples to achieve the performance similar to the performance 

of models trained on 10,016 clean samples for a high performing model. 
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To summarize, the minimum number of noisy samples required for the best performing model 

(BERTweet) is 10,429 and the minimum number of noisy samples required for the least 

performing model (Naive Bayes) is 1,564,999. 

11.5 Experimental Setup 

We experimented with both class balanced and extremely class imbalanced samples in a multi-

classification setting. A stratified ratio of 75-25(train-validation) was used to split the silver 

standard dataset and to train five different classical models (SVM, Decision Tree, Naive Bayes, 

Logistic Regression and Random Forest) and five different deep learning models (BERT, 

BERTweet, RoBERTa, CNN and LSTM). The validation data was used to either improve the 

performance of the model or terminate the learning process when there is no significant 

improvement. To test the models, we used the pseudo gold standard data for each subclass. We 

performed the experiments in two different settings, as detailed below. 

Experiment 1:  A balanced corpus of silver standard dataset matched to the minimum number of 

samples available was used as training data. In the silver standard data, “acid reflux” subclass 

contains the least number of samples when compared to the other subclasses hence all the classes 

in this experiment were sampled to minimum number of samples (7,468). The test set is not 

balanced and we utilized all the samples in the test set for each subclass. 

Experiment 2:  All the samples from the silver standard dataset were utilized as the training data. 

This is a heavily imbalanced experiment. The test set is not balanced and we utilized all the samples 

in the test set for each subclass. 
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11.6 Results 

As in the previous experiments, we calculated Precision, Recall, F-Measure, Accuracy. 

Additionally we computed the metrics for both individual and weighted metrics for all the 

subclasses. Tables 27 and 28 present the results of F-measure for all the models for all subclasses 

for experiment 1 and 2. 

Table 27. F-Measure for each subclass for Experiment 1 

 

Class Sub Class LR SVM DT RF NB B BT RB CNN LSTM 

 

 
Pregnancy 

pregnant 0.9601 0.9633 0.5867 0.9583 0.9039 0.9293 0.9311 0.8928 0.6613 0.9423 

miscarriage 0.9594 0.9671 0.1444 0.9305 0.7232 0.9203 0.9242 0.9044 0.8381 0.9412 

abortion 0.9084 0.9032 0.3640 0.9228 0.7075 0.8826 0.9209 0.7741 0.7737 0.9102 

 
 
 

Mental 
Health 

anxiety 
attack 0.9897 0.9926 0.5474 0.9881 0.8979 0.8613 0.9762 0.7867 0.7652 0.9230 

panic attack 0.9788 0.9804 0.2959 0.9772 0.7386 0.9749 0.9757 0.9812 0.7417 0.9789 

insomnia 0.9797 0.9579 0.2558 0.9642 0.8293 0.9600 0.9707 0.5198 0.8279 0.8848 

suicidal 0.9817 0.9818 0.7931 0.9774 0.7933 0.6338 0.9517 0.9636 0.8291 0.9425 

depression 0.9915 0.9910 0.6286 0.9907 0.9074 0.9861 0.9852 0.9909 0.8419 0.9601 

 
 

Heart 
Conditions 

chest  
pain 0.9859 0.9919 0.2813 0.9839 0.9421 0.9828 0.9899 0.9889 0.6596 0.9879 

acid  
reflux 0.9782 0.9764 0.3938 0.9874 0.8683 0.9745 0.9798 0.9818 0.3755 0.9780 

heartburn 0.9826 0.9839 0.3928 0.9726 0.8908 0.9714 0.9763 0.9766 0.7591 0.9828 

 

Table 28. F-Measure for each subclass for Experiment 2 

 

Class Sub Class LR SVM DT RF NB B BT RB CNN LSTM 

 
 

Pregnancy 

pregnant 0.9321 0.9395 0.4315 0.8848 0.6588 0.9435 0.9474 0.9365 0.7862 0.9077 

miscarriage 0.8748 0.8956 0.3046 0.7216 0.0000 0.9081 0.9145 0.8757 0.8931 0.9125 

abortion 0.9051 0.9134 0.2057 0.9094 0.7318 0.9173 0.9234 0.3467 0.8149 0.9222 

anxiety attack 0.9886 0.9890 0.1607 0.8779 0.1236 0.8400 0.9716 0.7880 0.6922 0.9615 
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Mental 
Health 

panic attack 0.9796 0.9796 0.2033 0.9770 0.3785 0.9788 0.9781 0.9733 0.8849 0.9797 

insomnia 0.9577 0.9590 0.1721 0.9159 0.6394 0.9679 0.9719 0.9691 0.7812 0.9602 

suicidal 0.9408 0.9431 0.1967 0.7880 0.0000 0.9422 0.8806 0.9431 0.8292 0.9412 

depression 0.9830 0.9841 0.6193 0.9138 0.6627 0.9150 0.9868 0.9890 0.8515 0.9847 

 
 

Heart 
Conditions 

chest  
pain 0.9859 0.9838 0.7798 0.9780 0.7338 0.9800 0.9839 0.9859 0.6652 0.9879 

acid  

reflux 0.9490 0.9531 0.2691 0.8835 0.0000 0.9588 0.9761 0.9609 0.9055 0.9594 

heartburn 0.9704 0.9705 0.1245 0.9265 0.1480 0.9691 0.9751 0.9728 0.8156 0.9502 

 

The class balanced experiment findings (Experiment 1) showed that the Transformer models were 

consistently superior to the neural network models. Three classical models (Logistic Regression, 

SVM, and Random Forest) outperformed Decision Tree and Naive Bayes in terms of performance. 

Surprisingly, the overall performance of the machine learning models for the two experiments did 

not differ much. However, we observed a performance drop in subclasses in the extremely 

imbalanced experiment. To determine the rationale, we plotted confusion matrices, which display 

the prediction distribution across classes for the RoBERTa and BERT models for experiment 2. 

From Figure 50 and 51, we observe that a few subclasses were incorrectly classified. However, 

they were classified under the same parent class. For example, several “abortion” samples were 

incorrectly classified as “pregnancy” or “miscarriage”.  Several “anxiety attack” samples were 

incorrectly classified as “abortion” and “panic attack”. We believe that the model could calculate 

similarities between subtopics and hence misclassified the subclasses, since they are under the 

same parent class. Hence to determine the performance of models at parent class level, we designed 

two additional experiments.  
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Figure 50. Confusion Matrix for RoBERTa model for experiment 2 

 

 

Figure 51. Confusion Matrix for BERT model for experiment 2 
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11.6.1 Experiments with Aggregations 

In this set of experiments, we determined how the silver standard data performed against 

aggregated class data instead of a multi classification on different subclasses. In other words, we 

set to experiment with 3 different class level multi classification models. In this scenario, instead 

of 11 subclasses, we have 3 classes and all the labels of subclasses have been changed to class 

level labels. For example, in the pregnancy class, the subclasses pregnant, abortion and miscarriage 

were labeled as “pregnancy” samples. We use similar experiments as above, and the experiment 

setup is detailed below. 

Experiment 3:  A balanced corpus of silver standard dataset matched to the minimum number of 

samples available was used as training data. In the silver standard data, “heart conditions” class 

contains the least number of samples when compared to the other classes and hence all the classes 

in this experiment were sampled to a minimum number of samples (7,468). The test set is not 

balanced, and we utilized all the samples in the test set for each class. 

Experiment 4:  All the samples from the silver standard dataset were utilized as the training data. 

This is a heavily imbalanced experiment. The test set is not balanced and we utilized all the samples 

in the test set for each class. 

While we calculated precision, recall, F measure and accuracy across all classes, we present only 

F-measure results for experiments 3 and 4 in Tables 29 and 30.  

Table 29. Class level F-measure for all models for experiment 3 

 

Class LR SVM DT RF NB B BT RB CNN LSTM 

pregnancy 0.9942 0.9962 0.5261 0.9938 0.8148 0.9935 0.9977 0.9935 0.8275 0.9901 

mental health 0.9989 0.9992 0.8741 0.9983 0.9616 0.9985 0.9993 0.9986 0.9302 0.9984 

Heart conditions 0.9919 0.9932 0.6077 0.9932 0.8849 0.9945 0.9962 0.9949 0.6769 0.9915 
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Table 30. Class level F-measure for all models for experiment 4 

 

Class LR SVM DT RF NB B BT RB CNN LSTM 

pregnancy 0.9935 0.9935 0.3532 0.9760 0.8972 0.9831 0.9079 0.9481 0.8804 0.9885 

mental health 0.9983 0.9984 0.6944 0.9916 0.9481 0.9963 0.9829 0.9911 0.9615 0.9983 

heart conditions 0.9867 0.9867 0.6063 0.9311 0.5323 0.9774 0.9712 0.9796 0.8110 0.9876 

 

The results from experiments 3 and 4 determine the performance of the silver standard dataset in 

identifying the pseudo gold standard dataset at class level. The results from experiments 1 and 2 

determined the performance at subclass level. In both class balanced and imbalanced experiments 

at class and subclass level, the best models could successfully identify the pseudo gold standard 

dataset with a performance greater than 90%.  

To summarize, in this application, we created a simple heuristic and curated silver standard dataset 

from the regular stream and publicly available datasets. Since there were no publicly available 

multi-class gold standard health topic datasets, we used a weak supervision approach to curate a 

gold standard dataset. We experimented with both class balanced and imbalanced samples at both 

class and subclass level and demonstrated the performance of machine learning models in 

identifying the pseudo gold standard dataset. We calculated theoretical bounds and determined 

that a total of 1,564,999 noisy samples were required for the least performing model and 10,429 

noisy samples were required for the best performing model when a total of 10,016 clean samples 

were available. Since the gold standard is not manually validated, we experimented with all the 

samples of the data (>2 million) to demonstrate that the theoretical bounds are accurate. While we 

experimented with 3 different health topics and 11 distinct sub topics in this application, the 

methodology to curate the gold standard and silver standard can easily be extended and adapted to 

several other health topics.  
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12 SUMMARY 

In this study, we demonstrated the viability of utilizing noisy social media data using weak 

supervision. Our study is motivated by the drawbacks of supervised learning which require 

massive amounts of labeling which is a tedious and expensive process. In this study, we utilized a 

heuristic based approach to label data and generated silver standard datasets for four different 

applications. In our first application, “Identifying drug mentions from Twitter”, we tested the weak 

supervision approach in a binary classification setting using a drug dictionary as our heuristic. In 

the second application, “Characterizing three different types of Natural Disasters: Hurricanes, 

Earthquakes and Floods”, we utilized bi-grams in conjunction with a list of generic natural disaster 

terms as our heuristic and tested the approach in a binary classification setting. In the third 

application, “Detecting epidemic tweets and evaluation of large scale epidemic corpus”, we 

employed regular expressions as our heuristic and tested the weak supervision approach in both 

binary and multi-classification. In our final application, “Separating health related Twitter chatter”, 

we used a weak supervision approach to generate a “pseudo gold standard dataset” and tested the 

noisy silver standard data in a multi-classification setting. For all applications, we utilized a gold 

or pseudo gold standard dataset to validate the approach and extensively evaluated the silver 

standard dataset on several training samples and class imbalances. We computed the theoretical 

bounds for each application and verified the accuracy of the theoretical bounds for each 

application. The results from the applications evidently demonstrates that the silver standard 

dataset identifies the gold standard dataset. Our findings in the four applications indicate that social 

media data can be utilized for weak supervision in both binary and multi classification settings. 
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13 LIMITATIONS 

The study examined the usage of noisy labels for four different applications using different kinds 

of heuristics in different classification settings. We observed a few limitations for this work. While 

the methodology demonstrated successful results on broader applications, it might not perform 

well for applications which require fine-grained or specific labels. For example, we tested the 

methodology on a “hate speech detection” application208 and the models could not differentiate 

between “hate” and “counter-hate” labels. Additionally we experimented with data augmentation 

and added more noisy data to the models which yielded poor results. We believe that the 

methodology might obtain poor results for specific applications which require detailed labels. A 

few other applications we haven't tested the methodology but believe might obtain poor 

performance are “Fake news detection”, “Differentiating between misinformation, fake news and 

disinformation”, “Differentiating the variants of flu virus”, “Characterizing Covid-19 strain 

variants”, “Separating or understanding the differences between bots and humans tweets relevant 

to a topic”. Secondly, Labeling functions with frameworks like snorkel offer more complex 

functionalities, especially with ambiguous tweets. For such ambiguous tweets, a heuristic might 

incorrectly label and might bring more noise into the silver standard dataset. In this study, we 

applied rule based, pattern matching and pre-trained models to obtain labeling data using a 

heuristic. Additionally, labeling functions can incorporate distant supervision and crowdworker 

labels into their framework. Labeling functions with the Snorkel framework also offer several 

summary statistics like “polarity”, “coverage”, “overlaps”, “conflicts”, “empirical accuracy” 

which are utilized to understand and analyze the labeling functions. We have to create separate 

functions to obtain the statistics when using only a heuristic based method which is time 

consuming. However, a heuristic is easier to use and can be easily adapted by non-computer 

https://paperpile.com/c/lwB191/fuKZ
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science researchers when compared to labeling functions. Finally, when using a weak supervision 

approach, multiple machine learning models must be experimented, as there are no pre-approved 

models. Despite the limitations, the methodology can definitely be extended to other applications 

and obtain results similar to supervised learning.   
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14 FUTURE WORK 

There is a great scope for expansion of this work in the future. Recently, Ratner et al. released 

Wrench30, a comprehensive benchmark for weak supervision. They released 14 different 

benchmark datasets for weak supervision which can be utilized for several machine learning tasks 

such as classification and sequence tagging. None of the datasets in the study were extended to 

include social media data. This work can be expanded by creating a few benchmark weak 

supervision social media datasets. Secondly, social media data might be deleted or removed, 

resulting in loss of data. Hence to further help retain important signals from social media data, 

several BERT models can be trained with silver standard dataset and the pre-trained models can 

be released through Hugging Face135 which can be utilized for several downstream tasks. Thirdly, 

since heuristics were used in this study, labeling functions could be incorporated in future studies 

and the efficiency of utilizing a labeling function versus a heuristic for social media data can be 

determined.  

Furthermore, all the applications in this work never utilized the weak supervision methodology in 

the past. Since the methodology is based on using a labeling heuristic, this approach can certainly 

be extended to several applications.  Few directions where social media data could be used for 

weak supervision applications are, “Classifying different emotions”, “Characterizing patterns of 

stock market”, “stance detection”. We demonstrated separation of health chatter between several 

health topics in Chapter 11. However, weak supervision can be extended to individual health 

applications like “identifying adverse pregnancy outcomes”, “detecting adverse mental health 

events”, “usage of stimulants and opioids”, “identifying symptoms associated with health 

conditions”, and “early detection of health conditions”. Few directions where weak supervision 

methodology could be applied outside of social media data are “Information extraction”, “multi-

https://paperpile.com/c/lwB191/FVMg
https://paperpile.com/c/lwB191/v4xdX
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instance learning”, “Automatic Speech Recognition”, “Identifying adverse drug reactions”, 

“Identifying cancer aggressiveness using weak patterns”, “Classifying Unstructured Clinical 

Notes”. Additionally, based on limitations presented in Chapter 13, there is an immense scope for 

expansion of weak supervision research in applications which require fine-grained labels. New 

methodologies or frameworks could be created which address the limitations.  
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15 CONCLUSION 

In this work, we tested the theory of noisy learning using social media data to train machine 

learning models in a weak supervision setting. We utilized a heuristic based approach to label data 

and created large scale silver standard datasets. We mined over 16 billion tweets in a span of 3 

years, from three different sources and documented the data collection process along with 

advantages and limitations for each kind of data collection. We identified four applications where 

the weak supervision methodology was not utilized in the past and exhaustively experimented with 

numerous sample sizes, class imbalances, and machine learning models in both binary and multi 

classification settings on four different applications. Additionally, we adopted a weak supervision 

approach to build a pseudo gold standard dataset when no social media gold standard datasets were 

available for the health application. Subsequently, after extensive evaluations, we conclude that 

noisy unstructured social media data can be utilized for weak supervision. Additionally, we draw 

the conclusion that social media data is useful for applications when employing generic labels 

rather than fine grained labels. We contribute a methodology that can be extended to several other 

applications by changing the heuristic and the curating silver standard data programmatically. We 

documented the limitations and additionally presented directions to expand this work for future 

research.  
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APPENDICES  

Appendix A: Identifying drug mentions from Twitter 

The following are the plots for Precision and Recall for all the training ratios for all the models.  

 

 

Figure 52. Classical models mean Precision for 1:1 ratio 

 

 

Figure 53. Classical models mean Precision for 1:5 ratio 
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Figure 54. Classical models mean Precision for 1:15 ratio 

 

 

Figure 55. Classical models mean Precision for 1:25 ratio 
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Figure 56. Classical models mean Precision for 1:50 ratio 

 

 

Figure 57. Classical models mean Precision for 1:100 ratio 
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Figure 58. Classical models mean Recall for 1:1 ratio 

 

 

Figure 59. Classical models mean Recall for 1:5 ratio 
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Figure 60. Classical models mean Recall for 1:15 ratio 

 

 

Figure 61.  Classical models mean Recall for 1:100 ratio 
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Figure 62. Classical models mean F-Measure for 1:100 ratio 

 

 

Figure 63. Deep learning models mean Precision for 1:1 ratio 



139 

 

 

Figure 64. Deep learning models mean Precision for 1:5 ratio 

 

 

Figure 65. Deep learning models mean Precision for 1:15 ratio 
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Figure 66. Deep learning models mean Precision for 1:25 ratio 

 

 

Figure 67. Deep learning models mean Precision for 1:50 ratio 
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Figure 68. Deep learning models mean Recall for 1:1 ratio 

 

 

Figure 69. Deep learning models mean Recall for 1:5 ratio 
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Figure 70. Deep learning models mean Recall for 1:15 ratio 

Appendix B: Characterizing different types of natural disasters: hurricanes, earthquakes 

and floods 

The following are the plots for Precision and Recall for all the training ratios for all the models.

 

Figure 71. Mean of Precision for 1:1 ratio classical models 
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Figure 72. Mean of Recall for 1:1 ratio classical models 

 

 

Figure 73. Mean of Precision for 1:5 ratio classical models 
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Figure 74. Mean of Recall for 1:5 ratio classical models 

 

 

Figure 75.  Mean of Precision for 1:15 ratio classical models 
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Figure 76. Mean of Recall for 1:15 ratio classical models 

 

 

Figure 77.  Mean of Precision for 1:25 ratio classical models 
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Figure 78. Mean of Precision for 1:50 ratio classical models 

 

 

Figure 79. Mean of Precision for 1:1 ratio deep learning models 
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Figure 80. Mean of Recall for 1:1 ratio deep learning models 

 

 

Figure 81. Mean of Precision for 1:5 ratio deep learning models 
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Figure 82. Mean of Recall for 1:5 ratio deep learning models 

 

 

Figure 83. Mean of Precision for 1:15 ratio deep learning models 
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Figure 84. Mean of Recall for 1:15 ratio deep learning models 

 

 

Figure 85. Mean of Precision for 1:25 ratio deep learning models 
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Figure 86. Mean of Precision for 1:50 ratio deep learning models 

Appendix C: Detecting epidemic tweets and evaluation of large scale epidemic corpus 

Regular expression used for filtering the tweets 

“(?i:swine\s+flu|swineflu|h1n1|ebola|cholera|influenza|\\bflu\\b|yellow\s+fever|yellowfever|\\bhiv

\\b|\\b#aids\\b|\\#sars\\b|\\b#mers\\b|\\b#flu\\b|\\b#hiv\\b)|\\b#*AIDS\\b|\\bMERS\\b|\\bSARS\\b” 

The following are the confusion matrices plots for each machine learning model for each 

experiment 
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Figure 87. Confusion Matrix for Logistic Regression model for Experiment 1 

 

 

Figure 88. Confusion Matrix for Logistic Regression model for Experiment 2 
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Figure 89. Confusion Matrix for SVM model for Experiment 1 

 

 

Figure 90. Confusion Matrix for SVM model for Experiment 2 
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Figure 91 Confusion Matrix for Decision Tree model for Experiment 1 

 

 

Figure 92. Confusion Matrix for Decision Tree model for Experiment 2 
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Figure 93. Confusion Matrix for BERTweet model for Experiment 1 

 

 

Figure 94. Confusion Matrix for BERT model for Experiment 2 
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The following are the plots when trained on the “flu” silver standard dataset and tested on one 

class (flu). The plots represent the mean of the models for 10 experiments in a training size and 

ratio. 

 

Figure 95. Progression of Precision mean for 1:1 ratio of classical models 

 

 

Figure 96. Progression of Recall mean for 1:1 ratio of classical models 
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Figure 97. Progression of Precision mean for 1:5 ratio of classical models 

 

 

Figure 98. Progression of Recall mean for 1:5 ratio of classical models 
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Figure 99. Progression of Precision mean for 1:15 ratio of classical models 

 

 

Figure 100. Progression of Recall mean for 1:15 ratio of classical models 
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Figure 101. Progression of Precision mean for 1:25 ratio of classical models 

 

 

Figure 102. Progression of Precision mean for 1:50 ratio of classical models 
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Figure 103.  Progression of Precision mean for 1:1 ratio of deep learning models 

 

 

Figure 104. Progression of Recall mean for 1:1 ratio of deep learning models 
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Figure 105. Progression of Precision mean for 1:5 ratio of deep learning models 

 

 

Figure 106. Progression of Recall mean for 1:5 ratio of deep learning models 
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Figure 107. Progression of Precision mean for 1:15 ratio of deep learning models 

 

 

Figure 108. Progression of Recall mean for 1:15 ratio of deep learning models 
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Figure 109. Progression of Precision mean for 1:25 ratio of deep learning models 
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Figure 110. Progression of Precision mean for 1:50 ratio of deep learning models 

 

Appendix D: Characterizing relevant health tweets 

The following table presents the number of iterations required for obtaining optimal performance 

for generating the pseudo gold standard dataset. 

Table 31.  Number of iterations required to obtain optimal performance. 

 

Class Sub Class Precision Recall F-Measure Accuracy Total no of Iterations 

Pregnancy  

pregnant 

0.7067 0.6897 0.6908 0.6897 

2 0.818 0.8088 0.809 0.8088 

 

miscarriage 

0.6515 0.65 0.6491 0.65 

2 0.8703 0.8704 0.8701 0.8704 

 

abortion 

0.8244 0.7073 0.6923 0.7073 

2 0.8617 0.8444 0.8421 0.8444 

Mental Health  
 

anxiety attack 

0.5935 0.561 0.5547 0.561 

4 

0.7057 0.7073 0.7048 0.7073 

0.8587 0.8049 0.7961 0.8049 
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0.8997 0.8723 0.8713 0.8723 

 

 

 

insomnia 

0.6703 0.6607 0.6602 0.6607 

5 

0.8062 0.6964 0.6562 0.6964 

0.8764 0.8393 0.8329 0.8393 

0.8986 0.875 0.8718 0.875 

0.9107 0.8929 0.8907 0.8929 

 
 

 

 

panic attack 

0.5142 0.4634 0.4029 0.4634 

6 

0.6221 0.6222 0.6218 0.6222 

0.5551 0.5556 0.5542 0.5556 

0.7752 0.7111 0.6908 0.7111 

0.8633 0.8039 0.8001 0.8039 

0.8966 0.8621 0.8627 0.8621 

 
suicidal 

0.6515 0.65 0.6491 0.65 

3 

0.7604 0.75 0.7475 0.75 

0.9149 0.9107 0.9101 0.9107 

 
depression 

0.5752 0.575 0.5747 0.575 

2 0.9348 0.925 0.9246 0.925 

Heart Conditions acid reflux 0.9766 0.9756 0.9755 0.9756 1 

chest pain 0.7073 0.7073 0.7073 0.7073 

2 0.8892 0.8636 0.8571 0.8636 

 

 

heartburn 

0.839 0.8049 0.8042 0.8049 

3 

0.8537 0.8537 0.8537 0.8537 

0.9283 0.9268 0.927 0.9268 

 

The following table presents the number of labeled tweets in the manually labeled dataset.  

Table 32. Total number of manually labeled tweets 

 

Class Sub Class Total 

Tweets 
Self-reported 

Tweets 
Positive 

Label 
Negative 

Label  
Undecided 

Label  

Pregnancy pregnant 256,960 79,696 167 337 246 

miscarriage 9,568 4,465 
134 218 191 

abortion 175,520 925 110 113 131 
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Mental Health anxiety 

attack 
11,633 5,874 

116 130 197 

insomnia 39,086 10,484 137 180 379 

panic attack 29,413 15,754 143 234 155 

suicidal 40,404 12,934 138 150 194 

depression 254,774 115,958 100 113 171 

Heart 
Conditions 

acid reflux 5,247 655 101 119 24 

chest pain 7,407 928 110 125 19 

heartburn 8,872 2,123 101 101 61 

 

The following are the confusion matrices for deep learning models for each experiment.  

 

 
Figure 111. Confusion Matrix for BERT model for Experiment 1 
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Figure 112. Confusion Matrix for RoBERTa model for Experiment 1 

 

 

Figure 113. Confusion Matrix for BERTweet model for Experiment 1 
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Figure 114. Confusion Matrix for BERTweet model for Experiment 2 

 

 

Figure 115. Confusion Matrix for BERT model for Experiment 3 
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Figure 116. Confusion Matrix for BERT model for Experiment 4 

 

 

Figure 117. Confusion Matrix for BERTweet model for Experiment 3 
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Figure 118. Confusion Matrix for BERTweet model for Experiment 4 

 

 

Figure 119. Confusion Matrix for RoBERTa model for Experiment 3 
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Figure 120. Confusion Matrix for RoBERTa model for Experiment 4 
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